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Abstract—Federated learning (FL) enables distributed par-
ticipants to collectively learn a strong global model without
sacrificing their individual data privacy. Mainstream FL ap-
proaches require each participant to share a common network
architecture and further assume that data are sampled IID across
participants. However, in real-world deployments, participants
may require heterogeneous network architectures; and the data
distribution is almost non-uniform. To address these issues we
introduce FedH2L, which is agnostic to the model architecture
and robust to different data distributions across participants. In
contrast to approaches sharing parameters or gradients, FedH2L
relies on mutual distillation, exchanging only posteriors on a
shared seed set between participants in a decentralized manner.
This makes it extremely bandwidth efficient, model agnostic, and
crucially produces models capable of performing well on the
whole data distribution when learning from heterogeneous silos.

Index Terms—Federated Learning, Model heterogeneity, Sta-
tistical heterogeneity, Domain shift, Mutual learning

I. INTRODUCTION

Today, artificial intelligence (AI) is showing its strengths
in almost every walk of life. To fully realize AI’s benefits,
we wish to learn models across as much data as possible,
but this data is often held privately across diverse users or
organizations. To enable collective benefit from AI while
maintaining data privacy, Federated Learning (FL) [1]–[3]
algorithms aim to train a global model based on the efforts
of distributed participants’ data and resources.

There are a number of actively researched challenges how-
ever to achieving this vision [4], including system/model het-
erogeneity, statistical heterogeneity, bandwidth requirements,
and residual privacy concerns. Different FL methods provide
different trade-offs in their requirements on these axes along in
the accuracy they ultimately provide [4]. We propose a novel
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FL method FedH2L, which primarily aims to support signif-
icant statistical and model heterogeneity across participants
to achieve the personalized federated learning [5], and also
provides benefits for bandwidth and privacy.

System heterogeneity usually refers to different computation
and bandwidth resources among participants leading to differ-
ent update rates, and mainstream research aims to alleviate the
impact of stragglers in FL setting [6]. However, participants
more generally may require fundamentally different model
architectures [7]. This can occur in edge or device-based
FL due to devices’ different resource constraints, or in B2B
FL due to each organization wishing to keep their particular
optimised model architecture private. Statistical heterogeneity
refers to the diversity in each user’s data distribution [6],
[8]. We aim to learn a strong federated system capable of
performing on the global data distribution, although learning
takes place locally in each user’s private data silo.

Mainstream FL typically proceed by sharing parameters or
gradients at each iteration. This means they are bandwidth-
constrained, as contemporary models can have millions of pa-
rameters. Furthermore, most FL methods require a centralized
server to aggregate results from each participant, no matter
for the parameter-based methods [2], [9], [10] or for the recent
prototype-based methods [11]. This requires a globally trusted
authority, and provides a single point of failure. We instead
present a decentralized peer-to-peer approach that is robust and
extremely communication efficient. Moreover, parameter and
gradient sharing strategies can also incur a residual privacy
risk due to attack vulnerability [12], [13]. Our method shares
no parameters, thus eliminating such vulnerability.

In this paper, we present a novel FL algorithm FedH2L,
which significantly advances the practical applicability of
FL by enabling simultaneous system and statistical het-
erogeneity across participants. Instead of exchanging gra-
dients/parameters, FedH2L exchanges predictions on small
shared seed set distributed to participants in advance [7],



and performs decentralized global optimization by mutual
learning [14], thus enabling model-agnostic FL. This strategy
also eliminates privacy concerns of parameter/gradient shar-
ing, and requires orders of magnitude lower communication
cost than sharing models/gradients. Moreover, we also pay
attention to the issue of managing statistical heterogeneity
across participants [4], [15], [16]. In FedH2L, each participant
optimizes a multi-task objective of fitting its local data, and
distillation on the seed set for knowledge sharing across peers.
This multi-task optimization is challenging when there is
the significant distribution shift, which can lead to gradient
conflict [17] and poor solutions. To this end we introduce
a new optimization strategy to find the best non-conflicting
gradient for simultaneously fitting local data and incorporating
feedback from peers. Our contributions are:

• We introduce FedH2L, which uniquely provides si-
multaneous support for a challenging set of real
world conditions including heterogeneous models across
peers, robust decentralized learning, privacy preserving
parameter/gradient-free communication, while being de-
sired to maximise performance under heterogeneous data
statistics across peers. See Table I for comparison.

• To provide best performance under conditions of hetero-
geneous data statistics across peers, we introduce a new
optimization strategy to find the gradient update that does
not conflict between local and global update cues.

• We conduct extensive experiments on several multi-
domain datasets: Rotated MNIST [18], PACS [19], and
Office-Home [20]. Compared to the baselines, we im-
prove the model performance across all domains, demon-
strating the effectiveness of FedH2L.

II. RELATED WORK

Personalized Federated Learning Recently, the person-
alized federated learning (PFL) [5], [26]–[28] is proposed to
address the fundamental challenges of FL on the heterogeneity.
Most of the PFL researches only focus on the data Non-IID
heterogeneity using common methods like “FL training + local
adaptation” [29], or focus on the clients’ model heterogeneity
by introducing tricks on network layer architectures [9] or
model similarities [5], [30]. Our work also belongs to the
research of PFL, and we further consider the data statistical
heterogeneity, model system heterogeneity, bandwidth effi-
ciency, privacy requirements and decentralization at the same
time. We will give the detailed analysis of these multiple
aspects as follows.

