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Abstract: Making a single sensory modality precise and robust enough to get
human-level performance and autonomy could be very expensive or intractable.
Fusing information from multiple sensory modalities is promising – for example,
recent works showed benefits from combining vision with haptic sensors or with
audio data. Learning-based methods facilitate faster progress in this field by re-
moving the need for manual feature engineering. However, the sensor properties
and the choice of sensory modalities is still usually done manually. Our blue-sky
view is that we could simulate/emulate sensors with various properties, then infer
which properties and combinations of sensors yield the best learning outcomes.
This view would incentivize the development of novel, affordable sensors that can
make a noticeable impact on the performance, robustness and ease of training clas-
sifiers, models and policies for robotics. This would motivate making hardware
that provides signals complementary to the existing ones. As a result: we can
significantly expand the realm of applicability of the learning-based approaches.
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1 Motivation and Overview
Animals have evolved an impressive variety of sensors. A few examples: vision in the visible
light spectrum and beyond (snakes seeing in infrared, bumblebees and reindeer in UV); sound emit-
ters/receptors for ranges beyond the audible (elephant low-frequency calls to reach mates miles
away; high-frequency echo-location in bats), electroreception for underwater localization (in dol-
phins, sharks, platypus); sensing Earth’s magnetic field for navigation (in pigeons, turtles, salmon).
If ‘more-is-better’ were the main law of sensing, then we would expect to see impressive agglomer-
ations of sensory capabilities in the more advanced animals. Instead, sensors often seem specialized
to the class of tasks an animal needs to perform to survive. Thus, sensors likely co-evolved with the
organisms and, in part, defined the class of tasks that each organism could accomplish.

To build sensors for robotics we usually do task-agnostic optimization: maximize speed, accuracy
and robustness while minimizing size, cost and energy consumption. With the recent success of
machine learning, we now have scalable neural networks (NNs) that can learn to construct represen-
tations from raw sensor data. This can drastically improve both speed and precision/success rate.
For example, NNs can be trained to work on partial and noisy point clouds [1, 2, 3, 4], eliminat-
ing the need for shape completion. Shape completion is computationally expensive and can lead
to excessive thickening, which in turn limits the potential of active learning approaches (lack of
perception speed) and can degrade manipulation with thin objects (lack of point cloud precision).

A simplistic view is that we can include all the available sensory data and rely on end-to-end learn-
ing. However, such view could significantly impede the long-term progress. Below we highlight two
major issues and propose how to address them by employing a co-evolution approach to sensing.

The need for smart compromises: One major issue is that we cannot literally include in our hard-
ware platforms all possible sensors: this is intractable at least due to cost and size. Hence, we need
to make compromises: select a subset of sensors given the budget, size and energy constraints. The
choice of which sensors to buy/include is currently done manually. This could have been sufficient
in the past: the number of available sensors was small; the scope of the robotics tasks was limited
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(structured tasks in isolated environments); traditional approaches used sensor data in fixed ways.
For example, for a specific task and known objects one could select a fingertip force sensor that
would report normal force that an object exerts on the gripper’s finger. This 1D signal could be
enough to guide the manipulation if the initial pose of the object was known. In contrast, many
robotics researchers now strive to handle objects on unknown shape, material and weight in unstruc-
tured environments, striving to achieve this by automatically learning NN-based representations
from high-dimensional sensor data, such as RGBD camera images. The downside of this generality
is that the learned representations are not comprehensible at a glance. Hence, it is difficult to man-
ually identify sensory modalities and properties that would be necessary and sufficient for a certain
class of tasks. As a result, we usually end up including sensors that happen to be available, rather
than searching for sensors that would be optimal for the class of tasks we aim to solve.

Figure 1: Exploratory hand [5]

The need for smart sensing: Suppose we make a bet on sensors be-
coming smaller and cheaper, hoping to include more and more sen-
sory modalities in the future. Can we then expect that end-to-end
learning-from-scratch would suffice? Many academic researchers
do not have access to large-scale compute resources, hence their re-
search would be hampered if large-scale training is required in all
cases. Generality and flexibility are not always enough for those
working with robot hardware and limited computational resources.
Hence the need to retain only the sensory data crucial for support-
ing a given research agenda, and focus compute resources on the
relevant signals, without worrying that a key modality is omitted.
Smart hardware design could turn even a low-dimensional combi-
nation of signals into a highly efficient hybrid sensory modality.
For example, in experiments with the Exploratory Hand [5], adding
basic tactile sensing greatly improved contact and object identifi-
cation when combined with contact particle filtering. Roboticists
can deduce what kind of sensing could be useful from model-based
(physics) considerations. However, they can only test a few tar-
get settings/tasks manually. A more streamline way would help to
quickly gauge which novel components are effective, which combi-
nations have the potential to produce low-cost and accurate results.

