
LLM4Decompile: Decompiling Binary Code with Large Language Models

Anonymous ACL submission

Abstract

Decompilation aims to convert binary code to001
high-level source code, but traditional tools002
like Ghidra often produce results that are dif-003
ficult to read and execute. Motivated by004
the advancements in Large Language Mod-005
els (LLMs), we propose LLM4Decompile,006
the first and largest open-source LLM series007
(1.3B to 33B) trained to decompile binary008
code. We optimize the LLM training process009
and introduce the LLM4Decompile-End mod-010
els to decompile binary directly. The result-011
ing models significantly outperform GPT-4o012
and Ghidra on the HumanEval and ExeBench013
benchmarks by over 100%. Additionally, we014
improve the standard refinement approach to015
fine-tune the LLM4Decompile-Ref models, en-016
abling them to effectively refine the decompiled017
code from Ghidra and achieve a further 16.2%018
improvement over the LLM4Decompile-End.019
LLM4Decompile1 demonstrates the potential020
of LLMs to revolutionize binary code decom-021
pilation, delivering remarkable improvements022
in readability and executability while comple-023
menting conventional tools for optimal results.024

1 Introduction025

Decompilation, the reverse process of converting026

machine code or binary code into a high-level027

programming language, facilitates various reverse028

engineering tasks such as vulnerability identifica-029

tion, malware research, and legacy software mi-030

gration (Brumley et al., 2013; Katz et al., 2018;031

Hosseini and Dolan-Gavitt, 2022; Xu et al., 2023;032

Armengol-Estapé et al., 2023; Jiang et al., 2023;033

Wong et al., 2023; Hu et al., 2024). Decompilation034

is challenging due to the loss of information inher-035

ent in the compilation process, particularly finer de-036

tails such as variable names (Lacomis et al., 2019)037

and fundamental structures like loops and condi-038

tionals (Wei et al., 2007). To address these chal-039

1https://github.com/anonepo/LLM4Decompile

Source Code
00111010010101010101010
110101010110101000101...

Compile

Disassemble

Binary

ASM

Ghidra Decompiled Pseudo-Code

int func0(float num[], int size,
float threshold) {
int i, j;
for (i = 0; i < size; i++)
for (j = i + 1; j < size; j++)
if (fabs(num[i] - num[j])

< threshold)
return 1;

return 0;}

undefined4 func0(float param_1,long param_2,int param_3){
int local_28;
int local_24;
local_24 = 0;
do {
local_28 = local_24;
if (param_3 <= local_24) {
return 0;}

while (local_28 = local_28 + 1, local_28 < param_3) {
if ((double)((ulong)(double)(*(float *)(param_2 + (long)local_24 * 4) -

*(float *)(param_2 + (long)local_28 * 4)) &
SUB168(_DAT_00402010,0)) < (double)param_1) {

return 1;}}
local_24 = local_24 + 1;

} while(true);}

<func0>:
endbr64
push %rbp
...

...
mov $0x0,%eax
pop %rbp
retq

Decompile

Figure 1: Illustration of compiling source code to binary,
disassembling binary to assembly code (ASM), and
decompiling ASM to pseudo-code with Ghidra. The
pseudo-code is hard to read and not executable.

