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Figure 1: Maniwhere. Our framework is capable of training visuomotor robots that generalize
effectively across various types of visual changes. Furthermore, Maniwhere can adeptly handle
diverse real-world visual scenarios with various appearances and camera views in a zero-shot manner.

Abstract: Can we endow visuomotor robots with generalization capabilities to
operate in diverse open-world scenarios? In this paper, we propose Maniwhere,
a generalizable framework tailored for visual reinforcement learning, enabling
the trained robot policies to generalize across a combination of multiple visual
disturbance types. Specifically, we introduce a multi-view representation learning
approach fused with Spatial Transformer Network (STN) module to capture shared
semantic information and correspondences among different viewpoints. In addi-
tion, we employ a curriculum-based randomization and augmentation approach to
stabilize the RL training process and strengthen the visual generalization ability.
To exhibit the effectiveness of Maniwhere, we meticulously design 8 tasks en-
compassing articulate objects, bi-manual, and dexterous hand manipulation tasks,
demonstrating Maniwhere’s strong visual generalization and sim2real transfer
abilities across 3 hardware platforms. Our experiments show that Maniwhere
significantly outperforms existing state-of-the-art methods. Videos are provided at
https://maniwhere.github.io/.

Keywords: Visual Generalization, Sim2real, Reinforcement Learning
∗The first two authors contributed equally

8th Conference on Robot Learning (CoRL 2024), Munich, Germany.

https://maniwhere.github.io/


1 Introduction

Visuomotor control tasks present roboticists with a vexing issue — the hardware setup can severely
influence the performance of the robot policies. A prime example arises from the issue of immovable
cameras - envision a carefully calibrated visual sensor, painstakingly positioned to enable seamless
real-world deployment, only to have it disturbed by a lab mate. This single, seemingly innocuous
incident can grind progress to a halt, forcing tedious recalibration or the collection of new demon-
stration data. Furthermore, changes in the background or the presence of extraneous objects within
the captured views may undermine the effectiveness of a trained policy. Such obstacles have long
plagued the field of robotics, representing critical barriers to realizing the full potential of advanced
visuomotor systems.

Acknowledging these obstacles, when attempting to achieve sim2real visual policy transfer, it is
common to instantiate a digital twin that closely resembles the actual real-world environment [1, 2,
3, 4, 5, 6, 7, 8]. Otherwise, the significant discrepancy between the digital twin and the real setting
would render the trained models wholly ineffective. Hence, robots that adeptly handle in-the-wild
scenarios should possess generalizability against various visual changes such as camera views, visual
appearances, lighting conditions, etc.

While prior works have sought to tackle the challenges against visual scene variations [9, 10, 11,
12, 13, 14, 15, 16], these studies primarily focus on resolving a single aspect and are unable to
handle multiple visual generalization types simultaneously. Meanwhile, it is non-trivial to incorporate
various inductive biases into the training process. Naively applying domain randomization or data
augmentation methods can destabilize the entire RL training, ultimately leading to divergence for the
learned policy [4, 9, 12, 17]. More importantly, the generalization abilities of these methods have yet
to be thoroughly evaluated on real robots.

In this paper, we are dedicated to enabling robots to acquire strong visual generalization ability so that
they can step out of simulations and apply their learned skills to complex real-world scenarios without
camera calibration. We introduce Maniwhere: A Visual Generalizable Framework for Reinforcement
Learning. As shown in Figure 1, Maniwhere employs a multi-view representation objective to capture
implicitly shared semantic information and correspondences across different viewpoints. In addition,
we fuse the STN module [18] within the visual encoder to further enhance the robot’s robustness
to view changes. Subsequently, to achieve sim2real transfer, we utilize a curriculum-based domain
randomization approach to stabilize RL training and prevent divergence. The resulting trained policy
can be transferred to real-world environments in a zero-shot manner.

