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Abstract

Large Language Models (LLMs) have recently been used to automate the causal
inference process by overcoming the expertise barrier. However, existing LLM-
powered approaches for causal effect estimation often require human users to
manually specify variables and methods, and those that do not require manual
specification support only a limited set of causal effect measures. To address
these limitations, we present Causal Al Scientist (CAIS), an LLM-augmented
causal tool with self-correction capabilities. Specifically, given a natural language
query and a dataset along with its description, CAIS uses LLMs to understand
the user query and dataset, and then selects a method based on a decision tree
approach. It then executes the selected method, applies a validation feedback loop
for self-correction, and uses the results to answer the input question, enabling fully
autonomous causal analysis. Extensive experiments across diverse queries curated
from textbooks, synthetic data, and real-world datasets demonstrate CAIS’s ability
to produce precise causal effect estimates through improved method selection and
self-corrections, while reducing runtime errors. We believe CAIS will serve as a
strong foundation for enabling fully automated causal inference with LLMs.

1 Introduction

Causal inference [Pearl, 2009, Imbens and Rubinl [2015] aims to quantify the effect of a treatment
or intervention on an outcome of interest. Understanding cause—effect relationships is central to
evidence-based decision-making in fields such as social science [Imbens} 2024], public health [Glass
et al.| 2013]], and biomedicine [Kleinberg and Hripcsak, |2011]]. Conducting rigorous causal analysis
typically requires methodological expertise, from selecting valid causal effect measures (i.e., esti-
mands) to choosing appropriate statistical methods, which limits accessibility for non-experts and
poses significant challenges to fully automating the causal inference pipeline. For instance, a policy
analyst with education and wage data may wish to estimate the effect of a job training program on
earnings but, without causal identification knowledge, could reach invalid conclusions.

Recently, Large Language Models (LLMs) have emerged as a solution to overcoming the expertise
barrier, as they can automate parts of the causal inference process using their extensive knowledge
across various domains [Kiciman et al., [2024]]. [Jiang et al.| [2024a]] have developed a specialized
foundational model, LLM4Causal, for causal inference and causal graph learning. Similarly, more
recent approaches have developed causal agents that leverage general-purpose foundational models
like GPT [[OpenAl et al.,|2024] to enable end-to-end performance of causal inference and learning
tasks [Wang et al., 2025/ [Han et al., 2024]).
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Figure 1: CAIS workflow. The user provides an input dataset (CSV file), its description, and an
associated causal query. Guided by a decision tree and a backbone LLM, CAIS selects an appropriate
estimation method, executes the code, and returns the estimated causal effect along with a natural-
language interpretation.

However, existing approaches face three main limitations: (i) fine-tuned models are often narrow in
scope, supporting only a limited set of causal effect measures and excluding widely used methods in
applied research; (ii) general-purpose tools are primarily evaluated on causal discovery tasks, leaving
their causal estimation capabilities untested; and (iii) those that are tested for causal effect estimation
are evaluated on examples where users specifically mention the causal effect to be computed, which
assumes prior knowledge of causal inference. These limitations are insufficient for enabling the
automation of causal inference that is both comprehensive and accessible to others.

To address these limitations, we present Causal Al Scientist (CAIS), an end-to-end LLM-augmented
causal tool for generating causality-driven answers to natural language queries. Given a dataset, its
description, and a query, CAIS frames the task as a causal inference problem, automatically selects
an appropriate method, estimates the causal effect, and interprets the result in context, as outlined
in Figure[I] To select the right method, CAIS uses a structured decision tree that breaks down the
selection process into focused steps. At each node, it prompts LLMs to evaluate specific features
of the dataset or query, such as identifying the treatment, outcome, or instrument. This step-by-step
approach reduces errors that commonly arise when relying entirely on LLMs for model selection.
Additionally, CAIS performs diagnostic checks and incorporates a feedback loop to self-correct
potential errors before producing a final answer.

We evaluate CAIS on CauSciBench [Acharya et al.l 2025]], a real-world benchmark designed to
evaluate the ability of LLMs to perform causal analysis on tabular datasets. CauSciBench consists of
causal queries curated from real-world empirical studies, textbook-based examples from QRData
(a standard benchmark dataset for causal inference developed by [Liu et al.| [2024a]), and simulated
scenarios. Experiments on its three subsets, real-world studies, textbook examples, and synthetic
datasets, show that CAIS outperforms other baselines in selecting the appropriate causal inference
method and estimating accurate causal effect values.

In summary, our contributions are:

* We propose Causal Al Scientist (CAIS), the first fully autonomous tool designed specifically
for causal inference.

* We introduce a structured, rule-based decision tree that guides the method selection process.

* We perform rigorous evaluations across multiple datasets, and conduct ablation studies to
demonstrate the effectiveness of CAIS.
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2 Related Work

LLMs and Causal Inference LLMs have been applied to causal inference with text data [Dhawan
et al.| 2024} |Lin et al.l [2023] Imai and Nakamural [2024, [Veljanovski and Wood-Doughty, 2024]].
Recent research has also explored their use for causal effect estimation in tabular datasets [Liu et al.,
2024bl |Chen et al., [2025]]. However, these approaches often require users to specify the estimation
method or variables. |Jiang et al.|[2024b] introduced a fine-tuned model for causal discovery and effect
estimation, but it does not support methods like Instrumental Variables and Difference-in-Differences.
Causal-Copilot [Wang et al., 2025]] expands the range of methods but was primarily evaluated on
causal discovery, not causal inference. Another approach builds causal graphs with LLMs [Kiciman
et al} 2024, [Han et al.| [2024]], but this is limited to graph-based estimation techniques. In contrast,
our model automates variable and method selection using a decision tree and adds self-correction,
creating a fully automatic causal inference pipeline for tabular datasets.

LLM-powered data analysis Several works have studied the code generation capabilities of
LLM:s for data science tasks, including machine learning, statistical analysis, data manipulation, and
visualization [Huang et al., 2022} [Lai et al., 2023} [Cheng et al., 2023} |[Nejjar et al., 2024} Jansen
et al.| |2023]]. However, these approaches require users to provide specific instructions. Wu et al.
[2024]] extend this line of work by enabling LLM-powered tools to perform statistical reasoning and
generate solutions to natural language questions. However, these do not involve causal methods.
A promising direction for end-to-end analysis is the development of LLM-powered agents. Most
of these tools are geared toward machine learning tasks [Zhang et al.| 2023|2024, |Huang et al.,
2024]| or data science tasks involving both machine learning and statistical methods [Guo et al., 2024/
Hong et al., |2024]]. The capabilities of these tools have been enhanced through case-based reasoning
[Guo et al.||2024], hierarchical decomposition [Hong et al.l 2024], and interactive tools [Wu et al.,
2023]]. However, these agents do not focus on causality-based analysis, which requires different
methodological considerations.

3 Problem Formulation

We are tasked with developing a system that can automatically perform causal effect estimation. The
system receives three inputs:

* A tabular dataset, D, containing observations for multiple units.
* Metadata describing the variables and the data collection process.
* A natural-language query, ¢, posing a causal question about the relationships within the data.

The objective is to interpret the query ¢ in the context of the dataset D and its metadata to produce an
estimate of the causal effect of interest.

3.1 Causal Model and Estimand

To formalize this task, we adopt the potential outcomes framework [Rubin, 2005]]. The system must
first parse the query ¢ and the metadata to identify the key variables: the treatment (7"), the outcome
(Y), and a set of covariates (X). Each unit ¢ has two potential outcomes: Y;(1), the outcome if the
unit received the treatment, and Y;(0), the outcome if it did not. Similarly, T; denotes whether unit 4
belongs to the treatment (7; = 1) or the control (7; = 0) group.