lenges, numerous tools have been developed for de- 040

compilation, with Ghidra (Ghidra, 2024) and IDA 041

Pro (Hex-Rays, 2024) being the most commonly 042

used. Although these tools have the capability to re- 043

vert binary code to high-level pseudo-code, the out- 044

puts often lack readability and re-executability (Liu 045

and Wang, 2020a; Wang et al., 2017), which are 046

essential for applications like legacy software mi- 047

gration and security instrumentation tasks (Wong 048

et al., 2023; Dinesh et al., 2020). 049

Figure 1 illustrates the transformation from the 050

source C code to a binary file, assembly code 051

(ASM), and pseudo-code decompiled from Ghidra. 052

In this pseudo-code, the original nested for struc- 053

ture is replaced with a less intuitive combination of 054

a do-while loop inside another while loop. Fur- 055

thermore, array indexing like num[i] is decom- 056

piled into complicated pointer arithmetic such as 057

*(float *)(param_2 + (long)local_24 * 4). 058

The decompiled output also exhibits syntactical er- 059

rors, with the function return type being converted 060

to undefined4. Overall, traditional decompilation 061

tools often strip away the syntactic clarity provided 062

by high-level languages and do not ensure the cor- 063

rectness of syntax, posing significant challenges 064

1

https://github.com/anonepo/LLM4Decompile

even for skilled developers to reconstruct the algo-065

rithmic logic (Wong et al., 2023; Hu et al., 2024)066

Recent advancements in Large Language Mod-067

els (LLMs) have greatly improved the process068

of decompiling code.There are two primary ap-069

proaches to LLM-based decompilation—Refined-070

Decompile and End2end-Decompile. In particular,071

Refined-Decompile prompts LLMs to refine the re-072

sults from traditional decompilation tools (Hu et al.,073

2024; Wong et al., 2023; Xu et al., 2023). However,074

LLMs are primarily optimized for high-level pro-075

gramming languages and may not be as effective076

with binary data. End2end-Decompile fine-tunes077

LLMs to decompile binaries directly. Nevertheless,078

previous open-source applications of this approach079

were limited by the use of smaller models with080

only around 200 million parameters and restricted081

training corpus (Hosseini and Dolan-Gavitt, 2022;082

Armengol-Estapé et al., 2023; Jiang et al., 2023), In083

contrast, utilizing larger models trained on broader084

datasets has proven to substantially improve the085

performance (Hoffmann et al., 2024; Kaplan et al.,086

2020; Rozière et al., 2023; OpenAI, 2023).087

To address the limitations of previous studies,088

we propose LLM4Decompile, the first and largest089

open-source LLM series with sizes ranging from090

1.3B to 33B parameters specifically trained to de-091

compile binary code. To the best of our knowl-092

edge, there’s no previous study attempts to im-093

prove the capability of LLM-based decompila-094

tion in such depth or incorporate such large-scale095

LLMs. Based on the End2end-Decompile ap-096

proach, we introduce three critical steps: data aug-097

mentation, data cleaning, and two-stage training, to098

optimize the LLM training process and introduce099

the LLM4Decompile-End models to decompile bi-100

nary directly. Specifically, our LLM4Decompile-101

End-6.7B model demonstrates a successful decom-102

pilation rate of 45.4% on HumanEval (Chen et al.,103

2021) and 18.0% on ExeBench (Armengol-Estapé104

et al., 2022), far exceeding Ghidra or GPT-4o by105

over 100%. Additionally, we improve the Refined-106

Decompile strategy by examining the efficiency of107

Ghidra’s decompilation process, augmenting and108

filtering data to fine-tune the LLM4Decompile-Ref109

models, which excel at refining Ghidra’s output.110

Experiments suggest a higher performance ceil-111

ing for the enhanced Refined-Decompile approach,112

with 16.2% improvement over LLM4Decompile-113

End. Additionally, we assess the risks associated114

with the potential misuse of our model under ob-115

fuscation conditions commonly used in software116

protection. Our findings indicate that neither our 117

approach nor Ghidra can effectively decompile ob- 118

fuscated code, mitigating concerns about unautho- 119

rized use for infringement of intellectual property. 120

In summary, our contributions are as follows: 121

• We introduce the LLM4Decompile series, the 122

first and largest open-source LLMs (ranging from 123

1.3B to 33B parameters) fine-tuned on 15 billion 124

tokens for decompilation. 125

• We optimize the LLM training process and in- 126

troduce LLM4Decompile-End models, which set 127

a new performance standard of direct binary de- 128

compilation, significantly surpassing GPT-4o and 129

Ghidra by over 100% on the HumanEval and 130

ExeBench benchmarks. 131

• We improve the Refined-Decompile approach to 132

fine-tune the LLM4Decompile-Ref models, en- 133

abling them to effectively refine the decompiled 134

results from Ghidra and achieve further 16.2% 135

enhancements over LLM4Decompile-End. 136

2 Related Work 137

The practice of reversing executable binaries to 138

their source code form, known as decompilation, 139

has been researched for decades (Miecznikowski 140

and Hendren, 2002; Nolan, 2012; Katz et al., 2019). 141

Traditional decompilation relies on analyzing the 142

control and data flows of program (Brumley et al., 143

2013), and employing pattern matching, as seen 144

in tools like Hex-Rays Ida pro (Hex-Rays, 2024) 145

and Ghidra (Ghidra, 2024). These systems attempt 146

to identify patterns within a program’s control- 147

flow graph (CFG) that corresponding to standard 148

programming constructs such as conditional state- 149

ments or loops. However, the output from such 150

decompilation processes tends to be a source-code- 151

like representation of assembly code, including 152

direct translations of variables to registers, use of 153

gotos, and other low-level operations instead of 154

the original high-level language constructs. This 155

output, while often functionally similar to the orig- 156

inal code, is difficult to understand and may not be 157

re-executable (Liu and Wang, 2020b; Wong et al., 158

2023). Drawing inspiration from neural machine 159

translation, researchers have reformulated decompi- 160

lation as a translation exercise, converting machine- 161

level instructions into readable source code (Katz 162

et al., 2019). Initial attempts in this area utilized 163

recurrent neural networks (RNNs) (Katz et al., 164

2

2018) for decompilation, complemented by error-165

correction techniques to enhance the outcomes.166

Motivated by the success of Large Language167

Models (Li et al., 2023; Rozière et al., 2023; Guo168

et al., 2024), researchers have employed LLMs for169

decompilation, primarily through two approaches—170

Refined-Decompile and End2end-Decompile. In171

particular, Refined-Decompile prompts the LLMs172

to refine results from traditional decompilation173

tools like Ghidra or IDA Pro. For instance,174

DeGPT (Hu et al., 2024) enhances Ghidra’s read-175

ability by reducing cognitive load by 24.4%, while176

DecGPT (Wong et al., 2023) increases IDA Pro’s177

re-executability rate to over 75% by integrating er-178

ror messages into its refinement process. These179

approaches, however, largely ignore the fact that180

LLMs are designed primarily for high-level pro-181

gramming languages (Li et al., 2023; Rozière et al.,182

2023; Guo et al., 2024), and their effectiveness183

with binary files is not well-established. End2end-184

Decompile, on the other hand, fine-tunes LLMs185

to decompile binaries directly. Early open-source186

models like BTC (Hosseini and Dolan-Gavitt,187

2022) and recent development Slade (Armengol-188

Estapé et al., 2023) adopt the language model with189

around 200 million parameters (Lewis et al., 2020)190

to fine-tune for decompilation. While Nova (Jiang191

et al., 2023), which is not open-sourced, devel-192

ops a binary LLM with 1 billion parameters and193

fine-tunes it for decompilation. Consequently, the194

largest open-source model in this domain is limited195

to 200M. Whereas utilizing larger models trained196

on broader datasets has proven to substantially im-197

prove the performance (Hoffmann et al., 2024; Ka-198

plan et al., 2020; Rozière et al., 2023).199

Therefore, our objective is to present the first200

and most extensive open-source LLM4Decompile201

series, aiming at comprehensively advancing the202

decompilation capability of LLMs. Initially, we203

optimize the End2end-Decompile approach to train204

the LLM4Decompile-End, demonstrating its effec-205

tiveness in directly decompiling binary files. Subse-206

quently, we enhance the Refined-Decompile frame-207

works to integrate LLMs with Ghidra, augmenting208

traditional tools for optimal effectiveness.209

3 LLM4Decompile210

First, we introduce our strategy for optimizing211

LLM training to directly decompile binaries, the212

resulting models are named as LLM4Decompile-213

End. Following this, we detail our efforts for en-214

int func0(...) {
int i, j;
for (...)
for (...)
if (...)
return 1;

return 0;}

SRC

ASM

…

…

…

… <func0>:
endbr64
push %rbp
mov %rsp,%rbp
...
mov $0x0,%eax
pop %rbp
retq

int func0(...) {
int i, j;
for (...)
for (...)
if (...)
return 1;

return 0;}

Compile Binary

LLM4Decompile-EndSRC’

Disassemble

Loss

0011101001
01010101...

Preprocessor

Com
piler

A
ssem

bler

Linker

Figure 2: End2end-Decompile framework. The source
code (SRC) is compiled to binary, disassembled to
assembly instructions (ASM), and decompiled by
LLM4Decompile to generate SRC’. Loss is computed
between SRC and SRC’ for training.

hancing the Refined-Decompile approach, the cor- 215

responding fine-tuned models are referred to as 216

LLM4Decompile-Ref, which can effectively refine 217

the decompiled results from Ghidra. 218

3.1 LLM4Decompile-End 219

In this section, we describe the general End2end- 220

Decompile framework, and present details 221

on our strategy to optimize the training of 222

LLM4Decompile-End models. 223

3.1.1 The End2End-Decompile Framework 224

Figure 2 illustrates the End2end-Decompile frame- 225

work from compilation to decompilation processes. 226

During compilation, the Preprocessor processes the 227

source code (SRC) to eliminate comments and ex- 228

pand macros or includes. The cleaned code is then 229

forwarded to the Compiler, which converts it into 230

assembly code (ASM). This ASM is transformed 231

into binary code (0s and 1s) by the Assembler. 232

The Linker finalizes the process by linking func- 233

tion calls to create an executable file. Decompila- 234

tion, on the other hand, involves converting binary 235

code back into a source file. LLMs, being trained 236

on text, lack the ability to process binary data di- 237

rectly. Therefore, binaries must be disassembled 238

by Objdump into assembly language (ASM) first. 239

It should be noted that binary and disassembled 240

ASM are equivalent, they can be interconverted, 241

and thus we refer to them interchangeably. Finally, 242

the loss is computed between the decompiled code 243

and source code to guide the training. 244

3

3.1.2 Optimize LLM4Decompile-End245

We optimize the training of LLM4Decompile-End246

Models through three key steps: 1) augmenting247

the training corpus, 2) improving the quality of the248

data, 3) and incorporating two-state training.249

Training Corpus. As indicated by the Scaling-250

Law (Hoffmann et al., 2024; Kaplan et al., 2020),251

the effectiveness of an LLM heavily relies on the252

size of the training corpus. Consequently, our ini-253

tial step in training optimization involves incorpo-254

rating a large training corpus. We construct asm-255

source pairs based on ExeBench (Armengol-Estapé256

et al., 2022), which is the largest public collection257

of five million C functions. To further expand the258

training data, we consider the compilation opti-259

mization states frequently used by developers. The260

compilation optimization involves techniques like261

eliminating redundant instructions, better register262

allocation, and loop transformations (Muchnick,263

1997), which perfectly acts as data augmentation264

for decompilation. The key optimization levels are265

O0 (default, no optimization) to O3 (aggressive266

optimizations). We compile the source code into267

all four stages, i.e., O0, O1, O2, and O3, and pair268

each of them with the source code.269

Data Quality. Data quality is critical in training270

an effective model (Li et al., 2023). Therefore, our271

second step is to clean our training set. We follow272

the guidelines of StarCoder (Li et al., 2023) by273

computing MinHash (Broder, 2000) for the code274

and utilizing Locally Sensitive Hashing (LSH) to275

remove duplicates. We also exclude samples that276

are less than 10 tokens.277

Two-Stage Training. Our final step for training278

optimization aims to educate the model with bi-279

nary knowledge, and includes two-stage training.280

In the first stage, we train the model with a large281

corpus of compilable but not linkable (executable)282

data. Note that it’s significantly easier to extract C283

code that is compilable but not linkable (da Silva284

et al., 2021; Armengol-Estapé et al., 2022). Such285

not-executable binary object code will closely re-286

semble its executable version except it lacks linked287

addresses for external symbols. Therefore, in the288

first stage, we use the extensive compilable codes289

to ground our model in binary knowledge. In the290

second stage, we refine the model using executable291

code to ensure its practical applicability. We also292

conduct an ablation study for the two-stage training293

in Section 4.1.2.294

int func0(...) {
int i, j;
for (...)
for (...)
if (...)
return 1;

return 0;}

SRC

Pseudo-code

…

…

…

…int func0(...) {
int i, j;
for (...)
for (...)
if (...)
return 1;

return 0;}

Compile Binary

LLM4Decompile-RefSRC’

Loss

0011101001
01010101...

