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Abstract

Designing efficient algorithms for multi-agent reinforcement
learning (MARL) is fundamentally challenging due to the
fact that the size of the joint state and action spaces are ex-
ponentially large in the number of agents. These difficulties
are exacerbated when balancing sequential global decision-
making with local agent interactions. In this work, we
propose a new algorithm SUBSAMPLE-MFQ (Subsample-
Mean-Field-Q-learning) and a decentralized randomized pol-
icy for a system with n agents. For k ≤ n, our algorithm sys-
tem learns a policy for the system in time polynomial in k. We
show that this learned policy converges to the optimal policy
in the order of Õ(1/

√
k) as the number of subsampled agents

k increases. We validate our method empirically on Gaussian
squeeze and global exploration settings.

Extended version —
https://www.arxiv.org/pdf/2412.00661

Introduction
Reinforcement Learning (RL) has become a popular
learning framework to solve sequential decision making
problems in unknown environments, and has achieved
tremendous success in a wide array of domains such as
playing the game of Go (Silver et al. 2016), robotic control
(Kober, Bagnell, and Peters 2013), and autonomous driving
(Kiran et al. 2022; Lin et al. 2023). A critical feature of
most real-world systems is their uncertain nature, and
consequently RL has emerged as a powerful tool for learn-
ing optimal policies for multi-agent systems to operate in
unknown environments (Kim and Giannakis 2017; Zhang,
Yang, and Başar 2021; Lin et al. 2024; Anand and Qu 2024).
While the early literature on RL primarily focused on the
single-agent setting, multi-agent reinforcement learning
(MARL) has recently achieved impressive successes in a
broad range of areas, such as coordination of robotic swarms
(Preiss et al. 2017), self-driving vehicles (DeWeese and Qu
2024), real-time bidding (Jin et al. 2018), ride-sharing (Li
et al. 2019), and stochastic games (Jin et al. 2020).

Despite growing interest in multi-agent RL (MARL),
extending RL to multi-agent settings poses significant
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computational challenges due to the curse of dimensionality
(Sayin et al. 2021). Even if the individual agents’ state or ac-
tion spaces are small, the global state space or action space
can take values from a set with size that is exponentially
large as a function of the number of agents. For example,
even model-free RL algorithms such as temporal difference
(TD) learning (Sutton et al. 1999) or tabular Q-learning
require computing and storing a Q-function (Bertsekas and
Tsitsiklis 1996) that is as large as the state-action space.
Unfortunately, in MARL, the joint state-action space is
exponentially large in the number of agents. In the case
where the system’s rewards are not discounted, reinforce-
ment learning on multi-agent systems is provably NP-hard
(Blondel and Tsitsiklis 2000), and such scalability issues
have been observed in the literature in a variety of settings
(Guestrin et al. 2003; Papadimitriou and Tsitsiklis 1999;
Littman 1994). Independent Q-learning (Tan 1997) seeks to
overcome these scalability challenges by considering other
agents as a part of the environment; however, this often fails
to capture a key feature of MARL: inter-agent interactions.

Even in the fully cooperative regime, MARL is funda-
mentally difficult, since agents in the real-world not only in-
teract with the environment but also with each other (Shap-
ley 1953). An exciting line of work that addresses this in-
tractability is mean-field MARL (Lasry and Lions 2007;
Yang et al. 2018; Gu et al. 2021, 2022b,a; Hu et al. 2023).
The mean-field approach assumes that all the agents are ho-
mogeneous in their state and action spaces, enabling their
interactions to be approximated by a two-agent setting: here,
each agent interacts with a representative “mean agent”
which is the empirical distribution of states of all other
agents. Under these homogeneity assumptions, mean-field
MARL allows learning of optimal policies with a sample
complexity that is polynomial in the number of agents. How-
ever, when the number of homogeneous agents is large, stor-
ing a polynomially-large Q table (where the polynomial’s
degree depends on the size of the state space for a single
agent) can still be infeasible. Therefore, we ask:

Can we design an efficient and approximately optimal
MARL algorithm for policy-learning in a cooperative

multi-agent system with many agents?



Contributions. We answer this question affirmatively.
Our key contributions are outlined below.

• Subsampling Algorithm. We propose a novel algorithm
SUBSAMPLE-MFQ to address the challenge of MARL
with a large number of local agents. We model the prob-
lem as a Markov Decision Process (MDP) with a global
agent and n local agents. SUBSAMPLE-MFQ selects k ≤
n local agents to learn a deterministic policy π̂est

k , by ap-
plying mean-field value iteration on a subsystem with
k local agents to learn Q̂est

k , which can be viewed as a
smaller Q function. It then deploys a stochastic policy π̂k

which works as follows: the global agent uniformly sam-
ples k local agents at each step and uses π̂k to determine
its action, while each local agent uniformly samples k−1
other local agents and uses π̂k to determine its action.

• Sample Complexity and Theoretical Guarantee. As
the number of local agents increases, the size of Q̂k

scales polynomially with k, rather than polynomially
with n as in mean-field MARL. Analogously, when the
size of the local agent’s state space grows, the size of
Q̂k scales exponentially with k, rather than exponentially
with n, as in traditional Q-learning). The key analytic
technique underlying our results is a novel MDP sam-
pling result. Through it, we show that the performance
gap between πest

k and the optimal policy π∗ is Õ(1/
√
k).

