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Abstract

Large Language Models (LLMs) have recently been used to automate the causal1

inference process by overcoming the expertise barrier. However, existing LLM-2

powered approaches for causal effect estimation often require human users to3

manually specify variables and methods, and those that do not require manual4

specification support only a limited set of causal effect measures. To address5

these limitations, we present Causal AI Scientist (CAIS), an LLM-augmented6

causal tool with self-correction capabilities. Specifically, given a natural language7

query and a dataset along with its description, CAIS uses LLMs to understand8

the user query and dataset, and then selects a method based on a decision tree9

approach. It then executes the selected method, applies a validation feedback loop10

for self-correction, and uses the results to answer the input question, enabling fully11

autonomous causal analysis. Extensive experiments across diverse queries curated12

from textbooks, synthetic data, and real-world datasets demonstrate CAIS’s ability13

to produce precise causal effect estimates through improved method selection and14

self-corrections, while reducing runtime errors. We believe CAIS will serve as a15

strong foundation for enabling fully automated causal inference with LLMs.16

1 Introduction17

Causal inference [Pearl, 2009, Imbens and Rubin, 2015] aims to quantify the effect of a treatment18

or intervention on an outcome of interest. Understanding cause–effect relationships is central to19

evidence-based decision-making in fields such as social science [Imbens, 2024], public health [Glass20

et al., 2013], and biomedicine [Kleinberg and Hripcsak, 2011]. Conducting rigorous causal analysis21

typically requires methodological expertise, from selecting valid causal effect measures (i.e., esti-22

mands) to choosing appropriate statistical methods, which limits accessibility for non-experts and23

poses significant challenges to fully automating the causal inference pipeline. For instance, a policy24

analyst with education and wage data may wish to estimate the effect of a job training program on25

earnings but, without causal identification knowledge, could reach invalid conclusions.26

Recently, Large Language Models (LLMs) have emerged as a solution to overcoming the expertise27

barrier, as they can automate parts of the causal inference process using their extensive knowledge28

across various domains [Kiciman et al., 2024]. Jiang et al. [2024a] have developed a specialized29

foundational model, LLM4Causal, for causal inference and causal graph learning. Similarly, more30

recent approaches have developed causal agents that leverage general-purpose foundational models31

like GPT [OpenAI et al., 2024] to enable end-to-end performance of causal inference and learning32

tasks [Wang et al., 2025, Han et al., 2024].33
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Figure 1: CAIS workflow. The user provides an input dataset (CSV file), its description, and an
associated causal query. Guided by a decision tree and a backbone LLM, CAIS selects an appropriate
estimation method, executes the code, and returns the estimated causal effect along with a natural-
language interpretation.

However, existing approaches face three main limitations: (i) fine-tuned models are often narrow in34

scope, supporting only a limited set of causal effect measures and excluding widely used methods in35

applied research; (ii) general-purpose tools are primarily evaluated on causal discovery tasks, leaving36

their causal estimation capabilities untested; and (iii) those that are tested for causal effect estimation37

are evaluated on examples where users specifically mention the causal effect to be computed, which38

assumes prior knowledge of causal inference. These limitations are insufficient for enabling the39

automation of causal inference that is both comprehensive and accessible to others.40

To address these limitations, we present Causal AI Scientist (CAIS), an end-to-end LLM-augmented41

causal tool for generating causality-driven answers to natural language queries. Given a dataset, its42

description, and a query, CAIS frames the task as a causal inference problem, automatically selects43

an appropriate method, estimates the causal effect, and interprets the result in context, as outlined44

in Figure 1. To select the right method, CAIS uses a structured decision tree that breaks down the45

selection process into focused steps. At each node, it prompts LLMs to evaluate specific features46

of the dataset or query, such as identifying the treatment, outcome, or instrument. This step-by-step47

approach reduces errors that commonly arise when relying entirely on LLMs for model selection.48

Additionally, CAIS performs diagnostic checks and incorporates a feedback loop to self-correct49

potential errors before producing a final answer.50

We evaluate CAIS on CauSciBench [Acharya et al., 2025], a real-world benchmark designed to51

evaluate the ability of LLMs to perform causal analysis on tabular datasets. CauSciBench consists of52

causal queries curated from real-world empirical studies, textbook-based examples from QRData53

(a standard benchmark dataset for causal inference developed by Liu et al. [2024a]), and simulated54

scenarios. Experiments on its three subsets, real-world studies, textbook examples, and synthetic55

datasets, show that CAIS outperforms other baselines in selecting the appropriate causal inference56

method and estimating accurate causal effect values.57

In summary, our contributions are:58

• We propose Causal AI Scientist (CAIS), the first fully autonomous tool designed specifically59

for causal inference.60

• We introduce a structured, rule-based decision tree that guides the method selection process.61

• We perform rigorous evaluations across multiple datasets, and conduct ablation studies to62

demonstrate the effectiveness of CAIS.63

2



2 Related Work64

LLMs and Causal Inference LLMs have been applied to causal inference with text data [Dhawan65

et al., 2024, Lin et al., 2023, Imai and Nakamura, 2024, Veljanovski and Wood-Doughty, 2024].66

Recent research has also explored their use for causal effect estimation in tabular datasets [Liu et al.,67

2024b, Chen et al., 2025]. However, these approaches often require users to specify the estimation68

method or variables. Jiang et al. [2024b] introduced a fine-tuned model for causal discovery and effect69

estimation, but it does not support methods like Instrumental Variables and Difference-in-Differences.70

Causal-Copilot [Wang et al., 2025] expands the range of methods but was primarily evaluated on71

causal discovery, not causal inference. Another approach builds causal graphs with LLMs [Kiciman72

et al., 2024, Han et al., 2024], but this is limited to graph-based estimation techniques. In contrast,73

our model automates variable and method selection using a decision tree and adds self-correction,74

creating a fully automatic causal inference pipeline for tabular datasets.75

LLM-powered data analysis Several works have studied the code generation capabilities of76

LLMs for data science tasks, including machine learning, statistical analysis, data manipulation, and77

visualization [Huang et al., 2022, Lai et al., 2023, Cheng et al., 2023, Nejjar et al., 2024, Jansen78

et al., 2023]. However, these approaches require users to provide specific instructions. Wu et al.79

[2024] extend this line of work by enabling LLM-powered tools to perform statistical reasoning and80

generate solutions to natural language questions. However, these do not involve causal methods.81

A promising direction for end-to-end analysis is the development of LLM-powered agents. Most82

of these tools are geared toward machine learning tasks [Zhang et al., 2023, 2024, Huang et al.,83

2024] or data science tasks involving both machine learning and statistical methods [Guo et al., 2024,84

Hong et al., 2024]. The capabilities of these tools have been enhanced through case-based reasoning85

[Guo et al., 2024], hierarchical decomposition [Hong et al., 2024], and interactive tools [Wu et al.,86

2023]. However, these agents do not focus on causality-based analysis, which requires different87

methodological considerations.88

3 Problem Formulation89

We are tasked with developing a system that can automatically perform causal effect estimation. The90

system receives three inputs:91

• A tabular dataset, D, containing observations for multiple units.92

• Metadata describing the variables and the data collection process.93

• A natural-language query, q, posing a causal question about the relationships within the data.94

The objective is to interpret the query q in the context of the dataset D and its metadata to produce an95

estimate of the causal effect of interest.96

3.1 Causal Model and Estimand97

To formalize this task, we adopt the potential outcomes framework [Rubin, 2005]. The system must98

first parse the query q and the metadata to identify the key variables: the treatment (T ), the outcome99

(Y ), and a set of covariates (X). Each unit i has two potential outcomes: Yi(1), the outcome if the100

unit received the treatment, and Yi(0), the outcome if it did not. Similarly, Ti denotes whether unit i101

belongs to the treatment (Ti = 1) or the control (Ti = 0) group.102

One of the causal estimands of interest is the Average Treatment Effect (ATE), defined as the expected
difference between these potential outcomes across the population:

