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Rafael Martı́nez-Galarza1,2,∗ Nicolò Oreste Pinciroli Vago3 Shivam Raval4
Carolina Cuesta-Lázaro5 Melanie Weber6 David Alvarez-Melis6
Alberto Accomazzi2 Cecilia Garraffo1,2 Joshua Knutson7 Ryan Thill7
Christopher B. Green7 Imantha Ahangama7

1AstroAI, Cambridge, Massachusetts, USA
2Center for Astrophysics | Harvard & Smithsonian, Cambridge, Massachusetts, USA
3Politecnico di Milano, Milan, Italy
4Department of Physics, Harvard University, Cambridge, Massachusetts, USA
5NSF Institute for Artificial Intelligence and Fundamental Interactions, USA
6Harvard SEAS, Cambridge, Massachusetts, USA
7Astromind, Austin, Texas, USA
*jmartine@cfa.harvard.edu

ABSTRACT

Astronomers have produced large multimodal datasets that include images, spec-
tra, and time series, and that encode physical information about the observed ob-
jects. In addition, a large amount of physics-specific knowledge about these ob-
jects has been accumulated in the astronomical literature. We introduce a physics-
informed representation alignment framework that matches X-ray observations
of astrophysical objects and text summaries describing the physical properties
of those sources. We perform contrastive learning between data representations
learned using a Poisson process autodecoder and text summary representations
generated with a Large Language Model. We demonstrate the generalization ca-
pabilities of the system and evaluate the performance of the post-alignment shared
representations for regression tasks. We present a use case for anomaly detection.

1 INTRODUCTION

In preparation for the era of petabyte-scale astronomical datasets (Greenstreet et al., 2024), en-
abled by the next generation of multimodal (images, spectra, astronomical time-series) surveys,
astronomers have recently embraced the concept of foundation models in astronomy (Parker et al.,
2024; Leung & Bovy, 2024). This refers to deep neural networks trained using self-supervised
learning on certain conventional tasks (e.g., light curve reconstruction) and operating on very large
(terabyte to petabyte) repositories of astronomical data (Angeloudi et al., 2024). The learned repre-
sentations can readily be used to perform a number of different downstream tasks, such as regression
on relevant astrophysical parameters, classification of the sources according to their underlying as-
trophysical class, and inference of physical parameters through comparison with simulations.

Astronomical datasets are particularly well suited for representation learning approaches for at least
two reasons: first, the data volume is already large, and is expected to increase dramatically in
the near future with survey facilities such as the Vera Rubin Observatory and the Roman Space
Telescope (Hernandez et al., 2024; Gezari et al., 2022) coming online in the next 5 years; second,
astronomical datasets are, by design, multimodal: that is, for a single astronomical object, several
modalities of data exist (e.g. images, spectra and light curves) that share physical information about
the object carried by the recorded photons, even if obtained with different instruments. Representa-
tions learned using pre-trained networks operating on the different modalities can be aligned using
contrastive learning approaches.
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Multimodal approaches to representation learning in astronomy have so far been limited to bi-modal
experiments (e.g., galaxy image/spectra, text/image retrieval) (Parker et al., 2024; Mishra-Sharma
et al., 2024). They are primarily based on the assumption that the recorded photons encode simi-
lar information across modalities. Apart from CLIP-like approaches to associate astronomical im-
ages with text summaries of the observational proposals, no experiments have been carried out to
attempt an alignment between physically informative text summaries and representations learned
from numerical data objects other than images in raster formats. It is reasonable to expect that
there is shared information between the natural language descriptions of astrophysical properties
from sources recorded in the astronomical literature and the data structures that encode the physical
information carried by the photons.