System and Statistical Heterogeneity FL aims to train
models over remote devices, while keeping data localized. FL
faces many challenges [4], and the important one is the hetero-
geneity on the system and statistical aspects. Participants may
vary on hardware, compute and bandwidth resources. These
system characteristics make issues such as stragglers prevalent.
Existing studies mainly focus on the active sampling [31], [32].
However, a more severe challenge in system heterogeneity
is the model heterogeneity of different architectures among

participants. FedMD [7] introduce model heterogeneity based
on knowledge distillation but with a centralized communica-
tion server. FML [21] trains extra heterogeneous models by
learning from participants’ distributed homogeneous models.
FedGKT [22] trains small CNNs on edges and periodically
transfer their knowledge (e.g., extracted features) instead of
data by knowledge distillation to a server-side large CNN.
FedProto [11] uses the prototypes for global aggregation on
the server from different clients, and sends global prototypes
back for local regularization. In addition, for methods like
FedPer [9] and FedRep [10], although clients have their final
personalized layers, they are asked to hold the same feature
extractor model for parameter sharing, and thus cannot support
system heterogeneity technically.

In almost every substantive use case of FL (e.g., medical
data across hospitals, industrial data across corporations) par-
ticipants generate and collect data in a Non-IID distributed
manner, leading to statistical shift among them. To tackle
such statistical heterogeneity, FedProx [6] provides conver-
gence guarantees based on FedAvg [2] over Non-IID data.
FedAgnostic [8] learns a centralized model that is optimized
for any target distribution formed by a mixture of participants’
distributions. FedSEM [23] and FedCluster [24] are classical
methods using models clustering on the server with Non-IID
data among clients. FML [21], FedGKT [22], FedMD [7],
FedProto [11], FedPer [9] and FedRep [10] also have the
opportunities to cope with the Non-IID data because they have
individualized models or some layers for each user but still
controlled by a central server. We aim to handle both model
and statistical heterogeneity in a decentralized manner without
the need of a centralized model or extra local models.

Bandwidth and Privacy Requirements Communication is
a critical bottleneck in FL. Current communication-efficient
methods mainly consider: (1) Reducing the total number of
communication rounds; (2) Reducing the size of transmitted
messages at each round. But such methods [2], [6], [8],
[21] still proceed by sharing millions of parameters/gradients
as the communicated messages, which means the best case
bandwidth requirement is still orders of magnitude worse than
FedH2L. Additionally, sharing parameters create attack vulner-
ability [12], [13], increasing the privacy risk. The aggregation
of parameters/gradients also usually asks for a centralized
trusted authority [2], [6] which may lead to the single point
of failure. FedH2L is a communication-efficient decentralized
peer-to-peer method without sharing any high-overhead and
privacy compromising model parameters/gradients.

Multi-task Optimization Instead of learning a single global
model, we simultaneously learn distinct local models with a
multi-task objective based on local and remote teaching sig-
nals. A similar federated work in multi-task setting is MOCHA
[25], but each local model only focuses on the performance
on its own task, instead of the multi-task objective. A key
challenge in multi-task learning [17], [33] is the conflicting
gradients, especially when there is statistical heterogeneity
across tasks/participants. Yu. et al [17] propose a gradient



TABLE I
COMPARISON OF FL FRAMEWORKS.

Method Hetero. Models Decentr. ParamFree BW Hetero. Data
FedAvg [2] ✗ ✗ ✗ - -
FedProx [6] ✗ ✗ ✗ - +

FML [21] ✗/✓ ✗ ✗ - +
FedGKT [22] ✗/✓ ✗ ✓ + +

FedMD [7] ✓ ✗ ✓ + +
FedAgnostic [8] ✗ ✗ ✗ - +

FedSEM [23] ✗ ✗ ✗ + +
FedCluster [24] ✗ ✗ ✗ - +

FedPer [9]/FedRep [10] ✗ ✗ ✗ - +
FedProto [11] ✓ ✗ ✓ + +
MOCHA [25] ✗/✓ ✗ ✗ + +
FedH2L(Ours) ✓ ✓ ✓ + +

surgery to train a single model for multiple tasks by projecting
each task gradient onto normal plane of the other. In contrast,
we propose a novel optimization strategy to get non-conflicting
gradients for each participant’s model so as to fit local data
and learn from other peers reliably and simultaneously.

III. METHODOLOGY

Here we introduce the details of FedH2L. Assume there
are N nodes in the FL network, holding data with potentially
distinct distributions D = {D1, D2, . . . , DN}. There is also
a public dataset Dpub in the same label space that everyone
can access. The data on each node contains a set of data-label
pairs, i.e., Di = {Xi, Yi}. We also split Di into its private
data which must only be kept locally, validation data and test
data, i.e., Di = {Dloc

i , Dval
i , Dtest

i }. We aim to learn a federated
system that aggregates knowledge from all nodes, but without
sacrificing each node’s data privacy, and without assuming a
common model architecture.

