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Abstract
Abductive reasoning is the process of making001
educated guesses to provide explanations for002
observations. Although many applications re-003
quire the use of knowledge for explanations,004
the utilization of abductive reasoning in con-005
junction with structured knowledge, such as a006
knowledge graph, remains largely unexplored.007
To fill this gap, this paper introduces the task of008
complex logical hypothesis generation, as an009
initial step towards abductive logical reasoning010
with KG. In this task, we aim to generate a com-011
plex logical hypothesis so that it can explain012
a set of observations. We find that the super-013
vised trained generative model can generate014
logical hypotheses that are structurally closer015
to the reference hypothesis. However, when016
generalized to unseen observations, this train-017
ing objective does not guarantee better hypoth-018
esis generation. To address this, we introduce019
the Reinforcement Learning from Knowledge020
Graph (RLF-KG) method, which minimizes021
differences between observations and conclu-022
sions drawn from generated hypotheses accord-023
ing to the KG. Experiments show that, with024
RLF-KG’s assistance, the generated hypotheses025
provide better explanations, and achieve state-026
of-the-art results on three widely used KGs.027

1 Introduction028

Abductive reasoning plays a vital role in generating029

explanatory hypotheses for observed phenomena030

across various research domains (Haig, 2012). It is031

a powerful tool with wide-ranging applications. For032

example, in cognitive neuroscience, reverse infer-033

ence (Calzavarini and Cevolani, 2022), which is a034

form of abductive reasoning, is crucial for inferring035

the underlying cognitive processes based on ob-036

served brain activation patterns. Similarly, in clini-037

cal diagnostics, abductive reasoning is recognized038

as a key approach for studying cause-and-effect039

relationships (Martini, 2023). Moreover, abductive040

reasoning is fundamental to the process of hypoth-041

esis generation in humans, animals, and computa-042

tional machines (Magnani, 2023). Its significance 043

extends beyond these specific applications and en- 044

compasses diverse fields of study. In this paper, we 045

are focused on abductive reasoning with structured 046

knowledge, specifically, a knowledge graph. 047

A typical knowledge graph (KG) stores informa- 048

tion about entities, like people, places, items, and 049

their relations in graph structures. Meanwhile, KG 050

reasoning is the process that leverages knowledge 051

graphs to infer or derive new information (Zhang 052

et al., 2021a, 2022; Ji et al., 2022). In recent years, 053

various logical reasoning tasks are proposed over 054

knowledge graph, for example, answering complex 055

queries expressed in logical structure (Hamilton 056

et al., 2018; Ren and Leskovec, 2020), or conduct- 057

ing logical rule mining (Galárraga et al., 2015; Ho 058

et al., 2018; Meilicke et al., 2019). 059

However, the abductive perspective of KG rea- 060

soning is crucial yet unexplored. Take the first 061

example in Figure 1, where observation O1 de- 062

picts five celebrities a user is following on a so- 063

cial media platform. The social network service 064

provider is interested in using structured knowl- 065

edge to explain the users’ observed behavior. By 066

leveraging a knowledge graph like Freebase (Bol- 067

lacker et al., 2008), which includes some basic 068

information about these people, a complex logical 069

hypothesis H1 can be derived. In this case, the 070

knowledge graph suggests that they are all actors 071

and screenwriters born in Los Angeles, expressed 072

as H1. Consider the second example in Figure 1, in- 073

volving the interactions of a user on an e-commerce 074

platform (O2). Here, a structured hypothesis H2 075

can explain the user’s interest in Apple products 076

released in 2010 excluding phones. The third ex- 077

ample, focused on medical diagnostics, features 078

three diseases (O3). The corresponding hypothesis 079

H3 indicates they are diseases V? with symptom 080

V1, and V1 can be relieved by Panadol. From a 081

general perspective, this problem illustrates the pro- 082

cess of abductive logical reasoning with knowledge 083
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Observations (O) Hypotheses (H) Interpretations

𝑂1 = {Grant Heslov, Jason Segel, 

Robert Towne, Ronald Bass, 

Rashida Jones}

𝐻1 = 𝑉? ∶ 𝑂𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛(𝑉?, 𝐴𝑐𝑡𝑜𝑟) ∧
𝑂𝑐𝑐𝑢𝑝𝑎𝑡𝑖𝑜𝑛 𝑉?, 𝑆𝑐𝑟𝑒𝑒𝑒𝑊𝑟𝑖𝑡𝑒𝑟 ∧
𝐵𝑜𝑟𝑛𝐼𝑛 𝑉?, 𝐿𝑜𝑠𝐴𝑛𝑔𝑒𝑙𝑒𝑠

The actors and screenwriters 

born in Los Angeles

𝑂2 = {Ipad 1st Gen, Ipod touch 4th

Gen, Apple TV 1st Gen}
𝐻2 = 𝑉? ∶ 𝐵𝑟𝑎𝑛𝑑(𝑉?, 𝐴𝑝𝑝𝑙𝑒) ∧
𝑅𝑒𝑙𝑒𝑎𝑠𝑒𝑌𝑒𝑎𝑟(𝑉?, 2010) ∧ ¬𝑇𝑦𝑝𝑒 𝑉?, 𝑃ℎ𝑜𝑛𝑒

The Apple products released in 

2010 that are not phones

𝑂3 = {Covid-19, Seasonal Flu, 

Dysmenorrhea}
𝐻3 = 𝑉? , ∃𝑉1: 𝐻𝑎𝑣𝑒𝑆𝑦𝑚𝑝𝑡𝑜𝑚(𝑉?, 𝑉1)
∧ 𝑅𝑒𝑙𝑖𝑒𝑣𝑒𝑑𝐵𝑦 𝑉1, 𝑃𝑎𝑛𝑎𝑑𝑜𝑙

The disease whose symptoms 

can be relieved by Panadol 

Figure 1: This figure shows some examples of observations and inferred logical hypotheses, expressed with
discrepancies in interpretations.