The choice of k reveals a fundamental trade-off between
the size of the Q-table and the optimality of πest

k . When
k = O(log n), SUBSAMPLE-MFQ is the first centralized
MARL algorithm to achieve a polylogarithmic run-time
in n, representing an exponential speedup over the previ-
ously best-known polytime mean-field MARL methods,
while maintaining a decaying optimality gap.

• Numerical Simulations. We evaluate the effectiveness
of SUBSAMPLE-MFQ in two scenarios: a bounding box
problem, and a Gaussian squeeze problem. Our exper-
iments reveal a monotonic improvement in the learned
policies as k → n, providing a substantial speedup over
mean-field Q-learning.

While our results are theoretical in nature, it is our hope
that SUBSAMPLE-MFQ will lead to further exploration into
the potential of subsampling in general stochastic/Marko-
vian games and networked multi-agent RL. For further de-
tails, we refer the reader to the complete version of this
manuscript on arXiV.

Related Literature
MARL has a rich history, starting with early works on
Markov games used to characterize the decision-making
process (Littman 1994; Sutton et al. 1999), which can be
regarded as a multi-agent extension of the Markov Deci-
sion Process (MDP). MARL has since been actively stud-
ied (Zhang, Yang, and Başar 2021) in a broad range of set-
tings. MARL is most similar to the category of “succinctly
described” MDPs (Blondel and Tsitsiklis 2000), where the
state/action space is a product space formed by the indi-
vidual state/action spaces of multiple agents, and where the
agents interact to maximize an objective. A promising line

of research that has emerged over recent years constrains
the problem to sparse networked instances to enforce local
interactions between agents (Qu et al. 2020; Lin et al. 2020;
Mondal et al. 2022). In this formulation, the agents corre-
spond to vertices on a graph who only interact with nearby
agents. By exploiting Gamarnik’s correlation decay property
from combinatorial optimization (Gamarnik, Goldberg, and
Weber 2009), they overcome the curse of dimensionality by
simplifying the problem to only search over the policy space
derived from the truncated graph to learn approximately op-
timal solutions. However, as the underlying network struc-
ture becomes dense with many local interactions, the neigh-
borhood of each agent gets large, causing these algorithms
to become intractable.

Mean-Field RL. Under assumptions of homogeneity in
the state/action spaces of the agents, the problem of densely
networked multi-agent RL was answered in (Yang et al.
2018; Gu et al. 2021) by approximating the solution with
a mean-field approach where the approximation error scales
in O(1/

√
n). To avoid designing algorithms on probability

spaces, they study MARL under Pareto optimality and use
the law of large numbers to consider a lifted space with a
mean agent that aggregates the system’s rewards and dynam-
ics. It then applies kernel regression on ϵ-nets of the lifted
space to design policies in time polynomial in n. In con-
trast, our work achieves subpolynomial runtimes by directly
sampling from this mean-field distribution. (Cui and Koeppl
2022) introduce heterogeneity to mean-field MARL by mod-
eling non-uniform interactions through graphons; however,
these methods make critical assumptions on the existence
of a sequence of graphons converging in cut-norm to the fi-
nite instance. In the cooperative setting, (Cui, Fabian, and
Koeppl 2023) considers a mean-field setting with q types of
homogeneous agents; however, their approach does not con-
verge to the optimum policy.

Structured RL. Our work is related to factored MDPs
and exogenous MDPs. In factored MDPs, there is a global
action affecting every agent whereas in our case, each agent
has its own action (Min et al. 2023; Lauer and Riedmiller
2000). Our result has a similar flavor to MDPs with exoge-
nous inputs from learning theory, (Dietterich, Trimponias,
and Chen 2018; Foster et al. 2022; Anand and Qu 2024),
where our subsampling algorithm treats each sampled state
as an endogenous state, but where the exogenous dependen-
cies can be dynamic.

Miscellaneous. Our work adds to the growing literature
on the Centralized Training with Decentralized Execution
regime (Zhou et al. 2023), as our algorithm learns a provably
approximately optimal policy using centralized information,
but makes decisions using only local information during
execution. In the distributed setting, V-learning (Jin et al.
2020) reduces the dependence of the product action space
to an additive dependence. In contrast, our work further ac-
complishes a reduction on the complexity of the joint state
space, which has not been previously accomplished. Finally,
one can approximate the Q-table through linear function ap-
proximation (Jin et al. 2020) which significantly reduces the
computational complexity. However, achieving theoretical
bounds on the performance loss caused by function approx-



imation is intractable without making strong assumptions
such as Linear Bellman completeness (Golowich and Moitra
2024) or low Bellman-Eluder dimension (Jin, Liu, and Miry-
oosefi 2021). While our work primarily considers the finite
tabular setting, we also extend it to the non-tabular setting,
under Linear Bellman completeness assumptions.

Preliminaries
In this section, we formally introduce the problem, state
some examples for our setting, and provide technical de-
tails of the mean-field and Q-learning techniques that will
be used throughout the paper.