To conduct the evaluation, we develop 3 types of robotic arms and 2 types of robotic hands to design
a total of 8 diverse tasks, alongside 3 corresponding hardware setups to validate the efficacy of our
algorithm. Our comprehensive experiments demonstrate that, in both simulation and real-world
scenarios, Maniwhere significantly outperforms existing state-of-the-art baselines by a large margin.

2 Method

In this section, we present Maniwhere, a generalizable framework for visual reinforcement learning.
We propose a multi-view representation learning objective aimed at empowering the training agent
with the ability to extract invariant features and generalize across different viewpoints. To further
augment the model’s spatial awareness, we incorporate an STN module into the visual encoder
by actively spatially transforming feature maps. Additionally, we employ a curriculum of domain
randomization to stabilize reinforcement learning (RL) training and facilitate sim2real. Next, having
established the blueprint for Maniwhere, we proceed to elaborate it with details.

2.1 Multi-View Representation Objective

To endow the agents’ ability to adapt to different viewpoints, we propose a multi-view representation
learning objective to achieve this property. At each timestep t, the simulation returns the RGBD
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Figure 2: Overview of Maniwhere. The agent takes two images as input captured from different
viewpoints with data augmentation and then passes them through a visual encoder containing an
STN module to obtain visual representations. Subsequently, we employ multi-view representation
learning to train the visual encoder while using a curriculum learning approach to stabilize the entire
RL training process. Once the agent is trained in simulation, we can perform sim2real transfer.

observations from two cameras with different views: one is fixed, and the other one will randomly
appear at different viewpoints. The range of camera randomization are listed in Appendix B.1. We
denote the observation from the fixed viewpoint as ofixed, the observation from the randomized one
as omove, and the visual encoder as fθ, which is parameterized by θ. With respect to the first term,
we adopt InfoNCE [19] to formulate our contrastive loss function Jcon(θ):

Jcon(θ) = −log
exp(f(ofixed)T · f(omove+)/τ)

exp(f(ofixed)T · f(omove+)/τ) +
∑

move− exp(f(ofixed)T · f(omove−)/τ)
(1)

Here omove+ is the positive example of ofixed, which is rendered at the same timestep, while omove−

is the negative example at different timesteps from the same batch samples. Inspired by Moco-v3 [20],
we utilize a symmetrized loss form to gain better performance.

Moreover, recent works [21, 22] find that feature maps can be utilized to indicate correspondences of
the images that share similar semantics. Hence, to endow agents with the ability to learn correspon-
dences between different views, we also introduce an alignment loss function applied to feature maps
across various layers:

Jfeat(θ) =
∑

(ofixed,omove)∈B

∥F(ofixed)− F(omove)∥22 (2)

where B is the sampled batch, F is the flattened feature map embedding from a certain layer. The
overall objective of Maniwhere is formulated as follows:

LManiwhere(θ) = Jcon(θ) + λJfeat(θ) (3)
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where λ is the coefficient to weigh the scale between two terms. Through the guidance of
LManiwhere(θ), the agent enables to gain a better understanding of the semantics, correspondence,
and view-invariant information within the whole visual scenarios via multi-view images extraction.

2.2 Curriculum Domain Randomization

Due to the high sensitivity of RL training towards different types of randomization, introducing
additional noise can potentially lead to divergence in the entire training process. However, domain
randomization and augmentation are indispensable for the sim2real transferability. Therefore, we
propose a curriculum randomization approach in which the magnitude of randomization parameters
is incrementally increased as training progresses. We employ an exponential scheduler to adjust the
incremental change of the parameters. Additionally, we also establish a curriculum for the objective
of stabilizing Q-value training [9]:∥∥∥∥Qθ (fθ(aug (ot)),at)−

(
rt + γmax

a′
t

Qtgt

θ′ (fθ(ot+1),a
′
t)

)∥∥∥∥2
2

(4)

where aug is the augmentation method for the image observations, Qtgt

θ′ is the target Q network.
The augmented data incorporates increasing amounts of noise along with the training procedure.
Here we choose SRM [11] with random overlay [23], a frequency-based data augmentation as our
augmentation method.