τATE = E[Y (1)− Y (0)]

However, the fundamental problem of causal inference is that for any given unit, we can only observe103

one of its potential outcomes [Holland, 1986]. The observed outcome is Yi = Yi(Ti). This means the104

ATE cannot be calculated directly.105

Example: Job Training Program To make this concrete, consider a dataset from a job-training106

program (e.g., the Lalonde dataset [LaLonde, 1986]) and the query, “Does the training program107

boost earnings?”. Here, the treatment T is program participation, the outcome Y is earnings, and108
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covariates X could include education, age, and prior income. The ATE would represent the average109

boost in earnings if everyone in the population participated in the program versus if no one did.110

3.2 Identification: From Randomized to Observational Data111

The process of connecting the unobservable ATE to our observed data is called identification. This112

requires making assumptions.113

The simplest case is a Randomized Controlled Trial (RCT), where individuals are randomly assigned114

to treatment (T = 1) or control (T = 0). This randomization ensures that, on average, the two groups115

are identical before treatment. This satisfies the ignorability assumption ((Y (1), Y (0)) ⊥⊥ T ),116

meaning the treatment assignment is independent of the potential outcomes. In an RCT, the ATE can117

be simply estimated by the difference in the average outcomes of the two groups:118

τ̂ATE =
1

N1

∑
i:Ti=1

Yi −
1

N0

∑
i:Ti=0

Yi. (1)

However, most data is observational, not from an RCT. In observational data, ignorability is often119

violated. For instance, more motivated individuals (who might have higher earnings potential anyway)120

may be more likely to sign up for a job training program. This motivation is a confounder, a variable121

that affects both treatment assignment and the outcome.122

To handle confounders, we rely on a stronger, untestable assumption: conditional ignorability. This123

states that the treatment assignment is independent of the potential outcomes when conditioned on all124

the common causes (X) of T and Y . Mathematically, it can be formulated as follows:125

(Y (1), Y (0)) ⊥⊥ T | X (2)

Along with the Stable Unit Treatment Value Assumption (SUTVA) (no interference between units126

and consistency of treatment), conditional ignorability allows us to identify the ATE by adjusting for127

the covariates X:128

τATE = EX [E[Y | T = 1, X]− E[Y | T = 0, X]]

Estimation via Statistical Models To compute the quantity above, we use structural causal models129

[Pearl, 2009] to describe the relationships between Y , T , and X . A common approach is a linear130

structural model, which can be expressed as below:131

Y = α+XTβ + τT + ϵ, (3)

where α is the intercept, β is a vector of coefficients for the covariates X , τ is the treatment effect132

parameter, and ϵ is the unobserved error term. In this model, the coefficient τ directly corresponds to133

the ATE, as it represents the change in Y for a one-unit change in T after adjusting for X . We can134

then use an estimation method, such as linear regression, to find a sample-based estimate, τ̂ , from the135

data.136

3.3 The Role of the LLMs: Supplying Domain Expertise137

The entire causal inference process hinges on the validity of the conditional ignorability assumption,138

which cannot be verified from data alone. Justifying this assumption requires domain knowledge to139

argue that the set of measured covariates X is sufficient to account for all major confounders. This is140

precisely where the LLMs come in. The LLMs are designed to act as a proxy for a human domain141

expert. By leveraging their vast knowledge base, the LLMs can analyze the dataset’s metadata and142

the user’s query to:143

• Propose a plausible causal relationship between the variables.144

• Identify the most likely confounders that must be included in the set X .145

• Justify the conditional ignorability assumption, thereby enabling a principled estimation of146

the causal effect.147
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4 Methodology: CAIS148

CAIS consists of four successive methodological stages, each consisting of one or more micro-tools.149

Every stage combines logic from established causal inference principles with LLM reasoning, which150

is selectively applied to sub-tasks that require human-like judgment. The overall framework is151

depicted in Figure 1. Detailed descriptions of the specific micro-tools used in each stage are provided152

in Appendix D.153

Outline Specifically, our method consists of the following stages:154

• Stage 1 (Data Preprocessing & Query Decomposition) The process begins by analyzing the155

dataset to identify key components, such as control and target variables (Section 4.1).156

• Stage 2 (Method Selection) A rule-based decision tree is used to select a valid method for causal157

effect estimation based on the identified components (Section 4.2).158

• Stage 3 (Validation) The standard assumptions for the selected method are then validated. If any159

assumption check fails, the system backtracks to Stage 2 to find an alternative method, creating a160

validation loop (Section 4.3).161

• Stage 4 (Method Execution & Interpretation) Finally, once all checks pass, the chosen method162

is executed using predefined templates, and the final result is returned with an interpretation (Sec-163

tion 4.4).164

4.1 Stage 1: Dataset Preprocessing & Query Decomposition165

In this stage, the CAIS uses an LLM to analyze the dataset and formalize the user’s causal question.166

Guided by a structured prompt (see Appendix E.1 for details), in this stage we perform two sequential167

tasks. First, we profile the data by generating a summary of column types, missing values, and168

statistical distributions. Using this summary as context, we use an LLM to decompose the user’s169

query. It interprets the natural language request to identify and categorize the essential columns for170

the analysis. This involves designating the treatment, outcome, and confounder variables, as well171

as scanning for specialized variables—such as instrumental, running, or time-series variables—that172

enable specific causal methods. The final output is a structured definition of the causal problem,173

which serves as the input for Stage 2.174

4.2 Stage 2: Method Selection175

In this stage, CAIS selects a suitable causal inference method using the structured specification176

produced in Stage 1. The selection is performed through a rule-based decision tree that encodes177

standard design logic from the causal inference literature. At each branch, the system evaluates a178

specific property of the problem, such as whether treatment is randomly assigned, whether time179

and unit identifiers are present, or whether an instrumental or running variable is available. This180

information is already extracted in Stage 1 with deterministic rules and LLM assistance wherever181

necessary, ensuring transparency and reproducibility. The tree then routes the problem to one of a182

small number of valid methods, such as difference-in-means, ordinary least squares, difference-in-183

differences, etc.184

By breaking the selection process into explicit and verifiable steps, the decision tree ensures both185

accuracy and interpretability, avoiding the opacity of direct method selection by an LLM. The186

resulting method choice, along with its assumptions, is then passed to Stage 3 for validation. We187

provide a detailed explanation of the decision tree for method selection in Appendix C.188

4.3 Stage 3: Validation189

This stage serves as a crucial validation and feedback mechanism, acting as a safeguard against errors190

from the initial analysis and method selection. CAIS performs the standard statistical assumption191

checks required for the selected method, such as the parallel trends test for Difference-in-Differences192

or computing the F-statistic for an Instrumental Variable (IV) analysis. If failure occurs for any of193

these assumptions, the system initiates a feedback loop back to Stage 2. Information from the failed194

validation attempt is incorporated into the context, allowing us to skip past the previously selected195
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Collection # Queries # CSV Median
Obs.

Median
Cols.