We consider the homogeneous multi-domain setting [19],
where all nodes share the same label set Yi covering the same
M classes, but have different data distributions. For example,
one can consider medical images of the same set of diseases,
but collected by different machines in different hospitals.

Each node i uses a network parameterized by θi, which
can be uniquely customized and private to each node. No
centralized model is used in FedH2L. But the goal is that
after learning, each node’s model θi should incorporate the
knowledge of all nodes’ datasets, and be able to perform well
on any node’s data distribution. The workflow is divided into
two iterative phases: local and global optimization.

A. Local Optimization

Local optimization for a node follows the conventional
supervised learning paradigm using locally available data.
Denoting i-th node’s network as fθi , we optimize the cross-
entropy (CE) loss to obtain gradient gloc

i :

minimizeθiℓ
(CE)(fθi(x

loc
i ), yloc

i ), (1)

gloc
i = ∇θiℓ

(CE)(fθi(x
loc
i ), yloc

i ). (2)

Note that fθi(xloc
i ) provides soft labels ploc

i corresponding
to the output of the final softmax layer of the network, which
are compared against the ground truth one-hot labels.

B. Global Mutual Optimization

The next step is for each node to learn from its peers. To
achieve this in a decentralized manner and under conditions of
heterogeneous model architecture, we exploit model distilla-
tion. Different from the conventional distillation [34] where a
strong teacher trains multiple students, the federated network
in FedH2L acts as an ensemble of students that all teach each
other.

Preparation for mutual learning We randomly sample
a batch dpub

i = (xpub
i , ypub

i ) from Dpub on each domain/node
and compute the soft labels ppub(i)

i . Note that the superscript
i denotes the data is domain i’s sampled public data, and the
subscript i denotes the network fθi making the prediction.
To assess the quality of predictions, we also get the accuracy
Acci over the batch public data in each domain. Each node i
broadcasts [ppub(i)

i , Acci] as its teaching signal and associated
teaching confidence, to others in the cohort. Note that the
predictions in the teaching signal ppub(i)

i are with respect to
public data xpub

i , but contain knowledge from the local private
data due to being made with the locally optimized network fθi .
The quantities [ppub(i)

i , Acci] are the only parameters exchanged
during the federated global mutual optimization step. So this
approach is highly communication efficient.

Mutual Learning Each node i will act both as a student and
a teacher, so there are (N − 1) teachers for each student fθi .
To improve each student node i’s model based on teacher node
j’s data, it is trained to mimic the teacher’s soft predictions
on the batch public data on teacher. Specifically, each student
i uses the Kullback Leibler (KL) Divergence loss ℓ(KL)

i as

ℓ
(KL)
i =

1

N − 1

N∑
j=1,j ̸=i

Accj ∗DKL(ppub(j)
j ||ppub(j)

i ), (3)



where each teacher’s contribution is weighted by its teaching
confidence Accj , and where

DKL(ppub(j)
j ||ppub(j)

i ) = Epj
[log ppub(j)

j − log ppub(j)
i ]. (4)

In addition, besides the KL mimicry loss, we can also take
advantage of the conventional supervised loss (CE loss):

ℓ
(CE)
i =

1

N − 1

N∑
j=1,j ̸=i

ℓ(CE)(fθi(x
pub
j ), ypub

j ), (5)

Thus we obtain the total mutual learning gradient for node
i learning from the other nodes in the cohort:

gpub
i = ∇θi(ℓ

(KL)
i + ℓ

(CE)
i ). (6)

Summary In summary, each node trains using gloc
i =

∇θiℓ
(CE) on local data, and gpub

i = ∇θi(ℓ
(KL)
i + ℓ(CE)

i ) using
public dataset across all domains.

C. Dealing with Statistical Heterogeneity

Our algorithm described so far enables decentralized FL of
heterogeneous models. However, a key challenge is to best
support the practically ubiquitous situation of statistical het-
erogeneity across domains. We hope that the local gradient gloc

i

can help to improve the performance on other domain’s data
(Cross-Domain Performance, CDP), and the remote teacher
gradient gpub

i can help to improve the performance on the local
data (Within-Domain Performance, WDP). However this is
challenging to achieve from a multi-task learning perspective,
because the local learning gradient and peer learning gradient
may conflict [17], [35], [36] under significant statistical shift.

Mutual Learning robust to statistical shift To perform
student-teacher learning that is robust to distribution-shift
across nodes, we propose to enforce the constraint:〈

gloc
i , gpub

i

〉
≥ 0. (7)

If this constraint is satisfied, then the remote teaching signal
gpub
i is unlikely to increase ℓ(CE) on each domain’s local data,

and we can safely use gpub
i to directly update θi without

risking negative within-domain performance. Thus we check
if the constraint is violated, and project gpub

i to the closest
gradient g̃i (in the ℓ2 norm sense) satisfying constraint (7).
After projection g̃i is unlikely to increase ℓ(CE) or ℓ(KL). We
perform:

minimizeg̃i
1

2
∥gpub

i − g̃i∥22
subject to ⟨g̃i, gloc

i ⟩ ≥ 0, for all i ∈ N. (8)

Computation of g̃i We set g̃i ← project(gpub
i , gloc

i ). Here
project is the optimization of dual problem of Quadratic
Program (QP). To solve (8) efficiently, inspired by the gradient

processing in continual learning [35], we recall the primal of
a QP [37] with inequality constraints:

minimizez
1

2
z⊤Cz + w⊤z

subject to Az ≤ b, (9)

where C ∈ Rp×p is a real symmetric matrix, w ∈ Rp is a
real-valued vector , A⊤ ∈ Rp is a real matrix, and b ∈ R, p
is the dimension of gradient vector.