graphs, seeking hypotheses that best explain given084

observation sets (Josephson and Josephson, 1996;085

Thagard and Shelley, 1997).086

A straightforward approach to tackle this rea-087

soning task is to employ a search-based method088

to explore potential hypotheses based on the given089

observation. However, this approach faces two sig-090

nificant challenges. The first challenge arises from091

the incompleteness of knowledge graphs (KGs),092

as searching-based methods heavily rely on the093

availability of complete information. In practice,094

missing edges in KGs can negatively impact the095

performance of search-based methods (Ren and096

Leskovec, 2020). The second challenge stems from097

the complexity of logically structured hypotheses.098

The search space for search-based methods be-099

comes exponentially large when dealing with com-100

binatorial numbers of candidate hypotheses. Con-101

sequently, the search-based method struggles to102

effectively and efficiently handle observations that103

require complex hypotheses for explanation.104

To address these challenges, we propose a so-105

lution that leverages generative models within a106

supervised learning framework to generate logical107

hypotheses for a given set of observations. Our ap-108

proach involves sampling hypothesis-observation109

pairs from observed knowledge graphs (Ren et al.,110

2020; Bai et al., 2023) and training a transformer-111

based generative model (Vaswani et al., 2017) us-112

ing the teacher-forcing method. However, a po-113

tential limitation of supervised training is that it114

primarily focuses on capturing structural similar-115

ities, without necessarily guaranteeing improved116

explanations when applied to unseen observations.117

To overcome this limitation, we propose a method118

called reinforcement learning from the knowledge119

graph (RLF-KG). RLF-KG utilizes proximal pol-120

icy optimization (PPO) (Schulman et al., 2017) to121

minimize the discrepancy between the observed122

evidence and the conclusion derived from the gen-123

erated hypothesis. By incorporating reinforcement124

learning techniques, our approach aims to directly 125

improve the explanatory capability of the generated 126

hypotheses and ensure their effectiveness when 127

generalized to unseen observations. 128

We evaluate the proposed methods for effective- 129

ness and efficiency on three knowledge graphs: 130

FB15k-237 (Toutanova and Chen, 2015), WN18RR 131

(Toutanova and Chen, 2015), and DBpedia50 (Shi 132

and Weninger, 2018). The results consistently 133

demonstrate the superiority of our approach over 134

supervised generation baselines and search-based 135

methods, as measured by two evaluation metrics 136

across all three datasets. Our contributions can be 137

summarized as follows: 138

• We introduce the task of complex logical hy- 139

pothesis generation, which aims to identify 140

logical hypotheses that best explain a given 141

set of observations. This task can be seen as a 142

form of abductive reasoning with KGs. 143

• To address the challenges posed by the in- 144

completeness of knowledge graphs and the 145

complexity of logical hypotheses, we propose 146

a generation-based method. This approach 147

effectively handles these difficulties and en- 148

hances the quality of generated hypotheses. 149

• Additionally, we propose the Reinforcement 150

Learning from Knowledge Graph (RLF-KG) 151

technique. By incorporating feedback from 152

the knowledge graph, RLF-KG further im- 153

proves the hypothesis generation model. It 154

minimizes the discrepancies between the ob- 155

servations and the conclusions derived from 156

the generated hypotheses, leading to more ac- 157

curate and reliable results. 158

2 Problem Formulation 159

In this task, a knowledge graph is denoted as G = 160

(V,R), where V is the set of vertices and R is 161

the set of relation types. A relation type r :∈ R 162
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maps vertex pairs to Boolean values, indicating the163

presence of an edge of type r. Namely, r : V×V →164

{true, false} is defined by r(u, v) = true if the165

directed edge (u, r, v) from u to v of type r exists166

in the KG and false otherwise.167

We adopt the open-world assumption of KG168

(Drummond and Shearer, 2006), treating missing169

edges as unknown rather than false. The reasoning170

model can only access the observed KG G, and171

evaluation is based on a hidden KG Ḡ, which en-172

compasses the observed graph G.173

Abductive reasoning is a type of logical reason-174

ing that involves making educated guesses to in-175

fer the most likely reasons for the observations176

(Josephson and Josephson, 1996; Thagard and Shel-177

ley, 1997). See Appendix A for clarification on ab-178

ductive, deductive, and inductive reasoning. In this179

work, we focus on a specific abductive reasoning180

type in the context of knowledge graphs, formu-181

lated informally as Given a set of observations O182

and the knowledge graph G, infer the hypothesis183

H that explains or describes O best. The detailed184

and precise definition is given below.185

An observation set is a set of entities O ⊂ V .186

A logical hypothesis H on a graph G = (V,R) is187

defined as a predicate of a variable vertex V? in first-188

order logical form, including existential quantifiers,189

AND (∧), OR (∨), and NOT (¬). The hypothesis can190

always be written in disjunctive normal form,191

H|G(V?) = ∃V1, . . . , Vk : e1 ∨ · · · ∨ en, (1)192

ei = ri1 ∧ · · · ∧ rimi , (2)193

where each rij can take the forms: rij = r(v, V ),194

rij = ¬r(v, V ), rij = r(V, V ′), aij = ¬r(V, V ′),195

where v represents a fixed vertex, the V, V ′ repre-196

sent variable vertices in {V?, V1, V2, . . . , Vk}, r is197

a relation type.198

The subscript |G denotes that the hypothesis is199

formulated based on the given graph G. This means200

that all entities and relations in the hypothesis must201

exist in G, and the domain for variable vertices is202

the entity set of G. For example, please refer to203

Appendix B. The same hypothesis H can be ap-204

plied to a different knowledge graph, G′, provided205

that G′ includes the entities and edges present in H .206

When the context is clear or the hypothesis pertains207

to a general statement applicable to multiple knowl-208

edge graphs (e.g., observed and hidden graphs), the209

symbol H is used without the subscript.210

The conclusion of the hypothesis H on a graph211

G, denoted by [[H]]G , is the set of entities for which212

H holds true on G: 213

[[H]]G = {V? ∈ G|H|G(V?) = true}. (3) 214

Then, the formal definition of abductive reason- 215

ing in KG is as follows: Given an observation set 216

O = {v1, v2, ..., vk} and the observed graph G, ab- 217

ductive reasoning aims to find the hypothesis H on 218

G whose conclusion on the hidden graph Ḡ, [[H]]Ḡ , 219

is most similar to O. Similarity is measured using 220

the Jaccard index: 221

Jaccard([[H]]Ḡ , O) =
|[[H]]Ḡ ∩O|
|[[H]]Ḡ ∪O|

. (4) 222

In other words, the goal is to find a hypothesis H 223

that maximizes Jaccard([[H]]Ḡ , O). 224

3 Hypothesis Generation with RLF-KG 225

Our approach for abductive logical knowledge 226

graph reasoning involves three steps: (1) Ran- 227

domly sample observation-hypothesis pairs from 228

the knowledge graph. (2) Train a generative model 229

to generate hypotheses from observations using the 230

sampled pairs. (3) Enhance the generative model 231

using RLF-KG, leveraging reinforcement learning 232

to minimize discrepancies between observations 233

and generated hypotheses. 234

3.1 Supervised Training of Hypothesis 235

Generation Model 236

In the first step, we randomly sample hypotheses 237

from the observed training knowledge graph. To 238

obtain the corresponding set of observations for 239

each hypothesis, we conduct a graph search on the 240

training graph, following the procedure described 241

in the algorithms in Appendix D. 242

After sampling pairs of hypotheses and observa- 243

tions, we tokenize them in preparation for encoding 244

and decoding by generative models. The entities 245

in the observations are represented as unique to- 246

kens, such as [Apple] and [Phone], as shown 247

in Figure 2, and associated with token embedding 248

vectors. To maintain consistency, we standardize 249

the order of tokens for each observation, ensuring 250

that permutations of the same observation set result 251

in an identical sequence of unique tokens. 252

For hypothesis tokenization, we adopt a directed 253

acyclic graph representation inspired by action- 254

based parsing, as seen in other logical reasoning 255

papers (Hamilton et al., 2018; Ren and Leskovec, 256

2020; Ren et al., 2020). Logical operations such 257

as intersection, union, and negation are denoted 258
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1