Preprocessor

Com
piler

A
ssem

bler

Linker

undefined func0(...){
int local_28;
do {...}
while (...) {
if (...) {
return 1;}}

} while(...);}

Ghidra

Figure 3: Refined-Decompile framework. It differs from
End2end-Decompile (Figure 2) only in the LLM’s input,
which is pseudo-code decompiled from Ghidra.

3.2 LLM4Decompile-Ref 295

We now examine how the conventional decompi- 296

lation tool, Ghidra, can be significantly improved 297

by integrating it with LLMs. Note that our ap- 298

proach aims at refining entire outputs from Ghidra, 299

offering a broader strategy than merely recover- 300

ing names or types (Nitin et al., 2021; Xu et al., 301

2024). We begin by detailing the general Refined- 302

Decompile framework, and discuss our strategy to 303

enhance Ghidra’s output by LLM4Decompile-Ref. 304

3.2.1 The Refined-Decompile Framework 305

The Refined-Decompile approach is shown in Fig- 306

ure 3. This approach differs from that in Figure 2 307

only in terms of the LLM’s input, which in the 308

case of Refined-Decompile comes from Ghidra’s 309

decompilation output. Specifically, Ghidra is used 310

to decompile the binary, and then the LLM is fine- 311

tuned to enhance Ghidra’s output. While Ghidra 312

produces high-level pseudo-code that may suffer 313

from readability issues and syntax errors, it effec- 314

tively preserves the underlying logic. Refining this 315

pseudo-code significantly mitigates the challenges 316

associated with understanding the obscure ASM. 317

3.2.2 Refine Ghidra by LLM4Decompile-Ref 318

Decompiling using Ghidra. Decompiling the 319

executable code with Ghidra (Figure 3) is time- 320

consuming due to the complex nature of the exe- 321

cutables in ExeBench, which include numerous ex- 322

ternal functions and IO wrappers. Ghidra Headless 323

requires 2 seconds per sample using 128-core multi- 324

processing. Given such a high computational load, 325

and the high similarities between non-executable 326

and executable binaries, we choose to decompile 327

the non-executable files using Ghidra. This choice 328

4

significantly reduces the time to 0.2 seconds per329

sample, enabling us to efficiently gather large330

amounts of training data.331

Optimization Strategies. Similar to Sec-332

tion 3.1.2, we augment our dataset by compiling333

with optimization levels O0, O1, O2, and O3. We334

further filter the dataset using LSH to remove335

duplicates. As shown in Figure 1, Ghidra often336

generates overly long pseudo-code. Consequently,337

we filter out any samples that exceed the maximum338

length accepted by our model.339

4 Experiments340

In this section, we discuss the experimental se-341

tups and results for LLM4Decompile-End and342

LLM4Decompile-Ref respectively.343

4.1 LLM4Decompile-End344

4.1.1 Experimental Setups345

Training Data. As discussed in Section 3.1.2,346

we construct asm-source pairs based on compilable347

and executable datasets from ExeBench (Armengol-348

Estapé et al., 2022), where we only consider the349

decompilation of GCC (Stallman et al., 2003) com-350

piled C function under x86 Linux platform. After351

filtering, our refined compilable training dataset352

includes 7.2 million samples, containing roughly353

7 billion tokens. Our executable training dataset354

includes 1.6 million samples, containing roughly355

572 million tokens. To train the model, we use the356

following template: # This is the assembly357

code: [ASM code] # What is the source358

code? [source code], where [ASM code] corre-359

sponds to the disassembled assembly code from the360

binary, and [source code] is the original C func-361

tion. Note that the template choice does not impact362

the performance, since we fine-tune the model to363

produce the source code.364

Evaluation Benchmarks and Metrics. To eval-365

uate the models, we introduce HumanEval (Chen366

et al., 2021) and ExeBench (Armengol-Estapé et al.,367

2022) benchmarks. HumanEval is the leading368

benchmark for code generation assessment and in-369

cludes 164 programming challenges with accom-370

panying Python solutions and assertions. We con-371

verted these Python solutions and assertions into372

C, making sure that they can be compiled with373

the GCC compiler using standard C libraries and374

pass all the assertions, and name it HumanEval-375

Decompile. ExeBench consists of 5000 real-world376

C functions taken from GitHub with IO examples. 377

Note that the HumanEval-Decompile consists of 378

individual functions that depend only on the stan- 379

dard C library. In contrast, ExeBench includes 380

functions extracted from real-world projects with 381

user-defined structures and functions. 382

As for the evaluation metrics, we follow 383

previous work to calculate the re-executability 384

rate (Armengol-Estapé et al., 2023; Wong et al., 385

2023). During evaluation, the C source code is 386

first compiled into a binary, then disassembled into 387

assembly code, and fed into the decompilation sys- 388

tem to be reconstructed back into C code. This 389

decompiled C code is then combined with the as- 390

sertions to check if it can successfully execute and 391

pass those assertions. 392

Model Configurations. The LLM4Decompile 393

uses the same architecture as DeepSeek- 394

Coder (Guo et al., 2024) and we initialize our 395

models with the corresponding DeepSeek-Coder 396

checkpoints. We employ Sequence-to-sequence 397

prediction (S2S), which is the training objective 398

adopted in most neural machine translation 399

models that aim to predict the output given the 400

input sequence. As illustrated in Equation 1, it 401

minimizes the negative log likelihood for the 402

source code tokens xi, ..., xj : 403

L = −
∑
i

logPi(xi, ..., xj |x1, ..., xi−1; θ) (1) 404

Where the loss is calculated only for the output 405

sequence xi...xj , or the source code. 406

Baselines. We selected two key baselines for 407

comparison. First, GPT-4o (OpenAI, 2023) rep- 408

resents the most capable LLMs, providing an upper 409

bound on LLM performance. Second, DeepSeek- 410

Coder (Guo et al., 2024) is selected as the cur- 411

rent SOTA open-source Code LLM. It represents 412

the forefront of publicly available models specifi- 413

cally tailored for coding tasks. While recent work 414

Slade (Armengol-Estapé et al., 2023) fine-tunes 415

language model for decompilation, it relies on in- 416

termediate compiler outputs, specifically, the *.s 417

files. In practice, however, such intermediate files 418

are rarely released by developers. Therefore, we 419

focus on a more realistic approach, and consider 420

decompilation only from the binaries, for further 421

discussions please refer to Appendix A. 422

Implementation. We use the DeepSeek-Coder 423

models obtained from Hugging Face (Wolf et al., 424

5

Model/Benchmark HumanEval-Decompile ExeBench

O0 O1 O2 O3 AVG O0 O1 O2 O3 AVG

DeepSeek-Coder-6.7B 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
GPT-4o 0.3049 0.1159 0.1037 0.1159 0.1601 0.0443 0.0328 0.0397 0.0343 0.0378

LLM4Decompile-End-1.3B 0.4720 0.2061 0.2122 0.2024 0.2732 0.1786 0.1362 0.1320 0.1328 0.1449
LLM4Decompile-End-6.7B 0.6805 0.3951 0.3671 0.3720 0.4537 0.2289 0.1660 0.1618 0.1625 0.1798
LLM4Decompile-End-33B 0.5168 0.2556 0.2415 0.2475 0.3154 0.1886 0.1465 0.1396 0.1411 0.1540

Table 1: Main comparison of End2end-Decompile approaches for re-executability rates on evaluation benchmarks.

Model/Benchmark HumanEval-Decompile ExeBench

O0 O1 O2 O3 AVG O0 O1 O2 O3 AVG

Compilable-1.3B 0.4268 0.1646 0.1646 0.1707 0.2317 0.0568 0.0446 0.0416 0.0443 0.0468
Compilable-6.7B 0.5183 0.3354 0.3232 0.3232 0.3750 0.0752 0.0649 0.0671 0.0660 0.0683
Executable-1.3B 0.1951 0.1280 0.1280 0.1159 0.1418 0.2194 0.1946 0.1931 0.1950 0.2005
Executable-6.7B 0.3720 0.1829 0.2256 0.1707 0.2378 0.2938 0.2598 0.2591 0.2549 0.2669

Table 2: Ablation study on training dataset. The “Compilable” models are trained on 7.2M non-executable functions,
while the “Executable” models are trained on 1.6M executable functions.