QRData 39 35 1209 19.0
RealPapers 29 14 1720 17.5
Synthetic 45 45 428 7.0

Table 1: Statistics of the CauSciBench dataset

node from the decision tree and move on to the next plausible candidate. We provide a detailed196

qualitative example of the validation loop in Appendix F.197

4.4 Stage 4: Method Execution & Interpretation198

Once a method successfully passes all validation checks in Stage 3, CAIS proceeds to execution.199

This stage utilizes predefined code templates with placeholders for the key variables (e.g., treatment,200

outcome) identified in Stage 1. This template-based strategy was chosen over LLM-powered code201

generation to maximize reliability and efficiency. While generating code from scratch can be flexible,202

it increases the risk of implementation errors and can be slow and costly due to the need for iterative203

debugging [Chen et al., 2025]. Our approach minimizes these risks, as its core logic is pre-verified.204

After the method is executed, the final step is interpretation. The LLM is prompted to synthesize the205

numerical output—such as the causal estimate and its statistical significance—into a natural language206

explanation that directly addresses the user’s original query. Crucially, this interpretation is presented207

alongside important caveats, including the results of the validation checks from Stage 3 and a clear208

statement of the assumptions and limitations of the chosen method. This ensures the user understands209

the full context and reliability of the final estimate.210

5 Experimental Setup211

Dataset To evaluate CAIS, we use CauSciBench [Acharya et al., 2025], a comprehensive benchmark212

for assessing LLMs on causal-estimation tasks. CauSciBench consists of 113 causal queries drawn213

from three sources: (1) QRData [Liu et al., 2024b], a benchmark dataset primarily based on causal214

inference textbooks; (2) published papers across multiple disciplines; and (3) synthetic datasets with215

known ground-truth causal effects. This collection covers a wide range of evaluation scenarios and216

methods used in practice. Summary statistics of CauSciBench are presented in Table 1.217

Baselines Given the lack of LLM-based tools for fully automated causal inference, we compare218

our method against three strong prompting strategies that represent the state of the art in LLM-219

assisted data analysis. ReAct prompting [Yao et al., 2023] guides the model through iterative220

thought–action–observation cycles, which prior work shows to be highly effective for causal inference221

[Liu et al., 2024b]. Program of Thoughts (PoT) prompting [Chen et al., 2022] instead asks the model222

to produce a single, complete program that handles the entire analysis from data loading to reporting223

results. Finally, a Veridical Data Science–inspired prompt [Yu, 2020] emphasizes stability by224

requiring the model to reflect on and critique its own methodological choices before finalizing outputs.225

Examples of these prompts are provided in Appendix G.226

Implementation Details For estimating causal effects, we use the DoWhy [Sharma and Kiciman,227

2020, Blöbaum et al., 2024] and statsmodels [Seabold and Perktold, 2010] Python libraries. Our228

experiments use several LLMs as the reasoning backbone, including GPT-4o, Llama-3.3-70B-Instruct,229

and Gemini 2.5 Pro. All models were accessed via their respective APIs. To ensure reproducibility230

for all experiments, we used greedy decoding by setting the temperature parameter to 0.231

Evaluation Metrics We evaluate our pipeline using the following metrics.232

• Method Selection Accuracy (MSA): Percentage of queries where the selected method m̂i matches233

the reference method (mi).234

MSA =
1

N

N∑
i=1

1[m̂i = mi]× 100. (4)
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• Mean Relative Error (MRE): Average relative error between predicted causal effects (τ̂i) and235

reference values (τi).236

MRE =
1

N

N∑
i=1

min

(
|τ̂i − τi|
|τi|

, 1

)
× 100% (5)

To reduce sensitivity to outliers, relative error is capped at 100% per query.237

In the above formulas, N denotes the total number of queries in the evaluation set.238

6 Results239

We evaluate the performance of CAIS against the baseline prompting strategies (Section 5). We then240

analyze the effectiveness of its key components, the decision tree and the validation feedback loop,241

through ablation studies (Section 6.1). We also provide a detailed comparative performance analysis242

in Appendix A and detailed error analysis B. Table 2 presents the main results, comparing CAIS with243

the baselines on three subsets of CauSciBench.244

Method Selection Accuracy (↑) Mean Relative Error (↓)

Method GPT-4o GPT-4o-mini o3-mini Gemini 2.5 Pro Llama 3.3 70B GPT-4o GPT-4o-mini o3-mini Gemini 2.5 Pro Llama 3.3 70B

Textbook Data
ReAct 55.0 55.2 21.8 62.2 34.4 43.2 33.9 44.7 43.2 43.9
PoT 41.0 54.3 30.7 50.0 53.8 32.6 33.6 30.7 35.8 31.5
Veridical 60.5 41.0 61.5 59.0 46.1 40.7 42.2 27.6 37.8 55.4
CAIS 74.4 74.3 94.1 81.2 81.8 31.6 55.9 43.1 41.2 54.2

Synthetic Data
ReAct 51.2 41.9 46.7 48.2 55.8 27.9 21.2 21.0 20.2 21.3
PoT 53.3 37.7 42.2 53.2 47.6 19.9 37.7 42.2 24.0 21.1
Veridical 79.0 43.4 66.6 58.5 50.0 27.7 25.7 20.2 26.5 33.3
CAIS 76.9 75.9 73.3 75.6 79.5 17.4 16.2 20.0 18.5 50.0

Real Data
ReAct 69.5 51.8 57.1 55.0 44.4 43.1 52.3 43.2 38.1 52.6
PoT 57.7 54.6 33.3 42.2 53.8 54.7 55.6 46.3 42.0 53.8
Veridical 48.0 28.0 59.2 53.2 24.0 53.6 54.4 41.2 39.0 52.8
CAIS 69.2 65.2 76.9 78.3 73.0 47.5 54.6 39.7 32.0 37.4

Table 2: Performance of CAIS and baseline prompting strategies across all datasets and LLMs.
Results are reported for both Method Selection Accuracy (MSA, higher is better) and Mean
Relative Error (MRE, lower is better). Dataset blocks correspond to Textbook, Synthetic, and
Real-world settings. Bold entries indicate the best value in each row. CAIS consistently outperforms
baselines on MSA while maintaining competitive MRE.

CAIS shows superior method selection capabilities. Across all three datasets and models, we245

observe that CAIS outperforms the baselines in MSA, with significant margins in nearly all cases. For246

example, on the textbook dataset, o3-mini achieves an MSA of 94.1%, which is 32.6 percentage points247

higher than the second-best baseline. On average, CAIS improves MSA over the best-performing248

baseline per LLM by +22.18 points on the textbook data, +15.58 points on the synthetic data, and249

+14.10 points on the real data. These results demonstrate the effectiveness of our decision-tree-based250

method selection and validation feedback loop compared to relying solely on LLM reasoning.251

CAIS achieves competitive causal estimation accuracy. Performance trends in MRE are more252

nuanced. On the synthetic and real datasets, our model performs competitively, achieving either the253

lowest or second-lowest MRE for most LLMs. However, a notable exception is the Textbook dataset,254

where our model consistently underperforms.255

We attribute this discrepancy to a key design choice intended to prevent incorrect implementation.256

Our model uses pre-verified code templates and does not retry execution if an error occurs, which can257

result in a substantial MRE penalty on failure. In contrast, the baseline methods use iterative retries258

to ensure they always return a numerical estimate, even if the chosen causal method is fundamentally259

inappropriate for the data.260
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Study Method GPT-4o GPT-4o-mini o3-mini
QR LLM 48.4 50.6 50.0

Tree 74.4 74.3 94.1
Real LLM 48.0 60.8 45.5

Tree 69.2 65.2 76.9
Synth LLM 57.5 79.4 57.1

Tree 76.9 78.9 73.3

(a) Decision tree vs. LLM-based method selection.

Study Loop GPT-4o GPT-4o-mini o3-mini
QR No 80.0 41.2 97.1

Yes 74.4 74.3 94.1
Real No 56.0 33.3 75.0

Yes 69.2 65.2 76.9
Synth No 71.4 60.0 77.3

Yes 76.9 75.9 73.3

(b) Impact of the validation feedback loop.

Table 3: Ablation results: (a) decision tree vs. LLM-based method selection, and (b) validation
feedback loop.