2 7

3 5 8

4 6 9

[Apple] [2010] [Phone]

[Type][Release][Brand]

[I] [I] [N]

[I] [I]

Hypothesis: 𝐻 = 𝑉?: 𝐵𝑟𝑎𝑛𝑑 𝑉?, 𝐴𝑝𝑝𝑙𝑒 ∧
𝑅𝑒𝑙𝑒𝑎𝑠𝑒(𝑉?, 2010) ∧ ¬𝑇𝑦𝑝𝑒(𝑉?, 𝑃ℎ𝑜𝑛𝑒)	

⇐⇒

Nodes Actions Stack

1 [I] 1
2 [I] 1,2
3 [Brand] 1,2,3
4 [Apple] 1,2,3,4→ 1,2
5 [Release] 1,2,5
6 [2010] 1,2,5,6→ 1
7 [N] 1,7
8 [Type] 1,7,8
9 [Phone] 1,7,8,9→ empty

Tokens: [I][I][Brand][Apple]
[Release][2010][N][Type][Phone]

Figure 2: The figure demonstrates the tokenization process for hypotheses. We uniformly consider logical operations,
relations, and entities as individual tokens, establishing a correspondence between the hypotheses and a sequence of
tokens. For a more detailed explanation, please refer to the Appendix D.

Step 1:

Sample observation-hypothesis pairs.

Step 2:

Train hypothesis generation model by using teacher forcing.

Hypothesis Generation Model

ObservationsHypotheses

KG:

Observations

Generated Hypotheses

Figure 3: The first two steps of training a hypothesis generation model: In Step 1, we randomly sample logical
hypotheses with diverse patterns and perform graph searches on the training graphs to obtain observations. These
observations are then tokenized. In Step 2, a conditional generation model is trained to generate hypotheses based
on given tokenized observations.

by special tokens [I], [U], and [N] respectively,259

following prior work (Bai et al., 2023). Relations260

and entities are also treated as unique tokens, for261

example, [Brand] and [Apple]. By utilizing a262

depth-first search algorithm (described in Appendix263

D), we generate a sequence of actions that repre-264

sents the content and structure of the graph. This265

concludes the tokenization process for hypotheses.266

Conversely, Algorithm 3 is used to reconstruct a267

graph from an action sequence, serving as the de-268

tokenization process for logical hypotheses.269

In the second step, we train a generative model270

on the sampled pairs. Let O = [o1, o2, ..., om] and271

H = [h1, h2, ..., hn] denote the token sequences272

for observations and hypotheses respectively. The273

loss function for this example is defined as the274

standard sequence modeling loss:275

L = log ρ(H|O) (5)276

= log

n∑
i=1

ρ(hi|O, h1, . . . , hi−1), (6)277

where ρ represents the generative model for con- 278

ditional generation. We use a standard transformer 279

model to implement this model. There are two 280

approaches to utilizing the conditional generation 281

model. The first approach follows the encoder- 282

decoder architecture described in the original paper 283

(Vaswani et al., 2017), where observation tokens 284

are input to the transformer encoder, and shifted hy- 285

pothesis tokens are input to the transformer decoder. 286

The second approach involves concatenating obser- 287

vation and hypothesis tokens and using a decoder- 288

only transformer for hypothesis generation. Both 289

approaches can incorporate the RLF-KG. 290

3.2 Reinforcement Learning from Knowledge 291

Graph Feedback (RLF-KG) 292

During the supervised training process, the model 293

learns to generate hypotheses that have similar 294

structures to reference hypotheses. However, 295

higher structural similarity towards reference an- 296

swers does not necessarily guarantee the ability 297

to generate logical explanations, especially when 298

encountering unseen observations during training. 299
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Model

Reference ModelGenerated Hypothesis

Log-probabilities 

Log-probabilities 

KL-Div

Observation

KG JaccardHypothesis Conclusion

PPO Training

Policy Gradient Optimization

Step 3:

Optimize hypothesis generation model with Reinforcement Learning From Knowledge Graph feedback (RLF-KG). 

Figure 4: In Step 3, we employ RLF-KG to encourage the model to generate hypotheses that align more closely with
the given observations from the knowledge graph. RLF-KG helps improve the consistency between the generated
hypotheses and the observed evidence in the knowledge graph.

To address this limitation, we employ reinforce-300

ment learning (Ziegler et al., 2020) in conjunction301

with knowledge graph feedback (RLF-KG) to en-302

hance the trained conditional generation model ρ.303

In Step 3, we initialize the model to be optimized,304

denoted as π, with the trained model ρ obtained305

from supervised training. We then treat ρ as the ref-306

erence model. The token sequence representing the307

hypothesis, denoted as H , is de-tokenized to obtain308

the corresponding hypothesis H and its conclusion309

on the training graph G, referred to as [[H]]G .310

As G represents the observed training graph, we311

utilize the Jaccard similarity between O and [[H]]G312

as a reliable and information leakage-free approxi-313

mation for the objective of the abductive reasoning314

task, as defined in Equation 4.315

To incorporate the feedback information from316

the training knowledge graph, we select this simi-317

larity measure as the reward function r. By using318

the Jaccard similarity as the reward function, we319

can effectively introduce the necessary feedback320

information to guide the RL process:321

r(H,O) = Jaccard([[H]]G , O) =
|[[H]]G ∩O|
|[[H]]G ∪O|

.

(7)322

Building upon the approach outlined in (Ziegler323

et al., 2020), we enhance the reward function by324

incorporating a KL divergence penalty. This mod-325

ification aims to discourage the optimized model326

π from generating hypotheses that deviate exces-327

sively from the reference model.328

To train the model π, we employ the proximal329

policy optimization (PPO) algorithm (Schulman330

et al., 2017). The objective of the training pro-331

cess is to maximize the expected modified reward,332

which is calculated based on the training observa-333

tion sets. By utilizing PPO and the modified reward334

function, we can effectively guide the model π to-335

wards generating hypotheses that strike a balance 336

between similarity to the reference model and logi- 337

cal coherence. The formulas are as follows: 338

EO∼D,H∼π(·|O)

[
r(H,O)− β log

π(H|O)
ρ(H|O)