One of the causal estimands of interest is the Average Treatment Effect (ATE), defined as the expected
difference between these potential outcomes across the population:

TATE = E[Y(l) - Y(O)]

However, the fundamental problem of causal inference is that for any given unit, we can only observe
one of its potential outcomes [Holland, 1986]. The observed outcome is Y; = Y;(T;). This means the
ATE cannot be calculated directly.

Example: Job Training Program To make this concrete, consider a dataset from a job-training
program (e.g., the Lalonde dataset [LalLonde, [1986]) and the query, “Does the training program
boost earnings?”. Here, the treatment 7' is program participation, the outcome Y is earnings, and
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covariates X could include education, age, and prior income. The ATE would represent the average
boost in earnings if everyone in the population participated in the program versus if no one did.

3.2 Identification: From Randomized to Observational Data

The process of connecting the unobservable ATE to our observed data is called identification. This
requires making assumptions.

The simplest case is a Randomized Controlled Trial (RCT), where individuals are randomly assigned
to treatment (7" = 1) or control (7" = 0). This randomization ensures that, on average, the two groups
are identical before treatment. This satisfies the ignorability assumption ((Y'(1),Y(0)) L T)),
meaning the treatment assignment is independent of the potential outcomes. In an RCT, the ATE can
be simply estimated by the difference in the average outcomes of the two groups:

1 1
TATE = ~— Y — — Y;. (D
N i;;l No i:TZ:O

However, most data is observational, not from an RCT. In observational data, ignorability is often
violated. For instance, more motivated individuals (who might have higher earnings potential anyway)
may be more likely to sign up for a job training program. This motivation is a confounder, a variable
that affects both treatment assignment and the outcome.

To handle confounders, we rely on a stronger, untestable assumption: conditional ignorability. This
states that the treatment assignment is independent of the potential outcomes when conditioned on all
the common causes (X) of 7" and Y. Mathematically, it can be formulated as follows:

(Y(1),Y(0) LT|X 2

Along with the Stable Unit Treatment Value Assumption (SUTVA) (no interference between units
and consistency of treatment), conditional ignorability allows us to identify the ATE by adjusting for
the covariates X:

TATE:]E)([E[Y ‘ T = 1,X]7E[Y|T:0,XH

Estimation via Statistical Models To compute the quantity above, we use structural causal models
[Pearl, [2009] to describe the relationships between Y, T', and X. A common approach is a linear
structural model, which can be expressed as below:

Y=a+XTB8+7T+e¢, 3)

where « is the intercept, (3 is a vector of coefficients for the covariates X, 7 is the treatment effect
parameter, and e is the unobserved error term. In this model, the coefficient 7 directly corresponds to
the ATE, as it represents the change in Y for a one-unit change in 71" after adjusting for X. We can
then use an estimation method, such as linear regression, to find a sample-based estimate, 7, from the
data.

3.3 The Role of the LLMs: Supplying Domain Expertise

The entire causal inference process hinges on the validity of the conditional ignorability assumption,
which cannot be verified from data alone. Justifying this assumption requires domain knowledge to
argue that the set of measured covariates X is sufficient to account for all major confounders. This is
precisely where the LLMs come in. The LLMs are designed to act as a proxy for a human domain
expert. By leveraging their vast knowledge base, the LLMs can analyze the dataset’s metadata and
the user’s query to:

* Propose a plausible causal relationship between the variables.
* Identify the most likely confounders that must be included in the set X.

* Justify the conditional ignorability assumption, thereby enabling a principled estimation of
the causal effect.
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4 Methodology: CAIS

CAIS consists of four successive methodological stages, each consisting of one or more micro-tools.
Every stage combines logic from established causal inference principles with LLM reasoning, which
is selectively applied to sub-tasks that require human-like judgment. The overall framework is
depicted in Figure[l] Detailed descriptions of the specific micro-tools used in each stage are provided
in Appendix D]

Qutline Specifically, our method consists of the following stages:

» Stage 1 (Data Preprocessing & Query Decomposition) The process begins by analyzing the
dataset to identify key components, such as control and target variables (Section .1).

» Stage 2 (Method Selection) A rule-based decision tree is used to select a valid method for causal
effect estimation based on the identified components (Section4.2).

« Stage 3 (Validation) The standard assumptions for the selected method are then validated. If any
assumption check fails, the system backtracks to Stage 2 to find an alternative method, creating a
validation loop (Section {.3).

» Stage 4 (Method Execution & Interpretation) Finally, once all checks pass, the chosen method
is executed using predefined templates, and the final result is returned with an interpretation (Sec-
tion |4.4).

4.1 Stage 1: Dataset Preprocessing & Query Decomposition

In this stage, the CAIS uses an LLM to analyze the dataset and formalize the user’s causal question.
Guided by a structured prompt (see Appendix [E.T|for details), in this stage we perform two sequential
tasks. First, we profile the data by generating a summary of column types, missing values, and
statistical distributions. Using this summary as context, we use an LLM to decompose the user’s
query. It interprets the natural language request to identify and categorize the essential columns for
the analysis. This involves designating the treatment, outcome, and confounder variables, as well
as scanning for specialized variables—such as instrumental, running, or time-series variables—that
enable specific causal methods. The final output is a structured definition of the causal problem,
which serves as the input for Stage 2.

4.2 Stage 2: Method Selection

In this stage, CAIS selects a suitable causal inference method using the structured specification
produced in Stage 1. The selection is performed through a rule-based decision tree that encodes
standard design logic from the causal inference literature. At each branch, the system evaluates a
specific property of the problem, such as whether treatment is randomly assigned, whether time
and unit identifiers are present, or whether an instrumental or running variable is available. This
information is already extracted in Stage 1 with deterministic rules and LLM assistance wherever
necessary, ensuring transparency and reproducibility. The tree then routes the problem to one of a
small number of valid methods, such as difference-in-means, ordinary least squares, difference-in-
differences, etc.

By breaking the selection process into explicit and verifiable steps, the decision tree ensures both
accuracy and interpretability, avoiding the opacity of direct method selection by an LLM. The
resulting method choice, along with its assumptions, is then passed to Stage 3 for validation. We
provide a detailed explanation of the decision tree for method selection in Appendix

4.3 Stage 3: Validation

This stage serves as a crucial validation and feedback mechanism, acting as a safeguard against errors
from the initial analysis and method selection. CAIS performs the standard statistical assumption
checks required for the selected method, such as the parallel trends test for Difference-in-Differences
or computing the F-statistic for an Instrumental Variable (IV) analysis. If failure occurs for any of
these assumptions, the system initiates a feedback loop back to Stage 2. Information from the failed
validation attempt is incorporated into the context, allowing us to skip past the previously selected
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Collection  # Queries # CSV Mggiz.m Mgg&@

QRData 39 35 1209 19.0
RealPapers 29 14 1720 17.5
Synthetic 45 45 428 7.0

Table 1: Statistics of the CauSciBench dataset

node from the decision tree and move on to the next plausible candidate. We provide a detailed
qualitative example of the validation loop in Appendix [F]

4.4 Stage 4: Method Execution & Interpretation

Once a method successfully passes all validation checks in Stage 3, CAIS proceeds to execution.
This stage utilizes predefined code templates with placeholders for the key variables (e.g., treatment,
outcome) identified in Stage 1. This template-based strategy was chosen over LLM-powered code
generation to maximize reliability and efficiency. While generating code from scratch can be flexible,
it increases the risk of implementation errors and can be slow and costly due to the need for iterative
debugging [Chen et al.l 2025]]. Our approach minimizes these risks, as its core logic is pre-verified.
After the method is executed, the final step is interpretation. The LLM is prompted to synthesize the
numerical output—such as the causal estimate and its statistical significance—into a natural language
explanation that directly addresses the user’s original query. Crucially, this interpretation is presented
alongside important caveats, including the results of the validation checks from Stage 3 and a clear
statement of the assumptions and limitations of the chosen method. This ensures the user understands
the full context and reliability of the final estimate.