Notation. For k, n ∈ N where k ≤ n, let
(
[n]
k

)
denote

the set of k-sized subsets of [n] = {1, . . . , n}. For any
vector z ∈ Rd, let ∥z∥1 and ∥z∥∞ denote the standard ℓ1
and ℓ∞ norms of z respectively. Let ∥A∥1 denote the ma-
trix ℓ1-norm of A ∈ Rn×m. Given a collection of variables
s1, . . . , sn the shorthand s∆ denotes the set {si : i ∈ ∆}
for ∆ ⊆ [n]. We use Õ(·) to suppress polylogarithmic
factors in all problem parameters except n. For a discrete
measurable space (X ,F), the total variation distance be-
tween probability measures ρ1, ρ2 is given by TV(ρ1, ρ2) =
1
2

∑
x∈X |ρ1(x)−ρ2(x)|. Next, x ∼ D(·) denotes that x is a

random element sampled from a probability distribution D,
and we denote that x is a random sample from the uniform
distribution over a finite set Ω by x ∼ U(Ω).

Problem Formulation
We consider a system of n + 1 agents, where agent g is a
“global decision making agent” and the remaining n agents,
denoted by [n], are “local agents.” At time step t, the agents
are in state s(t) = (sg(t), s1(t), ..., sn(t)) ∈ S := Sg × Snl ,
where sg(t) ∈ Sg denotes the global agent’s state, and
for each i ∈ [n], si(t) ∈ Sl denotes the state of the
i’th local agent. The agents cooperatively select actions
a(t) = (ag(t), a1(t), ..., an(t)) ∈ A where ag(t) ∈ Ag

denotes the global agent’s action and ai(t) ∈ Al denotes the
i’th local agent’s action. At each time-step t, the next state
for all the agents is independently generated by stochas-
tic transition kernels Pg : Sg × Sg × Ag → [0, 1] and
Pl : Sl × Sl × Sg ×Ag → [0, 1] as follows:

sg(t+ 1) ∼ Pg(·|sg(t), ag(t)), (1)

si(t+ 1) ∼ Pl(·|si(t), sg(t), ai(t)),∀i ∈ [n]. (2)
The system then collects a structured stage reward

r(s(t), a(t)) where the reward r : S × A → R depends
on s(t) and a(t) through eq. (3), and where the choice of
functions rg and rl is typically application specific.

r(s, a) = rg(sg, ag)︸ ︷︷ ︸
global component

+
1

n

∑
i∈[n]

rl(si, sg, ai)︸ ︷︷ ︸
local component

(3)

We define a policy π as a mapping from S toA where we
want the policy π to maximize the value function which is
defined for each s ∈ S as the expected discounted reward

V π(s) = Ea(t)∼π(·|s)

[ ∞∑
t=0

γtr(s(t), a(t))|s(0) = s

]
, (4)

where γ ∈ (0, 1) is a discounting factor.

Notably, the cardinality of the search space simplex for
the optimal policy is |Sg||Sl|n|Ag||Al|n, which is expo-
nential in the number of agents. When noting that the lo-
cal agents are all homogeneous, and therefore permutation-
invariant with respect to the rewards of the system (the order
of the other agents does not matter to any single decision-
making agent), techniques from mean-field MARL restrict
the cardinality of the search space simplex for the optimal
policy to |Sg||Ag||Sl||Al|n|Sl||Al|, reducing the exponential
complexity on n to a polynomial complexity on n. In practi-
cal systems, when n is large, the poly(n) sample-complexity
may still be computationally infeasible. Therefore, the goal
of this problem is to learn an approximately optimal policy
with subpolynomial sample complexity, further overcoming
the curse of dimensionality.

Example 0.1 (Gaussian Squeeze) In this task, n homoge-
neous agents determine their individual action ai to jointly
maximize the objective r(x) = xe−(x−µ)2/σ2

, where x =∑n
i=1 ai, ai = {0, . . . , 9}, and µ and σ are the pre-defined

mean and variance of the system. In scenarios of traffic con-
gestion, each agent i ∈ [n] is a traffic controller trying to
send ai vehicles into the main road, where controllers coor-
dinate with each other to avoid congestion, hence avoiding
either over-use or under-use, thereby contributing to the en-
tire system. This GS problem serves as an ablation study on
the impact of subsampling for MARL.

Example 0.2 (Constrained Exploration) Consider an
M × M grid. Each agent’s state is a coordinate in
[M ] × [M ]. The state represents the center of a d × d box
where the global agent wishes to constrain the local agents’
movements. Initially, all agents are in the same location.
At each time-step, the local agents take actions ai(t) ∈ R2

(e.g., up, down, left, right) to transition between states
and collect stage rewards. The transition kernel ensures
that local agents remain within the d × d box dictated by
the global agent, by only using knowledge of ai(t), sg(t),
and si(t). In warehouse settings where some shelves have
collapsed, creating hazardous or inaccessible areas, we want
agents to clean these areas. However, exploration in these
regions may be challenging due to physical constraints or
safety concerns. Therefore, through an appropriate design
of the reward and transition functions, the global agent
could guide the local agents to focus on specific d× d grids,
allowing efficient cleanup while avoiding unnecessary risk
or inefficiency.

Due to space constraints, we leave the details of the ex-
periments to section J of the supplementary material. To ef-
ficiently learn policies that maximize the objective, we make
the following standard assumptions:

Assumption 0.3 (Finite state/action spaces) We assume
that the state and action spaces of all the agents in the
MARL game are finite: |Sl|, |Sg|, |Ag|, |Al| < ∞. Ap-
pendix H of the supplementary material weakens this
assumption to the non-tabular setting with infinite sets.



Figure 1: Constrained exploration for warehouse
accidents.

Figure 2: Traffic congestion settings with Gaussian
squeeze.