The solution to the dual problem provides a lower bound
to the primal QP problem. The Lagrangian dual of a QP is
also a QP. Because original problem has constraint conditions,
these can be built into the function. We write the Lagrangian
function [38] as:

L(z, v) =
1

2
z⊤Cz + w⊤z + v⊤(Az − b). (10)

Defining the (Lagrangian) dual function as g(v) =
infz L(z, v), we find an infimum of L, which occurs where the
gradient is equal to zero, using ∇zL(z, v) = 0 and positive-
definiteness of Q:

z∗ = −C−1(A⊤v + w). (11)

So, the dual problem of (9) is:

minimizev
1

2
v⊤AC−1A⊤v + (w⊤C−1A⊤ + b⊤)v

subject to v ≥ 0. (12)

With these notations, we write the primal QP (8) as:

minimizez
1

2
z⊤z − gpub

i

⊤
z +

1

2
gpub
i

⊤
gpub
i

subject to − gloc
i

⊤
z ≤ 0.

(13)

According to the conversion formula above, We can pose
the dual of the FedH2L QP as:

minimizev
1

2
v⊤gloc

i

⊤
gloc
i v + gpub

i

⊤
gloc
i v

subject to v ≥ 0. (14)

After (14) is solved for v⋆ which is specifically a real num-
ber here, we reset the projected gradient as g̃i = v⋆gloc

i +gpub
i ,

and use g̃i to update θi for the global mutual optimization.

D. Summary

Bringing all components together, we have the full algo-
rithm in Algo. 1. To summarize, (1) in each domain/node
we first perform a local update with gloc

i using ℓ(CE) on the
locally preserved data and then broadcast its teaching signal
[ppub(i)

i , Acci] on public data. (2) In the global mutual opti-
mization, FedH2L introduces distillation mimicry loss ℓ(KL)

in addition to the conventional ℓ(CE) in order for each node to
learn from its peers’ teaching signals. (3) To manage potential
conflicting gradients across nodes between gloc

i and gpub
i , we

calculate the projected gradient g̃i as the final global gradient
to update each fθi . This ensures that each node in the cohort



Algorithm 1 FedH2L
Input: N domains D = {D1, D2, . . . , DN}, Dpub, Di =
{Dloc

i , Dval
i , Dtest

i }. Initialized N networks {fθ1 , fθ2 , . . . , fθN },
learning rate β, η.
Output: Optimized networks {fθ1 , fθ2 , . . . , fθN } begin

while not converge or reach max steps do
for i ∈ [1, 2, · · · , N ] do

Sample local batch dloc
i and public batch dpub

i

Compute gloc
i ← Eq. (2) using ℓ(CE)

Update θi ← θi − β · gloc
i

Compute ppub(i)
i and Acci on dpub

i

Broadcast [ppub(i)
i , Acci]

for i ∈ [1, 2, · · · , N ] do
for j ∈ [1, 2, · · · , N ] & j ̸= i do

Compute ppub(j)
i using fθi

Compute gpub
i ← Eq. (6) using ℓ(KL) + ℓ(CE)

if Eq. (7) is satisfied then
g̃i ← gpub

i

else
g̃i ← project(gpub

i , gloc
i )

Update θi ← θi − η · g̃i

achieves both CDP and WDP, improving performance on its
own data, as well as strengthening its model to perform well
on the private statistically heterogeneous distributions held by
other nodes. This is the first work to consider both model and
statistical heterogeneity across nodes in FL.

IV. EXPERIMENTS

We evaluate on digit classification (Rotated MNIST) and
image recognition (PACS, Office-Home) tasks. These datasets
contain multiple sub-domains with statistical shift. We use
the distributed framework Ray [39] to implement distributed
applications. We compare FedH2L to the alternatives:

• Independent (IND): Node only uses the data of its own
domain for conventional training (SGD on CE).

• Aggregation (AGG): Node aggregates its private domain
data and the whole shared public data for conventional
training. AGG is usually a strong baseline to beat in
multi-domain learning [40].

• FedMD [7]: A state of the art centralized approach to
model-heterogenity in FL.

• FedAvg [2]: The classic FL method that uses a central
server to aggregate gradients and distribute parameters.

• FedProx [6]: A FedAvg-based approach that provides lo-
cal regularization of convergence guarantees for learning
over statistical heterogeneity.