5 Experimental Setup

Dataset To evaluate CAIS, we use CauSciBench [[Acharya et al.,2025]], a comprehensive benchmark
for assessing LLMs on causal-estimation tasks. CauSciBench consists of 113 causal queries drawn
from three sources: (1) QRData [Liu et al.,|2024bf|, a benchmark dataset primarily based on causal
inference textbooks; (2) published papers across multiple disciplines; and (3) synthetic datasets with
known ground-truth causal effects. This collection covers a wide range of evaluation scenarios and
methods used in practice. Summary statistics of CauSciBench are presented in Table T}

Baselines Given the lack of LLM-based tools for fully automated causal inference, we compare
our method against three strong prompting strategies that represent the state of the art in LLM-
assisted data analysis. ReAct prompting [Yao et al., [2023]] guides the model through iterative
thought—action—observation cycles, which prior work shows to be highly effective for causal inference
[Liu et al.| |2024b]]. Program of Thoughts (PoT) prompting [[Chen et al.,2022]| instead asks the model
to produce a single, complete program that handles the entire analysis from data loading to reporting
results. Finally, a Veridical Data Science—inspired prompt [Yul |2020] emphasizes stability by
requiring the model to reflect on and critique its own methodological choices before finalizing outputs.
Examples of these prompts are provided in Appendix [G]

Implementation Details For estimating causal effects, we use the DoWhy [Sharma and Kiciman),
2020, Blobaum et al., 2024]] and statsmodels [Seabold and Perktold, |2010] Python libraries. Our
experiments use several LLMs as the reasoning backbone, including GPT-40, Llama-3.3-70B-Instruct,
and Gemini 2.5 Pro. All models were accessed via their respective APIs. To ensure reproducibility
for all experiments, we used greedy decoding by setting the temperature parameter to 0.

Evaluation Metrics We evaluate our pipeline using the following metrics.

* Method Selection Accuracy (MSA): Percentage of queries where the selected method 772; matches
the reference method (m;).

1 N

MSA = — ; 1[1n; = my] x 100. 4)
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* Mean Relative Error (MRE): Average relative error between predicted causal effects (7;) and
reference values (7;).

N
1 |7 — il
MRE = — in ( ——1 1) x 100% 5

sz( ) 00 ®
To reduce sensitivity to outliers, relative error is capped at 100% per query.

In the above formulas, NV denotes the total number of queries in the evaluation set.

6 Results

We evaluate the performance of CAIS against the baseline prompting strategies (Section[5). We then
analyze the effectiveness of its key components, the decision tree and the validation feedback loop,
through ablation studies (Section[6.T)). We also provide a detailed comparative performance analysis
in Appendix [A]and detailed error analysis [B] Table 2] presents the main results, comparing CAIS with
the baselines on three subsets of CauSciBench.

Method Selection Accuracy (1) Mean Relative Error (])

Method GPT-40 GPT-40-mini 03-mini Gemini 2.5 Pro Llama 3.3 70B GPT-40 GPT-40-mini 03-mini Gemini 2.5 Pro Llama 3.3 70B
Textbook Data

ReAct 55.0 55.2 21.8 62.2 34.4 432 339 44.7 432 439

PoT 41.0 54.3 30.7 50.0 53.8 32.6 33.6 30.7 35.8 31.5

Veridical ~ 60.5 41.0 61.5 59.0 46.1 40.7 422 27.6 37.8 554

CAIS 74.4 74.3 94.1 81.2 81.8 31.6 55.9 43.1 41.2 54.2
Synthetic Data

ReAct 51.2 419 46.7 48.2 55.8 279 21.2 21.0 20.2 21.3

PoT 533 37.7 422 53.2 47.6 19.9 37.7 422 24.0 21.1

Veridical ~ 79.0 434 66.6 58.5 50.0 27.7 25.7 20.2 26.5 333

CAIS 76.9 75.9 73.3 75.6 79.5 17.4 16.2 20.0 18.5 50.0

Real Data

ReAct 69.5 51.8 57.1 55.0 44.4 43.1 523 432 38.1 52.6

PoT 577 54.6 333 422 53.8 54.7 55.6 46.3 42.0 53.8

Veridical ~ 48.0 28.0 59.2 53.2 24.0 53.6 54.4 41.2 39.0 52.8

CAIS 69.2 65.2 76.9 78.3 73.0 475 54.6 39.7 32.0 374

Table 2: Performance of CAIS and baseline prompting strategies across all datasets and LLMs.
Results are reported for both Method Selection Accuracy (MSA, higher is better) and Mean
Relative Error (MRE, lower is better). Dataset blocks correspond to Textbook, Synthetic, and
Real-world settings. Bold entries indicate the best value in each row. CAIS consistently outperforms
baselines on MSA while maintaining competitive MRE.

CAIS shows superior method selection capabilities. Across all three datasets and models, we
observe that CAIS outperforms the baselines in MSA, with significant margins in nearly all cases. For
example, on the textbook dataset, 03-mini achieves an MSA of 94.1%, which is 32.6 percentage points
higher than the second-best baseline. On average, CAIS improves MSA over the best-performing
baseline per LLM by +22.18 points on the textbook data, +15.58 points on the synthetic data, and
+14.10 points on the real data. These results demonstrate the effectiveness of our decision-tree-based
method selection and validation feedback loop compared to relying solely on LLM reasoning.

CALIS achieves competitive causal estimation accuracy. Performance trends in MRE are more
nuanced. On the synthetic and real datasets, our model performs competitively, achieving either the
lowest or second-lowest MRE for most LLMs. However, a notable exception is the Textbook dataset,
where our model consistently underperforms.

We attribute this discrepancy to a key design choice intended to prevent incorrect implementation.
Our model uses pre-verified code templates and does not retry execution if an error occurs, which can
result in a substantial MRE penalty on failure. In contrast, the baseline methods use iterative retries
to ensure they always return a numerical estimate, even if the chosen causal method is fundamentally
inappropriate for the data.
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Study Method GPT-40 GPT-40-mini 03-mini Study Loop GPT-40 GPT-40-mini 03-mini

QR LLM 48.4 50.6 50.0 QR No 80.0 41.2 97.1
Tree 74.4 74.3 94.1 Yes 74.4 74.3 94.1
Real LLM 48.0 60.8 45.5 Real No 56.0 33.3 75.0
Tree 69.2 65.2 76.9 Yes 69.2 65.2 76.9
Synth LLM 57.5 79.4 57.1 Synth No 71.4 60.0 71.3
Tree 76.9 78.9 73.3 Yes 76.9 75.9 73.3
(a) Decision tree vs. LLM-based method selection. (b) Impact of the validation feedback loop.

Table 3: Ablation results: (a) decision tree vs. LLM-based method selection, and (b) validation
feedback loop.

6.1 Ablation Studies

We conduct two ablation studies to assess the role of the core components in our pipeline: the decision
tree and the validation loop. For the decision tree ablation, we compare CAIS with a variant that
removes the decision tree and prompts an LLM to directly select the method. For the validation loop
ablation, we compare CAIS with a variant without the validation loop, which simply uses the initially
selected method without further checks.