Assumption 0.4 (Bounded rewards) The global and local
components of the reward function are bounded. Specifi-
cally, ∥rg(·, ·)∥∞ ≤ r̃g , and ∥rl(·, ·, ·)∥∞ ≤ r̃l. This implies
that ∥r(·, ·)∥∞ ≤ r̃g + r̃l := r̃.

Definition 0.5 (ϵ-optimal policy) Given an objective func-
tion V and policy simplex Π, a policy π ∈ Π is ϵ-optimal if
V (π) ≥ supπ∗∈Π V (π∗)− ϵ.

Remark 0.6 Heterogeneity among the local agents can be
captured by modeling agent types as part of the agent state:
assign a type εi ∈ E to each local agent i ∈ [n] by letting
Sl = E×S ′l , where E is a set of possible types that are treated
as a fixed part of the agent’s state. The transition and reward
functions can vary depending on the agent’s type. The global
agent can provide unique signals to local agents of each type
by letting sg ∈ Sg and ag ∈ Ag denote a state/action vector
where each element matches to a type ε ∈ E .

Technical Background
Q-learning. To provide background for the analysis in this
paper, we review a few key technical concepts in RL. At
the core of the standard Q-learning framework (Watkins and
Dayan 1992) for offline-RL is the Q-function Q : S ×A →
R. Q-learning seeks to produce a policy π∗(·|s) that maxi-
mizes the expected infinite horizon discounted reward. For
any policy π, Qπ(s, a) = Eπ[

∑∞
t=0 γ

tr(s(t), a(t))|s(0) =
s, a(0) = a]. One approach to learning the optimal policy
π∗(·|s) is dynamic programming, where the Q-function is

iteratively updated using value-iteration: Q0(s, a) = 0, for
all (s, a) ∈ S × A. Then, for all t ∈ [T ], Qt+1(s, a) =
T Qt(s, a), where T is the Bellman operator defined as

T Qt(s, a) = r(s, a)

+ γE s′g∼Pg(·|sg,a),
s′i∼Pl(·|si,sg),∀i∈[n]

max
a′∈Ag×An

l

Qt(s′, a′).

The Bellman operator T is γ-contractive, which ensures
the existence of a unique fixed-point Q∗ such that T Q∗ =
Q∗, by the Banach fixed-point theorem (Banach 1922).
Here, the optimal policy is the deterministic greedy pol-
icy π∗ : Sg × Snl → Ag × An

l , where π∗(s) =
argmaxa∈Ag×An

l
Q∗(s, a). However, the complexity of a

single update to the Q-function is O(|Sg||Sl|n|Ag||Al|n),
which grows exponentially with n. As the number of local
agents increases (n ≫ |Sl|), this exponential update com-
plexity renders Q-learning impractical.

Mean-field Transformation. To address this, mean-field
MARL (under homogeneity assumptions) studies the distri-
bution function Fz[n]

: Zl → R, where Zl := Sl × Al,
defined for all z := (zs, za) ∈ Sl ×Al by

Fz[n]
(z) :=

1

n

n∑
i=1

1{si = zs, ai = za}. (5)

Let µn(Zl) = { b
n |b ∈ {0, . . . , n}}

|Sl|×|Al| be the space
of |Sl| × |Al|-sized tables, where each entry is an ele-
ment of {0, 1

n ,
2
n , . . . , 1}. In this space, Fz[n]

∈ µn(Zl)
where Fz[n]

represents the proportion of agents in each
state/action pair. The Q-function is permutation-invariant
in the local agents, since permuting the labels of ho-
mogeneous local agents with the same state will not
change the action of the decision-making agent. Hence,
Q(sg, s[n], ag, a[n]) = Q̂(sg, s1, ag, a1, Fz[n]\1). Here, Q̂ :

Sg × Sl × Ag × A1 × µn−1(Zl) → R is a reparam-
eterized Q-function learned by mean-field value iteration:
one initializes Q̂0(sg, s1, ag, a1, Fz[n]\1) = 0. At each
time-step t, we update Q̂ as Q̂t+1(sg, s1, ag, a1, Fz[n]\1) =

T̂ Q̂t(sg, s1, ag, a1, Fz[n]\1), where T̂ is the Bellman opera-
tor in distribution space:

T̂ Q̂t(sg, s1, ag, a1, Fz[n]\1) = r(s, a)

+ γE s′g∼Pg(·|sg,ag)

s′i∼Pl(·|si,sg,ai)
∀i∈[n]

max
(a′

g,a
′
1,a

′
[n]\1)

∈Ag×Al×An−1
l

Q̂t(s′g, s
′
1, a

′
g, a

′
1, Fz′

[n]\1
)

Since T is a γ-contraction, so is T̂ . Hence, T̂ has a unique
fixed-point Q̂∗ such that Q̂∗(sg, s1, ag, a1, Fz[n]\1) =

Q∗(sg, s[n], ag, a[n]) and the optimal policy is in turn given
by the deterministic greedy policy given by

π̂∗(sg, s1, Fs[n]\1) =

argmax
(ag,a1,a[n]\1)

∈Ag×Al×An−1
l

Q̂∗(sg, s1, ag, a1, Fs[n]\1,a[n]\1 , ag).

O(|Sg||Ag||Zl|n|Zl|) is the update complexity to the Q̂-
function, which scales polynomially in n.