Metrics In our decentralized approach, each node has its
own model, and our goal is all models should outperform
that of a centralized competitor. So we report the average
test performance across all nodes’ models. Considering the

statistical heterogeneity, we report the following three metrics,
where F evaluates test accuracy.
Within-Domain Performance: WDPi = Fi(D

test
i ). WDP is the

performance of fθi on the node i’s test data. Higher WDP val-
ues indicate the learning experience from other nodes improve
the performance on the current node. This is not guaranteed by
a simple FL algorithm as other nodes’ gradients can potentially
cause conflict or forgetting [17], [41]. FedH2L aims to improve
WDP by projecting away conflicting gradients.
Cross-Domain Performance: CDPi = Fi(

∑N
n=1,n̸=i D

test
n ).

CDP is the performance of fθi on all other nodes’ test data.
If FL nodes do not learn from their peers then CDP will be
low due to statistical shift.
Average accuracy: ACCi = Fi(

∑N
n=1 D

test
n ). ACC is the all-

domain performance of fθi on all nodes’ test data.

A. Evaluation on Rotated MNIST

Dataset and settings Rotated MNIST [18] contains differ-
ent domains with each one corresponding to a degree of roll
rotation in MNIST dataset. The basic view (M0) is formed
by randomly choosing 100 images each of ten classes from
MNIST dataset, and we create 3 rotating domains from M0
with 20◦ rotation each in clockwise direction, denoted M20,
M40, M60.

We first experiment by easily deploying homogeneous net-
works (e.g. LeNet [42]). We train using AMSGrad [43] opti-
mizer (lr=1e-3, weight decay=1e-4) for 10,000 rounds and set
batch size=32. We explore performance considering several
factors: (1) α, the proportion of Dpub compared with all data
(D and Dpub). Note that the performance of IND, FedAvg and
FedProx is independent of α. In this experiment, α of these
rotated data can be split as the public data. (2) In FedH2L,
E is the ratio between global and local update rounds. Local
optimization is carried out each round, and global optimization
every E rounds. So when calculating the global update g̃i, gloc

i

is actually (gloc
i E − gloc

i 0) over E rounds. Here we set default
E = 1, and then ablate the hyperparameter sensitivity on E.
(3) We explore both homogeneous and heterogeneous archi-
tectures. Note that even in the homogeneous architecture case,
decentralized FedH2L nodes have independent parameters.

Results Table II shows the results including varying α
of FedH2L. We evaluate using the validation data every 50
rounds and keep the model with the maximal ACC for the
final test on three metrics. Max value on each metric is bold.
We draw the following conclusions: (1) FedH2L generally
outperforms competitors for a range of α. (2) FedH2L gen-
erally performs better with increased public data proportion
α. (3) FedH2L outperforms the AGG and IND baselines at
every α operating point. (4) Compared to state of the art
competitors, FedH2L outperforms FedMD at every operating
point. The poor performance of FedMD compared to FedH2L
and AGG shows that it is vulnerable to distribution shift
between domains. The vanilla centralized FedAVG/FedProx
require over 1000× the communication bandwidth of FedH2L,
and we now restrict their bandwidth to match that used by



TABLE II
TEST RESULT (%) ON THREE METRICS ON ROTATED MNIST.

Method M0-LeNet M20-LeNet M40-LeNet M60-LeNet Avg.

ACC WDP CDP ACC WDP CDP ACC WDP CDP ACC WDP CDP ACC WDP CDP

FedH2L (α=5%) 86.17 88.67 85.33 86.33 93.33 85.11 87.50 93.33 85.78 87.17 96.00 84.22 86.79 92.83 85.11
AGG (α=5%) 85.50 92.67 83.11 87.50 93.33 85.56 83.67 90.00 81.56 83.83 93.33 80.67 85.13 92.33 82.73
FedMD (α=5%) 84.17 87.33 83.11 85.33 91.33 83.33 86.67 96.00 83.56 84.17 91.33 81.78 85.09 91.50 82.95

FedH2L (α=10%) 90.17 93.33 89.11 91.67 96.00 90.22 86.50 90.67 85.11 88.17 93.33 86.44 89.13 93.33 87.72
AGG (α=10%) 86.50 90.00 85.33 87.17 92.67 85.33 86.67 94.00 84.22 80.67 91.33 77.11 85.25 92.00 83.00
FedMD (α=10%) 85.00 88.67 83.78 87.67 95.33 85.11 82.00 90.67 79.11 85.67 90.00 84.22 85.09 91.17 83.06
FedH2L (asynchronous) 90.66 93.33 89.78 90.00 94.00 88.67 85.50 90.67 83.78 86.67 90.67 85.33 88.21 92.17 86.89

FedH2L (α=15%) 89.67 91.33 89.11 90.00 92.67 89.11 90.50 94.00 89.33 88.33 92.67 86.89 89.63 92.67 88.61
AGG (α=15%) 87.83 92.00 86.44 89.67 92.10 88.44 87.83 94.00 85.78 86.00 91.33 84.22 87.83 92.36 86.22
FedMD (α=15%) 88.67 89.33 88.44 89.00 93.33 87.56 85.00 90.00 83.33 84.33 92.67 81.56 86.75 91.33 85.22
IND 66.39 91.33 58.08 78.11 94.00 72.82 72.39 93.11 65.48 56.89 91.78 45.48 68.45 92.56 60.47
FedAvg 86.50 77.33 89.56 86.50 86.67 86.44 86.50 92.67 84.44 86.50 89.33 85.56 86.50 86.50 86.50
FedProx 86.67 80.00 88.89 86.67 90.00 85.56 86.67 91.33 85.11 86.67 85.33 87.11 86.67 86.67 86.67
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Fig. 1. PCA projections of features on all domains’ test data using domain
M0’s model of Rotated MNIST for example. Left: FedH2L. Middle: IND.
Right: AGG. (Dot: Image. Color: Digit label.)