1.1 Co-evolving sensors to optimize efficiency of learning algorithms that use sensor data
Our blue-sky paradigm is to integrate development of sensor hardware (and low-level signal pro-
cessing) with research on using various sensory modalities for learning-based approaches. We can
start by creating approximate models of various sensors in simulation, then feed the synthetic sensor
data to the target learning methods, and attempt to train on tasks that represent a class of problems of
interest. We could vary sensor properties, such as speed and precision, to determine which aspects
have significant effects on the training performance. With this, we could infer the minimum require-
ments for the sensors and find combinations of modalities that enable successful learning. There has
been progress in sensor modeling [6, 7, 8], but relying only on simulation is limiting, since it remains
challenging to fully close the sim-to-real gap [9]. Hence, after initial simulation-based analysis, it
would be crucial to use hardware data. We could collect sensor data from expensive sensors (e.g.
high-speed cameras, high-resolution tactile arrays) and identify the maximum level or degradation
that still allows learning useful representations. We could also search for optimal combination of
sensors: employ sensitivity analysis to determine modalities that contribute the most to the learning
success, use explainability methods to show contributions of different sensory modalities.

To motivate the above paradigm, let us consider one concrete challenging example: manipulation of
highly deformable objects. More than a decade ago, it has been shown that high-speed cameras and
high-speed actuation can help with higly dynamic tasks [10, 11]. However, such systems did not gain
widespread use, either due to their high cost or safety concerns of high-speed actuation. We could
search for alternative combinations. Perhaps high-speed actuation could be replaced by learning
multistep dynamics models: anticipate the motion of the object instead of reacting instantly to its
current state. Perhaps such multistep feedforward models would be an inexpensive replacement for
the feedback-based approaches that need to rely on high-speed sensing and actuation. We could also
test whether feedback-based approaches relying on high-speed cameras can cope with occlusions.
If not, we could search for complementary modalities, such as tactile sensing. We could analyze
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whether adding fingertip sensing is enough. It may turn out that, for some classes of tasks, it is
essential to add sensing to other parts of the robot hands/grippers/arms/body, suggesting the use of
sensors closer to an inexpensive ‘skin’. If using robotic skin turns out to be highly beneficial, we
could identify the minimum requirements for such sensors for a given set of tasks. This paradigm
would enable finding an optimal combination of the properties of a vision system (speed, number of
cameras) and tactile system (resolution, placement). It would allow to jointly minimize the sensor
cost and size requirements, while still ensuring that the learning algorithms get a signal that is
sufficiently rich for accomplishing a set of target tasks. We might discover that the well-performing
combinations require sensors that have not been built yet. For example, we might find that reporting
full contact information with all parts of the grippers in simulation is highly beneficial for successful
training, hence demonstrating the potential benefits of developing a sensitive skin that can cover a
large part of the grippers. By showing that learning succeeds when using such sensors we could help
the teams working on sensor hardware to obtain additional funding and support for the development.

2 Acquiring Novel Sensors and Sensory Modalities

Figure 2: In-the-air cloth folding, knotting [10, 11]

High-speed / high-coverage sensors: [10] showed
impressive results on dynamic tasks by combin-
ing fast actuation (180 degrees per 0.1 second) and
high-speed cameras with 500 frames per second
(FPS) rate to solve advanced tasks, such as in-the-
air cloth folding and knot tying. High-speed tactile
sensors (1kHz) enabled dynamic in-hand manipula-
tion tasks, such as pen spinning [12]. LIDAR sen-
sors have been tested at high speeds for race driv-
ing (>150 km/h), showing potential for high-speed
localization [13]. High-speed vision sensors is a re-
curring interest in robotics and computer vision.

Figure 3: ≈ 2000 skin
sensors on iCub [14, 15]

Systems beyond 500 FPS are expensive, moreover, caching and transmitting
at high rates can be problematic [16]. One solution is to compress the signal
at the time of sensing [17]. Another solution is event-based methods: re-
port only the salient changes [18, 19, 20]. This could allow high-resolution
sensing without overwhelming the learning methods with redundant data.
This could be particularly beneficial for high-coverage skin sensors, since
we know that humans rely on such ability (e.g. event-based aspects of fast-
adapting mechanoreceptors on human fingertips [21]; sensing clothing only
when we initially put it on). If we optimize such functionality separately
from understanding how the signals are used by the learning methods –
we risk creating input data that is difficult to interpret. Co-evolving sensor
properties together with the learning methods would help ensure the overall training success.