Decision tree significantly improves method-selection accuracy. The results in Table 33| clearly
show that incorporating a structured decision tree for method selection leads to substantially higher
MSA compared to relying solely on the LLM’s direct judgment. The decision tree decomposes
the selection process into a sequence of targeted diagnostic questions, each focused on a specific
dataset property (e.g., treatment timing, presence of instruments, covariate balance). This step-by-step
approach constrains the LLM’s reasoning to smaller, well-defined decisions, reducing the likelihood
of overgeneralization or bias toward familiar methods. For example, on QRData, GPT-40 improves
from 48.4% to 74.4% and 03-mini from 50% to 94.1%. Overall, the decision-tree-based approach is
superior in performance compared to solely relying on LLMs.

The validation loop helps reduce the performance gap between weaker LLMs and stronger
LLMs. As shown in Table[3b] the validation feedback loop is a critical component, especially for
correcting errors from less capable models. This effect is most evident with GPT-40-mini, whose
accuracy improves dramatically from 41.2% to 74.3% (+33.1 points) on QRData and from 33.3%
to 65.2% (+31.9 points) on the Real dataset. The loop provides this significant boost by allowing
weaker models to recover from incorrect initial method selections, to which they are more prone.

Conversely, the benefits are less pronounced for stronger models like GPT-40. Since these models are
more likely to select the correct method on the first attempt, the validation loop offers only marginal
gains and can occasionally lead to a slight decrease in performance.

7 Conclusion

In this work, we introduce Causal Al Scientist (CAIS), an end-to-end tool that maps natural language
queries and datasets to formal causal inference tasks by automatically selecting appropriate methods
and interpreting results. When evaluated across diverse causal inference tasks using three datasets,
CAIS consistently outperforms baseline prompting strategies in method selection and achieves com-
petitive performance in causal effect estimation, particularly on structured datasets such as QRData
and synthetic examples. These results highlight the value of CAIS’s decision-tree-based approach,
which decomposes complex reasoning into interpretable steps. This not only improves estimation
accuracy but also enhances robustness and transparency—qualities critical for researchers and prac-
titioners in social science, healthcare, and related fields. Moreover, CAIS’s strong performance on
well-structured datasets suggests that real-world outcomes can be further improved with better data
preprocessing, reinforcing its utility as a trustworthy tool for non-experts seeking accessible and
interpretable causal analysis.
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Metric Baseline CAIS Change (%)

General Statistics

Total Queries 1551 585 -
Successful Queries 1476 512 -
Total Retries 930 159 -
Retries per Query (%) 59.96 2718 | 54.69
Method Match Rate (%) 52.08 76.20 146.3
Mean Error (%) 3538 37.66 164
Error Breakdown (%)

Execution & Runtime Error  34.39 2291 1334
Method Mismatch 29.77  21.20 1288
Data Loading Failure 3.10 0.00 4100.0
Missing Result 0.76 6.84 1 800.0

Table 4: Comparison of performance and error types between baseline and CAIS. Arrow indicates
direction of change from baseline to CAIS.

DiD

Predicted Method
PS oLS

RDD

v

DiD

QRData Synthetic Data Real-world Studies

0 3 0 0 3 0 1 0 0 0 0 0

0 0 0 1 0 1 0 1 1 0 0 0 0 0

v oLs PS RDD DID v oLs PS RDD DID v oLs PS RDD
True Method True Method True Method

Figure 2: Confusion matrix showing method selection performance of CAIS (GPT-40).

A Comparative Performance Analysis

Here, we compare the overall performance of CAIS, which uses a structured approach, with baselines
that rely on prompting-based LLM code generation, focusing on execution stability, error types, and
the frequency of retries.

Higher Method Selection Accuracy: CAIS achieves a 46.3% higher method match rate
than the baseline (76.2% vs. 52.08%), indicating more accurate identification of appropriate
causal methods.

Substantial Reduction in Retries: CAIS reduces total retries by 54.6% per query (In
CALIS, a retry refers to feedback via validation loop), suggesting more robust and executable
outputs due to structured prompt generation and template-based code execution.

Improved Execution Stability: Execution and runtime errors are reduced by 33.4%, and
method mismatches decrease by 28.8%, reflecting enhanced reliability in model reasoning
and implementation.

No Data Loading Failures: CAIS handles datasets more reliably with 0% data loading
failures compared to 3.1% in the baseline.

Trade-offs in Estimation Quality: While CAIS increases mean error slightly (from 35.38%

to 37.66%), this may stem from using more advanced methods rather than defaulting to
simple linear regression.
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B Error Analysis

This section provides a qualitative breakdown of the model’s primary failure modes. We analyze
common error patterns to identify their root causes and determine which stages of the pipeline are
most vulnerable.

* Incorrect Variable Selection: LLMs frequently misinterpret temporal covariates, such
as birth year or quarter indicators, as observation time points. This misinterpretation can
erroneously lead to the selection of Difference-in-Differences as the causal inference method.
Additionally, LLMs often misidentify treatment and outcome variables, particularly when
column names lack clear descriptive labels or contain ambiguous terminology.

* Wrong Method Selection: As demonstrated in Figure 2] LLMs misclassify Randomized
Controlled Trials as Encouragement Designs, leading to the selection of Instrumental
Variables instead of linear regression. Similarly, for synthetic datasets, the model fails
to identify Instrumental Variables as the optimal method in three instances. This pattern
underscores the inherent challenge of selecting valid instruments based solely on data
descriptions.

* Incorrect Data Formats: Implementation errors also stem from inconsistent data formatting.
Specifically, certain variables are encoded as strings when causal inference packages like
DoWhy require numerical inputs, creating compatibility issues that compromise execution.

C Explanation of decision tree

C.1 Notation
We first define key notation used throughout this guide:

* Y: Outcome (the variable we want to understand or predict)

» T: Treatment assignment (whether a unit is assigned to treatment; 7" = 0 indicates the
control group, T = 1 indicates the treatment group)

* D: Treatment uptake (actual receipt of treatment, used in encouragement designs where
assignment is not the same as uptake)

* Z: Instrumental variable (a variable used to identify causal effects in the presence of
unobserved confounding)

* M: Mediator (a variable that lies on the causal pathway between treatment and outcome)

¢ U: Unobserved confounder (a variable that affects both treatment and outcome but is not
measured)

* X: Covariates (observed variables that may influence treatment or outcome)

* i: Individual units of analysis (for example people, organizations, or countries)

C.2 Randomized Controlled Trials (RCTs)

We begin by determining if the data comes from a Randomized Controlled Trial (RCT). RCTs are the
gold standard for causal inference because random assignment eliminates confounding by making
treatment and control groups comparable on average.

C.2.1 Encouragement Designs

Within RCTs, we first check if the data comes from an encouragement design. An encouragement
design refers to scenarios where treatment assignment is random, but not all assignees accept or take
up their assigned treatment, i.e., T; # D; [Holland, 1988|.

A classic example is the deworming experiment by Miguel and Kremer [Miguel and Kremer, 2004].
Students were randomly assigned to receive deworming drugs, but not all students who were assigned
actually took the drugs. In such cases, the corresponding relation would be:

T (randomly assigned to get dewormed) — D (actually took the drug) — Y (school enrollment).
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To estimate the effect of actual treatment uptake (rather than just assignment), one uses instrumental
variable analysis, with the random assignment 7" serving as an instrument for actual uptake D.

C.2.2 Standard RCT Analysis

If the data is not from an encouragement design, meaning everyone accepts their assigned treatment,
this is the classic RCT analysis. One can simply compute the difference in means between the
treatment and control groups.

In many cases, the dataset might have pretreatment variables (baseline characteristics measured
before treatment). While one can still compute a simple difference in means, the trend in the literature
is to include these pretreatment variables as controls in an Ordinary Least Squares regression model.
This is primarily done to improve the precision of the estimates (reduce the standard errors) rather
than to address bias, since randomization already handles confounding.