Remark 0.7 The solution offered by mean-field value it-
eration and standard Q-learning requires a sample com-
plexity of min{Õ(|Sg||Ag||Zl|n), Õ(|Sg||Ag||Zl|n|Zl|)},
where one uses standard Q-learning when |Zl|n−1 < n|Zl|,
and mean-field value iteration otherwise. In each of these
regimes, as n scales, the update complexity can become
incredibly computationally intensive. Therefore, we intro-
duce the SUBSAMPLE-MFQ algorithm to mitigate the cost
of scaling the number of local agents.

Method and Theoretical Results
In this section, we propose the SUBSAMPLE-MFQ algo-
rithm to overcome the polynomial (in n) sample complex-
ity of mean-field value iteration and the exponential (in n)
sample complexity of traditional Q-learning. In our algo-
rithm, the global agent randomly samples a subset of local
agents ∆ ⊆ [n] such that |∆| = k, for k ≤ n. It ignores
all other local agents [n] \ ∆, and performs value iteration
to learn the Q-function Q̂∗

k,m and policy π̂∗
k,m for this sur-

rogate subsystem of k local agents, where m is the num-
ber of samples used to update the Q-functions’ estimates
of the unknown system. Here, When |Zl|k−1 < k|Zl|, the
algorithm uses traditional value-iteration (algorithm 1), and
when |Zl|k−1 > k|Zl|, it uses mean-field value iteration (al-
gorithm 2). The surrogate reward gained by this subsystem
at each time step is r∆ : S ×A → R:

r∆(s, a) = rg(sg, ag) +
1

|∆|
∑
i∈∆

rl(sg, si, ai). (6)

To convert the optimality of each agent’s action within the k
local-agent subsystem to an approximate optimality on the
full n-agent system, we use a randomized policy πest

k,m (al-
gorithm 3), where the global agent samples ∆ ∈ U

(
[n]
k

)
at each time-step to derive the action ag ← π̂∗

k,m(sg, s∆),
and where each local i agent samples k − 1 other lo-
cal agents ∆i to derive the action π̂∗

k,m(sg, si, s∆i
). Fi-

nally, theorem 0.11 shows that the policy πest
k,m converges

to the optimal policy π∗ as k → n. We first present al-
gorithms 1 and 2 (SUBSAMPLE-MFQ: Learning) and algo-
rithm 3 (SUBSAMPLE-MFQ: Execution), which we describe
below. For this, a crucial characterization is the notion of the
empirical distribution function:

Definition 0.8 (Empirical Distribution Function) For
any population (z1, . . . , zn) ∈ Zn

l , where Zl := Sl × Al,
define the empirical distribution function Fz∆ : Zl → R+

for all z := (zs, za) ∈ Sl ×Al and for all ∆ ⊆ [n] such that
|∆| = k by:

Fz∆(x) := Fs∆,a∆
(x) :=

1

k

∑
i∈∆

1{si = zs, ai = za}. (7)

Let µk(Zl) :=
{

b
k |b ∈ {0, . . . , k}

}|Sl|×|Al| be the space
of |Sl| × |Al|-length vectors where each entry in a vector
is an element of {0, 1

k ,
2
k , . . . , 1} such that Fz∆ ∈ µk(Zl).

Here, Fz∆ is the proportion of agents in the k-local-agent

subsystem at each state.

Algorithms 1 and 2 (Offline learning). Let m ∈ N
denote the sample size for the learning algorithm with
sampling parameter k ≤ n. When |Zl|k−1 ≤ k|Zl|,
we empirically learn the optimal Q-function for a
subsystem with k-local agents denoted by Q̂est

k,m :

Sg × Skl × Ag × Ak
l → R: set Q̂0

k,m(sg, s∆, ag, a∆) = 0

for all (sg, s∆, ag, a∆) ∈ Sg ×Skl ×Ag ×Ak
l . At time step

t, set Q̂t+1
k,m(sg, s∆, ag, a∆) = T̃k,mQ̂t

k,m(sg, s∆, ag, a∆),

where T̃k,m is the empirically adapted Bellman operator in
eq. (8).

When |Zl|k−1 > k|Zl|, we empirically learn
the optimal mean-field Q-function for a k local
agent system, denoted (with abuse of notation) by
Q̂est

k,m : Sg × S1 × µk−1(Zl) × Ag × Al → R. For all
(sg, s1, Fz∆̃

, a1, ag) ∈ Sg × Sl × µk−1(Zl) × Al × Ag ,
set Q̂0

k,m(sg, s1, Fz∆̃
, a1, ag) = 0. Then, at each

time-step t, we set Q̂t+1
k,m(sg, s1, Fz∆̃

, a1, ag) =

T̂k,mQ̂t
k,m(sg, s1, Fz∆̃

, a1, ag), where T̂k,m is the em-
pirically adapted mean-field Bellman operator in eq. (9).

Since the system is unknown, Tk,m and T̂k,m cannot com-
pute the direct expectation from the Bellman operator and
instead draw m random samples sjg ∼ Pg(·|sg, ag) and
sji ∼ Pl(·|si, sg, ai) for each j ∈ [m], i ∈ ∆:

T̃k,mQ̂t
k,m(sg, s∆, ag, a∆)

= r∆(s, a)

+
γ

m

∑
j∈[m]

max
a′
g∈Ag,a

′
∆∈Ak

l

Q̂t
k,m(sjg, s

j
∆, a

′
g, a

′
∆).

(8)

T̂k,mQ̂t
k,m(sg, s1, Fz∆̃

, a1, ag) = r∆(s, a)

+
γ

m

∑
j∈[m]

max
a′
g∈Ag,

a′
1∈Al,

Fa′
∆̃
∈µk−1(Al)

Q̂t
k,m(sjg, s

j
1, Fsj

∆̃
,a∆̃′

, a′1, a
′
g).