6.1 Ablation Studies261

We conduct two ablation studies to assess the role of the core components in our pipeline: the decision262

tree and the validation loop. For the decision tree ablation, we compare CAIS with a variant that263

removes the decision tree and prompts an LLM to directly select the method. For the validation loop264

ablation, we compare CAIS with a variant without the validation loop, which simply uses the initially265

selected method without further checks.266

Decision tree significantly improves method-selection accuracy. The results in Table 3a clearly267

show that incorporating a structured decision tree for method selection leads to substantially higher268

MSA compared to relying solely on the LLM’s direct judgment. The decision tree decomposes269

the selection process into a sequence of targeted diagnostic questions, each focused on a specific270

dataset property (e.g., treatment timing, presence of instruments, covariate balance). This step-by-step271

approach constrains the LLM’s reasoning to smaller, well-defined decisions, reducing the likelihood272

of overgeneralization or bias toward familiar methods. For example, on QRData, GPT-4o improves273

from 48.4% to 74.4% and o3-mini from 50% to 94.1%. Overall, the decision-tree-based approach is274

superior in performance compared to solely relying on LLMs.275

The validation loop helps reduce the performance gap between weaker LLMs and stronger276

LLMs. As shown in Table 3b, the validation feedback loop is a critical component, especially for277

correcting errors from less capable models. This effect is most evident with GPT-4o-mini, whose278

accuracy improves dramatically from 41.2% to 74.3% (+33.1 points) on QRData and from 33.3%279

to 65.2% (+31.9 points) on the Real dataset. The loop provides this significant boost by allowing280

weaker models to recover from incorrect initial method selections, to which they are more prone.281

Conversely, the benefits are less pronounced for stronger models like GPT-4o. Since these models are282

more likely to select the correct method on the first attempt, the validation loop offers only marginal283

gains and can occasionally lead to a slight decrease in performance.284

7 Conclusion285

In this work, we introduce Causal AI Scientist (CAIS), an end-to-end tool that maps natural language286

queries and datasets to formal causal inference tasks by automatically selecting appropriate methods287

and interpreting results. When evaluated across diverse causal inference tasks using three datasets,288

CAIS consistently outperforms baseline prompting strategies in method selection and achieves com-289

petitive performance in causal effect estimation, particularly on structured datasets such as QRData290

and synthetic examples. These results highlight the value of CAIS’s decision-tree-based approach,291

which decomposes complex reasoning into interpretable steps. This not only improves estimation292

accuracy but also enhances robustness and transparency—qualities critical for researchers and prac-293

titioners in social science, healthcare, and related fields. Moreover, CAIS’s strong performance on294

well-structured datasets suggests that real-world outcomes can be further improved with better data295

preprocessing, reinforcing its utility as a trustworthy tool for non-experts seeking accessible and296

interpretable causal analysis.297
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Metric Baseline CAIS Change (%)

General Statistics
Total Queries 1551 585 –
Successful Queries 1476 512 –
Total Retries 930 159 –
Retries per Query (%) 59.96 27.18 ↓ 54.69
Method Match Rate (%) 52.08 76.20 ↑ 46.3
Mean Error (%) 35.38 37.66 ↑ 6.4

Error Breakdown (%)
Execution & Runtime Error 34.39 22.91 ↓ 33.4
Method Mismatch 29.77 21.20 ↓ 28.8
Data Loading Failure 3.10 0.00 ↓ 100.0
Missing Result 0.76 6.84 ↑ 800.0

Table 4: Comparison of performance and error types between baseline and CAIS. Arrow indicates
direction of change from baseline to CAIS.
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Figure 2: Confusion matrix showing method selection performance of CAIS (GPT-4o).

A Comparative Performance Analysis507

Here, we compare the overall performance of CAIS, which uses a structured approach, with baselines508

that rely on prompting-based LLM code generation, focusing on execution stability, error types, and509

the frequency of retries.510

• Higher Method Selection Accuracy: CAIS achieves a 46.3% higher method match rate511

than the baseline (76.2% vs. 52.08%), indicating more accurate identification of appropriate512

causal methods.513

• Substantial Reduction in Retries: CAIS reduces total retries by 54.6% per query (In514

CAIS, a retry refers to feedback via validation loop), suggesting more robust and executable515

outputs due to structured prompt generation and template-based code execution.516

• Improved Execution Stability: Execution and runtime errors are reduced by 33.4%, and517

method mismatches decrease by 28.8%, reflecting enhanced reliability in model reasoning518

and implementation.519

• No Data Loading Failures: CAIS handles datasets more reliably with 0% data loading520

failures compared to 3.1% in the baseline.521

• Trade-offs in Estimation Quality: While CAIS increases mean error slightly (from 35.38%522

to 37.66%), this may stem from using more advanced methods rather than defaulting to523

simple linear regression.524
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B Error Analysis525

This section provides a qualitative breakdown of the model’s primary failure modes. We analyze526

common error patterns to identify their root causes and determine which stages of the pipeline are527

most vulnerable.528

• Incorrect Variable Selection: LLMs frequently misinterpret temporal covariates, such529

as birth year or quarter indicators, as observation time points. This misinterpretation can530

erroneously lead to the selection of Difference-in-Differences as the causal inference method.531

Additionally, LLMs often misidentify treatment and outcome variables, particularly when532

column names lack clear descriptive labels or contain ambiguous terminology.533

• Wrong Method Selection: As demonstrated in Figure 2, LLMs misclassify Randomized534

Controlled Trials as Encouragement Designs, leading to the selection of Instrumental535

Variables instead of linear regression. Similarly, for synthetic datasets, the model fails536

to identify Instrumental Variables as the optimal method in three instances. This pattern537

underscores the inherent challenge of selecting valid instruments based solely on data538

descriptions.539

• Incorrect Data Formats: Implementation errors also stem from inconsistent data formatting.540

Specifically, certain variables are encoded as strings when causal inference packages like541

DoWhy require numerical inputs, creating compatibility issues that compromise execution.542

C Explanation of decision tree543

C.1 Notation544

We first define key notation used throughout this guide:545

• Y: Outcome (the variable we want to understand or predict)546

• T: Treatment assignment (whether a unit is assigned to treatment; T = 0 indicates the547

control group, T = 1 indicates the treatment group)548

• D: Treatment uptake (actual receipt of treatment, used in encouragement designs where549

assignment is not the same as uptake)550

• Z: Instrumental variable (a variable used to identify causal effects in the presence of551

unobserved confounding)552

• M: Mediator (a variable that lies on the causal pathway between treatment and outcome)553

• U: Unobserved confounder (a variable that affects both treatment and outcome but is not554

measured)555

• X: Covariates (observed variables that may influence treatment or outcome)556

• i: Individual units of analysis (for example people, organizations, or countries)557

C.2 Randomized Controlled Trials (RCTs)558

We begin by determining if the data comes from a Randomized Controlled Trial (RCT). RCTs are the559

gold standard for causal inference because random assignment eliminates confounding by making560

treatment and control groups comparable on average.561

C.2.1 Encouragement Designs562

Within RCTs, we first check if the data comes from an encouragement design. An encouragement563

design refers to scenarios where treatment assignment is random, but not all assignees accept or take564

up their assigned treatment, i.e., Ti ̸= Di [Holland, 1988].565

A classic example is the deworming experiment by Miguel and Kremer [Miguel and Kremer, 2004].566

Students were randomly assigned to receive deworming drugs, but not all students who were assigned567

actually took the drugs. In such cases, the corresponding relation would be:568

T (randomly assigned to get dewormed) → D (actually took the drug) → Y (school enrollment).
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To estimate the effect of actual treatment uptake (rather than just assignment), one uses instrumental569

variable analysis, with the random assignment T serving as an instrument for actual uptake D.570