]
,

(8) 339

where D the is training observation distribution 340

and π(·|O) is the conditional distribution ofH on 341

O modeled by the model π. 342

4 Experiment 343

We utilize three distinct knowledge graphs, namely 344

FB15k-237 (Toutanova and Chen, 2015), DBpe- 345

dia50 (Shi and Weninger, 2018), and WN18RR 346

(Toutanova and Chen, 2015), for our experiments. 347

Table 1 provides an overview of the number of 348

training, evaluation, and testing edges, as well as 349

the total number of nodes in each knowledge graph. 350

To ensure consistency, we randomly partition the 351

edges of these knowledge graphs into three sets - 352

training, validation, and testing - using an 8:1:1 ra- 353

tio. Consequently, we construct the training graph 354

Gtrain, validation graph Gvalid, and testing graph 355

Gtest by including the corresponding edges: train- 356

ing edges only, training + validation edges, and 357

training + validation + testing edges, respectively. 358

Following the methodology outlined in Sec- 359

tion 3.1, we proceed to sample pairs of observations 360

and hypotheses. To ensure the quality and diver- 361

sity of the samples, we impose certain constraints 362

during the sampling process. Firstly, we restrict 363

the size of the observation sets to a maximum of 364

thirty-two elements. This limitation is enforced 365

ensuring that the observations remain manageable. 366

Additionally, specific constraints are applied to the 367

validation and testing hypotheses. Each valida- 368

tion hypothesis must incorporate additional entities 369

in the conclusion compared to the training graph, 370
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Figure 5: Our task involves considering thirteen distinct types of logical hypotheses. Each hypothesis type
corresponds to a specific type of query graph, which is utilized during the sampling process. By associating each
hypothesis type with a corresponding query graph, we ensure that a diverse range of hypotheses is sampled.

Dataset Relations Entities Training Validation Testing All Edges

FB15k-237 237 14,505 496,126 62,016 62,016 620,158
WN18RR 11 40,559 148,132 18,516 18,516 185,164
DBpedia50 351 24,624 55,074 6,884 6,884 68,842

Table 1: This figure provides basic information about the three knowledge graphs utilized in our experiments. The
graphs are divided into standard sets of training, validation, and testing edges to facilitate the evaluation process.

while each testing hypothesis must have additional371

entities in the conclusion compared to the valida-372

tion graph. This progressive increase in entity com-373

plexity ensures a challenging evaluation setting.374

The statistics of queries sampled for datasets are375

detailed in Appendix C.376

In line with previous work on KG reasoning377

(Ren and Leskovec, 2020; Ren et al., 2020), we378

utilize thirteen pre-defined logical patterns to sam-379

ple the hypotheses. Eight of these patterns, known380

as existential positive first-order (EPFO) hypothe-381

ses (1p/2p/2u/3i/ip/up/2i/pi), do not involve nega-382

tions. The remaining five patterns are negation hy-383

potheses (2in/3in/inp/pni/pin), which incorporate384

negations. It is important to note that the gener-385

ated hypotheses may or may not match the type386

of the reference hypothesis. The structures of the387

hypotheses are visually presented in Figure 5, and388

the corresponding numbers of samples drawn for389

each hypothesis type can be found in Table 5.390

4.1 Evaluation Metric391

The quality of the generated hypothesis is primarily392

measured using the objective of abductive reason-393

ing, as outlined in Section 2. Given an observation394

O and a generated hypothesis H , we employ a395

graph search algorithm to determine the conclu-396

sion of H on the evaluation graph Gtest, denoted as397

[[H]]Gtest . It is important to note that the evaluation398

graph contains ten percent of edges that were not399

observed during the training or validation stages.400

The Jaccard metric Jtest(H,O) is then utilized401

to assess the quality of the generated hypothesis.402

This metric quantifies the similarity between the 403

conclusion [[H]]Gtest and the observation O. The 404

Jaccard metric is given by: 405

Jaccard([[H]]Gtest , O) =
|[[H]]Gtest ∩O|
|[[H]]Gtest ∪O|

. (9) 406

To further explore the similarity between the gen- 407

erated hypothesis and the reference hypothesis, we 408

propose utilizing Smatch (Cai and Knight, 2013) to 409

evaluate the structural resemblance of the hypoth- 410

esis graphs. Originally designed for comparing 411

semantic graphs, Smatch has been recognized as 412

a suitable metric for evaluating complex logical 413

queries, which can be treated as a specialized form 414

of semantic graphs (Bai et al., 2023). The compu- 415

tation of the Smatch score on hypothesis graphs 416

is described in detail in Appendix F. Denoted as 417

S(H,Href), the Smatch score quantifies the simi- 418

larity between the generated hypothesis H and the 419

reference hypothesis Href. 420

4.2 Experiment Details 421

In this experiment, we use two transformer struc- 422

tures as the backbones of the generation model. 423

For the encoder-decoder transformer structure, we 424

use three encoder layers and three decoder layers. 425

Each layer has eight attention heads with a hidden 426

size of 512. Note that the positional encoding for 427

the input observation sequence is disabled, as we 428

believe that the order of the entities in the obser- 429

vation set does not matter. For the decoder-only 430

structure, we use six layers, and the other hyper- 431

parameters are the same. In the supervised train- 432

ing process, we use AdamW optimizer and grid 433
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Dataset Model 1p 2p 2i 3i ip pi 2u up 2in 3in pni pin inp Ave.

FB15k-237

Encoder-Decoder 0.626 0.617 0.551 0.513 0.576 0.493 0.818 0.613 0.532 0.451 0.499 0.529 0.533 0.565
+ RLF-KG 0.855 0.711 0.661 0.595 0.715 0.608 0.776 0.698 0.670 0.530 0.617 0.590 0.637 0.666

Decoder-Only 0.666 0.643 0.593 0.554 0.612 0.533 0.807 0.638 0.588 0.503 0.549 0.559 0.564 0.601
+ RLF-KG 0.789 0.681 0.656 0.605 0.683 0.600 0.817 0.672 0.672 0.560 0.627 0.596 0.626 0.660

WN18RR

Encoder-Decoder 0.793 0.734 0.692 0.692 0.797 0.627 0.763 0.690 0.707 0.694 0.704 0.653 0.664 0.708
+ RLF-KG 0.850 0.778 0.765 0.763 0.854 0.685 0.767 0.719 0.743 0.732 0.738 0.682 0.710 0.753

Decoder-Only 0.760 0.734 0.680 0.684 0.770 0.614 0.725 0.650 0.683 0.672 0.688 0.660 0.677 0.692
+ RLF-KG 0.821 0.760 0.694 0.693 0.827 0.656 0.770 0.680 0.717 0.704 0.720 0.676 0.721 0.726

DBpedia50

Encoder-Decoder 0.706 0.657 0.551 0.570 0.720 0.583 0.632 0.636 0.602 0.572 0.668 0.625 0.636 0.627
+ RLF-KG 0.842 0.768 0.636 0.639 0.860 0.667 0.714 0.758 0.699 0.661 0.775 0.716 0.769 0.731

Decoder-Only 0.739 0.692 0.426 0.434 0.771 0.527 0.654 0.688 0.602 0.563 0.663 0.640 0.701 0.623
+ RLF-KG 0.777 0.701 0.470 0.475 0.821 0.534 0.646 0.702 0.626 0.575 0.696 0.626 0.713 0.643

Table 2: The detailed Jaccard performance of various methods.