In this paper, we demonstrate representation alignment between a set of latent embeddings learned
from X-ray band data of individual astrophysical sources and text summaries that are descriptive of
astrophysically relevant information about those sources. We generate and embed text summaries
using respectively OpenAI’s gpt-4o-mini and ada-002 models. We also generate astronomical data
embeddings using an auto-decoding neural network (Song et al., 2024) that operates on lists of
X-ray photon recordings and predicts the time-dependent Poisson rate of photon arrivals for the
associated X-ray source. We then perform contrastive learning between the two representations
using an InfoNCE loss. We investigate the following: 1) Can we design Large Language Model
(LLM) prompting strategies that result in physics-encoding text summaries? 2) Does cross-modal
representation alignment preserve the prediction power of the embeddings for regression? 3) Can
we connect physically meaningful natural language to data structures that contain information about
specific astrophysical environments? The code is publicly available at https://anonymous.
4open.science/r/contrastiveregression-CFEE/.

2 RELATED WORK

Self-supervised approaches that learn representations from astronomical data have been used for
similarity search in optical spectra (Stein et al., 2021), galaxy distance estimation (Hayat et al.,
2021), and anomaly detection (Walmsley & Scaife, 2023). In the AstroCLIP project (Parker et al.,
2024), the authors perform contrastive learning between learned representations of galaxy images
and spectra, and perform accurate zero-shot prediction of the galaxy redshift from the image alone
using cross-modal nearest neighbor searches in the shared representation space. In Mishra-Sharma
et al. (2024), the authors associate astronomical images obtained from the Hubble Space Telescope
with text in the corresponding observing proposal abstracts by fine-tuning a pre-trained CLIP model
and achieving image retrieval using natural language. In contrast, the present paper aligns numer-
ical structures representing Poisson-like photon recordings that codify spatial, spectral, and time
variability properties of the sources, to summaries extracted from full papers describing the physical
properties of the corresponding sources.

For a review on contrastive learning in astronomy, see Huertas-Company et al. (2023). Regarding
LLMs applied to astrophysical literature, in Dung Nguyen et al. (2023) the authors fine-tune the
LLAMA-2 model (Touvron et al., 2023) using astronomical paper abstracts and demonstrate signif-
icant domain adaptation. More recently, Iyer et al. (2024) present a LLM-enabled framework for
literature review and knowledge discovery in astronomy, focusing on semantic searching.

3 DATASET CONSTRUCTION

We use a set of observations taken by the Chandra X-ray Observatory targeting at a broad range of X-
ray emitting astrophysical sources1, and a corpus of text data curated by NASA’s Astrophysical Data
Systems (ADS), and consisting of the titles, abstracts, and full bodies of academic papers written
by experts on topics of high energy astrophysics, and that specifically refer to at least one of the
Chandra observations. The Chandra Data Archive has created an association between each Chandra
observation (identified by an ObsID) and all the papers that refer to it, allowing us to create positive
pairs between individual observations of astrophysical sources and corresponding text descriptions.

1https://cxc.harvard.edu/cda/
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Figure 1: The contrastive learning network processes two types of embeddings: text embeddings
of size 1536 and data embeddings of size 8. These embeddings are each transformed into a 64-
dimensional space through a pair of fully connected neural networks, and then concatenated. A final
fully connected network then integrates both modalities, learning a shared, aligned representation.

Each Chandra observation consists of a list of individual X-ray photon recordings (events) collected
by the telescope detector over a small area of the sky. The field of the observation usually contains
many detected astrophysical sources, and so for each X-ray source, we isolate its associated photon
events. Each training example thus corresponds to event lists associated with an individual source,
not the entire field, and can be understood as the outcome of a Poisson process of the detected
photons from a single source, with time of arrival and photon energy recorded for each event.

For each source, we have created a data latent representation using the Poisson Process Auto De-
coder (PPAD) presented in Song et al. (2024), a neural field decoder that maps fixed-length latent
features to time-dependent, continuous Poisson rate functions for any range of photon energies.
The PPAD is trained in a self-supervised fashion, starting from the photon event data, to predict
the reconstructed Poisson rate function by minimizing a loss function with a continuous Poisson
likelihood. Astronomers call this varying Poisson rate the light curve of the source, as it indicates
the change of X-ray flux over time. The model also yields the latent embeddings for each source,
which are optimized during training or inference. The resulting embeddings codify spectral and
time-domain information and are useful for other downstream regression and classification tasks, as
demonstrated in Song et al. (2025).