2.3 Inserting the STN Module

Spatial Transformer Network (STN [18]) enables the spatial transformation of data within the network,
empowering the agent with enhanced abilities to perceive spatial information. Furthermore, to expand
the model’s capability for transformations beyond the 2D plane, we modify the affine transformations
in the original STN to perspective transformations:

(
xs
i

ysi
1

)
=

[
θ11 θ12 θ13
θ21 θ22 θ23
θ31 θ32 θ33

] xt
i

yti
1

 (5)

where θij is the learnable transformation parameters, (xt
i, y

t
i) denotes the target coordinates on

the output feature map’s regular grid while the (xs
i , y

s
i ) is the counterpart from the source image.

Additionally, we leverage the first two layers of ResNet18 [24] as the backbone of visual encoder [13]
and integrate the STN within it.

3 Experiments

In this section, we conduct numerous experiments in both simulated and real-world settings to
showcase the effectiveness of Maniwhere in terms of generalizing to diverse visual scenarios with a
combination of visual disturbance types.

3.1 Experiment Setup

Tasks: We have developed 8 tasks based on MuJoCo engine [25] with joint position control, including
a variety of embodiments and objects such as single arm, bi-manual arms, dexterous hands, and
articulated objects. We also establish the real-world counterparts for these tasks. In both simulation
and real-world experiments, the observations are 128× 128 RGB-D images with 3 frame stacks.

Sim2real: First, we train the agents in each simulated environment, where images from two different
cameras will be observed: one offering a fixed viewpoint and the other moving throughout the given
randomized range. Then, Maniwhere will integrate the knowledge from both viewpoints into the
visual encoder via the approach mentioned in Section 2. Once finishing training in simulation, the
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Table 1: Generalization across different viewpoints. The experiment result demonstrates that
Maniwhere significantly outperforms the other baselines in all tasks with a +68.5% boost on average.

Setting Method / Tasks Lift Cube Pick Cube To Bowl Pull Drawer Button with Dex
Maniwhere 81.5±7.0 89.5±8.5 75.6±9.2 97.6±1.2

MV-MWM 61.6±22 9.6±5.3 48.5±21.1 77.6±14.3

SGQN 14.0±8.2 2.8±2.2 2.0±1.0 12.8±4.4

SRM 14.8±3.3 2.0±2.8 3.2±1.9 18.8±4.1

MoVie 10.5±2.2 1.0±2.3 5.0±3.5 11.3±4.7

Setting Method / Tasks LiftCube Dex PickPlace Dex Close-Laptop Dex HandOver Dex
Maniwhere 88.8±8.9 76.4±9.2 82.4±24.3 94.8±4.8

MV-MWM 78.0±5.1 34.0±28.9 69.5±19.7 32.0±23.1

SGQN 14.0±7.7 3.2±4.6 15.0±5.8 15.3±4.6

SRM 24.4±8.0 6.4±5.9 8.0±4.2 16.0±4.0

MoVie 6.0±2.2 1.0±2.2 6.0±4.1 7.0±2.7

trained model will be directly transferred to the real world in a zero-shot manner. It should be noted
that during both simulation and real-world evaluation, the trained agents receive images solely from
a single camera for inference. The visual scenes will be modified from various aspects, including
appearance, camera view, lighting conditions, and even cross embodiments at evaluation time.

Real Robot Setup: For gripper-based tasks, we utilize a UR5 arm equipped with a Robotiq gripper.
Regarding tasks involving dexterous hand manipulation, we employ an Allegro Hand coupled with a
Franka arm, and a Leap Hand [26] paired with an XArm mounted on a Ranger Mini 2 robot base
from AgileX [27]. We use Realsense L515 camera to obtain visual inputs [28].