(9)

Q̂t
k,m depends on s∆ and a∆ through Fz∆ , and T̃k,m/T̂k,m

are γ-contractive. So, algorithms 1 and 2 apply value
iteration with their Bellman operator until Q̂k,m con-
verges to a fixed point satisfying T̃k,mQ̂est

k,m = Q̂est
k,m and

T̂k,mQ̂est
k,m = Q̂est

k,m, yielding equivalent deterministic poli-
cies π̂est

k,m(sg, s∆) and π̂est
k,m(sg, s1, Fs∆̃

):

π̂est
k,m(sg, s∆) = argmax

ag∈Ag,a∆∈Ak
l

Q̂est
k,m(sg, s∆, ag, a∆)

π̂est
k,m(sg, s1, Fs∆̃

)

= argmax
ag∈Ag,a1∈Al,Fa

∆̃
∈µk−1(Al)

Q̂est
k,m(sg, s1, Fz∆̃

, a1, ag)



Algorithm 1: SUB-SAMPLE-MFQ: Learning (if |Zl|k−1 ≤
k|Zl|)

Require: A multi-agent system. Parameter T for the num-
ber of iterations in the initial value iteration step. Sam-
pling parameters k ∈ [n] and m ∈ N. Discount param-
eter γ ∈ (0, 1). Oracle O to sample s′g ∼ Pg(·|sg, ag)
and s′i ∼ Pl(·|si, sg, ai) for all i ∈ [n].

1: Uniformly sample ∆ ⊆ [n] such that |∆| = k.
2: For (sg, s∆, ag, a∆) ∈ Sg × Skl × Ag × Ak

l , initialize
Q̂0

k,m(sg, s∆, ag, a∆) = 0.
3: for t = 1 to T do
4: for (sg, s∆, ag, a∆) ∈ Sg × Skl ×Ag ×Ak

l do
5: Q̂t+1

k,m(sg, s∆, ag, a∆)

6: = T̃k,mQ̂t
k,m(sg, s∆, ag, a∆)

7: end for
8: end for
9: Return Q̂T

k,m.
10: For all sg ∈ Sg and s∆ ∈ Skl , define the greedy argmax

policy by π̂est
k,m(sg, s∆) such that π̂est

k,m(sg, s∆) =

argmaxag∈Ag,a∆∈Ak
l
Q̂T

k,m(sg, s∆, ag, a∆).

algorithm 3 (Online implementation). Here, algorithm 3
(SUBSAMPLE-MFQ: Execution) randomly samples ∆ ∼
U
(
[n]
k

)
at each time step and uses action ag ∼ π̂est

k,m(sg, Fs∆)

to get reward r(s, ag). This procedure of first sampling ∆
and then applying π̂est

k,m is denoted by a stochastic policy
πest
k,m(a|s) = [πest

k,m(ag|s), πest
k,m(al|s)], where πest

k,m(ag|s) is
the global agent’s action distribution and πest

k,m(al|s) is the
local agent’s action distribution:

πest
k,m(ag|s) =

1(
n
k

) ∑
∆∈([n]

k )

1(π̂est
k,m(sg, s∆) = a) (10)

πest
k,m(ai|s) =

1(
n−1
k−1

) ∑
∆̃∈([n]\i

k−1)

1(π̂est
k,m(sg, si, Fs∆̃

) = ai).

(11)
Then, each agent transitions to their next state based on
eq. (1).

We define the greedy deterministic policy for the k-local-
agent subsystem by: π̂est

k,m(sg, s∆) by:

π̂est
k,m(sg, s∆) := argmax

a∗
g,a

∗
∆

Q̂T
k,m(sg, s∆, a

∗
g, a

∗
∆)

:= ([π̂est
k,m(sg, s∆)]g, [π̂

est
k,m(sg, si, s∆\i)]l),

where [π̂est
k,m(sg, s∆)]g reads the maximizer a∗g , and

[π̂est
k,m(sg, si, s∆\i)]l reads the maximizer a∗i . Then, for the

n-agent system, the global agent samples local agents ∆ uni-
formly from

(
[n]
k

)
to derive action ag(t) = [π̂est

k,m(sg, s∆)]g ,
and allows agent i to choose agents ∆i uniformly from(
[n]\i
k−1

)
to derive action ai(t) = [π̂est

k,m(sg, (s∆i
, si)]l.

Algorithm 2: SUBSAMPLE-MFQ: Learning (if |Zl|k−1 >
k|Zl|)

Require: A multi-agent system. Parameter T for the num-
ber of iterations in the initial value iteration step. Sam-
pling parameters k ∈ [n] and m ∈ N. Discount param-
eter γ ∈ (0, 1). Oracle O to sample s′g ∼ Pg(·|sg, ag)
and si ∼ Pl(·|si, sg, ai) for all i ∈ [n].

1: Set ∆̃ = {2, . . . , k}.
2: Set µk−1(Zl) = { b

k−1 : b ∈ {0, 1, . . . , k−1}}|Sl|×|Al|.
3: Set Q̂0

k,m(sg, s1, Fz∆̃
, a1, ag) = 0, for

(sg, s1, Fz∆̃
, a1, ag) ∈ Sg ×Sl×µk−1(Zl)×Al×Ag .