To create text summaries describing corresponding X-ray sources, we use the Chandra Source Cat-
alog (Evans et al., 2024) to get the sky coordinates for all the X-ray sources in the field of each
observation, above a certain signal to noise level. We then use the SIMBAD database2 to find the
list of all possible identifiers under which each source can appear in the literature. We use these
identifiers to prompt an LLM (GPT 4o-mini) to search for information about the particular source
in the associated papers using a physically motivated prompt. The text summaries were validated
based on domain knowledge in X-ray astrophysics, by selecting a random set of 100 summaries and
evaluating the accuracy of the descriptions. In subsection A.1, we show the prompt used. Finally,
we embed the text summary using OpenAI’s ada-002 embedding model. As a result of this pro-
cess, for each astrophysical X-ray source, we have a text embedding of the text summary and data
embeddings from the list of photon events.

4 METHODOLOGY

4.1 CONTRASTIVE LEARNING

Figure 1 presents the architecture of the network used for contrastive learning. The contrastive learn-
ing network processes two types of embeddings: text embeddings of size 1536 and data embeddings
of size 8. We align the representations by first using a pair of fully connected neural networks to
bring both the text embeddings and the PPAD embeddings to the same dimension size of 64. We then
use a third fully connected network to generate a shared representation for both embeddings. The
network is trained using InfoNCE loss to align the embedding pairs for each source. We regularize
the loss to preserve the original distances in the pre-alignment embedding spaces (see Equation 1).

2https://simbad.u-strasbg.fr/simbad/
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Table 1: Target variables for the regression tasks. Variable is the name used in this work and Name is
the name used in the CSC. Soft, medium and hard refer to the average energy carried by the photons
in the corresponding band.

Variable Name Description
HardHS hard hs hard - soft energy band hardness ratio
HardMS hard ms medium - soft energy band hardness ratio
HardHM hard hm hard - medium energy band hardness ratio
pvar var prob b Gregory-Loredo variability probability
Fsig flux significance b flux significance

We train for 1000 epochs, using a batch size of 128, a temperature of 0.05, and an initial learning rate
of 10−4. After training, we evaluate alignment by performing regression on five physical variables,
summarized in Table 1.

The choice of the embeddings sizes (8 for the PPAD embeddings and 64 for the fully connected
networks) was based on our analysis of the natural trade-off between reconstruction quality and
representation quality. For the PPAD, an embedding size of size 4 resulted in poor light curve recon-
struction, whereas an embedding size of 16 resulted in a decrease in performance for downstream
tasks. A grid search for the optimal size of the fully-connected neural network yielded 64 as the
optimal value for the alignment task. We also note that the addition of the third concatenating fully
connected neural network was necessary to achieve better generalization in the validation set. How-
ever, this limits our ability to perform cross-modal retrieval. We plan to release a version of the
model that improves on this aspect.

4.2 REGRESSION

We use linear regression, with the default sklearn hyperparameters for the task of predicting
the summary statistics in Table 1. We explore three different training scenarios: 1) using the text
embeddings only; 2) using the photon event latents only; and 3) using the aligned embeddings in the
shared space. The regressor is trained separately for each scenario and for each target variable for
100 epochs and a learning rate of 10−3.

4.3 LOSS FUNCTION

The loss function for alignment has two components: a contrastive loss and a regularizer. The
contrastive loss is InfoNCE and is used to assess the alignment in the shared space. The regularizer
is based on MSE. Overall, the loss is defined as L = LInfoNCE + γLreg, where LInfoNCE is the
InfoNCE loss, Lreg is a regularization loss and γ (here, 0.3, obtained applying a grid search in the
hyperparameters space) is its weight. The regularization loss is defined as:

Lreg =
∑

s∈{text,data}

MSE(ds,latent, ds,original) (1)

where ds,original is the distance between pairs of points in the original representation space for a
modality s, ds,latent is the distance between the corresponding pairs in the final shared latent space
and MSE(x, y) = E[(x−y)2]. The regularization term aims to preserve the initial pairwise distances
between points in the shared latent space.