C.2.2 Standard RCT Analysis571

If the data is not from an encouragement design, meaning everyone accepts their assigned treatment,572

this is the classic RCT analysis. One can simply compute the difference in means between the573

treatment and control groups.574

In many cases, the dataset might have pretreatment variables (baseline characteristics measured575

before treatment). While one can still compute a simple difference in means, the trend in the literature576

is to include these pretreatment variables as controls in an Ordinary Least Squares regression model.577

This is primarily done to improve the precision of the estimates (reduce the standard errors) rather578

than to address bias, since randomization already handles confounding.579

C.3 Observational Studies580

If the data is not from an RCT, we move to observational methods. Here, we cannot rely on581

randomization to eliminate confounding. Techniques to address confounding varies according to the582

characteristics of the data.583

C.3.1 Binary Treatments with Temporal Variation584

Difference in Differences (DiD) For binary treatments, we first consider Difference in Differences585

when time based confounding is a concern. DiD requires information about treatment timing, which586

could be either binary (pre or post treatment) or staggered (different units adopting treatment at587

different time periods).588

A classic example is the minimum wage study by Card and Krueger [Card and Krueger, 1994].589

Pennsylvania and New Jersey are two states with similar characteristics. New Jersey increased the590

minimum wage, but Pennsylvania did not. We want to know the effect of the minimum wage policy591

on employment. However, over time many things change that could affect employment outcomes.592

DiD uses the control group (Pennsylvania) as a counterfactual. Since the two states are similar, they593

would have evolved similarly absent treatment. By subtracting the changes in the control state from594

the changes in the treated state, DiD removes time varying confounders that affect both states equally.595

If no temporal information is available, DiD cannot be used.596

Regression Discontinuity Design (RDD) If DiD is not applicable, we check for Regression597

Discontinuity Design. RDD exploits situations where treatment assignment is determined by a598

threshold or cutoff rule, creating a sharp change in treatment status at a specific value of a running599

variable.600

For example, to study the impact of alcohol consumption on road accidents [Carpenter and Dobkin,601

2009], we can use the fact that alcohol consumption is legally allowed after age 21 in the United602

States. By comparing accident rates for people just above and below age 21, we can identify the causal603

effect of legal drinking. Here, age is the running variable, and treatment assignment is: treatment = 1604

if age ≥ 21, treatment = 0 if age < 21. If there is no clear running variable with a threshold that605

determines treatment assignment, RDD cannot be used.606

C.3.2 General Methods for Binary Treatments607

DiD and RDD can potentially work when the dataset meets certain characteristics. This would be608

the presence of treatment and outcome information over time for DiD and the presence of a running609

variable for RDD. If the dataset does not meet the respective criteria, we can rule those methods out.610

Next, we describe a more general group of methods.611

Backdoor adjustment Observational studies often rely on the conditional ignorability assumption:612

treatment assignment is independent of potential outcomes conditional on all observed confounders.613

This requires that all relevant confounders are observed. We can satisfy this assumption using Pearl’s614

backdoor adjustment criterion [Pearl, 2000]. For causal effect estimation, we use inverse probability615

weighting (IPW) using propensity scores [Rosenbaum and Rubin, 1983] and matching [Stuart, 2010].616
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Propensity score measures the probability that a unit receives the treatment given the observed617

covariates. Mathematically, e(X) = P (T = 1|X). One can estimate propensity scores by fitting a618

logit or a probit model with X as the dependent variable and T as the independent variable. To choose619

between IPW and matching, we assess covariate balance using the standardized mean difference620

(SMD) [Greifer, 2025]:621

SMD =
X̄treated − X̄control√

s2treated+s2control
2

.

where X̄treated denotes the mean of the covariates in the treated group, and s2treated their variance.622

Analogously, X̄control and s2control refer to the mean and variance of the covariates in the control group.623

If covariates are well balanced (typically SMD < 0.1), we use IPW methods directly. If covariates624

are poorly balanced, we use matching techniques to improve balance before estimating causal effects.625

C.3.3 Methods for Unmeasured Confounding626

Backdoor adjustment based methods fail if important confounders are unobserved. The presence627

of unobserved confounders decision is mostly made by combining domain knowledge and the data628

generating process. In cases where unobserved confounders are suspected, we can use Instrumental629

Variable or frontdoor estimation.630

Instrumental Variables (IV) The first approach is IV analysis [Imbens, 2014], which requires a631

valid instrument satisfying two conditions:632

1. Relevance: The instrument must be correlated with treatment (Cov(Z, T ) ̸= 0).633

2. Exclusion restriction: The instrument should affect the outcome only through treatment,634

not directly.635

The relevance assumption is testable, while the exclusion restriction must be justified through domain636

knowledge. A classic example of IV analysis is Card’s study [Card, 1993] estimating returns to years637

of education, using geographic proximity to college as an instrument. Many unobserved factors638

(parental income, personal motivation) affect earnings and education, making it difficult to isolate639

education’s causal effect. However, proximity to college affects educational attainment (relevance)640

but has no direct effect on earnings except through education (exclusion restriction). Finding good641

instruments is challenging, and quite often the dataset does not contain good candidates for an642

instrument.643

Frontdoor Criterion Another option that may work in the presence of unobserved confounders is644

frontdoor estimation based on the frontdoor criterion [Pearl, 2000]. This works when there exists a645

mediator that completely captures the treatment’s effect on the outcome and satisfies the frontdoor646

criterion:647

• The mediator must completely intercept the path from the treatment to the outcome.648

• The relationship between the treatment and the mediator must not be confounded.649

• The treatment must block all confounding paths between the mediator and the outcome.650

C.3.4 Method Hierarchy651

When multiple methods are applicable, there is a clear preference hierarchy:652

Instrumental Variables > Frontdoor Criterion > Backdoor Adjustment.

This hierarchy exists because IV and frontdoor methods can handle unobserved confounders, while653

backdoor adjustment requires that all confounders are observed. However, IV and frontdoor methods654

are less generally applicable, since finding valid instruments or suitable mediating variables is655

often challenging. Backdoor adjustment methods are more widely applicable but require stronger656

assumptions about confounding.657
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C.3.5 Nonbinary treatments658

For nonbinary treatments in observational studies, we consider three methods: instrumental variables659

(IV), frontdoor adjustment, and generalized propensity scores using the backdoor adjustment set.660

IV and frontdoor approaches apply almost exactly as in the case of binary treatments described661

above. Backdoor estimation also works similarly, except that we use a different estimation method to662

compute causal effects. In this case, we use generalized propensity scores, which extend the idea663

of propensity scores to continuous treatments [Hirano and Imbens, 2004]. The scores are computed664

using the backdoor adjustment set.665
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Figure 3: Decision-tree that guides method selection in CAIS. We prompt an LLM to generate
responses to queries corresponding to the decision nodes, and traverse the tree accordingly before
reaching a leaf node, which corresponds to a method.
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D Detailed Methodology666

In this section we extend the Methodology of CAIS discussed in Section 4 in detail. CAIS operates667

in four sequential stages. Each stage comprises one or more micro-tools that pass a typed artifact668

to the next stage. A validation loop connects Stage 3 back to Stage 2 when assumptions fail. In669

total, CAIS uses eight micro-tools: (1) input_parser, (2) dataset_analyzer, (3) query_interpreter, (4)670

method_selector, (5) method_validator, (6) method_executor, (7) explanation_generator, and (8)671

output_formatter. All tools read/write a shared typed state (dataset profile, normalized query, analysis672

plan, selected method with assumptions, diagnostics, estimates, and final report).673

D.1 Stage 1: Data Preprocessing & Query Decomposition674

We begin by using input_parser tool to analyze user-specified causal queries and extract three675

key components: the query type, the relevant variables, and any explicit constraints. It adopts a676

hybrid strategy combining regex-based heuristics with LLM-driven structured parsing. A tailored677

prompt E.1, enriched with dataset context when available, guides the LLM to classify the query678