Figure 6: The curve of the reward values of RLF-KG training over three different datasets.

search to find hyper-parameters. For the encoder-434

decoder structure, the learning rate is 0.0001 with435

the resulting batch size of 768, 640, and 256 for436

FB15k-237, WN18RR, and DBpedia, respectively.437

For the decoder-only structure, the learning rate is438

0.00001 with batch-size of 256, 160, and 160 for439

FB15k-237, WN18RR, and DBpedia respectively,440

and linear warming up of 100 steps. In the rein-441

forcement learning process, we use the dynamic442

adjustment of the penalty coefficient β (Ouyang443

et al., 2022). More detailed hyperparameters are444

shown in Appendix H. All the experiments can be445

conducted on a single GPU with 24GB memory.446

4.3 Experiment Results447

We validate RLF-KG effectiveness by comparing448

the Jaccard metric of the model before and af-449

ter this process. Table 2 displays performance450

across thirteen hypothesis types on FB15k-237,451

WN18RR, and DBpedia50. It illustrates Jaccard452

indices between observations and conclusions of453

generated hypotheses from the test graph. The454

encoder-decoder and the decoder-only transform-455

ers are assessed under fully supervised training on456

each dataset. Additionally, performance is reported457

when models collaborate with reinforcement learn-458

ing from knowledge graph feedback (RLF-KG).459

We notice RLF-KG consistently enhances hy-460

pothesis generation across three datasets, improv-461

ing both encoder-decoder and decoder-only models.462

This can be explained by RLF-KG’s ability to in- 463

corporate knowledge graph information into the 464

generation model, diverging from simply generat- 465

ing hypotheses akin to reference hypotheses. 466

Additionally, after the RLF-KG training, the 467

encoder-decoder model surpasses the decoder-only 468

structured transformer model. This is due to the 469

task’s nature, where generating a sequence of to- 470

kens from an observation set does not necessitate 471

the order of the observation set. Figure 6 supple- 472

ments the previous statement by illustrating the 473

increasing reward throughout the PPO process. We 474

also refer readers to Appendix J for qualitative ex- 475

amples demonstrating the improvement in the gen- 476

erated hypotheses for the same observation. 477

4.4 Adding Structural Reward to PPO 478

In this part, we explore the potential benefits of 479

incorporating structural similarity into the reward 480

function used in PPO training. While RLF-KG 481

originally relies on the Jaccard index, we con- 482

sider adding the Smatch score, a measure of struc- 483

tural differences between generated and sampled 484

hypotheses. As introduced before, the structural 485

similarity can be measured by the Smatch score. 486

We also conducted further experiments to also in- 487

clude S(H,Href) as an additional term of the re- 488

ward function, and the results are shown in Table 3. 489

As Smatch scores suggest, by incorporating the 490

structural reward, the model can indeed generate 491
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FB15k-237 WN18RR DBpedia50
Jaccard Smatch Jaccard Smatch Jaccard Smatch

Encoder-Decoder 0.565 0.602 0.708 0.558 0.627 0.486
+ RLF-KG (Jaccard) 0.666 0.530 0.753 0.540 0.731 0.541
+ RLF-KG (Jaccard + Smatch) 0.660 0.568 0.757 0.545 0.696 0.532

Decoder-Only 0.601 0.614 0.692 0.564 0.623 0.510
+ RLF-KG (Jaccard) 0.660 0.598 0.726 0.518 0.643 0.492
+ RLF-KG (Jaccard + Smatch) 0.656 0.612 0.713 0.540 0.645 0.504

Table 3: The Jaccard and Smatch performance of different reward functions.

Method FB15k-237 WN18RR DBpedia50
Runtime Jaccard Smatch Runtime Jaccard Smatch Runtime Jaccard Smatch

Brute-force Search 16345 mins 0.635 0.305 4084 mins 0.742 0.322 1132 mins 0.702 0.322
Generation + RLF-KG 264 mins 0.666 0.530 32 mins 0.753 0.540 5 mins 0.731 0.541

Table 4: Performance on testing data and runtime for inference for various methods on testing data.

hypotheses that are closer to the reference hypothe-492

ses. However, the Jaccard scores show that with493

structural information incorporated, the overall per-494

formance is comparable to or slightly worse than495

the original reward function. The detailed Smatch496

scores by query types can be found in Appendix G497

4.5 Comparison Between Search Methods498

In this section, we compare inference time and499

performance between the generation-based and500

search-based methods. To do this comparison,501

we introduce a brute-force search algorithm. For502

each given observation, the algorithm, as detailed503

in Appendix I, explores all potential 1p hypothe-504

ses within the training graph and selects the one505

with the highest Jaccard similarity on the training506

graph. Table 4 shows that, notably, generation-507

based models of both architectures consistently ex-508

hibit significantly faster performance compared to509

the search-based method. Table 4 shows that, while510

our generation model only slightly overperforms511

the search-based method in Jaccard performance,512

it is significantly better in Smatch performance.513

5 Related Work514

The problem of abductive knowledge graph reason-515

ing shares connections with various other knowl-516

edge graph reasoning tasks, including knowledge517

graph completion, complex logical query answer-518

ing, and rule mining. Rule mining is a line of work519

focusing on inductive logical reasoning, namely520

discovering logical rules over the knowledge graph.521

Various methods are proposed in this line of work522

(Galárraga et al., 2015; Ho et al., 2018; Meilicke 523

et al., 2019; Cheng et al., 2022, 2023). 524

Complex logical query answering is a task of an- 525

swering logically structured queries on KG. Query 526

embedding primary focus is the enhancement of 527

embedding structures for encoding sets of answers 528

(Hamilton et al., 2018; Sun et al., 2020; Liu et al., 529

2021). For instance, (Ren and Leskovec, 2020) and 530

(Zhang et al., 2021b) introduce the utilization of 531

geometric structures such as rectangles and cones 532

within hyperspace to represent entities. Neural 533

MLP (Mixer) (Amayuelas et al., 2022) use MLP 534

and MLP-Mixer as the operators. (Bai et al., 2022) 535

suggests employing multiple vectors to encode 536

queries, thereby addressing the diversity of answer 537

entities. FuzzQE (Chen et al., 2022) uses fuzzy 538

logic to represent logical operators. Probabilistic 539

distributions can also serve as a means of query 540

encoding (Choudhary et al., 2021a,b), with exam- 541

ples including Beta Embedding (Ren and Leskovec, 542

2020) and Gamma Embedding (Yang et al., 2022). 543

6 Conclusion 544

In summary, this paper has introduced the task 545

of abductive logical knowledge graph reasoning. 546

Meanwhile, this paper has proposed a generation- 547

based method to address knowledge graph incom- 548

pleteness and reasoning efficiency by generating 549

logical hypotheses. Furthermore, this paper demon- 550

strates the effectiveness of our proposed reinforce- 551

ment learning from knowledge graphs (RLF-KG) 552

to enhance our hypothesis generation model by 553

leveraging feedback from knowledge graphs. 554
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Limitations555