4: for t = 1 to T do
5: for (sg, s1, Fz∆̃

, a1, ag) ∈ Sg×Sl×µk−1(Zl)×Al×
Ag do

6: Q̂t+1
k,m(sg, s1, Fz∆̃

, a1, ag)

7: = T̂k,mQ̂t
k,m(sg, s1, Fz∆̃

, a1, ag)
8: end for
9: end for

10: ∀(sg, si, Fs∆̃
) ∈ Sg × Sl × µk−1(Sl), let

π̂est
k,m(sg, si, Fs∆̃

) :=

argmax
ag∈Ag,ai∈Al,Fa

∆̃
∈µk−1(Al)

Q̂T
k,m(sg, s1, Fz∆̃

, a1, ag)

Theoretical Guarantee
This subsection shows that the value of the expected
discounted cumulative reward produced by πest

k,m is approx-
imately optimal, where the optimality gap decays as k → n
and m becomes large.

Bellman noise. We introduce the notion of Bellman noise,
which is used in the main theorem. Consider T̂k,m. Clearly, it
is an unbiased estimator of the generalized adapted Bellman
operator T̂k,

T̂kQ̂k(sg, s∆, ag, a∆) = r∆(s, a)

+ γE s′g∼Pg(·|sg,ag),

s′i∼Pl(·|si,sg,ai),
∀i∈∆

max
a′
g∈Ag,

a′
∆∈Ak

l

Q̂k(s
′
g, s

′
∆, a

′
g, a

′
∆). (12)

For all (sg, s∆, ag, a∆) ∈ Sg × Skl × Ag × Ak
l , set

Q̂0
k(sg, s∆, ag, a∆) = 0. For t ∈ N, let Q̂t+1

k = T̂kQ̂t
k,

where T̂k is defined for k ≤ n in eq. (12). Then, T̂k is also
a γ-contraction with fixed-point Q̂∗

k. By the law of large
numbers, limm→∞ T̂k,m = T̂k and ∥Q̂est

k,m − Q̂∗
k∥∞ → 0

as m → ∞. For finite m, ϵk,m := ∥Q̂est
k,m − Q̂∗

k∥∞ is the
well-studied Bellman noise.

Lemma 0.9 By the Chernoff bound, for k ∈ [n] and
m ∈ N, where m is the number of samples in eq. (9),
∥Q̂est

k,m − Q̂∗
k∥∞ ≤ ϵk,m ≤ Õ(1/

√
k), when m = m∗ =

2|Sg||Ag||Sl||Al|k2.5+|Sl||Al|

(1−γ)5 log(|Sg||Ag||Al||Sl|) log
(

1
(1−γ)2

)
.



Algorithm 3: SUB-SAMPLE-MFQ: Execution

Require: A multi-agent system as described in ?? . Param-
eter T ′ for the number of iterations for the decision-
making sequence. Hyperparameter k ∈ [n]. Discount
parameter γ. Policy π̂est

k,m(sg, Fs∆).
1: Sample (sg(0), s[n](0)) ∼ s0, where s0 is a distribution

on the initial global state (sg, s[n])
2: Initialize the total reward R0 = 0.
3: Policy πest

k (s) is defined as follows:
4: for t = 0 to T ′ do
5: Choose ∆ uniformly at random from

(
[n]
k

)
and let

ag(t) = [π̂est
k,m(sg(t), s∆(t))]g .

6: for i = 1 to n do
7: Choose ∆i uniformly at random from

(
[n]\i
k−1

)
and

let ai(t) = [π̂est
k,m(sg(t), si(t), s∆i(t))]l.

8: end for
9: Let sg(t+ 1) ∼ Pg(·|sg(t), ag(t)).

10: Let si(t+1) ∼ Pl(·|si(t), sg(t), ai(t)), for all i ∈ [n].
11: Rt+1 = Rt + γt · r(s, a)
12: end for

We defer the proof of this lemma to Appendix F.1 in the
supplementary material.

Let πest
k := π̃est

k,m∗ . We next compare the difference in the
performance of π∗ and πest

k , we define the value function of
a policy π by V π:
Definition 0.10 The value function V π : S → R of a given
policy π, for S := Sg × Snl is:

V π(s) = Ea(t)∼π(·|s(t))

[ ∞∑
t=0

γtr(s(t), a(t))

∣∣∣∣s(0) = s

]
.

(13)
Intuitively, the value function V π(s) is the expected dis-
counted cumulative reward when starting from state s and
applying actions from the policy π across an infinite hori-
zon. With the above preparations, we are primed to present
our main result: a decaying bound on the optimality gap for
our learned policy πest

k .

Theorem 0.11 Let π̃k denote the learned policy from
SUBSAMPLE-MFQ. Then, ∀s ∈ S:

V π∗
(s0)− V πest

k (s0)

≤ r̃

(1− γ)2

√
n− k + 1

2nk

√
ln

40r̃|Sl||Al||Ag|k|Al|+ 1
2

(1− γ)2
+

3√
k

≤ Õ(1/
√
k)

We provide a proof sketch for the theorem in Appendix
C of the supplementary material, and defer its proof to Ap-
pendix F.