2019). We train our models using LLaMA-425

Factory library (Zheng et al., 2024). For 1.3B426

and 6.7B models, we set a batch size = 2048427

and learning rate = 2e−5 and train the mod-428

els for 2 epochs (15B tokens). Experiments are429

performed on NVIDIA A100-80GB GPU clusters.430

Fine-tuning the 1.3B and 6.7B LLM4Decompile-431

End takes 12 and 61 days on 8×A100 respectively.432

Limited by the resources, for the 33B model we433

only train for 200M tokens. For evaluation, we434

use the vllm (Kwon et al., 2023) to accelerate the435

generation (decompilation) process. We employ436

greedy decoding to minimize randomness.437

4.1.2 Experimental Results438

Main Results. Table 1 presents the re-439

executability rate under different optimization440

states for our studied models. The base version441

of DeepSeek-Coder-33B is unable to accurately442

decompile binaries. It could generate code that443

seemed correct but failed to retain the original444

program semantics. GPT-4o shows notable445

decompilation skills; it’s capable to decompile446

non-optimized (O0) code with a success rate of447

30.5%, though the rate significantly decreases to448

about 11% for optimized codes (O1-O3). The449

LLM4Decompile-End models, on the other hand,450

demonstrate excellent decompilation abilities.451

The 1.3B version successfully decompiles and452

retains the program semantics in 27.3% of cases453

on average, whereas the 6.7B version has a success454

rate of 45.4%. This improvement underscores455

the advantages of using larger models to capture456

a program’s semantics more effectively. While 457

attempting to fine-tune the 33B model, we 458

encountered substantial challenges related to the 459

high communication loads, which significantly 460

slowed the training process and restricted us to 461

using only 200M tokens (Section 4.1.1). Despite 462

this limitation, the 33B model still outperforms the 463

1.3B model, reaffirming the importance of scaling 464

up the model size. 465

Ablation Study. As discussed in Section 4.1.1, 466

our training data comprises two distinct sets: 7.2 467

million compilable functions (non-executable) and 468

1.6M executable functions. We conducted an ab- 469

lation study using these datasets, and the results 470

are displayed in Table 2. Here, “Compilable” de- 471

notes the model trained solely on compilable data, 472

while “Executable” indicates models trained ex- 473

clusively on executable data. Notably, the binary 474

object from compilable functions lacks links to 475

function calls, which is similar in text distribu- 476

tion to the HumanEval-Decompile data, consisting 477

of single functions dependent only on standard C 478

libraries. Consequently, the 6.7B model trained 479

only on compilable data successfully decompiled 480

37.5% of HumanEval-Decompile functions, but 481

only 6.8% on ExeBench, which features real func- 482

tions with extensive user-defined functions. On 483

the other hand, the 6.7B model trained solely on 484

executable data achieved a 26.7% re-executability 485

rate on the ExeBench test set but faced challenges 486

with single functions, with only a 23.8% success 487

rate on HumanEval-Decompile due to the smaller 488

6

Model/Metrics Re-executability Rate Edit Similarity

O0 O1 O2 O3 AVG O0 O1 O2 O3 AVG

LLM4Decompile-End-6.7B 0.6805 0.3951 0.3671 0.3720 0.4537 0.1557 0.1292 0.1293 0.1269 0.1353
Ghidra

Base 0.3476 0.1646 0.1524 0.1402 0.2012 0.0699 0.0613 0.0619 0.0547 0.0620
+GPT-4o 0.4695 0.3415 0.2866 0.3110 0.3522 0.0660 0.0563 0.0567 0.0499 0.0572
+LLM4Decompile-Ref-1.3B 0.6890 0.3720 0.4085 0.3720 0.4604 0.1517 0.1325 0.1292 0.1267 0.1350
+LLM4Decompile-Ref-6.7B 0.7439 0.4695 0.4756 0.4207 0.5274 0.1559 0.1353 0.1342 0.1273 0.1382
+LLM4Decompile-Ref-33B 0.7073 0.4756 0.4390 0.4146 0.5091 0.1540 0.1379 0.1363 0.1307 0.1397

Table 3: Main comparison of Refined-Decompile approaches for re-executability rate and Edit Similar-
ity on HumanEval-Decompile benchmark. “+GPT-4o” refers to enhance the Ghidra results with GPT-4o,
“+LLM4Decompile-Ref” means refining Ghidra results with the fine-tuned LLM4Decompile-Ref models.

size of the training corpus. Limited by the space,489

we present further analysis in Appendix B.490

4.2 LLM4Decompile-Ref491

4.2.1 Experimental Setups492

Experimental Datasets. The training data is con-493

structed using ExeBench, with Ghidra Headless em-494

ployed to decompile the binary object file. Due to495

constraints in computational resources, only 400K496

functions each with optimization levels from O0 to497

O3 (1.6M samples, 1B tokens) are used for training498

and the evaluation is conducted on HumanEval-499

Decompile. The models are trained using the same500

template described in Section 4.1.1. In addition, fol-501

lowing previous work (Hosseini and Dolan-Gavitt,502

2022; Armengol-Estapé et al., 2023), we access the503

readability of decompiled results in terms of Edit504

Similarity score.505

Implementation. Configuration settings for the506

model are consistent with those in Section 4.1.1.507

For the 1.3B, 6.7B models, the fine-tuning pro-508

cess involves 2B tokens in 2 epochs, and requires509

2, and 8 days respectively on 8 × A100 respec-510

tively. Limited by the resource, for 33B model511

we only train for 200M tokens. For evaluation,512

we first access the re-executability rate of Ghidra513

to establish a baseline. Subsequently, GPT-4o is514

used to enhance Ghidra’s decompilation result with515

the prompt, Generate linux compilable C/C++516

code of the main and other functions517

in the supplied snippet without using518

goto, fix any missing headers. Do not519

explain anything., following DecGPT (Wong520

et al., 2023). Finally, we use LLM4Decompile-Ref521

models to refine the Ghidra’s output.522

4.2.2 Experimental Results523

The results for the baselines and Refined-524

Decompile approaches are summarized in Table 3.525

For the pseudo-code decompiled by Ghidra, which 526

is not optimized for re-execution, only an average 527

of 20.1% of them pass the test cases. GPT-4o as- 528

sists in refining this pseudo-code and enhancing 529

its quality. The LLM4Decompile-Ref models offer 530

substantial improvements over Ghidra’s outputs, 531

with the 6.7B model yielding a 160% increase in 532

re-executability. Similar to the discussion in Sec- 533

tion 4.1.2, the 33B model outperforms the 1.3B 534

model even though it used considerably less train- 535

ing data. And it achieves performance that is only 536

3.6% below the 6.7B model, which benefited from 537

ten times more training data. When compared to 538

LLM4Decompile-End-6.7B, the LLM4Decompile- 539

Ref-6.7B model, though trained on just 10% of 540

the data in LLM4Decompile-Ref models, shows a 541

16.2% performance increase, suggesting a greater 542

potential for the Refined-Decompile approach. 543

An analysis of readability across different meth- 544

ods is also conducted and presented in Table 3, 545

examples are presented in Figure 4. For text sim- 546

ilarity, all decompiled outputs diverge from the 547

original source code, with Edit Similarity rang- 548

ing from 5.7% to 14.0%, primarily because the 549

compilation process removes variable names and 550

optimizes the logic structure. Ghidra generates 551

pseudo-code that is particularly less readable with 552

6.2% Edit Similarity on average. Interestingly, with 553

refinement from GPT (Ghidra+GPT-4o), there is a 554

marginal decrease in Edit Similarity. GPT assists 555

in refining type errors like undefined4 and ulong 556

(Figure 4), however, it struggles to accurately re- 557

construct for loops and array indexing. In contrast, 558

both LLM4Decompile-End and LLM4Decompile- 559

Ref generate outputs that are more aligned with the 560

format of the source code and easier to comprehend. 561

To summarize, domain-specific fine-tuning is cru- 562

cial for enhancing re-executability and readability 563

of decompilation outputs. 564

7

Model/Obfuscation Control Flow Flattening Bogus Control Flow

O0 O1 O2 O3 AVG O0 O1 O2 O3 AVG

LLM4Decompile-End-6.7B 0.0427 0.0488 0.0488 0.0305 0.0427 0.0976 0.0732 0.0793 0.0976 0.0869
Ghidra 0.1220 0.0671 0.0610 0.0671 0.0793 0.0610 0.0427 0.0305 0.0427 0.0442