Our proposed methods and techniques in the paper556

are evaluated on a specific set of knowledge graphs,557

namely FB15k-237, WN18RR, and DBpedia50. It558

is unclear how well these approaches would per-559

form on other KGs with different characteristics560

or domains. Meanwhile, knowledge graphs can561

be massive and continuously evolving, our method562

is not yet able to address the dynamic nature of563

knowledge evolutions, like conducting knowledge564

editing automatically. It is important to note that565

these limitations should not undermine the signif-566

icance of the work but rather serve as areas for567

future research and improvement.568
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A Clarification on Abductive, Deductive, 778

and Inductive Reasoning 779

Here we use simple syllogisms to explain the con- 780

nections and differences between abductive reason- 781

ing and the other two types of reasoning, namely, 782

deductive and inductive reasoning. In deductive 783

reasoning, the inferred conclusion is necessarily 784

true if the premises are true. Suppose we have a 785

major premise P1: All men are mortal, a minor 786

premise P2: Socrates is a man, then we can con- 787

clude C that Socrates is mortal. This can also be 788

expressed as the inference
P1 ∧ P2

C . On the other 789

hand, abductive reasoning aims to explain an ob- 790

servation and is non-necessary, i.e., the inferred 791

hypothesis is not guaranteed to be true. We also 792

start with a premise P : All cats like catching mice, 793

and then we have some observation O: Katty like 794

catching mice. The abduction gives a simple yet 795

most probable hypothesis H: Katty is a cat, as 796

an explanation. This can also be written as the 797

inference
P ∧O
H . Different than deductive reason- 798

ing, the observation O should be entailed by the 799

premise P and the hypotheses H , which can be 800

expressed by the implication P ∧H =⇒ O. The 801

other type of non-necessary reasoning is inductive 802

reasoning, where, in contrast to the appeal to ex- 803

planatory considerations in abductive reasoning, 804

there is an appeal to observed frequencies (Dou- 805

ven, 2021). For instance, premises P1: Most Math 806

students learn linear algebra in their first year and 807

P2: Alice is a Math student infer H: Alice learned 808

linear algebra in her first year, i.e.,
P1 ∧ P2

H . Note 809

that the inference rules in the last two examples are 810

not strictly logical implications. 811

It is worth mentioning that there might be differ- 812

ent definitions or interpretations of these forms of 813

reasoning. 814

B Example of Observation-Hypothesis 815

Pair 816

For example, observation O can be a set of 817

name entities like {GrantHeslov, JasonSegel, 818

RobertTowne, RonaldBass,RashidaJones}. 819

Given this observation, an abductive reasoner is 820

required to give the logical hypothesis that best 821

explains it. For the above example, the expected 822

hypothesis H in natural language is that they are 823

actors and screenwriters, and they are also born in 824

Los Angeles. Mathematically, the hypothesis H can 825
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be represented by a logical expression of the facts826

of the KG: H(V ) = Occupation(V,Actor)827

∧ Occupation(V, ScreenWriter) ∧828

BornIn(V,LosAngeles). Although the logical829

expression here only contains logical conjunction830

AND (∧), we consider more general first-order831

logical form as defined in Section 2.832

C Statistics of Queries Sampled for833

Datasets834

Table 5 presents the numbers of queries sampled835

for each dataset in each stage.836

D Algorithm for Sampling837

Observation-Hypothesis Pairs838

Algorithm 1 is designed for sampling complex hy-839

potheses from a given knowledge graph. Given a840

knowledge graph G and a hypothesis type T , the841

algorithm starts with a random node v and pro-842

ceeds to recursively construct a hypothesis that has843

v as one of its conclusions and adheres the type844

T . During the recursion process, the algorithm ex-845

amines the last operation in the current hypothesis.846

If the operation is a projection, the algorithm ran-847

domly selects one of v’s in-edge (u, r, v). Then,848

the algorithm calls the recursion on node u and the849

sub-hypothesis type of T again. If the operation850

is an intersection, it applies recursion on the sub-851

hypotheses and the same node v. If the operation is852

a union, it applies recursion on one sub-hypothesis853

with node v and on other sub-hypotheses with an854

arbitrary node, as union only requires one of the855

sub-hypotheses to have v as an answer node. The856

recursion stops when the current node contains an857

entity.858

E Algorithms for Conversion between859

Queries and Actions860

We here present the details of tokenizing the hy-861

pothesis graph (Algorithm 2), and formulating a862

graph according to the tokens, namely the process863

of de-tokenization (Algorithm 3). Inspired by the864

action-based semantic parsing algorithms, we view865

tokens as actions. It is worth noting that we employ866

the symbols G,V,E for the hypothesis graph to867

differentiate it from the knowledge graph.868

F Details of using Smatch to evaluate869

structural differneces of queries870

Smatch (Cai and Knight, 2013) is an evalua-871

tion metric for Abstract Meaning Representation872

Algorithm 1 Sampling Hypothesis According to
Type

Input Knowledge graph G, hypothesis type T
Output Hypothesis sample
function GROUNDTYPE(G, T, t)

if T.operation = p then
(h, r) ← SAMPLE({(h, r)|(h, r, t) ∈

E(G)})
T̂ ← the only subtype in T.SubTypes
H ← GROUNDTYPE(G, T̂ , h)
return (p, r,H)

else if T.operation = i then
SubHypotheses← ∅
for T̂ ∈ T.SubTypes do

H ← GROUNDTYPE(G, T̂ , t)
SubHypotheses.PUSHBACK(H)

end for
return (i, SubHypotheses)

else if T.operation = u then
SubHypotheses← ∅
for T̂ ∈ T.SubTypes do

if T̂ is the first subtype then
H ← GROUNDTYPE(G, T̂ , t)

else
t̂← SAMPLE(V(G))
H ← GROUNDTYPE(G, T̂ , t̂)

end if
SubHypotheses.PUSHBACK(H)

end for
return (u, SubHypotheses)

else if T.operation = e then
return (e, t)

end if
end function
v ← SAMPLE(V(G))
return GROUNDTYPE(G, T, v)
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Dataset Training Samples Validation Samples Testing Samples
Each Type Total Each Type Total Each Type Total

FB15k-237 496,126 6,449,638 62,015 806,195 62,015 806,195
WN18RR 148,132 1,925,716 18,516 240,708 18,516 240,708
DBpedia50 55,028 715,364 6,878 89,414 6,878 89,414

Table 5: The detailed information about the queries used for training, validation, and testing.