C.3 Observational Studies

If the data is not from an RCT, we move to observational methods. Here, we cannot rely on
randomization to eliminate confounding. Techniques to address confounding varies according to the
characteristics of the data.

C.3.1 Binary Treatments with Temporal Variation

Difference in Differences (DiD) For binary treatments, we first consider Difference in Differences
when time based confounding is a concern. DiD requires information about treatment timing, which
could be either binary (pre or post treatment) or staggered (different units adopting treatment at
different time periods).

A classic example is the minimum wage study by Card and Krueger [[Card and Krueger, |1994].
Pennsylvania and New Jersey are two states with similar characteristics. New Jersey increased the
minimum wage, but Pennsylvania did not. We want to know the effect of the minimum wage policy
on employment. However, over time many things change that could affect employment outcomes.
DiD uses the control group (Pennsylvania) as a counterfactual. Since the two states are similar, they
would have evolved similarly absent treatment. By subtracting the changes in the control state from
the changes in the treated state, DiD removes time varying confounders that affect both states equally.
If no temporal information is available, DiD cannot be used.

Regression Discontinuity Design (RDD) If DiD is not applicable, we check for Regression
Discontinuity Design. RDD exploits situations where treatment assignment is determined by a
threshold or cutoff rule, creating a sharp change in treatment status at a specific value of a running
variable.

For example, to study the impact of alcohol consumption on road accidents [[Carpenter and Dobkin
2009, we can use the fact that alcohol consumption is legally allowed after age 21 in the United
States. By comparing accident rates for people just above and below age 21, we can identify the causal
effect of legal drinking. Here, age is the running variable, and treatment assignment is: treatment = 1
if age > 21, treatment = 0 if age < 21. If there is no clear running variable with a threshold that
determines treatment assignment, RDD cannot be used.

C.3.2 General Methods for Binary Treatments

DiD and RDD can potentially work when the dataset meets certain characteristics. This would be
the presence of treatment and outcome information over time for DiD and the presence of a running
variable for RDD. If the dataset does not meet the respective criteria, we can rule those methods out.
Next, we describe a more general group of methods.

Backdoor adjustment Observational studies often rely on the conditional ignorability assumption:
treatment assignment is independent of potential outcomes conditional on all observed confounders.
This requires that all relevant confounders are observed. We can satisfy this assumption using Pearl’s
backdoor adjustment criterion [Pearl, [2000]. For causal effect estimation, we use inverse probability
weighting (IPW) using propensity scores [Rosenbaum and Rubin, |1983|] and matching [Stuart, [2010].
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Propensity score measures the probability that a unit receives the treatment given the observed
covariates. Mathematically, e(X) = P(T = 1|X). One can estimate propensity scores by fitting a
logit or a probit model with X as the dependent variable and T as the independent variable. To choose
between IPW and matching, we assess covariate balance using the standardized mean difference
(SMD) [Greifer, 2025]:

_ Kireated — Xcontrol

2 2
Sireated +scomm]
V 2

S . . 2 . .
where Xieaea denotes the mean of the covariates in the treated group, and s;_,.q their variance.

v 2 . . .
Analogously, Xconiol and sZ, ., refer to the mean and variance of the covariates in the control group.

SMD

If covariates are well balanced (typically SMD < 0.1), we use IPW methods directly. If covariates
are poorly balanced, we use matching techniques to improve balance before estimating causal effects.

C.3.3 Methods for Unmeasured Confounding

Backdoor adjustment based methods fail if important confounders are unobserved. The presence
of unobserved confounders decision is mostly made by combining domain knowledge and the data
generating process. In cases where unobserved confounders are suspected, we can use Instrumental
Variable or frontdoor estimation.

Instrumental Variables (IV) The first approach is IV analysis [Imbens, [2014]], which requires a
valid instrument satisfying two conditions:

1. Relevance: The instrument must be correlated with treatment (Cov(Z, T') # 0).

2. Exclusion restriction: The instrument should affect the outcome only through treatment,
not directly.

The relevance assumption is testable, while the exclusion restriction must be justified through domain
knowledge. A classic example of IV analysis is Card’s study [Card, [1993] estimating returns to years
of education, using geographic proximity to college as an instrument. Many unobserved factors
(parental income, personal motivation) affect earnings and education, making it difficult to isolate
education’s causal effect. However, proximity to college affects educational attainment (relevance)
but has no direct effect on earnings except through education (exclusion restriction). Finding good
instruments is challenging, and quite often the dataset does not contain good candidates for an
instrument.

Frontdoor Criterion Another option that may work in the presence of unobserved confounders is
frontdoor estimation based on the frontdoor criterion [Pearl, 2000]]. This works when there exists a
mediator that completely captures the treatment’s effect on the outcome and satisfies the frontdoor
criterion:

* The mediator must completely intercept the path from the treatment to the outcome.

* The relationship between the treatment and the mediator must not be confounded.

* The treatment must block all confounding paths between the mediator and the outcome.

C.3.4 Method Hierarchy

When multiple methods are applicable, there is a clear preference hierarchy:

Instrumental Variables > Frontdoor Criterion > Backdoor Adjustment.

This hierarchy exists because IV and frontdoor methods can handle unobserved confounders, while
backdoor adjustment requires that all confounders are observed. However, IV and frontdoor methods
are less generally applicable, since finding valid instruments or suitable mediating variables is
often challenging. Backdoor adjustment methods are more widely applicable but require stronger
assumptions about confounding.
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658 C.3.5 Nonbinary treatments

659 For nonbinary treatments in observational studies, we consider three methods: instrumental variables
es0 (IV), frontdoor adjustment, and generalized propensity scores using the backdoor adjustment set.
661 IV and frontdoor approaches apply almost exactly as in the case of binary treatments described
es2 above. Backdoor estimation also works similarly, except that we use a different estimation method to
663 compute causal effects. In this case, we use generalized propensity scores, which extend the idea
664 of propensity scores to continuous treatments [Hirano and Imbens| [2004]]. The scores are computed
665 using the backdoor adjustment set.
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Figure 3: Decision-tree that guides method selection in CAIS. We prompt an LLM to generate
responses to queries corresponding to the decision nodes, and traverse the tree accordingly before
reaching a leaf node, which corresponds to a method.
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D Detailed Methodology

In this section we extend the Methodology of CAIS discussed in Section[d]in detail. CAIS operates
in four sequential stages. Each stage comprises one or more micro-tools that pass a typed artifact
to the next stage. A validation loop connects Stage 3 back to Stage 2 when assumptions fail. In
total, CAIS uses eight micro-tools: (1) input_parser, (2) dataset_analyzer, (3) query_interpreter, (4)
method_selector, (5) method_validator, (6) method_executor, (7) explanation_generator, and (8)
output_formatter. All tools read/write a shared typed state (dataset profile, normalized query, analysis
plan, selected method with assumptions, diagnostics, estimates, and final report).

D.1 Stage 1: Data Preprocessing & Query Decomposition

We begin by using input_parser tool to analyze user-specified causal queries and extract three
key components: the query type, the relevant variables, and any explicit constraints. It adopts a
hybrid strategy combining regex-based heuristics with LLM-driven structured parsing. A tailored
prompt [E.T] enriched with dataset context when available, guides the LLM to classify the query
(e.g., EFFECT_ESTIMATION, COUNTERFACTUAL, CORRELATION, DESCRIPTIVE, or OTHER) and to output
a structured JSON conforming to a predefined schema. This schema enforces explicit roles for
variables (treatment, outcome, covariates, grouping variables, instruments) and records constraints or
dataset paths if mentioned. The LLM output is validated to ensure logical consistency (e.g., requiring
both treatment and outcome for effect estimation queries) and alignment with dataset columns when
available. Regex-based matching serves as a complementary mechanism, particularly for dataset path
extraction, thereby improving robustness. The final output is a standardized dictionary encapsulating
the original query, its type, extracted variables, constraints, and dataset path.