5 RESULTS

5.1 REGRESSION ON ASTROPHYSICAL PROPERTIES

Figure 2 presents the training (in blue) and validation (in orange) losses during contrastive training.
Both decrease consistently over the epochs, indicating a successful optimization, and are nearly
aligned, showing minimal overfitting and good generalization abilities. Convergence is observed
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Figure 2: Train and validation losses as a function of epoch. The red dashed line indicates the epoch
at which the validation loss is minimized.

already after ≈ 100 epochs, with minor subsequent improvements. The red dashed line in Figure 2
indicates the best epoch based on the validation loss. Overall, the low loss (≈ 0.2) indicates a high
level of alignment between the two modalities in the shared 64-dimensional space.

Table 2 presents the results for regression on 5 variables when considering only the text modal-
ity, only numerical data and the shared latent space considering both modalities. Combining both
modalities yields better results compared to using a single modality. The variable showing the most
substantial relative improvement is HardHS (≈ 24% MAE with respect to data), suggesting that the
information from both modalities is complementary for predicting the spectral shape of the source.

In general, the most significant improvements are observed for hardness ratios comprising the hard
component (on average, ≈ 23% improved MAE with respect to data alone). This result suggests
that contextual information about the source (typically included in text in the form of a description
of a spectral model fitted to the source) enriches the purely numerical data from the photon events.
In the case of pvar, instead, the information provided in the text and the data are similar, and the
results do not improve significantly using both modalities. Moreover, most of the Fsig information
is contained in the data, suggesting that text summaries do not contain relevant spectral information
when it comes to the significance of the X-ray detection. Results also demonstrate that relevant
information from both modalities can be captured effectively in a small latent space, with only
≈ 4% of the dimensions of the initial latent spaces combined.

5.2 NEAREST NEIGHBOR SEARCH AND ANOMALY DETECTION

As an evaluation metric for alignment, we look at the top-k retrieval accuracy in the validation set,
defined here as the fraction of true associated pairs of either modality that fall within the nearest k
neighbors in the shared embedding space, using a 2-norm distance metric. After training, this the
top-k retrieval accuracy is 93.3% for k = 1, 97.5% for k = 5, and 98.1% for k = 10.

To evaluate the semantic meaning of the aligned representations in the validation set beyond the
top-k retrieval metric, we look at the 10 nearest cross-modal (text) neighbors for the X-ray data
embedding of a relatively rare type of object (X-ray binary 2CXO J100157.9+553945), and com-
pare the associated aligned text descriptions to the text descriptions of the pre-alignment nearest
data embeddings to the test source. We find that the aligned text descriptions associated with the
text source comprise a narrower semantic domain compared to the pre-alignment associations, with
descriptions of X-ray binaries being included in 6 out of the 10 nearest neighbors, compared to only
two mentions of X-ray binaries in the pre-alignment neighbors.

To ensure that the model used more than just the text embedding information to align the repre-
sentations, we also look at the nearest cross-modal (data) neighbors for the text embedding of the
summary corresponding to the same source, and compare the mean and standard deviation of their
associated hardness ratios HardHS with those of the pre-alignment text neighbors. We find that the
aligned neighbors have a significantly smaller standard deviation for this spectral property compared
to the pre-alignment case (see subsection A.2). In cases where the alignment is not perfect, nearest
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Table 2: MAE comparison for different modalities and 5 variables (HardHS , HardMS , HardHM ,
pvar and Fsig). The best results are indicated in bold. Absolute and percentage improvements are
shown relative to the best single-modality result for each variable.

Variable Modality Improvement
Text Data Both Absolute %

HardHS 0.40 0.29 0.22 0.07 24%
HardMS 0.32 0.27 0.25 0.02 7%
HardHM 0.27 0.22 0.17 0.05 23%
pvar 0.23 0.22 0.21 0.01 5%
Fsig 5.15 2.43 2.27 0.16 7%

neighbors to an astrophysical source of a given class may correspond to descriptions of objects of a
different class, but with similar spectral properties. Such is the case, for example, between Active
Galactic Nuclei and X-ray binaries, both of which are accreting compact objects only different in
their mass scales.