+LLM4Decompile-Ref-6.7B 0.0671 0.0366 0.0488 0.0549 0.0519 0.1585 0.1402 0.0854 0.0793 0.1159

Table 4: Re-executability rates of different approaches on the HumanEval-Decompile benchmark under obfuscations.
Compared to Table 3, the decompilation success rates significantly drop for over 70%.

int func0(float num[], int size,
float threshold) {
int i, j;
for (i = 0; i < size; i++)
for (j = i + 1; j < size; j++)
if (fabs(num[i] - num[j])

< threshold)
return 1;

return 0;}

undefined4 func0(float param_1,long param_2,int param_3){
int local_28;
int local_24;
local_24 = 0;
do {
local_28 = local_24;
if (param_3 <= local_24) {
return 0;}

while (local_28 = local_28 + 1, local_28 < param_3) {
if ((double)((ulong)(double)(*(float *)(param_2 + (long)local_24 * 4) -

*(float *)(param_2 + (long)local_28 * 4)) &
SUB168(_DAT_00402010,0)) < (double)param_1) {

return 1;}}
local_24 = local_24 + 1;

} while(true);}

int func0(float *x, int n,
float eps){
int i, j;
for (i = 0; i < n; i++)
for (j = i + 1; j < n; j++)
if (fabsf(x[i] - x[j]) < eps)
return 1;

return 0;}

typedef unsigned int undefined4;
undefined4 func0(float param_1,
long param_2, int param_3)

 {
int local_28;
int local_24;
local_24 = 0;
while (1) {
local_28 = local_24;
if (param_3 <= local_24) {
return 0;

 }
while (local_28 + 1 < param_3) {
local_28++;
if ((double)((*(float *)
(param_2 + (long)local_24 * 4)
- *(float *)(param_2 +
(long)local_28 * 4)))
< (double)param_1) {
return 1;

 }
 }

local_24++;}}

int func0(float *x, int n,
float eps){
int i, j;
for (i = 0; i < n; i++)
for (j = i + 1; j < n; j++)
if (fabsf(x[i] - x[j]) < eps)
return 1;

return 0;}

Source Code LLM4Decompile-End-6.7B

Ghidra

Ghidra+LLM4Decompile-6.7B Ghidra+GPT-4o

int func0(float **arr, int length,
 float threshold) {
 int outer = 0;
 while (outer < length) {
 int inner = 0;
 while (inner < length) {
 float diff = arr[outer][inner]
 - arr[inner][inner];
 if (fabs(diff) <= threshold) {
 return 1;}
 inner++;}
 outer++;}
 return 0;}

GPT-4o

Figure 4: Decompilation results of different approaches.
GPT-4o output is plausible yet fail to recover the array
dimension (incorrect 2D array arr[outer][inner]).
Ghidra’s pseudo-code is notably less readable as
discussed in Figure 1. GPT-refined Ghidra re-
sult (Ghidra+GPT-4o) marginally enhances readabil-
ity but fails to correctly render for loops and ar-
ray indexing. Conversely, LLM4Decompile-End and
LLM4Decompile-Ref produce accurate and easy-to-
read outputs.

5 Obfuscation Discussion565

The process of decompilation aims at revealing the566

source code from binaries distributed by develop-567

ers, presenting a potential threat to the protection568

of intellectual property. To resolve the ethical con-569

cerns, this section accesses the risks of the possible570

misuse of our decompilation models.571

In software development, engineers typically im-572

plement obfuscation techniques before releasing573

binary files to the public. This is done to protect574

the software from unauthorized analysis or modifi-575

cation. In our study, we focus on two fundamental 576

obfuscation techniques as suggested in Obfuscator- 577

LLVM (Junod et al., 2015): Control Flow Flatten- 578

ing (CFF) and Bogus Control Flow (BCF). These 579

techniques are designed to disguise the true logic of 580

the software, thereby making decompilation more 581

challenging to protect the software’s intellectual 582

property. We present the details of these two tech- 583

niques in the Appendix C. 584

Results summarized in Table 4 demonstrate that 585

basic conventional obfuscation techniques are suffi- 586

cient to prevent both Ghidra and LLM4Decompile 587

from decoding obfuscated binaries. For example, 588

the decompilation success rate for the most ad- 589

vanced model, LLM4Decompile-Ref-6.7B, drops 590

significantly for 90.2% (0.5274 to 0.0519) under 591

CFF and 78.0% (0.5274 to 0.1159) under BCF. 592

Considering the industry standard of employing 593

several complex obfuscation methods prior to soft- 594

ware release, experimental results in Table 4 mit- 595

igate the concerns about unauthorized use for in- 596

fringement of intellectual property. 597

6 Conclusions 598

We propose LLM4Decompile, the first and largest 599

open-source LLM series with sizes ranging from 600

1.3B to 33B trained to decompile binary code. 601

Based on the End2end-Decompile approach, we 602

optimize the LLM training process and introduce 603

the LLM4Decompile-End models to decompile bi- 604

nary directly. The resulting 6.7B model shows a 605

decompilation accuracy of 45.4% on HumanEval 606

and 18.0% on ExeBench, surpassing existing tools 607

like Ghidra and GPT-4o over 100%. Addition- 608

ally, we improve the Refined-Decompile strategy to 609

fine-tune the LLM4Decompile-Ref models, which 610

excel at refining the Ghidra’s output, with 16.2% 611

improvement over LLM4Decompile-End. Finally, 612

we conduct obfuscation experiments and address 613

concerns regarding the misuse of LLM4Decompile 614

models for infringement of intellectual property. 615

8

Limitations616

The scope of this research is limited to the com-617

pilation and decompilation of C language target-618

ing the x86 platform. While we are confident that619

the methodologies developed here could be eas-620

ily adapted to other programming languages and621

platforms, these potential extensions have been re-622

served for future investigation. Furthermore, Our623

research is limited by financial constraints, with a624

budget equivalent to using 8×A100 GPUs for one625

year, which includes all trials and iterations. As626

a result, we have only managed to fully fine-tune627

models up to 6.7B, and conducted initial explo-628

rations on the 33B models with a small dataset,629

leaving the exploration of 70B and larger models630

to future studies. Nonetheless, our preliminary631

tests confirm the potential advantages of scaling up632

model sizes and suggest a promising direction for633

future decompilation research into larger models.634

Ethic Statement635

We have evaluated the risks of the possible mis-636

use of our decompilation models in Section 5.637

Basic obfuscation methods such as Control Flow638

Flattening and Bogus Control Flow have been639

empirically tested and proven to protect against640

unauthorized decompilation by both traditional641

tools like Ghidra and advanced models like642

LLM4Decompile. This built-in limitation ensures643

that while LLM4Decompile is a powerful tool for644

legitimate uses, it does not facilitate the infringe-645

ment of intellectual property.646

In practical applications in the industry, software647

developers typically employ a series of complex ob-648

fuscation methods before releasing their software.649

This practice adds an additional layer of security650

and intellectual property protection against decom-651

pilation. LLM4Decompile’s design and intended652

use respect these measures, ensuring that it serves653

as an aid in legal and ethical scenarios, such as un-654

derstanding legacy code or enhancing cybersecurity655

defenses, rather than undermining them.656

The development and deployment of657

LLM4Decompile are guided by strict ethi-658

cal standards. The model is primarily intended for659

use in scenarios where permission has been granted660

or where the software is not protected by copyright.661

This includes academic research, debugging,662

learning, and situations where companies seek to663

recover lost source code of their own software.664

References 665

Jordi Armengol-Estapé, Jackson Woodruff, Alexander 666
Brauckmann, José Wesley de Souza Magalhães, and 667
Michael F. P. O’Boyle. 2022. Exebench: An ml-scale 668
dataset of executable c functions. In Proceedings of 669
the 6th ACM SIGPLAN International Symposium on 670
Machine Programming, MAPS 2022, page 50–59, 671
New York, NY, USA. Association for Computing 672
Machinery. 673