FedH2L and get the results in Table II. FedH2L outperforms
FedAvg/FedProx clearly at α = 15%.

Qualitative Results We perform PCA projections of the
features on all domains’ test data in Figure 1. FedH2L provides
the improved overall separability on all domains’ data.

B. Evaluation on PACS dataset

Dataset and settings PACS [19] is a multi-domain object
recognition benchmark with 9991 images of 7 categories
across 4 different domains. The original PACS dataset has a
fixed split for train, validation and test. We separate out 10%
of its test part as the public seed data in our experiment, use
the rest 90% of its test part as our test data, and directly use
the train part as our private data. Here we mainly consider
the heterogeneous model case where we deploy ResNet18,
ResNet34, AlexNet and VGG11 in the experiment. The ho-
mogenous model case where all nodes use a ResNet18 is
reported in the Further Studies, and it also shows the benefits
of FedH2L. We use AMSGrad (lr=1e-4, weight decay=1e-5)
to train 10,000 rounds and set batch size=32.

Results We can see from Table III: (i) In the heterogeneous
case, FedAvg and FedProx are inherently inapplicable and
FedH2L surpasses the other alternatives. (ii) We observe that
although VGG11 does not perform well in the sketch domain
(see IND/AGG WDP), when used with FedH2L, it still benefits
rather than harms the other nodes’ performance thanks in part
due to the teaching confidence signal (Eq. (3)).
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Fig. 2. Learning and loss curves on Office-Home in domain Product. Left:
ACC on validation data. Middle: Loss in local optimization. Right: CE and
KL losses in global optimization of FedH2L.

C. Evaluation on Office-Home dataset

Dataset and settings The Office-Home [20] dataset
is initially proposed to evaluate domain adaptation. It
consists 4 different domains with each containing im-
ages of 65 object categories. We split each domains
data into {Dpri

i , Dpub
i , Dval

i , Dtest
i } according to the default

[65%, 10%, 10%, 15%]. We apply ResNet34, MobileNet,
AlexNet and ResNet50 as their heterogeneous models and
use the same hyperparameters as in the PACS experiment.
The homogeneous model case is also reported in the Further
Studies where FedH2L shows consistent benefits.

Results In Table IV, FedH2L gives a clear boost to overall
accuracy, within-domain and cross-domain performance.

D. Further Analysis

Optimization and loss analysis Figure 2(left) shows ACC
on the validation data. FedH2L exhibits faster convergence to
the higher performance. Figure 2(right) shows the consistent
utility of KL loss during the first 1000 rounds for convergence
and performance benefits as shown on ACC. Figure 2(middle)
shows the loss during local optimization, which benefits
FedH2L locally with the help of the global mutual learning.

Discussion on design components of global mutual op-
timization In global optimization, our contributions are:
KL mimicry loss Eq. (3), and the project operation for
the calculation of g̃i to achieve stable multi-domain learning
Eq. (8). We ablate them in Table V on Rotated MNIST
(α = 10%).



TABLE III
TEST RESULT (%) ON THREE METRICS ON PACS WITH HETEROGENEOUS MODELS.

Method Photo-ResNet18 Art painting-ResNet34 Cartoon-AlexNet Sketch-VGG11 Avg.

ACC WDP CDP ACC WDP CDP ACC WDP CDP ACC WDP CDP ACC WDP CDP

FedH2L 83.86 99.80 80.66 90.91 99.95 88.57 81.68 99.67 76.16 52.87 80.33 37.26 77.33 94.94 70.66
IND 51.08 99.57 41.29 77.72 99.30 72.15 68.52 99.39 59.05 44.79 78.75 22.83 60.53 94.25 48.83
AGG 84.90 100.00 81.90 89.50 100.00 86.85 80.80 98.77 75.28 52.81 78.01 36.51 77.00 94.20 70.14
FedMD 80.05 100.00 76.05 86.90 99.08 83.75 78.07 95.65 72.67 51.40 75.47 35.83 74.11 92.55 67.08
FedAvg/FedProx - - - - - - - - - - - - - - -

TABLE IV
TEST RESULT (%) ON THREE METRICS ON OFFICE-HOME WITH HETEROGENEOUS MODELS.

Method Art-ResNet34 Clipart-MobileNet Product-AlexNet Real world-ResNet50 Avg.