We also run the aligned embeddings from the validation set through the Unsupervised Random
Forest (URF) anomaly detector (Baron & Poznanski, 2017). We rank the sources according to
their anomaly score, and find that the system is effective at isolating truly unique sources, such as
a highly variable and spectrally hard Ultra-Luminous X-ray source (ULX), among other sources
with extreme properties. These are relatively rare objects that may represent a transition between
stellar-mass black holes and intermediate-mass black holes (Bachetti et al., 2014; Feng et al., 2010).
This highlights the potential for discovery of our framework. In subsection A.3 we list some of the
anomalies.

Finally, we investigate which sources show the largest increase in anomaly score when the aligned
multimodal representations are processed through the URF, as opposed to only the text embeddings
or only the photon event embeddings. When ranked by their relative difference in anomaly score
between multi-modal and text only, a very distinct type of object appears to be represented very often
(three times more often than in the unimodal cases) at the top of the ranking: pulsars. Pulsars are
rare astrophysical sources associated with highly magnetized neutron stars at high rotational speeds
that often show a pattern of repeating X-ray flares.

6 CONCLUSIONS

We introduce a compact aligned representation, obtained through contrastive learning, to match
learned embeddings of numerical data described by a Poisson process (X-ray photon detections
from astrophysical sources), and text summaries describing the physical properties of those sources.
We show that the data embeddings can be meaningfully enhanced with text embeddings from appro-
priately designed text summaries, resulting in an improved performance of regression downstream
tasks. We also show that the learned representations can be generalized to previously unseen data,
and that they are semantically meaningful in the sense that similarity in the aligned representation
translates into similarity in both the physical properties of the sources as derived from the data, and
the associated astrophysical concepts described in the text. These results are an encouraging first
step in the design of a more general system that is able to perform cross-modal retrieval for Poisson-
like datasets in other knowledge domains and allow the generation of data from text as well as the
generation of physics-informed descriptions of unlabeled observations.
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A APPENDIX

A.1 LLM PROMPTING

The following is the prompt we use to provide the text summarizations:

prompt_question2 = f"""
Given the text provided, search for information about the source
identified with any of the following names:

{’, ’.join(repr(item) for item in name_ids)}.

The source is a source of type {tipos[j]}.

Again based on the text provided, answer the following questions
regarding the source in question, without mentioning the name of
the source or the target:

Is the source specifically mentioned in the text, or is the source
the target of the observation? If the answer is ’yes’ to any of
these questions, do the following. If not, say only "Not
discussed".

A) Summarize the X-ray properties of the source in question, as
inferred directly from the data. Focus on variability (transient
behavior, periodicity, etc.), and spectral features (models
fitted, hardness ratios, n_h, etc.), but provide values of any
relevant measured quantities if measured directly from the X-ray
data.
B) Describe how these properties or other X-ray data from the
source is used to test the scientific hypotheses being examined in
the text provided.
"""

A.2 NEAREST NEIGHBOR RETRIEVAL TABLE

Table 3 shows the results of our nearest neighbor search experiment for astrophysical source 2CXO
J100157.9+553945, an X-ray binary. In the aligned representation, objects that are semantically
related have higher similarity with respect to their pre-alignment data embeddings, indicating that
additional context provided by the text aids in the association. On the other hand, text alone does
not contain all the information about spectral properties, as indicated by the higher σHR of the 10
nearest neighbors in the pre-alignment text embeddings with respect to the aligned representation.
Thus, both data and text embeddings are being used in creating physically meaningful associations
of astrophysical sources.
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Table 3: Nearest neighbor retrieval experiment for the aligned representation and the pre-alignment
text and data representations. ncontext is the number of neighbors within the 10 nearest that are
consistent with the source type. µHR and σHR are respectively the mean and standard deviation of
the hardness ratio values among the 10 nearest neighbors.

Representation ncontext µHR σHR

Aligned 6 -0.025 0.330
Pre-alignment text 10 0.084 0.649
Pre-alignment data 2 -0.051 0.318

A.3 ANOMALY SCORE HISTOGRAM AND EXAMPLE

In Figure 3 we show the distribution of URF anomaly scores for the aligned embeddings of validation
set sources, and in Table 4 we list some anomalies. Among the objects with the highest anomaly
scores is 2CXO J095550.1+694046 (Obsid 10542), which is a fluctuating, transient ULX. These
types of transient luminous objects are rather rare and indicate very unique physical conditions. In
Figure 4 we show the LLM summary for this source.
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Figure 3: The distribution of anomaly scores obtained using the URF method applied to the aligned
shared representations in the validation set.