Jordi Armengol-Estapé, Jackson Woodruff, Chris Cum- 674
mins, and Michael F. P. O’Boyle. 2023. Slade: A 675
portable small language model decompiler for opti- 676
mized assembler. CoRR, abs/2305.12520. 677

Andrei Z Broder. 2000. Identifying and filtering near- 678
duplicate documents. In Annual symposium on com- 679
binatorial pattern matching, pages 1–10. Springer. 680

David Brumley, JongHyup Lee, Edward J. Schwartz, 681
and Maverick Woo. 2013. Native x86 decompila- 682
tion using semantics-preserving structural analysis 683
and iterative control-flow structuring. In Proceedings 684
of the 22th USENIX Security Symposium, Washing- 685
ton, DC, USA, August 14-16, 2013, pages 353–368. 686
USENIX Association. 687

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, 688
Henrique Pondé de Oliveira Pinto, Jared Kaplan, 689
Harrison Edwards, Yuri Burda, Nicholas Joseph, 690
Greg Brockman, Alex Ray, Raul Puri, Gretchen 691
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas- 692
try, Pamela Mishkin, Brooke Chan, Scott Gray, 693
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz 694
Kaiser, Mohammad Bavarian, Clemens Winter, 695
Philippe Tillet, Felipe Petroski Such, Dave Cum- 696
mings, Matthias Plappert, Fotios Chantzis, Eliza- 697
beth Barnes, Ariel Herbert-Voss, William Hebgen 698
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie 699
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, 700
William Saunders, Christopher Hesse, Andrew N. 701
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan 702
Morikawa, Alec Radford, Matthew Knight, Miles 703
Brundage, Mira Murati, Katie Mayer, Peter Welinder, 704
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya 705
Sutskever, and Wojciech Zaremba. 2021. Evaluat- 706
ing large language models trained on code. CoRR, 707
abs/2107.03374. 708

Anderson Faustino da Silva, Bruno Conde Kind, 709
José Wesley de Souza Magalhães, Jerônimo Nunes 710
Rocha, Breno Campos Ferreira Guimarães, and 711
Fernando Magno Quintão Pereira. 2021. ANG- 712
HABENCH: A suite with one million compilable C 713
benchmarks for code-size reduction. In IEEE/ACM 714
International Symposium on Code Generation and 715
Optimization, CGO 2021, Seoul, South Korea, Febru- 716
ary 27 - March 3, 2021, pages 378–390. IEEE. 717

Sushant Dinesh, Nathan Burow, Dongyan Xu, and Math- 718
ias Payer. 2020. Retrowrite: Statically instrument- 719
ing cots binaries for fuzzing and sanitization. In 720
2020 IEEE Symposium on Security and Privacy (SP), 721
pages 1497–1511. 722

9

https://doi.org/10.1145/3520312.3534867
https://doi.org/10.1145/3520312.3534867
https://doi.org/10.1145/3520312.3534867
https://doi.org/10.48550/ARXIV.2305.12520
https://doi.org/10.48550/ARXIV.2305.12520
https://doi.org/10.48550/ARXIV.2305.12520
https://doi.org/10.48550/ARXIV.2305.12520
https://doi.org/10.48550/ARXIV.2305.12520
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/schwartz
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/schwartz
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/schwartz
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/schwartz
https://www.usenix.org/conference/usenixsecurity13/technical-sessions/presentation/schwartz
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://doi.org/10.1109/CGO51591.2021.9370322
https://doi.org/10.1109/CGO51591.2021.9370322
https://doi.org/10.1109/CGO51591.2021.9370322
https://doi.org/10.1109/CGO51591.2021.9370322
https://doi.org/10.1109/CGO51591.2021.9370322
https://doi.org/10.1109/SP40000.2020.00009
https://doi.org/10.1109/SP40000.2020.00009
https://doi.org/10.1109/SP40000.2020.00009

Ghidra. 2024. Ghidra software reverse engineering723
framework.724

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie, Kai725
Dong, Wentao Zhang, Guanting Chen, Xiao Bi,726
Y Wu, YK Li, et al. 2024. Deepseek-coder: When the727
large language model meets programming–the rise of728
code intelligence. arXiv preprint arXiv:2401.14196.729

Hex-Rays. 2024. Ida pro: a cross-platform multi-730
processor disassembler and debugger.731

Jordan Hoffmann, Sebastian Borgeaud, Arthur Mensch,732
Elena Buchatskaya, Trevor Cai, Eliza Rutherford,733
Diego de Las Casas, Lisa Anne Hendricks, Johannes734
Welbl, Aidan Clark, Tom Hennigan, Eric Noland,735
Katie Millican, George van den Driessche, Bogdan736
Damoc, Aurelia Guy, Simon Osindero, Karen Si-737
monyan, Erich Elsen, Oriol Vinyals, Jack W. Rae,738
and Laurent Sifre. 2024. Training compute-optimal739
large language models. In Proceedings of the 36th740
International Conference on Neural Information Pro-741
cessing Systems, NIPS ’22, Red Hook, NY, USA.742
Curran Associates Inc.743

Iman Hosseini and Brendan Dolan-Gavitt. 2022. Be-744
yond the C: retargetable decompilation using neural745
machine translation. CoRR, abs/2212.08950.746

Peiwei Hu, Ruigang Liang, and Kai Chen. 2024. Degpt:747
Optimizing decompiler output with llm. In Proceed-748
ings 2024 Network and Distributed System Security749
Symposium (2024). https://api. semanticscholar. org/-750
CorpusID, volume 267622140.751

Nan Jiang, Chengxiao Wang, Kevin Liu, Xiangzhe752
Xu, Lin Tan, and Xiangyu Zhang. 2023. Nova+:753
Generative language models for binaries. CoRR,754
abs/2311.13721.755

Pascal Junod, Julien Rinaldini, Johan Wehrli, and Julie756
Michielin. 2015. Obfuscator-LLVM – software757
protection for the masses. In Proceedings of the758
IEEE/ACM 1st International Workshop on Software759
Protection, SPRO’15, Firenze, Italy, May 19th, 2015,760
pages 3–9. IEEE.761

Jared Kaplan, Sam McCandlish, Tom Henighan, Tom B.762
Brown, Benjamin Chess, Rewon Child, Scott Gray,763
Alec Radford, Jeffrey Wu, and Dario Amodei. 2020.764
Scaling laws for neural language models. Preprint,765
arXiv:2001.08361.766

Deborah S. Katz, Jason Ruchti, and Eric M. Schulte.767
2018. Using recurrent neural networks for decompi-768
lation. In 25th International Conference on Software769
Analysis, Evolution and Reengineering, SANER 2018,770
Campobasso, Italy, March 20-23, 2018, pages 346–771
356. IEEE Computer Society.772

Omer Katz, Yuval Olshaker, Yoav Goldberg, and Eran773
Yahav. 2019. Towards neural decompilation. ArXiv,774
abs/1905.08325.775

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying 776
Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E. 777
Gonzalez, Hao Zhang, and Ion Stoica. 2023. Effi- 778
cient memory management for large language model 779
serving with pagedattention. In Proceedings of the 780
ACM SIGOPS 29th Symposium on Operating Systems 781
Principles. 782

Jeremy Lacomis, Pengcheng Yin, Edward J. Schwartz, 783
Miltiadis Allamanis, Claire Le Goues, Graham Neu- 784
big, and Bogdan Vasilescu. 2019. DIRE: A neural 785
approach to decompiled identifier naming. In 34th 786
IEEE/ACM International Conference on Automated 787
Software Engineering, ASE 2019, San Diego, CA, 788
USA, November 11-15, 2019, pages 628–639. IEEE. 789

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan 790
Ghazvininejad, Abdelrahman Mohamed, Omer Levy, 791
Veselin Stoyanov, and Luke Zettlemoyer. 2020. 792
BART: Denoising sequence-to-sequence pre-training 793
for natural language generation, translation, and com- 794
prehension. In Proceedings of the 58th Annual Meet- 795
ing of the Association for Computational Linguistics, 796
pages 7871–7880, Online. Association for Computa- 797
tional Linguistics. 798