Discussion 0.12 Between algorithms 1 and 2, the asymp-
totic sample complexity to learn π̂est

k for a fixed k is
min{O(|Zl|k), O(k|Zl|)}. By theorem 0.11, as k → n,

the optimality gap decays, revealing a fundamental
trade-off in the choice of k: increasing k improves
the performance of the policy, but increases the size
of the Q-function. We explore this trade-off further in
our experiments. For k = O(log n), the runtime is
min{O(nlog |Zl|), O((log n)|Zl|)}. This is an exponential
speedup on the complexity from mean-field value iteration
(from poly(n) to poly(log n)), as well as over traditional
value-iteration (from exp(n) to poly(n)). Further, the
optimality gap decays to 0 at the rate of O(1/

√
log n).

Appendix G in the supplementary material extends the the-
orem to stochastic reward distributions.
Theorem 0.13 Suppose we are given two fam-
ilies of distributions on the reward functions,
rg(sg, ag) ∼ {Gsg,ag}sg,ag∈Sg×Ag and rl(si, sg, ai) ∼
{Lsi,sg,ai}si,sg,ai∈Sl×Sg×Al

. Then, under standard as-
sumptions of boundedness of the support of Gsg,ag

and
Lsi,sg,ai , SUBSAMPLE-MFQ learns a stochastic policy πest

k
satisfying

Pr

[
V π∗

(s0)− V πest
k (s0) ≤ Õ

(
1√
k

)]
≥ 1− 1

100
√
k
.

In the non-tabular setting with infinite state/action spaces,
one could replace the Q-learning algorithm with any arbi-
trary value-based RL method that learns Q̂k with function
approximation (Sutton et al. 1999) such as deep Q-networks
(Silver et al. 2016). Doing so raises an additional error that
factors into theorem 0.11.

Definition 0.14 (Linear MDP) MDP(S,A,P, r) is a lin-
ear MDP with feature map ϕ : S × A → Rd if there exist
d unknown (signed) measures µ = (µ1, . . . , µd) over S and
a vector θ ∈ Rd such that for any (s, a) ∈ S × A, we have
P(·|s, a) = ⟨ϕ(s, a), µ(·)⟩ and r(s, a) = ⟨ϕ(s, a), θ⟩.

Suppose the system is a linear MDP, where Sg and Sl are
infinite compact sets. By a reduction from (Ren et al. 2024)
and using function approximation to learn the spectral fea-
tures ϕk for Q̂k, we derive a performance guarantee for the
learned policy πest

k , where the optimality gap decays with k.

Theorem 0.15 When πest
k is derived from the spectral fea-

tures ϕk learned in Q̂k, and M is the number of samples
used in the linear function approximation, let E be the event
that

V π∗
(s0)− V πest

k (s0) ≤ Õ

(
1√
k
+ log

(
2k2

) ∥ϕk∥5√
M

+
2√
k
· γr̃

1− γ
∥ϕ̄k∥

)
.

Then,

Pr[E] ≥
(
1− 1

100
√
k

)
·
(
1− 2√

k

)
.

We defer the proof of the theorem to Appendix H in the
supplementary material.



Remark 0.16 If k = O(log n), SUBSAMPLE-MFQ can
handle |E| = O(log n/ log log n) different types of local
agents, since the run-time of the learning algorithm becomes
poly(n). This additionally supersedes the previous-best het-
erogeneity capacity from (Mondal et al. 2022), which only
handles constant |E|.
Remark 0.17 Our algorithm and policy also contributes
to the growing literature on the centralized-training-
decentralized-execution paradigm (Zhou et al. 2023; Wang,
Ye, and Lu 2023), and the literature on exogenous MDPs,
wherein our algorithm has an advantage in that the agents
do not all have to “see” each other during the online (execu-
tion) stage, and hence contains a partially observable setting.

Conclusion and Future Works
This work develops subsampling for mean field MARL
in a cooperative system with a global decision-making
agent and n homogeneous local agents. We propose
SUBSAMPLE-MFQ which learns each agent’s best response
to the mean effect from a sample of its neighbors, allowing
an exponential reduction on the sample complexity of
approximating a solution to the MDP. We provide a theo-
retical analysis on the optimality gap of the learned policy,
showing that the learned policy converges to the optimal
policy with the number of agents k sampled at the rate
Õ(1/

√
k) validate our theoretical results through numerical

experiments. We further extend this result to the non-tabular
setting with infinite state and action spaces.

We recognize several future directions. Firstly, this model
studies a ‘star-network’ setting to model a single source
of density. It would be fascinating to extend this subsam-
pling framework to general networks. We believe expander-
graph decompositions (Anand and Umans 2023; Reingold
2008) are amenable for this. A second direction would be to
find connections between our sub-sampling method to al-
gorithms in federated learning, where the rewards can be
stochastic. A third direction of this work would be to con-
sider the setting of truly heterogeneous local agents. Finally,
it would be exciting to generalize this work to the online
setting without a generative oracle: we conjecture that tools
from recent works on stochastic approximation (Chen and
Theja Maguluri 2022) and no-regret RL (Jin et al. 2021)
might be valuable.

Impact Statement
This paper contributes to the theoretical foundations of
multi-agent reinforcement learning, with the goal of devel-
oping mean-field tools that can apply to the control of net-
worked systems. The work can potentially lead to RL-based
algorithms for the adaptive control of cyber-physical sys-
tems, such as the power grid, smart traffic systems, and other
smart infrastructure systems. While the subsampling ap-
proach we describe is promising, it is limited by its assump-
tions. Furthermore, any applications of the proposed algo-
rithm in its current form should be considered cautiously
since the analysis here focuses on efficiency and optimality,
and does not consider the issue of fairness.
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