Following this, the dataset_analyzer tool profiles the dataset to identify characteristics relevant
for causal inference. It begins by extracting basic metadata such as the number of rows, columns,
file name, and data types. A detailed analysis is then conducted to detect temporal structures,
panel data patterns, and potential discontinuities, alongside computing correlations among numeric
variables. The module further identifies potential treatments and outcomes, either heuristically or
with LLM assistance, and assesses candidate instrumental variables. The prompts used in this stage
are relatively light weight and mainly framed as direct questions to the LLM, an example prompt
for identifying potential treatment and outcome variables can be found in Appendix [E.2] For binary
treatment candidates, it computes per-group summary statistics (e.g., group sizes, means, and standard
deviations of covariates) to facilitate balance checks. Additionally, it records missing values, unique
value counts, and column categorizations to provide a structured overview of the dataset. The final
output is a comprehensive dictionary that consolidates dataset information, candidate causal variables,
detected structures, and diagnostic statistics.

Finally, the query_interpreter reconciles the normalized query with the dataset profile to materi-
alize the treatment variable 7", outcome Y, admissible covariates X, and any design-specific fields
(instruments Z, running variable R with cutoff ¢, time and group indicators for DiD, etc.). For each of
these fields, the system issues targeted prompts to an LLM, these structured prompts can be found in
Appendix [E.3] The responses are aggregated and validated to ensure coherence with both the dataset
schema and causal design assumptions. The final output is a structured analysis plan comprising
named columns, encoding details (e.g., reference levels, interaction terms), and a canonical estimand
(such as ATE, ATT, LATE, sharp/fuzzy RDD, or DiD horizon), which then serves as the input for
subsequent method selection phase.

D.2 Stage 2: Method Selection

Given the analysis plan, the method_selector chooses a candidate estimator via a deterministic
decision tree that encodes standard causal design logic. The selector also emits an assumption
checklist and an ordered fallback list to support backtracking. This stage is completelty deterministic
and requires no involvement of LLMs. The design choice behind the nodes of the decision tree is
already discussed in great detail in Appendix
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D.3 Stage 3: Validation

Once a candidate estimator is selected, the method_validator module verifies whether the assump-
tions required for its validity hold in the given dataset. This includes statistical diagnostics (e.g.,
overlap and positivity checks for treatment assignment, relevance and exogeneity tests for instruments,
bandwidth support for RDD, and parallel trends diagnostics for DiD). The validator also cross-checks
variable roles (treatment, outcome, covariates, instruments, etc.) against the dataset schema to ensure
consistency. Failures in any diagnostic trigger a backtracking mechanism: the system reverts to
the Method Selector’s fallback list to propose an alternative estimator whose assumptions are more
compatible with the data. This creates a validation loop that guarantees every executed method
is grounded in both causal theory and empirical feasibility, while preserving determinism in the
diagnostic procedures. In this stage as well no LLMs are involved.

D.4 Stage 4: Method Execution & Interpretation

On a validated design, the Method Executor runs a pre-verified estimator template (statsmodels/2SLS,
DiD with appropriate fixed effects, local polynomial RDD, matching/weighting for PSM/PSW,
GPS, diff-in-means). Execution favors templates over code-generation for stability and speed. One
cross-cutting prompt, STATSMODELS_PARAMS_IDENTIFICATION_PROMPT_TEMPLATE,
helps select the correct coefficient(s) to report when formulas include encodings or interactions
(used by linear/GLM-style estimators). Several methods expose small, function-local LLLM assists
for parameter suggestions or narrative—e.g., [V, RDD, DiD, GPS/backdoor/diff-in-means/linear
regression helpers, each constrained to strict JSON and backed by deterministic fallbacks. Finally
Explanation Generator then converts structured artifacts (chosen design, diagnostics, estimates) into
a concise, dataset-specific justification and interpretation, while the Output Formatter assembles the
final response object with numeric results, uncertainty, method card (assumptions & checks), and a
short plain-language answer for downstream rendering.

E Methodology Prompts

E.1 Causal Query Parsing Prompt

e )

Analyze the following causal query strictly in the context of the provided dataset infor-
mation (if available). Identify the query type, key variables (mapping query terms to actual
column names when possible), constraints, and any explicitly mentioned dataset path.
User Query: "{query?}
{dataset_context}
Guidance for Identifying Query Type:
* EFFECT_ESTIMATION: Look for keywords like "effect", "impact", "influence",
"cause", "affect”, "consequence”. Also consider questions asking "how does X affect
Y?" or comparing outcomes between groups based on an intervention.

* COUNTERFACTUAL: Look for hypothetical scenarios, often using phrases like
"what if", "if X had been", "would Y have changed", "imagine if", "counterfactual".

* CORRELATION: Look for keywords like "correlation", "association", "relation-
ship", "linked to", "related to". These queries ask about statistical relationships
without necessarily implying causality.

DESCRIPTIVE: Queries that ask for summaries, descriptions, trends, or statistics
about the data without investigating causal links (e.g., "Show sales over time", "What
is the average age?").

* OTHER: Use if the query does not fit any of the above categories.

Choose the most appropriate type from: EFFECT_ESTIMATION, COUNTERFACTUAL,
CORRELATION, DESCRIPTIVE, OTHER.
Variable Roles to Identify:

* treatment: The intervention or variable whose effect is being studied.

20



742

743

744

* outcome: The result or variable being measured.
* covariates_mentioned: Variables explicitly mentioned to control for or adjust for.

* grouping_vars: Variables identifying specific subgroups for analysis (e.g., "for men",
"in the sales department").

* instruments_mentioned: Variables explicitly mentioned as potential instruments.

Constraints: Conditions applied to the analysis (e.g., filters on columns, specific time
periods).
Dataset Path Mentioned: Extract the file path or URL if explicitly stated in the query.

Output: ONLY a valid JSON object matching this schema (no explanations or surrounding
text):

{
"query_type": "<Identified Query Type>",
"variables": {
"treatment”: ["<Treatment Variable(s) Mentioned>"],
"outcome”: ["<Outcome Variable(s) Mentioned>"],
"covariates_mentioned”: ["<Covariate(s) Mentioned>"],
"grouping_vars": ["<Grouping Variable(s) Mentioned>"],
"instruments_mentioned”: ["<Instrument(s) Mentioned>"]
:})
"constraints”: ["<Constraint 1>", "<Constraint 2>"7,
"dataset_path_mentioned”: "<Path Mentioned or null>"
1

If Dataset Context is provided, ensure variable names in the output JSON correspond to actual
column names where possible. If no context is provided, or if a mentioned variable doesn’t
map directly, use the phrasing from the query. Respond with only the JSON object.

E.2 Light Weight Inline Prompts for Dataset Analysis

Prompt:

You are an expert causal inference data scientist. Identify potential treatment and outcome
variables from this dataset.

Dataset Description: {description_text}

Dataset Columns: {columns_list}

Column Types: {column_types}

Binary Columns (good treatment candidates): {binary_cols}

Instructions:

1. Identify TREATMENT variables: interventions, treatments, programs, policies,
or binary state changes. Look for binary variables or names with "treatment",

non non

"intervention", "program", "policy", etc.

2. Identify OUTCOME variables: results, effects, or responses to treatments. Look

for numeric variables (especially non-binary) or names with "outcome", "result",
"effect", "score", etc.