More than the sum of its parts: A number of recent works showed that combining multiple sensory
modalities is beneficial. Vision (from conventional 30Hz cameras) has been combined with tactile
and haptic sensors [22, 23, 24, 25, 26], range sensors [27, 28], auditory data [29, 30, 31, 32, 33].
Withholding certain modalities can be detrimental even for the most powerful and adaptive learning
systems – the human brain. Research in prosthetics shows that the absence of tactile information can
lower device adoption rates [34]; incorporating tactile sensing is important for making it easy for the
brain to adapt to using the hand and arm prosthetics [35, 36]. As the available learning algorithms
evolve, it is important to keep track of which modalities are necessary and sufficient for the new
state-of-the-art learning algorithms to succeed. Following the co-evolution paradigm would allow
us to jointly optimize the individual sensor properties and experiment with various combinations of
sensory modalities. As a result, we could discover the need for new hybrid sensory modalities. For
example, if high-speed visuo-tactile sensors show promise, but face issues with caching, transmis-
sion and synchronization – we could argue for developing an integrated sensing system. Placing
vision and tactile sensing on the same platform/chip would reduce cost, communication overhead,
improve synchronization, allow integrated compression and event-driven transmission (FingerVi-
sion [37] showed some of these benefits). The co-evolution paradigm would let us present a con-
vincing case by clearly showing the expected benefits on the learning system. This could strengthen
the motivation and enthusiasm for funding the hardware development. Once affordable hardware
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is available, the learning-for-robotics approaches would be able to show the benefits in hardware
experiments, thus furthering the adoption of advanced learning-based methods in core robotics.

The 6th sense and beyond: It can be easy to settle into a local optimum of using a common inex-
pensive set of visual and tactile sensors. To overcome this, the co-evolution view can help perform
initial estimation of what the novel sensing modalities could offer. Consider the recently developed
techniques of ‘seeing through walls’ with WiFi [38] and radio signals [39]. We could make a rough
model of these by post-processing real fully-observable data to approximate the quality of the data
that such sensors would output under occlusions. We can then quickly find out whether such novel
sensors can significantly improve the performance of the learning approaches. Similarly, we can
explore other unconventional sensors, for example, the miniature versions of spectrometers [40, 41].
Finally, we can compare the benefits of multistep predictive models versus using high-speed hard-
ware sensors. If multistep models can anticipate the near future well enough to replace a high-speed
sensor – then we can spend resources on acquiring data and compute power to train such models.

3 Optimization for the Co-evolution of Sensors
Global search for optimal sensing: To avoid the difficulties of modeling the physics of sensors, we
can instead create simulated data streams that match the precision, speed and basic noise patterns of
existing or hypothetical/new sensors. To find combinations of sensory modalities and sensor prop-
erties that yield the best performance, we can use data-efficient global search methods, e.g. a recent
variant of Bayesian optimization (BO) for mixed categorical-continuous spaces [42]. We can start by
sampling a batch of N sensor combinations {s(n)1 , ..., s

(n)
C }Nn=1 and properties {xxx(n)

1 , ...,xxx
(n)
C }Nn=1.

Here, each sc is a categorical variable indicating sensor type, and xxxc is a vector of sensor charac-
teristics (sampling rate, noise level, resolution, etc). We can launch N training runs in parallel on a
set of target tasks, then update BO posterior with results. This posterior would model the objective
function f(combo), expressing the expected performance of the learning algorithms that use a given
combination of sensors. With BO we also get uncertainty estimates. If the posterior shows benefits
from a novel combination of sensors, we can run optimization further until the uncertainty shrinks
enough to present a clear case for purchasing the new sensors or developing the new hardware. More
generally, we can view the search for optimal combination as hierarchical hyperparameter optimiza-
tion and apply a variety of relevant methods [43, 44]. Multi-objective optimization [45] could find a
Pareto frontier for optimizing performance versus cost to accommodate various budget levels.

Incorporating real data: To avoid over-reliance on simulation, we need to use real sensor data
when possible. For example, we could construct a dataset that pertains to the aspects of inter-
est/tasks from a high-resolution/speed sensor. Data collection could be done in a lab that develops
the high-resolution/speed sensors. Other labs can use the dataset to mimic lower-resolution/speed
(by degrading the sensor readings) to find the sensor resolution/speed that is sufficient for learning.

4 Relevant Work in Morphological Computation and Explainability
Co-evolving morphology: Recent works in searching for optimal morphology provide a level of
assurance that our proposed co-evolution approach would be tractable in practice. [46] provide
a way to evolve morphology of a rigid hand; [47, 48] develop automated co-design of soft hand
morphology and grasping controllers; [49] propose a way to specialize sensor readings for a soft
hand for new tasks. While these works do not suggest a longer-term strategy for sensor evolution,
they do show that co-evolving hardware and algorithms (e.g. controllers) is beneficial and tractable.
The classical sensor selection problem [50, 51] is related, though it views sensor properties as fixed.

Figure 4: Learning when to use force readings
(blue) on contact (shaded) vs images (red) [52]

Explainability: To analyze the contributions of vari-
ous sensor modalities we can leverage recent work in
explainability for deep learning [53, 54, 55, 56, 57].
This would be especially useful for sensors that appear
promising, but have not been widely adopted yet. Visu-
alizing the aspects of sensor readings that make a large
impact on the learned models would allow sensor devel-
opers to focus on enhancing these particular aspects.
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