Table 4: A list of highly variable anomalies resulting from applying the URF to the aligned embed-
dings. We list the identifiers, the hardness ratio, and the type.

Name ObsID HardHS Type
2CXO J095550.1+694046 10542 0.92 ULX
2CXO J223940.2+751321 8588 -0.13 YSO
2CXO J171632.6+430229 3778 -0.84 EmLine
2CXO J201536.9+371123 11092 0.64 Cataclysmic
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 'The  source  identified  with  "[WSG84]  2"  is  mentioned  in  the  text  provided.  I  summarize  the  X-ray  properties  and 
 their  implications:  A)  X-ray  Properties\n\n1.  **Variability**:  The  source  has  transient  behavior  with  significant 
 luminosity  fluctuations.  Specifically,  periodicities  have  been  highlighted.  The  periodic  signals  were  found  at 
 approximately  55  d,  although  the  stability  of  this  modulation  was  questioned,  implying  that  the  source  does  not 
 maintain  consistent  brightness  levels  over  time.\n\n2.  **Spectral  Features**:  -  The  source  was  fitted  using  models 
 that  include  power-law  and  thermal  components.  The  photon  index  for  the  power-law  fit  was  constrained  to  be 
 around  Γ  =  1.33  ±  0.15  in  the  energy  range  of  0.5–8  keV.\n  -  For  the  thermal  model  component,  the  temperatures 
 were  estimated  at  around  0.6  keV,  suggesting  an  emission  predominantly  from  hot  plasma.\n  -  The  absorption 
 column  density  (N_H)  was  determined  to  be  around  3  ×  10^22  cm^−2,  which  suggests  a  significant  amount  of 
 interstellar  material  obscuring  the  X-ray  emissions  from  the  source.\n\n3.  **Luminosity**:  The  source\'s  observed 
 X-ray  luminosity  was  reported  to  exceed  10^39  erg  s^−1  during  various  observations,  indicating  that  the  source 
 operates  above  the  Eddington  limit,  which  is  characteristic  of  sources  of  type  X.\n\n  B)  Scientific  Hypotheses 
 Testing\n\nThe  properties  of  the  source  are  critical  in  evaluating  hypotheses  regarding  the  nature  of  ultraluminous 
 X-ray  sources.  The  variability  observed  in  the  light  curves  across  the  different  temporal  analyses  suggested  that  the 
 source  operates  under  the  "propeller  regime"  of  accretion.  This  regime  indicates  the  presence  of  a  strong  magnetic 
 field  and  can  be  key  for  understanding  the  behavior  of  neutron  stars  in  binary  systems.\n\nThe  spectral  features, 
 including  the  determined  N_H  and  photon  index,  help  to  classify  the  source's  emission  mechanism.  They  also 
 provide  insight  into  the  environmental  conditions  surrounding  the  source,  including  the  level  of  obscuration  by 
 interstellar  matter.  The  correlation  of  the  measured  luminosity  and  the  spectral  characteristics  with  other  known 
 sources  –  particularly  how  they  fit  within  the  expected  theoretical  frameworks  for  ultraluminous  X-ray  sources  – 
 serves  to  validate  or  challenge  prevailing  models.  The  emission  patterns  can  assist  in  distinguishing  whether  the 
 source  behaves  more  like  an  intermediate-mass  black  hole  or  if  it  is  instead  a  neutron  star  system  undergoing 
 unusual  accretion  dynamics.  In  summary,  the  X-ray  properties  of  the  source  serve  to  reinforce  the  arguments  made 
 regarding  the  diversity  of  ULXs  and  their  potential  to  test  existing  astrophysical  models  related  to  black  hole  (or 
 neutron star) formation and evolution through observations of their variability and spectral characteristics.' 

Figure 4: The LLM-extracted summary for source 2CXO J095550.1+694046, an anomalous ULX.
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