ACC WDP CDP ACC WDP CDP ACC WDP CDP ACC WDP CDP ACC WDP CDP

FedH2L 65.52 58.70 66.70 73.55 76.52 72.40 59.64 80.82 51.00 60.97 70.29 57.30 64.92 71.58 61.85
IND 41.00 57.14 38.20 55.14 78.49 46.08 46.60 79.40 33.23 47.61 63.31 41.42 47.59 69.59 39.73
AGG 57.34 51.86 58.30 70.61 78.49 67.56 54.32 77.02 45.05 54.68 64.94 50.64 59.24 68.08 55.39
FedMD 55.46 55.59 55.44 67.49 77.50 63.61 53.17 75.59 44.02 51.74 59.42 48.72 56.97 67.03 52.95
FedAvg/FedProx - - - - - - - - - - - - - - -

TABLE V
COMPONENTS STUDY IN GLOBAL MUTUAL OPTIMIZATION (AVG).

Method ACC WDP CDP

FedH2L 89.13 93.33 87.72
FedH2L (no KL) 86.79 91.67 84.50
FedH2L (no project) 88.46 92.67 87.45
FedH2L (PCGrad) 88.34 92.67 86.89

TABLE VI
HYPERPARAMETER SENSITIVITY OF E IN FEDH2L (AVG).

Method ACC WDP CDP

FedH2L (E = 1) 89.13 93.33 87.72
FedH2L (E = 5) 88.04 92.17 86.67
FedH2L (E = 10) 87.25 93.17 85.28

KL loss plays an important role in both CDP and WDP.
The robustness benefit of mutual learning by KL loss to find
a wider minimum in the single domain has been analyzed
in DML [14]. Similarly, under our multi-domain setting, the
matching with teachers’ posterior predictions increases the
model’s generalization (CDP) to other domains. Meanwhile,
the soft labels (for KL loss) help to alleviate the domain shift
interference of the domain’s hard true labels (for CE loss).
Thus KL loss benefits optimization stability (WDP) during
the global mutual optimization.

If we remove the project operation, then θi will be updated
by directly using gpub

i . The results confirm that WDP gets
worse without the constrained g̃i. Moreover, we compare with
an alternative gradient projection PCGrad [17] which deals
with conflicting gradients in a handcrafted way. But PCGrad
shows unsatisfactory performance even slightly worse than
without the project operation.
Hyperparameter sensitivity We ablate the hyperparameter

of E in FedH2L in Table VI on Rotated MNIST (α = 10%).
FedH2L generally performs better with lower update interval
E. Performance degrades smoothly with larger E which
lowers communication cost proportionally.
Limitations A limitation of FedH2L is while our comms
cost is ≈ 10e6× lower than FedAvg at small scale (4 nodes),
this advantage will be eroded if scaled to many participants.
This could be alleviated by communicating between a subset
of randomly chosen pairs at each global round, which prelim-
inary experiments of such asynchronous distributed learning
in Table II show lead to similar performance.

E. Further Studies

1) Results when using homogeneous models on PACS and
Office-Home: We assemble the ResNet18 model for each
node. For PACS, Table VII shows: FedH2L generally pro-
vides a consistent improvement over others in the homoge-
neous case. The original communication bandwidth of Fe-
dAvg/FedProx is ≈ 10e6× that of ours. Even if we control
FedAvg’s and FedProx’s communication to ≈ 100× to ours
by controlling E and its participating fraction [2], they are still
outperformed by FedH2L. Similarly, for Office-home, FedH2L
gives a clear boost to overall accuracy, backward and forward
transfer performance in the homogeneous model case (see
Table VIII).

2) Extension to the unlabeled public data: FedH2L can
extend to the situation where the public data is available but
unlabeled. The difference from the labeled public data case
is: (i) only node’s own data is available for local optimization
without the use of public data from other domains; (ii) during
global mutual optimization only KL loss is used to gpub

i in
Eq.(6) in the main paper. Table VII, VIII also report the
FedH2L results with unlabeled public data. These results are
still reasonable despite the absence of labels. Note that the
AGG baseline is not applicable given that the public data from
other domains is not available for supervised learning.



TABLE VII
TEST RESULT (%) ON THREE METRICS ON PACS WHEN USING HOMOGENEOUS MODELS (RESNET18).

Method Photo-ResNet18 Art painting-ResNet18 Cartoon-ResNet18 Sketch-ResNet18 Avg.

ACC WDP CDP ACC WDP CDP ACC WDP CDP ACC WDP CDP ACC WDP CDP

FedH2L(E=1) 84.31 99.93 81.22 88.08 99.89 85.04 87.10 99.57 83.27 91.37 99.58 86.23 87.72 99.74 83.94
FedH2L(E=5) 84.54 100.00 81.44 87.68 100.00 84.51 87.20 99.86 83.31 90.69 99.72 84.85 87.53 99.90 83.53
FedH2L(E=10) 83.88 100.00 80.64 87.53 100.00 84.31 86.20 99.62 82.08 90.38 99.69 84.36 87.00 99.83 82.85
IND 51.45 100.00 41.70 70.53 99.95 62.94 73.48 99.95 65.36 62.95 99.89 39.05 64.60 99.95 52.26
AGG 84.52 99.93 81.42 86.30 99.89 82.79 85.46 100.00 81.00 89.35 99.89 82.53 86.41 99.93 81.94
FedMD 82.39 99.87 78.88 85.75 99.62 82.17 83.93 99.91 79.03 88.52 98.56 82.02 85.15 99.49 80.53
FedAvg 84.93 95.62 82.78 84.93 72.06 88.25 84.93 72.23 88.82 84.93 94.68 78.62 84.93 83.65 84.62
FedProx 85.80 83.00 86.36 85.80 77.80 87.86 85.80 95.88 82.70 85.80 85.13 86.23 85.80 85.45 85.79
FedH2L(unlabeled) 81.13 99.47 77.45 85.60 99.89 81.91 82.68 99.39 77.55 87.38 98.45 80.23 84.20 99.30 79.29

TABLE VIII
TEST RESULT (%) ON THREE METRICS ON OFFICE-HOME WHEN USING HOMOGENEOUS MODELS (RESNET18).