(e.g., EFFECT_ESTIMATION, COUNTERFACTUAL, CORRELATION, DESCRIPTIVE, or OTHER) and to output679

a structured JSON conforming to a predefined schema. This schema enforces explicit roles for680

variables (treatment, outcome, covariates, grouping variables, instruments) and records constraints or681

dataset paths if mentioned. The LLM output is validated to ensure logical consistency (e.g., requiring682

both treatment and outcome for effect estimation queries) and alignment with dataset columns when683

available. Regex-based matching serves as a complementary mechanism, particularly for dataset path684

extraction, thereby improving robustness. The final output is a standardized dictionary encapsulating685

the original query, its type, extracted variables, constraints, and dataset path.686

Following this, the dataset_analyzer tool profiles the dataset to identify characteristics relevant687

for causal inference. It begins by extracting basic metadata such as the number of rows, columns,688

file name, and data types. A detailed analysis is then conducted to detect temporal structures,689

panel data patterns, and potential discontinuities, alongside computing correlations among numeric690

variables. The module further identifies potential treatments and outcomes, either heuristically or691

with LLM assistance, and assesses candidate instrumental variables. The prompts used in this stage692

are relatively light weight and mainly framed as direct questions to the LLM, an example prompt693

for identifying potential treatment and outcome variables can be found in Appendix E.2. For binary694

treatment candidates, it computes per-group summary statistics (e.g., group sizes, means, and standard695

deviations of covariates) to facilitate balance checks. Additionally, it records missing values, unique696

value counts, and column categorizations to provide a structured overview of the dataset. The final697

output is a comprehensive dictionary that consolidates dataset information, candidate causal variables,698

detected structures, and diagnostic statistics.699

Finally, the query_interpreter reconciles the normalized query with the dataset profile to materi-700

alize the treatment variable T , outcome Y , admissible covariates X , and any design-specific fields701

(instruments Z, running variable R with cutoff c, time and group indicators for DiD, etc.). For each of702

these fields, the system issues targeted prompts to an LLM, these structured prompts can be found in703

Appendix E.3. The responses are aggregated and validated to ensure coherence with both the dataset704

schema and causal design assumptions. The final output is a structured analysis plan comprising705

named columns, encoding details (e.g., reference levels, interaction terms), and a canonical estimand706

(such as ATE, ATT, LATE, sharp/fuzzy RDD, or DiD horizon), which then serves as the input for707

subsequent method selection phase.708

D.2 Stage 2: Method Selection709

Given the analysis plan, the method_selector chooses a candidate estimator via a deterministic710

decision tree that encodes standard causal design logic. The selector also emits an assumption711

checklist and an ordered fallback list to support backtracking. This stage is completelty deterministic712

and requires no involvement of LLMs. The design choice behind the nodes of the decision tree is713

already discussed in great detail in Appendix C.714
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D.3 Stage 3: Validation715

Once a candidate estimator is selected, the method_validator module verifies whether the assump-716

tions required for its validity hold in the given dataset. This includes statistical diagnostics (e.g.,717

overlap and positivity checks for treatment assignment, relevance and exogeneity tests for instruments,718

bandwidth support for RDD, and parallel trends diagnostics for DiD). The validator also cross-checks719

variable roles (treatment, outcome, covariates, instruments, etc.) against the dataset schema to ensure720

consistency. Failures in any diagnostic trigger a backtracking mechanism: the system reverts to721

the Method Selector’s fallback list to propose an alternative estimator whose assumptions are more722

compatible with the data. This creates a validation loop that guarantees every executed method723

is grounded in both causal theory and empirical feasibility, while preserving determinism in the724

diagnostic procedures. In this stage as well no LLMs are involved.725

D.4 Stage 4: Method Execution & Interpretation726

On a validated design, the Method Executor runs a pre-verified estimator template (statsmodels/2SLS,727

DiD with appropriate fixed effects, local polynomial RDD, matching/weighting for PSM/PSW,728

GPS, diff-in-means). Execution favors templates over code-generation for stability and speed. One729

cross-cutting prompt, STATSMODELS_PARAMS_IDENTIFICATION_PROMPT_TEMPLATE,730

helps select the correct coefficient(s) to report when formulas include encodings or interactions731

(used by linear/GLM-style estimators). Several methods expose small, function-local LLM assists732

for parameter suggestions or narrative—e.g., IV, RDD, DiD, GPS/backdoor/diff-in-means/linear733

regression helpers, each constrained to strict JSON and backed by deterministic fallbacks. Finally734

Explanation Generator then converts structured artifacts (chosen design, diagnostics, estimates) into735

a concise, dataset-specific justification and interpretation, while the Output Formatter assembles the736

final response object with numeric results, uncertainty, method card (assumptions & checks), and a737

short plain-language answer for downstream rendering.738

E Methodology Prompts739

E.1 Causal Query Parsing Prompt740

Analyze the following causal query strictly in the context of the provided dataset infor-
mation (if available). Identify the query type, key variables (mapping query terms to actual
column names when possible), constraints, and any explicitly mentioned dataset path.
User Query: "{query}
{dataset_context}
Guidance for Identifying Query Type:

• EFFECT_ESTIMATION: Look for keywords like "effect", "impact", "influence",
"cause", "affect", "consequence". Also consider questions asking "how does X affect
Y?" or comparing outcomes between groups based on an intervention.

• COUNTERFACTUAL: Look for hypothetical scenarios, often using phrases like
"what if", "if X had been", "would Y have changed", "imagine if", "counterfactual".

• CORRELATION: Look for keywords like "correlation", "association", "relation-
ship", "linked to", "related to". These queries ask about statistical relationships
without necessarily implying causality.

• DESCRIPTIVE: Queries that ask for summaries, descriptions, trends, or statistics
about the data without investigating causal links (e.g., "Show sales over time", "What
is the average age?").

• OTHER: Use if the query does not fit any of the above categories.
Choose the most appropriate type from: EFFECT_ESTIMATION, COUNTERFACTUAL,
CORRELATION, DESCRIPTIVE, OTHER.
Variable Roles to Identify:

• treatment: The intervention or variable whose effect is being studied.
741
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• outcome: The result or variable being measured.
• covariates_mentioned: Variables explicitly mentioned to control for or adjust for.
• grouping_vars: Variables identifying specific subgroups for analysis (e.g., "for men",

"in the sales department").
• instruments_mentioned: Variables explicitly mentioned as potential instruments.

Constraints: Conditions applied to the analysis (e.g., filters on columns, specific time
periods).
Dataset Path Mentioned: Extract the file path or URL if explicitly stated in the query.

Output: ONLY a valid JSON object matching this schema (no explanations or surrounding
text):

{
"query_type": "<Identified Query Type>",
"variables": {
"treatment": ["<Treatment Variable(s) Mentioned>"],
"outcome": ["<Outcome Variable(s) Mentioned>"],
"covariates_mentioned": ["<Covariate(s) Mentioned>"],
"grouping_vars": ["<Grouping Variable(s) Mentioned>"],
"instruments_mentioned": ["<Instrument(s) Mentioned>"]

},
"constraints": ["<Constraint 1>", "<Constraint 2>"],
"dataset_path_mentioned": "<Path Mentioned or null>"

}

If Dataset Context is provided, ensure variable names in the output JSON correspond to actual
column names where possible. If no context is provided, or if a mentioned variable doesn’t
map directly, use the phrasing from the query. Respond with only the JSON object.

742

E.2 Light Weight Inline Prompts for Dataset Analysis743

Prompt:
You are an expert causal inference data scientist. Identify potential treatment and outcome
variables from this dataset.
Dataset Description: {description_text}
Dataset Columns: {columns_list}
Column Types: {column_types}
Binary Columns (good treatment candidates): {binary_cols}
Instructions:

1. Identify TREATMENT variables: interventions, treatments, programs, policies,
or binary state changes. Look for binary variables or names with "treatment",
"intervention", "program", "policy", etc.