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas 799
Muennighoff, Denis Kocetkov, Chenghao Mou, Marc 800
Marone, Christopher Akiki, Jia Li, Jenny Chim, 801
Qian Liu, Evgenii Zheltonozhskii, Terry Yue Zhuo, 802
Thomas Wang, Olivier Dehaene, Mishig Davaadorj, 803
Joel Lamy-Poirier, João Monteiro, Oleh Shliazhko, 804
Nicolas Gontier, Nicholas Meade, Armel Zebaze, 805
Ming-Ho Yee, Logesh Kumar Umapathi, Jian Zhu, 806
Benjamin Lipkin, Muhtasham Oblokulov, Zhiruo 807
Wang, Rudra Murthy, Jason Stillerman, Siva Sankalp 808
Patel, Dmitry Abulkhanov, Marco Zocca, Manan Dey, 809
Zhihan Zhang, Nour Fahmy, Urvashi Bhattacharyya, 810
Wenhao Yu, Swayam Singh, Sasha Luccioni, Paulo 811
Villegas, Maxim Kunakov, Fedor Zhdanov, Manuel 812
Romero, Tony Lee, Nadav Timor, Jennifer Ding, 813
Claire Schlesinger, Hailey Schoelkopf, Jan Ebert, Tri 814
Dao, Mayank Mishra, Alex Gu, Jennifer Robinson, 815
Carolyn Jane Anderson, Brendan Dolan-Gavitt, Dan- 816
ish Contractor, Siva Reddy, Daniel Fried, Dzmitry 817
Bahdanau, Yacine Jernite, Carlos Muñoz Ferrandis, 818
Sean Hughes, Thomas Wolf, Arjun Guha, Leandro 819
von Werra, and Harm de Vries. 2023. Starcoder: may 820
the source be with you! Preprint, arXiv:2305.06161. 821

Zhibo Liu and Shuai Wang. 2020a. How far we have 822
come: testing decompilation correctness of c decom- 823
pilers. In Proceedings of the 29th ACM SIGSOFT 824
International Symposium on Software Testing and 825
Analysis, ISSTA 2020, page 475–487, New York, 826
NY, USA. Association for Computing Machinery. 827

Zhibo Liu and Shuai Wang. 2020b. How far we have 828
come: testing decompilation correctness of C decom- 829
pilers. In ISSTA ’20: 29th ACM SIGSOFT Interna- 830
tional Symposium on Software Testing and Analysis, 831
Virtual Event, USA, July 18-22, 2020, pages 475–487. 832
ACM. 833

Jerome Miecznikowski and Laurie J. Hendren. 2002. 834
Decompiling java bytecode: Problems, traps and 835

10

https://github.com/NationalSecurityAgency/ghidra
https://github.com/NationalSecurityAgency/ghidra
https://github.com/NationalSecurityAgency/ghidra
https://hex-rays.com/ida-pro/
https://hex-rays.com/ida-pro/
https://hex-rays.com/ida-pro/
https://doi.org/10.48550/ARXIV.2212.08950
https://doi.org/10.48550/ARXIV.2212.08950
https://doi.org/10.48550/ARXIV.2212.08950
https://doi.org/10.48550/ARXIV.2212.08950
https://doi.org/10.48550/ARXIV.2212.08950
https://doi.org/10.48550/ARXIV.2311.13721
https://doi.org/10.48550/ARXIV.2311.13721
https://doi.org/10.48550/ARXIV.2311.13721
https://doi.org/10.1109/SPRO.2015.10
https://doi.org/10.1109/SPRO.2015.10
https://doi.org/10.1109/SPRO.2015.10
https://arxiv.org/abs/2001.08361
https://doi.org/10.1109/SANER.2018.8330222
https://doi.org/10.1109/SANER.2018.8330222
https://doi.org/10.1109/SANER.2018.8330222
https://api.semanticscholar.org/CorpusID:160009986
https://doi.org/10.1109/ASE.2019.00064
https://doi.org/10.1109/ASE.2019.00064
https://doi.org/10.1109/ASE.2019.00064
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://doi.org/10.18653/v1/2020.acl-main.703
https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2305.06161
https://arxiv.org/abs/2305.06161
https://doi.org/10.1145/3395363.3397370
https://doi.org/10.1145/3395363.3397370
https://doi.org/10.1145/3395363.3397370
https://doi.org/10.1145/3395363.3397370
https://doi.org/10.1145/3395363.3397370
https://doi.org/10.1145/3395363.3397370
https://doi.org/10.1145/3395363.3397370
https://doi.org/10.1145/3395363.3397370
https://doi.org/10.1145/3395363.3397370
https://doi.org/10.1145/3395363.3397370
https://api.semanticscholar.org/CorpusID:206628735
https://api.semanticscholar.org/CorpusID:206628735

pitfalls. In International Conference on Compiler836
Construction.837

Steven S. Muchnick. 1997. Advanced compiler design838
and implementation.839

Vikram Nitin, Anthony Saieva, Baishakhi Ray, and Gail840
Kaiser. 2021. DIRECT : A transformer-based model841
for decompiled identifier renaming. In Proceedings842
of the 1st Workshop on Natural Language Processing843
for Programming (NLP4Prog 2021), pages 48–57,844
Online. Association for Computational Linguistics.845

Godfrey Nolan. 2012. Decompiling android. In Apress.846

OpenAI. 2023. GPT-4 technical report. CoRR,847
abs/2303.08774.848

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten849
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,850
Jingyu Liu, Tal Remez, Jérémy Rapin, Artyom851
Kozhevnikov, Ivan Evtimov, Joanna Bitton, Man-852
ish Bhatt, Cristian Canton-Ferrer, Aaron Grattafiori,853
Wenhan Xiong, Alexandre Défossez, Jade Copet,854
Faisal Azhar, Hugo Touvron, Louis Martin, Nico-855
las Usunier, Thomas Scialom, and Gabriel Synnaeve.856
2023. Code llama: Open foundation models for code.857
CoRR, abs/2308.12950.858

Richard M Stallman et al. 2003. Using the gnu compiler859
collection. Free Software Foundation, 4(02).860

Ruoyu Wang, Yan Shoshitaishvili, Antonio Bianchi,861
Aravind Machiry, John Grosen, Paul Grosen, Christo-862
pher Kruegel, and Giovanni Vigna. 2017. Ramblr:863
Making reassembly great again. In NDSS.864

Tao Wei, Jian Mao, Wei Zou, and Yu Chen. 2007. A865
new algorithm for identifying loops in decompilation.866
In Static Analysis, 14th International Symposium,867
SAS 2007, Kongens Lyngby, Denmark, August 22-24,868
2007, Proceedings, volume 4634 of Lecture Notes in869
Computer Science, pages 170–183. Springer.870

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien871
Chaumond, Clement Delangue, Anthony Moi, Pier-872
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtowicz,873
and Jamie Brew. 2019. Huggingface’s transformers:874
State-of-the-art natural language processing. CoRR,875
abs/1910.03771.876

Wai Kin Wong, Huaijin Wang, Zongjie Li, Zhibo Liu,877
Shuai Wang, Qiyi Tang, Sen Nie, and Shi Wu. 2023.878
Refining decompiled C code with large language879
models. CoRR, abs/2310.06530.880

Xiangzhe Xu, Zhuo Zhang, Shiwei Feng, Yapeng Ye,881
Zian Su, Nan Jiang, Siyuan Cheng, Lin Tan, and882
Xiangyu Zhang. 2023. Lmpa: Improving decompila-883
tion by synergy of large language model and program884
analysis. CoRR, abs/2306.02546.885

Xiangzhe Xu, Zhuo Zhang, Zian Su, Ziyang Huang,886
Shiwei Feng, Yapeng Ye, Nan Jiang, Danning887
Xie, Siyuan Cheng, Lin Tan, and Xiangyu Zhang.888
2024. Leveraging generative models to recover889

variable names from stripped binary. Preprint, 890
arXiv:2306.02546. 891

Yaowei Zheng, Richong Zhang, Junhao Zhang, Yanhan 892
Ye, Zheyan Luo, and Yongqiang Ma. 2024. Llamafac- 893
tory: Unified efficient fine-tuning of 100+ language 894
models. arXiv preprint arXiv:2403.13372. 895