Method Art-ResNet18 Clipart-ResNet18 Product-ResNet18 Real world-ResNet18 Avg.

ACC WDP CDP ACC WDP CDP ACC WDP CDP ACC WDP CDP ACC WDP CDP

FedH2L(E=1) 58.26 50.62 59.59 61.25 74.38 56.15 62.21 82.57 53.91 62.12 69.32 59.28 60.96 69.22 57.23
FedH2L(E=5) 56.89 49.38 58.19 59.32 70.61 54.94 59.46 78.76 51.58 59.00 66.88 55.89 58.67 66.41 55.15
FedH2L(E=10) 57.62 53.73 58.30 59.69 75.04 53.73 60.42 84.00 50.81 60.56 69.81 56.91 59.57 70.65 54.94
IND 35.58 48.13 33.41 44.90 76.03 32.83 47.29 80.03 33.94 51.92 68.34 45.45 44.92 68.13 36.41
AGG 54.41 50.00 55.17 57.58 72.91 51.63 60.15 82.88 50.87 58.45 68.18 54.61 57.65 68.49 53.07
FedMD 52.30 46.89 53.23 53.99 70.94 47.42 56.57 78.61 47.58 56.29 64.45 53.07 54.79 65.22 50.33
FedAvg 59.96 53.11 61.15 59.96 40.56 67.50 59.96 74.17 54.17 59.96 68.18 56.72 59.96 59.01 59.89
FedProx 53.90 44.10 55.60 53.90 46.80 56.66 53.90 64.66 49.52 53.90 55.03 53.46 53.90 52.65 53.81
FedH2L(unlabeled) 51.56 45.96 52.53 54.82 66.34 50.35 53.54 67.04 48.03 54.45 61.69 51.60 53.59 60.26 50.63

V. CONCLUSION

We proposed FedH2L for FL with heterogeneous models
and data statistics. Each node in the cohort acts as both student
and teacher, providing effective communication efficient fed-
erated learning. FedH2L supports heterogeneous architectures,
which is crucial for FL across diverse hardware platforms,
and with institutions’ proprietary models; and is robust to
heterogeneous data statistics, which – while not widely studied
academically – is ubiquitous in practical FL.
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D. Bacon, “Federated learning: Strategies for improving communication
efficiency,” arXiv preprint arXiv:1610.05492, 2016.

[4] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Processing
Magazine, vol. 37, no. 3, pp. 50–60, 2020.

[5] A. Z. Tan, H. Yu, L. Cui, and Q. Yang, “Towards personalized federated
learning,” TNNLS, 2022.

[6] T. Li, A. K. Sahu, M. Zaheer, M. Sanjabi, A. Talwalkar, and V. Smith,
“Federated optimization in heterogeneous networks,” MLSys, vol. 2, pp.
429–450, 2020.

[7] D. Li and J. Wang, “Fedmd: Heterogenous federated learning via model
distillation,” arXiv preprint arXiv:1910.03581, 2019.

[8] M. Mohri, G. Sivek, and A. T. Suresh, “Agnostic federated learning,”
in ICML. PMLR, 2019, pp. 4615–4625.

[9] M. G. Arivazhagan, V. Aggarwal, A. K. Singh, and S. Choud-
hary, “Federated learning with personalization layers,” arXiv preprint
arXiv:1912.00818, 2019.

[10] L. Collins, H. Hassani, A. Mokhtari, and S. Shakkottai, “Exploiting
shared representations for personalized federated learning,” in ICML.
PMLR, 2021, pp. 2089–2099.

[11] Y. Tan, G. Long, L. Liu, T. Zhou, Q. Lu, J. Jiang, and C. Zhang,
“Fedproto: Federated prototype learning across heterogeneous clients,”
in AAAI, vol. 36, no. 8, 2022, pp. 8432–8440.

[12] L. Zhu, Z. Liu, and S. Han, “Deep leakage from gradients,” NeurIPS,
vol. 32, 2019.

[13] L. Melis, C. Song, E. De Cristofaro, and V. Shmatikov, “Inference
attacks against collaborative learning,” arXiv preprint arXiv:1805.04049,
vol. 13, 2018.

[14] Y. Zhang, T. Xiang, T. M. Hospedales, and H. Lu, “Deep mutual
learning,” in CVPR, 2018, pp. 4320–4328.

[15] X. Peng, Z. Huang, Y. Zhu, and K. Saenko, “Federated adversarial
domain adaptation,” in ICLR, 2020.
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