Output: ONLY a valid JSON object with two lists:
{

"potential_treatments”: ["treatment_a"”, "program_b"],
ial_ou : ult_ u _ u
"potential_outcomes”: ["result_score”, "outcome_measure"]

b
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E.3

Query Interpretation Prompts

,

Instrumental Variable Identification Prompt

Prompt:
You are a causal inference assistant tasked with assessing whether a valid Instrumental
Variable (IV) exists in the dataset. A valid IV must satisfy all of the following conditions:

1. Relevance: It must causally influence the Treatment.

2. Exclusion Restriction: It must affect the Outcome only through the Treatment —
not directly or indirectly via other paths.

3. Independence: It must be as good as randomly assigned with respect to any unob-
served confounders affecting the Outcome.

4. Compliance (for RCTs): If the dataset comes from a randomized controlled trial
or experiment, [Vs are only valid if compliance data is available i.e., if some units
did not follow their assigned treatment. In this case, the random assignment may be
a valid IV, and compliance is the actual treatment variable. If compliance related
variable is not available, do not select I'V.

5. The instrument must be one of the listed dataset columns (not the treatment itself),
and must not be assumed or invented.

You should only suggest an IV if you are confident that all the conditions are satisfied.
Otherwise, return "NULL".

Information Provided:
e User Query: {query}
 Dataset Description: {description}
e Treatment: {treatment}
¢ Outcome: {outcome?}
¢ Available Columns: {column_info}

Output: Return a JSON object with the following structure:
{ "instrument_variable”: "COLUMN_NAME_OR_NULL" }

RDD Identification Prompt

Prompt:
You arI; an expert causal inference assistant helping to determine if Regression Discontinuity
Design (RDD) is applicable for quasi-experimental analysis.
Information Provided:
* User Query: {query}
 Dataset Description: {description}
¢ Identified Treatment (tentative): {treatment}
¢ Identified Outcome (tentative): {outcome}
* Available Columns: {column_info}

Task: Your goal is to check if there is a Running Variable, i.e., a variable that determines
treatment/control.
« If the variable is above a certain cutoff, the unit is categorized as treated; if below, it
is control.
* The running variable must be numeric and continuous. Do not use categorical or
low-cardinality variables.
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 The treatment variable must be binary. If not, RDD is not valid.

Output: Respond ONLY with a valid JSON object. If RDD is not suggested by the context,
return null for both fields.

{ "running_variable”: "COLUMN_NAME_OR_NULL", "cutoff_value”: NUMERIC_VALUE_OR
Examples:
{ "running_variable"”: "test_score"”, "cutoff_value”: 70 }

{ "running_variable"”: null, "cutoff_value": null }

RCT Identification Prompt

Prompt:

You are an expert causal inference assistant helping to determine if the data comes from
a Randomized Controlled Trial (RCT). Your goal is to assess if the treatment assignment
mechanism described or implied was random.

Information Provided:
e User Query: {query}

 Dataset Description: {description}

Identified Treatment (tentative): {treatment}

Identified Outcome (tentative): {outcome?}
¢ Available Columns: {column_info}

Output: Respond ONLY with a valid JSON object matching the required schema.
{ "is_rct"”: BOOLEAN_OR_NULL }
Examples:

{ "is_rct": true } # RCT likely
{ "is_rct": false } # Observational likely
{ "is_rct”: null } # Unsure

Treatment Reference Identification Prompt

Prompt:
You are a causal inference assistant.

Dataset Information:
* Dataset Description: {description}
¢ Identified Treatment Variable: "{treatment_variable}"
* Unique Values in Treatment Variable (sample): {treatment_variable_values}
e User Query: {query}
Task: Based on the user query, determine if it specifies a particular category of the treatment
variable { treatment_variable?} that should be considered the control, baseline, or reference

group for comparison.
Examples:

* Query: "Effect of DrugA vs Placebo" — Reference for treatment "Drug" = "Placebo”

* Query: "Compare ActiveLearning and StandardMethod against Nolntervention" —
Reference for "TeachingMethod" = "Nolntervention"
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If a reference level is clearly specified or strongly implied and it is one of the unique values
provided, identify it. Otherwise, state null. If multiple values seem like controls (e.g.,
"compare A and B vs C and D"), return null for now.

Output: Return ONLY a JSON object adhering to this schema:
{

"reference_level”: "string_representing_the_level_or_null”,
"reasoning”: "string_or_null_brief_explanation”

Interaction Term Identification Prompt

753\

Prompt:

You are a causal inference assistant.

Your task is to determine whether the user query suggests the inclusion of an interaction
term between the treatment and one covariate, specifically to assess heterogeneous treatment
effects (HTE).

Information Provided:
* User Query: {query}
* Dataset Description: {description}
e Identified Treatment Variable: {treatment_variable}

* Available Covariates (name: type): {covariates_list_with_types}

Instructions:
* ONLY suggest an interaction if the query explicitly mentions treatment across a
subgroup.
* DO NOT suggest an interaction if the query asks for an overall average effect or
does not mention subgroup analysis.

e If unsure, default to no interaction.

Output Schema:
{

"interaction_needed"”: boolean,
"interaction_variable"”: string_or_null,
"reasoning”: string

3
Examples:
{
"interaction_needed": true,
"interaction_variable”: "gender”,
"reasoning”: "Query asks if the treatment effect is for men.”
"interaction_needed”: false,
"interaction_variable"”: null,
"reasoning”: "Query asks for the overall average treatment effect,
no specific subgroups mentioned for effect heterogeneity.”
}
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Treatment Variable Identification Prompt

Prompt:
You are an expert in causal inference. Your task is to identify the treatment variable in a
dataset in order to perform a causal analysis that answers the user’s query.

Information Provided:
* User Query: {query}
 Dataset Description: {description}
e List of Available Variables: {column_info}
Task: Based on the query, dataset description, and available variables, determine which

variable is most likely to serve as the treatment variable.
If a clear treatment variable cannot be determined, return null.

Output Schema:
{ "treatment”: "COLUMN_NAME_OR_NULL" }

Outcome Variable Identification Prompt

Prompt:
You are an expert in causal inference. Your task is to identify the outcome variable in a
dataset in order to perform a causal analysis that answers the user’s query.

Information Provided:
e User Query: {query}
* Dataset Description: {description}
¢ Available Variables: {column_info}
Task: Based on the query, dataset description, and available variables, determine which

variable is most likely to serve as the outcome variable in the causal analysis.
Do not speculate. If a clear outcome variable cannot be identified, return null.

Output Schema:
{ "outcome”: "COLUMN_NAME_OR_NULL" }

Covariates Identification Prompt

Prompt:
You are an expert in causal inference. Your task is to identify the pre-treatment variables in
a dataset that can be used as controls in a causal estimation model to answer the user’s query.

Information Provided:
e User Query: {query}
 Dataset Description: {description}
¢ Available Variables: {column_info}
e Treatment Variable: {treatment}
¢ Outcome Variable: {outcome}
Task: Pre-treatment variables are those that are measured before the treatment is applied

and are not affected by the treatment. These variables can be used as controls in the causal
model.
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For example, in an RCT with outcome Y, treatment 7', and pre-treatment variables X1, X2,
X3, we can perform a regression of the form:

Y ~T+ X1+ X2+ X3

Based on the information above, return a list of variables that qualify as pre-treatment
variables from the available columns. If no suitable pre-treatment variables can be identified,
return an empty list.

Output Schema:

{ "covariates”: ["LIST_OF_COLUMN_NAMES_OR_EMPTY_LIST"] }

Estimand Identification Prompt

Prompt:
You are an expert in causal inference. Your task is to determine the appropriate estimand to
answer a given query.