2. Identify OUTCOME variables: results, effects, or responses to treatments. Look
for numeric variables (especially non-binary) or names with "outcome", "result",
"effect", "score", etc.

Output: ONLY a valid JSON object with two lists:
{
"potential_treatments": ["treatment_a", "program_b"],
"potential_outcomes": ["result_score", "outcome_measure"]

}

744
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E.3 Query Interpretation Prompts745

746 Instrumental Variable Identification Prompt

Prompt:
You are a causal inference assistant tasked with assessing whether a valid Instrumental
Variable (IV) exists in the dataset. A valid IV must satisfy all of the following conditions:

1. Relevance: It must causally influence the Treatment.
2. Exclusion Restriction: It must affect the Outcome only through the Treatment —

not directly or indirectly via other paths.
3. Independence: It must be as good as randomly assigned with respect to any unob-

served confounders affecting the Outcome.
4. Compliance (for RCTs): If the dataset comes from a randomized controlled trial

or experiment, IVs are only valid if compliance data is available i.e., if some units
did not follow their assigned treatment. In this case, the random assignment may be
a valid IV, and compliance is the actual treatment variable. If compliance related
variable is not available, do not select IV.

5. The instrument must be one of the listed dataset columns (not the treatment itself),
and must not be assumed or invented.

You should only suggest an IV if you are confident that all the conditions are satisfied.
Otherwise, return "NULL".

Information Provided:
• User Query: {query}
• Dataset Description: {description}
• Treatment: {treatment}
• Outcome: {outcome}
• Available Columns: {column_info}

Output: Return a JSON object with the following structure:
{ "instrument_variable": "COLUMN_NAME_OR_NULL" }

747

RDD Identification Prompt

Prompt:
You are an expert causal inference assistant helping to determine if Regression Discontinuity
Design (RDD) is applicable for quasi-experimental analysis.

Information Provided:
• User Query: {query}
• Dataset Description: {description}
• Identified Treatment (tentative): {treatment}
• Identified Outcome (tentative): {outcome}
• Available Columns: {column_info}

Task: Your goal is to check if there is a Running Variable, i.e., a variable that determines
treatment/control.

• If the variable is above a certain cutoff, the unit is categorized as treated; if below, it
is control.

• The running variable must be numeric and continuous. Do not use categorical or
low-cardinality variables.

748
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• The treatment variable must be binary. If not, RDD is not valid.

Output: Respond ONLY with a valid JSON object. If RDD is not suggested by the context,
return null for both fields.

{ "running_variable": "COLUMN_NAME_OR_NULL", "cutoff_value": NUMERIC_VALUE_OR_NULL }

Examples:
{ "running_variable": "test_score", "cutoff_value": 70 }
{ "running_variable": null, "cutoff_value": null }

749

RCT Identification Prompt

Prompt:
You are an expert causal inference assistant helping to determine if the data comes from
a Randomized Controlled Trial (RCT). Your goal is to assess if the treatment assignment
mechanism described or implied was random.

Information Provided:
• User Query: {query}
• Dataset Description: {description}
• Identified Treatment (tentative): {treatment}
• Identified Outcome (tentative): {outcome}
• Available Columns: {column_info}

Output: Respond ONLY with a valid JSON object matching the required schema.
{ "is_rct": BOOLEAN_OR_NULL }

Examples:
{ "is_rct": true } # RCT likely
{ "is_rct": false } # Observational likely
{ "is_rct": null } # Unsure

750

Treatment Reference Identification Prompt

Prompt:
You are a causal inference assistant.

Dataset Information:
• Dataset Description: {description}
• Identified Treatment Variable: "{treatment_variable}"
• Unique Values in Treatment Variable (sample): {treatment_variable_values}
• User Query: {query}

Task: Based on the user query, determine if it specifies a particular category of the treatment
variable {treatment_variable} that should be considered the control, baseline, or reference
group for comparison.
Examples:

• Query: "Effect of DrugA vs Placebo" → Reference for treatment "Drug" = "Placebo"
• Query: "Compare ActiveLearning and StandardMethod against NoIntervention" →

Reference for "TeachingMethod" = "NoIntervention"
751
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If a reference level is clearly specified or strongly implied and it is one of the unique values
provided, identify it. Otherwise, state null. If multiple values seem like controls (e.g.,
"compare A and B vs C and D"), return null for now.

Output: Return ONLY a JSON object adhering to this schema:
{

"reference_level": "string_representing_the_level_or_null",
"reasoning": "string_or_null_brief_explanation"

}

752

Interaction Term Identification Prompt

Prompt:
You are a causal inference assistant.
Your task is to determine whether the user query suggests the inclusion of an interaction
term between the treatment and one covariate, specifically to assess heterogeneous treatment
effects (HTE).

Information Provided:
• User Query: {query}
• Dataset Description: {description}
• Identified Treatment Variable: {treatment_variable}
• Available Covariates (name: type): {covariates_list_with_types}

Instructions:
• ONLY suggest an interaction if the query explicitly mentions treatment across a

subgroup.
• DO NOT suggest an interaction if the query asks for an overall average effect or

does not mention subgroup analysis.
• If unsure, default to no interaction.

Output Schema:
{

"interaction_needed": boolean,
"interaction_variable": string_or_null,
"reasoning": string

}

Examples:
{
"interaction_needed": true,
"interaction_variable": "gender",
"reasoning": "Query asks if the treatment effect is for men."

}

{
"interaction_needed": false,
"interaction_variable": null,
"reasoning": "Query asks for the overall average treatment effect,

no specific subgroups mentioned for effect heterogeneity."
}

753
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Treatment Variable Identification Prompt

Prompt:
You are an expert in causal inference. Your task is to identify the treatment variable in a
dataset in order to perform a causal analysis that answers the user’s query.

Information Provided:
• User Query: {query}
• Dataset Description: {description}
• List of Available Variables: {column_info}

Task: Based on the query, dataset description, and available variables, determine which
variable is most likely to serve as the treatment variable.
If a clear treatment variable cannot be determined, return null.

Output Schema:
{ "treatment": "COLUMN_NAME_OR_NULL" }

754

Outcome Variable Identification Prompt

Prompt:
You are an expert in causal inference. Your task is to identify the outcome variable in a
dataset in order to perform a causal analysis that answers the user’s query.

Information Provided:
• User Query: {query}
• Dataset Description: {description}
• Available Variables: {column_info}

Task: Based on the query, dataset description, and available variables, determine which
variable is most likely to serve as the outcome variable in the causal analysis.
Do not speculate. If a clear outcome variable cannot be identified, return null.

Output Schema:
{ "outcome": "COLUMN_NAME_OR_NULL" }

755

Covariates Identification Prompt

Prompt:
You are an expert in causal inference. Your task is to identify the pre-treatment variables in
a dataset that can be used as controls in a causal estimation model to answer the user’s query.

Information Provided:
• User Query: {query}
• Dataset Description: {description}
• Available Variables: {column_info}
• Treatment Variable: {treatment}
• Outcome Variable: {outcome}

Task: Pre-treatment variables are those that are measured before the treatment is applied
and are not affected by the treatment. These variables can be used as controls in the causal
model.

756
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For example, in an RCT with outcome Y , treatment T , and pre-treatment variables X1, X2,
X3, we can perform a regression of the form:

Y ∼ T +X1 +X2 +X3

Based on the information above, return a list of variables that qualify as pre-treatment
variables from the available columns. If no suitable pre-treatment variables can be identified,
return an empty list.