Algorithm 2 HypothesisToActions
Input Hypothesis plan graph G
Output Action sequence A

function DFS(G, t,A)
if t is an anchor node then

action← entity associated with t
else

action ← operator associated with the
first in-edge of t

end if
A.PUSHBACK(action)
for all in-edges to t in G (h, r, t) do

DFS(G, h,A)
end for

end function
root← the root of G
A← DFS(G, root, ∅)
return A

(AMR) graphs. An AMR graph is a directed acyclic873

graph with two types of nodes: variable nodes and874

concept nodes, and three types of edges:875

• Instance edges, which connect a variable node876

to a concept node and are labeled literally “in-877

stance”. Every variable node must have ex-878

actly one instance edge, and vice versa.879

• Attribute edges, which connect a variable880

node to a concept node and are labeled with881

attribute names.882

• Relation edges, which connect a variable node883

to another variable node and are labeled with884

relation names.885

Given a predicted AMR graph Gp and the gold886

AMR graph Gg, the Smatch score of Gp with887

respect to Gg is denoted by Smatch(Gp, Gg).888

Smatch(Gp, Gg) is obtained by finding an approx-889

imately optimal mapping between the variable890

nodes of the two graphs and then matching the891

edges of the graphs.892

Our hypothesis graph is similar to the AMR893

graph, in:894

Algorithm 3 ActionsToHypothesis
Input Action sequence A
Output Hypothesis plan graph G

S ← an empty stack
Create an map deg. deg[i] = deg[u] = 2 and
= 1 otherwise.
V ← ∅, E ← ∅
for a ∈ A do

Create a new node h, V ← V ∪ {h}
if S ̸= ∅ then

(t, operator, d)← S.TOP

E ← E ∪ {(h, operator, t)}
end if
if a represents an anchor then

Mark h as an anchor with entity a
while S ̸= ∅ do

(t, operator, d)← S.POP

d← d− 1
if d > 0 then

S.PUSHBACK((t, operator, d))
Break

end if
end while

else
S.PUSHBACK((h, a, deg[a]))

end if
end for
G← (V,E)
return G
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• The nodes are both categorized as fixed nodes895

and variable nodes896

• The edges can be categorized into two types:897

edges from a variable node to a fixed node and898

edges from a variable node to another variable899

node. And edges are labeled with names.900

However, they are different in that the AMR graph901

requires every variable node to have instance edges,902

while the hypothesis graph does not.903

The workaround for leveraging the Smatch904

score to measure the similarity between hypoth-905

esis graphs is creating an instance edge from every906

entity to some virtual node. Formally, given a hy-907

pothesis H with hypothesis graph G(H), we create908

a new hypothesis graph GA(H) to accommodate909

the AMR settings as follows: First, we initialize910

GA(H) = G(H). Then, create a new relation type911

instance and add a virtual node v′ into GA(H).912

Finally, for every variable node v ∈ G(H), we913

add a relation instance(v, v′) into GA(H). Then,914

given a predicted hypothesis Hp and a gold hypoth-915

esis Hg, the Smatch score is defined as916

S(Hp, Hg) = Smatch(GA(Hp), GA(Hg)). (10)917

Through this conversion, a variable entity vg918

of Hg is mapped to a variable entity vp of Hp919

if and only if instance(vg, v
′) is matched with920

instance(vp, v
′). This modification does not af-921

fect the overall algorithm for finding the optimal922

mapping between variable nodes and hence gives923

a valid and consistent similarity score. However,924

this adds an extra point for matching between in-925

stance edges, no matter how the variable nodes are926

mapped.927

G Detailed Smatch Scores by Query928

Types929

Tables 6 and 7 show the detailed Smatch perfor-930

mance of various methods.931

H Hyperparameters of the RL Process932

The PPO hyperparameters are shown in Table 8.933

We warm-uped the learning rate from 0.1 of the934

peak to the peak value within the first 10% of total935

iterations, followed by a decay to 0.1 of the peak936

using a cosine schedule.937

I Algorithms for One-Hop Searching938

We now introduce the Algorithm 4 used for search-939

ing the best one-hop hypothesis with the tail among940

all entities in the observation set to explain the ob- 941

servations. 942

Algorithm 4 One-Hop-Search
Input Observation set O
Output Hypothesis bestHypothesis

candidates← {(h, r, t) ∈ Rtrain|t ∈ O}
bestJaccard← 0
bestHypothesis← Null
for (h, r, t) ∈ candidates do

H ← the one-hop hypothesis consisting of
edge (h, r, t)

nowJaccard← Jaccard([[H]]Gtrain , A)
if nowJaccard > bestJaccard then

bestJaccard← nowJaccard
bestHypothesis← H

end if
end for
return bestHypothesis

J Case Studies 943

Explore Table 9, 10 and 11 for concrete examples 944

generated by various abductive reasoning meth- 945

ods, namely search, generative model with super- 946

vised training, and generative model with super- 947

vised training incorporating RLF-KG. 948
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Dataset Model 1p 2p 2i 3i ip pi 2u up 2in 3in pni pin inp Ave.

FB15k-237

Enc.-Dec. 0.342 0.506 0.595 0.602 0.570 0.598 0.850 0.571 0.652 0.641 0.650 0.655 0.599 0.602
RLF-KG (J) 0.721 0.643 0.562 0.480 0.364 0.475 0.769 0.431 0.543 0.499 0.513 0.518 0.370 0.530
RLF-KG (J+S) 0.591 0.583 0.577 0.531 0.447 0.520 0.820 0.505 0.602 0.563 0.571 0.595 0.484 0.568

Dec.-Only 0.287 0.481 0.615 0.623 0.599 0.626 0.847 0.574 0.680 0.656 0.675 0.677 0.636 0.614
RLF-KG (J) 0.344 0.445 0.675 0.585 0.537 0.638 0.853 0.512 0.696 0.575 0.647 0.688 0.574 0.598
RLF-KG (J+S) 0.303 0.380 0.692 0.607 0.565 0.671 0.857 0.506 0.727 0.600 0.676 0.734 0.634 0.612

WN18RR

Enc.-Dec. 0.375 0.452 0.591 0.555 0.437 0.585 0.835 0.685 0.586 0.516 0.561 0.549 0.530 0.558
RLF-KG (J) 0.455 0.468 0.563 0.562 0.361 0.530 0.810 0.646 0.560 0.530 0.536 0.539 0.465 0.540
RLF-KG (J+S) 0.443 0.457 0.565 0.572 0.366 0.545 0.814 0.661 0.541 0.553 0.532 0.546 0.491 0.545

Dec.-Only 0.320 0.443 0.582 0.551 0.486 0.597 0.809 0.696 0.594 0.526 0.575 0.574 0.577 0.564
RLF-KG (J) 0.400 0.438 0.566 0.491 0.403 0.519 0.839 0.667 0.547 0.450 0.497 0.466 0.450 0.518
RLF-KG (J+S) 0.375 0.447 0.584 0.499 0.432 0.545 0.825 0.679 0.584 0.477 0.543 0.522 0.507 0.540

DBpedia50

Enc.-Dec. 0.345 0.396 0.570 0.548 0.344 0.576 0.712 0.544 0.474 0.422 0.477 0.488 0.428 0.486
RLF-KG (J) 0.461 0.424 0.634 0.584 0.361 0.575 0.809 0.579 0.584 0.497 0.544 0.533 0.454 0.541
RLF-KG (J+S) 0.419 0.410 0.638 0.555 0.373 0.586 0.785 0.579 0.560 0.459 0.536 0.542 0.474 0.532

Dec.-Only 0.378 0.408 0.559 0.526 0.397 0.568 0.812 0.626 0.480 0.414 0.489 0.494 0.474 0.510
RLF-KG (J) 0.405 0.411 0.558 0.496 0.376 0.507 0.825 0.621 0.477 0.397 0.468 0.444 0.406 0.492
RLF-KG (J+S) 0.398 0.415 0.567 0.497 0.383 0.533 0.827 0.630 0.510 0.420 0.484 0.457 0.430 0.504

Table 6: The detailed Smatch performance of various methods.