Information Provided:
e User Query: {query}
* Dataset Description: {dataset_description}
¢ Variables in Dataset: {dataset_columns?}
e Treatment Variable: {treatment}
¢ Outcome Variable: {outcome}

Task: Given this information, decide whether the Average Treatment Effect (ATE) or the
Average Treatment Effect on the Treated (ATT) is more appropriate for answering the

query.
QOutput: Only return the estimand name:

"att"” or "ate

Confounder Identification Prompt

Prompt:
You are an expert in causal inference. Your task is to identify potential confounders in a
dataset that should be adjusted for when estimating the causal effect described in the user

query.

Information Provided:
e User Query: {query}
 Dataset Description: {description}
¢ Available Variables: {column_info}
e Treatment Variable: {treatment}

¢ Qutcome Variable: {outcome?}

Definition of Confounder: A confounder is a variable that:
1. Affects the treatment (influences who receives the treatment),
2. Affects the outcome,
3. Is not caused by the treatment (must be a pre-treatment variable),
4. Is not a mediator between treatment and outcome.
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These variables can create spurious associations between treatment and outcome if not
adjusted for.

Task: Based on the user query and the dataset description, identify which variables are likely
to be confounders. Only include variables that you believe causally affect both treatment and
outcome. If uncertain, only include variables where the justification is clear from the query or
description.

Output Schema:
{ "confounders”: ["LIST_OF_COLUMN_NAMES_OR_EMPTY_LIST"] }

DiD Term Identification Prompt

Prompt:

You are a causal inference assistant tasked with determining whether a valid Difference-in-
Differences (DiD) interaction term already exists in the dataset.

This DiD term should be a binary variable indicating whether a unit belongs to the treatment
group after treatment was applied.

For example, if a policy was enacted in 2020 for a particular state, then the DiD term would
equal 1 for units from that state in years after 2020, and 0 otherwise.

Information Provided:
e User Query: {query}
e Time Variable: {time_variable}
* Group Variable: {group_variable}
 Dataset Description: {description}
* Available Columns: {column_info}

e Column Types: {column_types}

Output: Return your answer as a valid JSON object with the following format:
{ "did_term”: "COLUMN_NAME_OR_NULL" }

72 F Detailed Study: Method Validation Loop
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This example presents the complete prompt employed in the validation feedback loop of CAIS.

Worked Example: Method Validation

Query: Does having access to electricity increase kerosene expenditures?
Dataset: electrification_data.csv
Database: All_Data Collection (Rural Electrification Survey)

Description: This household survey covers 686 households in 120 habitations across Uttar
Pradesh, India. Using a geographic eligibility rule (households within 20-35 m vs. 45—
60 m of a power pole), it records monthly expenditures on food, education, kerosene, total
expenditure, appliance ownership, lighting usage, and satisfaction measures to assess the
impact of electrification.

Method Validation: During validation, the pipeline fits local regressions on kerosene
expenditure immediately below and above the 40 m cutoff to test for a sharp discontinuity.
When using the lightweight gpt-40-mini model, the agent misidentified the “distance” variable
effectively widening the window around 40 m and consequently observed no statistically
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significant jump in outcomes at the threshold (p > 0.05). Because a pronounced, localized
shift at the cutoff is the cornerstone of RDD, this absence of any detectable discontinuity
constituted a direct violation of the RDD assumptions and led to its rejection. The system
then automatically backtracked down the decision tree, removed RDD from consideration,
and evaluated the next class of methods. Given the observational nature of the data and the
rich set of covariates, it advanced to propensity-score-matching as the alternative method to
create balanced treatment and control groups before estimating the effect.

765 N

76 G Baselines Prompts

767 Here, we display all the prompts used for the baselines: ReAct, PoT, and Veridical Prompts for causal
768 inference.

ReAct Prompt Example

Prompt: You are working with a pandas DataFrame in Python. The name of the DataFrame
is df.

You should use the tools below to answer the question posed to you:

python_repl_ast: A Python shell. Use this to execute Python commands. Input should be a
valid Python command. When using this tool, sometimes output is abbreviated—make sure it
does not look abbreviated before using it in your answer.

Use the following format:

* Question: the input question you must answer

* Thought: what you should do next

* Action: the action to take (e.g., python_repl_ast)

* Action Input: the input to the action (code to execute)
e Observation: the result of the action

(This Thought/Action/Action Input/Observation can repeat N times.)
Final Answer: The final answer to the original input question. Please provide a structured
response including the following:

¢ Method
e Causal Effect
e Standard Deviation

Treatment Variable
¢ Outcome Variable

e Covariates

Instrument / Running Variable / Temporal Variable
Results of Statistical Test

» Explanation for Model Choice

» Regression Equation

Instructions:
 Import libraries as needed.
* Do not create any plots.
* Use the print () function for all code outputs.

* If you output an Action step, stop after generating the Action Input and await
execution.

* If you output the Final Answer, do not include an Action step.

769
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Example Usage of python_repl_ast:
Action: python_repl_ast

Program of Thoughts based Prompt

Prompt: You are a data analyst with strong quantitative reasoning skills. Your task is to
answer a data-driven causal question using the provided dataset. The dataset description and
query are given below.

You should analyze the first 10 rows of the dataset and then write Python code to generalize
the analysis to the full table. You may use any Python libraries.

The returned value of the program should be the final answer. Please follow this format:

def solution():
# import libraries if needed
# load data from {self.dataset_path}
# write code to get the answer
# return answer

print(solution())

Dataset Description: {self.dataset_description} Dataset Path:
{self.dataset_path}

First 10 rows of data: {df.head(10)}
Question: {self.query}
Example Methods (choose one if applicable):
* propensity_score_weighting: output the ATE
* propensity_score_matching_treatment_to_control: output the ATT
* linear_regression: output coefficient of variable of interest
* instrumental_variable: output coefficient
* matching: output the ATE
* difference_in_differences: output coefficient
* regression_discontinuity_design: output coefficient
e linear_regression / difference_in_means: output coefficient / DiM
Response: The final answer should include a structured summary with the following fields
(use "NA" where not applicable):
* Method
* Causal Effect

e Standard Deviation

Treatment Variable
¢ Outcome Variable

e Covariates

Instrument / Running Variable / Temporal Variable
Results of Statistical Test
» Explanation for Model Choice

Regression Equation
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772

Veridical Prompt

You are an expert in statistics and causal reasoning. You will use a rigorous scientific
framework to answer a causal question using a structured, step-by-step process with checklists.
Problem Statement: self.query

Step 1: Domain Understanding - What is the real-world question? Why is it important? -
Could alternate formulations impact the final result?

Step 2: Dataset Overview - Dataset Path: dataset_path - Description: dataset_description -
Dataset Summary, Types, Missing Values, Preview Rows

Checklist: - How was data collected? Design principles? - What are the variables, types, and
units? - Are there errors or pre-processing artifacts?

Step 3: Exploratory Analysis - Identify confounders, mediators, biases - Suspect endogene-
ity? What instruments might be relevant? - Are strong correlations present?

Step 4: Modeling Strategy - Choose 3 candidate methods (e.g., matching, regression, IV) -
State assumptions and reasons for each method - Discuss software libraries to be used and
potential pitfalls - Outline key outputs and steps in analysis

Step 5: Post Hoc Analysis - Are relationships or outcomes unexpected? - Assess result
stability and robustness

Step 6: Interpretation and Reporting Final Answer: Report the following fields: - Method,
Causal Effect, Standard Deviation - Treatment and Outcome Variables - Covariates, Instru-
ments or Temporal Elements - Results of any statistical tests - Justification of model choice -
Equation or summary used
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