Output Schema:
{ "covariates": ["LIST_OF_COLUMN_NAMES_OR_EMPTY_LIST"] }

757

Estimand Identification Prompt

Prompt:
You are an expert in causal inference. Your task is to determine the appropriate estimand to
answer a given query.

Information Provided:
• User Query: {query}
• Dataset Description: {dataset_description}
• Variables in Dataset: {dataset_columns}
• Treatment Variable: {treatment}
• Outcome Variable: {outcome}

Task: Given this information, decide whether the Average Treatment Effect (ATE) or the
Average Treatment Effect on the Treated (ATT) is more appropriate for answering the
query.

Output: Only return the estimand name:
"att" or "ate"

758

Confounder Identification Prompt

Prompt:
You are an expert in causal inference. Your task is to identify potential confounders in a
dataset that should be adjusted for when estimating the causal effect described in the user
query.

Information Provided:
• User Query: {query}
• Dataset Description: {description}
• Available Variables: {column_info}
• Treatment Variable: {treatment}
• Outcome Variable: {outcome}

Definition of Confounder: A confounder is a variable that:
1. Affects the treatment (influences who receives the treatment),
2. Affects the outcome,
3. Is not caused by the treatment (must be a pre-treatment variable),
4. Is not a mediator between treatment and outcome.
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These variables can create spurious associations between treatment and outcome if not
adjusted for.

Task: Based on the user query and the dataset description, identify which variables are likely
to be confounders. Only include variables that you believe causally affect both treatment and
outcome. If uncertain, only include variables where the justification is clear from the query or
description.

Output Schema:
{ "confounders": ["LIST_OF_COLUMN_NAMES_OR_EMPTY_LIST"] }
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DiD Term Identification Prompt

Prompt:
You are a causal inference assistant tasked with determining whether a valid Difference-in-
Differences (DiD) interaction term already exists in the dataset.
This DiD term should be a binary variable indicating whether a unit belongs to the treatment
group after treatment was applied.
For example, if a policy was enacted in 2020 for a particular state, then the DiD term would
equal 1 for units from that state in years after 2020, and 0 otherwise.

Information Provided:
• User Query: {query}
• Time Variable: {time_variable}
• Group Variable: {group_variable}
• Dataset Description: {description}
• Available Columns: {column_info}
• Column Types: {column_types}

Output: Return your answer as a valid JSON object with the following format:

{ "did_term": "COLUMN_NAME_OR_NULL" }
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F Detailed Study: Method Validation Loop762

This example presents the complete prompt employed in the validation feedback loop of CAIS.763

Worked Example: Method Validation

Query: Does having access to electricity increase kerosene expenditures?

Dataset: electrification_data.csv
Database: All_Data Collection (Rural Electrification Survey)

Description: This household survey covers 686 households in 120 habitations across Uttar
Pradesh, India. Using a geographic eligibility rule (households within 20–35 m vs. 45–
60 m of a power pole), it records monthly expenditures on food, education, kerosene, total
expenditure, appliance ownership, lighting usage, and satisfaction measures to assess the
impact of electrification.

Method Validation: During validation, the pipeline fits local regressions on kerosene
expenditure immediately below and above the 40 m cutoff to test for a sharp discontinuity.
When using the lightweight gpt-4o-mini model, the agent misidentified the “distance” variable
effectively widening the window around 40 m and consequently observed no statistically
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significant jump in outcomes at the threshold (p > 0.05). Because a pronounced, localized
shift at the cutoff is the cornerstone of RDD, this absence of any detectable discontinuity
constituted a direct violation of the RDD assumptions and led to its rejection. The system
then automatically backtracked down the decision tree, removed RDD from consideration,
and evaluated the next class of methods. Given the observational nature of the data and the
rich set of covariates, it advanced to propensity-score-matching as the alternative method to
create balanced treatment and control groups before estimating the effect.

765

G Baselines Prompts766

Here, we display all the prompts used for the baselines: ReAct, PoT, and Veridical Prompts for causal767

inference.768

ReAct Prompt Example

Prompt: You are working with a pandas DataFrame in Python. The name of the DataFrame
is df.
You should use the tools below to answer the question posed to you:
python_repl_ast: A Python shell. Use this to execute Python commands. Input should be a
valid Python command. When using this tool, sometimes output is abbreviated—make sure it
does not look abbreviated before using it in your answer.
Use the following format:

• Question: the input question you must answer
• Thought: what you should do next
• Action: the action to take (e.g., python_repl_ast)
• Action Input: the input to the action (code to execute)
• Observation: the result of the action

(This Thought/Action/Action Input/Observation can repeat N times.)
Final Answer: The final answer to the original input question. Please provide a structured
response including the following:

• Method
• Causal Effect
• Standard Deviation
• Treatment Variable
• Outcome Variable
• Covariates
• Instrument / Running Variable / Temporal Variable
• Results of Statistical Test
• Explanation for Model Choice
• Regression Equation

Instructions:
• Import libraries as needed.
• Do not create any plots.
• Use the print() function for all code outputs.
• If you output an Action step, stop after generating the Action Input and await

execution.
• If you output the Final Answer, do not include an Action step.
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Example Usage of python_repl_ast:
Action: python_repl_ast

770

Program of Thoughts based Prompt

Prompt: You are a data analyst with strong quantitative reasoning skills. Your task is to
answer a data-driven causal question using the provided dataset. The dataset description and
query are given below.
You should analyze the first 10 rows of the dataset and then write Python code to generalize
the analysis to the full table. You may use any Python libraries.

The returned value of the program should be the final answer. Please follow this format:

def solution():
# import libraries if needed
# load data from {self.dataset_path}
# write code to get the answer
# return answer

print(solution())

Dataset Description: {self.dataset_description} Dataset Path:
{self.dataset_path}

First 10 rows of data: {df.head(10)}
Question: {self.query}
Example Methods (choose one if applicable):

• propensity_score_weighting: output the ATE
• propensity_score_matching_treatment_to_control: output the ATT
• linear_regression: output coefficient of variable of interest
• instrumental_variable: output coefficient
• matching: output the ATE
• difference_in_differences: output coefficient
• regression_discontinuity_design: output coefficient
• linear_regression / difference_in_means: output coefficient / DiM

Response: The final answer should include a structured summary with the following fields
(use "NA" where not applicable):

• Method
• Causal Effect
• Standard Deviation
• Treatment Variable
• Outcome Variable
• Covariates
• Instrument / Running Variable / Temporal Variable
• Results of Statistical Test
• Explanation for Model Choice
• Regression Equation
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Veridical Prompt

You are an expert in statistics and causal reasoning. You will use a rigorous scientific
framework to answer a causal question using a structured, step-by-step process with checklists.
Problem Statement: self.query
Step 1: Domain Understanding - What is the real-world question? Why is it important? -
Could alternate formulations impact the final result?
Step 2: Dataset Overview - Dataset Path: dataset_path - Description: dataset_description -
Dataset Summary, Types, Missing Values, Preview Rows
Checklist: - How was data collected? Design principles? - What are the variables, types, and
units? - Are there errors or pre-processing artifacts?
Step 3: Exploratory Analysis - Identify confounders, mediators, biases - Suspect endogene-
ity? What instruments might be relevant? - Are strong correlations present?
Step 4: Modeling Strategy - Choose 3 candidate methods (e.g., matching, regression, IV) -
State assumptions and reasons for each method - Discuss software libraries to be used and
potential pitfalls - Outline key outputs and steps in analysis
Step 5: Post Hoc Analysis - Are relationships or outcomes unexpected? - Assess result
stability and robustness
Step 6: Interpretation and Reporting Final Answer: Report the following fields: - Method,
Causal Effect, Standard Deviation - Treatment and Outcome Variables - Covariates, Instru-
ments or Temporal Elements - Results of any statistical tests - Justification of model choice -
Equation or summary used
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