Dataset 1p 2p 2i 3i ip pi 2u up 2in 3in pni pin inp Ave.

FB15k-237 0.945 0.340 0.365 0.218 0.184 0.267 0.419 0.185 0.301 0.182 0.245 0.155 0.157 0.305
WN18RR 0.957 0.336 0.420 0.274 0.182 0.275 0.427 0.183 0.323 0.224 0.270 0.155 0.156 0.322
DBpedia 0.991 0.336 0.399 0.259 0.182 0.245 0.441 0.183 0.332 0.226 0.290 0.154 0.155 0.322

Table 7: The detailed Smatch performance of the searching method.

Hyperparam. Enc.-Dec. Dec.-Only
FB15k-237 WN18RR DBpedia50 FB15k-237 WN18RR DBpedia50

Learning rate 2.4e-5 3.1e-5 1.8e-5 0.8e-5 0.8e-5 0.6e-5
Batch size 16384 16384 4096 3072 2048 2048
Minibatch size 512 512 64 96 128 128
Horizon 4096 4096 4096 2048 2048 2048

Table 8: PPO Hyperparamters.
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Sample

Interpretation Companies operating in industries that intersect with Yahoo! but not with IBM.

Hypothesis The observations are the V? such that ∃V1, inIndustry(V1, V?) ∧
¬industryOf(IBM,V1) ∧ industryOf(Y ahoo!, V1)

Observation

EMI, CBS_Corporation,
Columbia, GMA_Network,
Viacom, Victor_Entertainment,
Yahoo!, Sony_Music_Entertainment_(Japan)_Inc.,
Bandai, Toho_Co.,_Ltd.,
Rank_Organisation, The_New_York_Times_Company,
Gannett_Company, Star_Cinema,
NBCUniversal, TV5,
Pony_Canyon, Avex_Trax,
The_Graham_Holdings_Company, The_Walt_Disney_Company,
Televisa, Metro-Goldwyn-Mayer,
Google, Time_Warner,
Microsoft_Corporation, Dell,
Munhwa_Broadcasting_Corporation, News_Corporation

Searching

Interpretation Which companies operate in media industry?

Hypothesis The observations are the V? such that inIndustry(Media, V?)

Conclusion

Absent:
- Google,
- Microsoft_Corporation,
- Dell

Jaccard 0.893

Smatch 0.154

Enc.-Dec.

Interpretation Companies operating in industries that intersect with
Yahoo! but not with Microsoft Corporation.

Hypothesis The observations are the V? such that ∃V1, inIndustry(V1, V?) ∧
¬industryOf(Microsoft_Corporation, V1) ∧ industryOf(Y ahoo!, V1)

Conclusion Absent: Microsoft_Corporation

Jaccard 0.964

Smatch 0.909

+ RLF-KG

Interpretation Companies operating in industries that intersect with
Yahoo! but not with Oracle Corporation.

Hypothesis The observations are the V? such that ∃V1, inIndustry(V1, V?) ∧
¬industryOf(Oracle_Corporation, V1) ∧ industryOf(Y ahoo!, V1)

Concl. Same

Jaccard 1.000

Smatch 0.909

Table 9: Example FB15k-237 Case study 1.
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Sample

Interpretation Locations that adjoin second-level divisions of the United
States of America that adjoin Washtenaw County.

Hypothesis The observations are the V? such that ∃V1, adjoins(V1, V?) ∧
adjoins(Washtenaw_County, V1) ∧ secondLevelDivisions(USA, V1)

Observation
Jackson_County, Macomb_County,
Wayne_County, Ingham_County
Washtenaw_County,

Searching

Interpretation Locations that adjoin Oakland County.

Hypothesis The observations are the V? such that adjoins(Oakland_County, V?)

Conclusion
Absent:
- Jackson_County
- Ingham_County

Jaccard 0.600

Smatch 0.182

Enc.-Dec.

Interpretation Second-level divisions of the United States of America
that adjoin locations that adjoin Oakland County.

Hypothesis The observations are the V? such that
∃V1, secondLevelDivisions(USA, V?) ∧ adjoins(V1, V?) ∧
+adjoins(Oakland_County, V1)

Conclusion Extra: Oakland_County
Absent: Wayne_County

Jaccard 0.667

Smatch 0.778

+ RLF-KG

Interpretation Second-level divisions of the United States of America
that adjoin locations contained within Michigan.

Hypothesis The observations are the V? such that
∃V1, secondLevelDivisions(USA, V?) ∧ adjoins(V1, V?) ∧
containedIn(Michigan, V1)

Conclusion
Extra:
- Oakland_County
- Genesee_County

Jaccard 0.714

Smatch 0.778

Table 10: FB15k-237 Case study 2.
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Ground Truth

Interpretation Works, except for “Here ’Tis,” that have subsequent works in the jazz genre.

Hypothesis The observations are the V? such that ∃V1, subsequentWork(V1, V?) ∧
¬previousWork(Here_′T is, V1) ∧ genre(Jazz, V1)

Observation

Deep,_Deep_Trouble, Lee_Morgan_Sextet,
Good_Dog,_Happy_Man, Paris_Nights\/New_York_Mornings,
I_Don’t_Want_to_Be_Your_Friend, Take_the_Box
Interior_Music,

Searching

Interpretation Works subsequent to “Closer” (Corinne Bailey Rae song).

Hypothesis The observations are the V? such that
subsequentWork(Closer_(Corinne_Bailey_Rae_song), V?)

Conclusion Only Paris_Nights\/New_York_Mornings

Jaccard 0.143

Smatch 0.154

Enc.-Dec.

Interpretation Works, except for “Lee Morgan Sextet,” that have subsequent works
in the jazz genre.

Hypothesis The observations are the V? such that ∃V1, subsequentWork(V1, V?) ∧
¬previousWork(Lee_Morgan_Sextet, V1) ∧ genre(Jazz, V1)

Conclusion Extra: Here_’Tis
Absent: Lee_Morgan_Sextet

Jaccard 0.750

Smatch 0.909

+ RLF-KG

Interpretation Works that have subsequent works in the jazz genre.

Hypothesis The observations are the V? such that ∃V1, subsequentWork(V1, V?) ∧
genre(Jazz, V1)

Conclusion Extra: Here_’Tis

Jaccard 0.875

Smatch 0.400

Table 11: DBpedia50 Case study.
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