A ExeBench Setups 896

For every sample in ExeBench’s executable splits, 897

assembly code from *.s file—a compiler’s interme- 898

diate output as discussed in Section 3.1 and Fig- 899

ure 1—is required to compile the sample into a 900

binary. The specific compilation settings and pro- 901

cessing details, however, are not provided by the 902

authors. Consequently, we choose to compile the 903

code in a standard way and manage to compile only 904

half of the samples. This leaves us with 443K out 905

of 797K samples for the executable training set and 906

2621 out of 5000 samples for the executable test 907

set. Accordingly, we train our model on the 443K 908

samples and conduct the re-executability evalua- 909

tion on these 2621 samples, the results are shown 910

in Table 1. 911

The researchers from Slade (Armengol- 912

Estapé et al., 2023), who also developed 913

ExeBench (Armengol-Estapé et al., 2022), 914

have published their decompilation findings 915

on ExeBench. They chose to decompile the 916

intermediate output, or assembly code from *.s 917

file, directly without further compilation into 918

binaries, where in practice, such intermediate 919

output is rarely released by software developers. 920

Their reported results, as seen in Table 5, show 921

a significant difference from ours. Their version 922

of ChatGPT achieved a re-executability rate of 923

22.2% and an edit similarity of 44.0% under O0 924

optimization. On the other hand, our GPT-4o 925

model only reached a 4.4% re-executability rate 926

and a 7.9% edit similarity. The approach taken by 927

Slade involves settings not commonly available in 928

practical decompilation scenarios, which explains 929

why their results vary significantly from ours. We 930

adheres to a more realistic setting, decompiling 931

binary files based solely on their intrinsic data, 932

without any external information. 933

To further illustrate our settings, Figure 5 of- 934

fers an example where the source function includes 935

specific user-defined types like Ltc4151State, 936

Ltc4151, and device. However, these types are 937

completely lost after compilation, i.e., no informa- 938

tion related to these user-definitions can be found 939

in the binary (disassembled ASM code). Conse- 940

11

https://api.semanticscholar.org/CorpusID:206628735
https://api.semanticscholar.org/CorpusID:32801154
https://api.semanticscholar.org/CorpusID:32801154
https://api.semanticscholar.org/CorpusID:32801154
https://doi.org/10.18653/v1/2021.nlp4prog-1.6
https://doi.org/10.18653/v1/2021.nlp4prog-1.6
https://doi.org/10.18653/v1/2021.nlp4prog-1.6
https://api.semanticscholar.org/CorpusID:37807480
https://doi.org/10.48550/ARXIV.2303.08774
https://doi.org/10.48550/ARXIV.2308.12950
https://doi.org/10.1007/978-3-540-74061-2_11
https://doi.org/10.1007/978-3-540-74061-2_11
https://doi.org/10.1007/978-3-540-74061-2_11
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://doi.org/10.48550/ARXIV.2310.06530
https://doi.org/10.48550/ARXIV.2310.06530
https://doi.org/10.48550/ARXIV.2310.06530
https://doi.org/10.48550/ARXIV.2306.02546
https://doi.org/10.48550/ARXIV.2306.02546
https://doi.org/10.48550/ARXIV.2306.02546
https://doi.org/10.48550/ARXIV.2306.02546
https://doi.org/10.48550/ARXIV.2306.02546
https://arxiv.org/abs/2306.02546
https://arxiv.org/abs/2306.02546
https://arxiv.org/abs/2306.02546
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372
http://arxiv.org/abs/2403.13372

Model/Metrics Re-executability Edit Similarity
Optimization Level O0 O3 O0 O3

Slade 59.5 52.2 71.0 60.0
ChatGPT 22.2 13.6 44.0 34.0

GPT-4o(ours) 4.4 3.4 7.9 6.6

Table 5: Re-executability and Edit Similarity on
Exebench.

void StateIdle(Ltc4151State next,
Ltc4151 *device) {
device->state = next;

}

<StateIdle>:
endbr64
push %rbp
mov %rsp,%rbp
mov %edi,-0x4(%rbp)
mov %rsi,-0x10(%rbp)
mov -0x10(%rbp),%rax
mov -0x4(%rbp),%edx
mov %edx,(%rax)
nop
pop %rbp
retq

void StateIdle(int a, int *b) {
*b = a;
}

Source Code

GPT-4o

ASM

Figure 5: Decompilation results of GPT-4o on
ExeBench test case.

quently, GPT-4o is unable to reconstruct these types941

based purely on the ASM (the realistic setting),942

instead converting them to default types int or943

pointer, producing non-executable code. This is-944

sue was pervasive across the ExeBench test set,945

leading to the failure of GPT-4o models in decom-946

piling the ExeBench samples in a realistic setting.947

B Further Analysis of948

LLM4Decompile-Ref949

Figure 6 illustrates that the re-executability rate de-950

creases as the input length increases, and there is a951

marked decline in performance at higher levels of952

code optimization, highlighting the difficulties in953

decompiling long and highly optimized sequences.954

Importantly, the performance difference between955

the 1.3B and 6.7B models showcased in the figure956

emphasizes the advantages of larger models in such957

tasks. Larger models, with their expanded compu-958

tational resources and deeper learning capabilities,959

are inherently better at resolving the challenges960

posed by complex decompilations.961

The error analysis presented in Figure 7 for962

LLM4Decompile-End-6.7B indicates that logical963

errors are prevalent in the HumanEval-Decompile964

scenarios, with 64% of errors due to assertions that965

the decompiled codes do not pass. In the ExeBench966

dataset, which features real functions with user-967

defined structures and types, the major challenges968

are related to reclaiming these user-specific com-969

ponents. Where 50% of the errors come from un-970

declared functions, and 28% from improper use of971

0.0

0.2

0.4

0.6

0.8

1.0

R
e-

ex
ec

ut
ab

ili
ty

 R
at

e

1.3B Performance on HumanEval-Decompile

40 80 12
0

16
0

20
0

24
0

28
0

32
0

36
0

>=
40

0

Length

0.0

0.2

0.4

0.6

0.8

1.0

R
e-

ex
ec

ut
ab

ili
ty

 R
at

e

6.7B Performance on HumanEval-Decompile

O0 O1 O2 O3

Figure 6: Re-executability rate with the growth of input
length. 6.7B model is more robust against input length.

Other
2%

Assert
4%

Type
16%

Struct
28%

Declare
50%

ExeBench

Other
8%

Type 3%
Return 4% Struct 7%

Syntax
14%

Assert
64%

HumanEval-Decompile

Figure 7: Types of errors identified in the two bench-
marks: LLM4Decomile-End-6.7B faces issues with log-
ical errors in HumanEval-Decompile and user-defined
components in ExeBench.

structures. Given that these user-defined details are 972

typically lost during the compilation process, re- 973

constructing them can be particularly challenging. 974

Integrating techniques like Retrieval Augmented 975

Generation might supplement the decompilation 976

process with necessary external information. 977

C Obfuscation Techniques 978

We provide the details of two classic obfuscation 979

techniques suggested in Obfuscator-LLVM. 980

Control Flow Flattening enhances the security 981

of software by transforming its straightforward, 982

hierarchical control flow into a more complex, flat- 983

tened structure. The workflow involves breaking a 984

function into basic blocks, arranging these blocks 985

at the same level, and encapsulating them within a 986

switch statement inside a loop. 987

12

Bogus Control Flow modifies a function’s ex-988

ecution sequence by inserting an additional basic989

blockprior to the existing one. This added block990

includes an opaque predicate, followed by a con-991

ditional jump that leads back to the original block.992

Additionally, the original basic block is polluted993

with randomly selected, meaningless instructions.994

13

	Introduction
	Related Work
	LLM4Decompile
	LLM4Decompile-End
	The End2End-Decompile Framework
	Optimize LLM4Decompile-End

	LLM4Decompile-Ref
	The Refined-Decompile Framework
	Refine Ghidra by LLM4Decompile-Ref

	Experiments
	LLM4Decompile-End
	Experimental Setups
	Experimental Results

	LLM4Decompile-Ref
	Experimental Setups
	Experimental Results

	Obfuscation Discussion
	Conclusions
	ExeBench Setups
	Further Analysis of LLM4Decompile-Ref
	Obfuscation Techniques