3.2 Baselines

We compare Maniwhere with the following visual RL leading algorithms: SRM [11]: implement a
frequency-based augmentation method to achieve better generalization ability for visual appearances;
SGQN [14]: SGQN leverages saliency maps to enhance the agent’s attention on task-relevant
information, and as suggested by Yuan et al. [23], it reveals better visual generalization capability
across different camera views. MoVie [29]: utilizes domain adaptation to refine visual representations
at new viewpoint through the dynamics model. MV-MWM [5]: applies MAE [30] to distill multi-
view information into the visual encoder. It is worth noting that, unlike MV-MWM, Maniwhere does
not require additional expert demonstrations, nor does it necessitate the acquisition of new data to
adapt to environments as Movie does. Maniwhere can seamlessly transition to the real world in a
zero-shot manner. We evaluate each algorithm over 5 seeds.

3.3 Simulation Results

Generalize to different viewpoints. In this section, we evaluate Maniwhere and the baseline methods
across 8 challenging tasks. For each evaluation, 50 episodes from different viewpoints are tested. As
shown in Table 1, compared to the existing baselines, Maniwhere achieves superior performance
across all tasks with a large margin. The experiments indicate that the previous visual generalization
algorithms struggle to manage visual changes in camera views. Regarding MoVie, while it adapts to
the specific viewpoint change through domain adaptation, our setting involves different viewpoints
among episodes. We find that MoVie cannot generalize to the visual scenarios where the viewpoint
continuously changes. Hence, we argue that single-view image inputs are insufficient for fully
perceiving spatial information. As for MV-MWM, it also utilizes multi-view images to enable the
model to learn view-invariant features. Nevertheless, the experiment results exhibit that Maniwhere
owns stronger multi-view generalization abilities than MV-MWM with a +68.6% boost on average.

Generalize to different visual appearances. In addition to changes in camera views, we further alter
visual appearances by perturbing the colors of the table and background. As shown in Figure 3, despite
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Figure 3: (a). Generalization results of visual appearances. Maniwhere exhibits minimal perfor-
mance drop when encountering variations in visual appearance, whereas MV-MWM is unable to
handle these visual scenarios. (b). STN visualization. STN is capable of transforming views from
various other perspectives to align closely with the fixed view used during training.

the introduction of these visual appearance variations, Maniwhere maintains comparable performance
levels with previous results, while MV-MWM suffers a substantial decline in performance drop. The
underlying reason is that Maniwhere is compatible with various types of generalization, and our
proposed objectives can effectively stabilize the impact of noise introduced by data augmentation and
domain randomization.

Task Success Rate

LiftCube (ur5) 82±7 %
LiftCube (franka) 59±28 %

Table 2: The experiment results of Cross Embodi-
ment.

Generalize to different embodiments. Then, we
seek to validate the agent’s generalization capa-
bility across different embodiments by replacing
the UR5e robot arm with a Franka arm. As shown
in Table 2, we surprisingly find that our trained
model can directly perform zero-shot transfer to
a different embodiment while maintaining the camera-view generalization ability. The qualitative
analysis can be found in Appendix C.2.

3.4 Real-World Experiments

UR5 Arm

Robotiq Gripper

Allegro Hand

Franka Arm

Realsense L515

XArm

Leap Hand

Ranger Mini 2

Figure 4: Real-world setup. Our real-world experiments encompass 3 types of robotic arms, 2
dexterous hands, and various tasks including articulated objects and bi-manual manipulation.
Regarding real-world experiments, as shown in Figure 4, we deploy our models trained in simulation
on real-world scenarios across 3 hardware setups in a zero-shot manner. For gripper-based tasks,
we implement multiprocessing alongside a shared memory queue to synchronize the execution of
network inference and the controller [31], thereby ensuring a smooth movement process. As for
dexterous-hand tasks, we introduce a moving average factor to reduce the jittering motions during
execution [32, 33]. We select 5 challenging tasks in simulation to verify the effectiveness of agent’s
sim2real tranferability. For each task, we choose 5 different viewpoints that cover the workspace, and
the visual appearances of the scenario will be altered under each viewpoint as well. Each algorithm is
evaluated 5 trials under every visual condition. In each trial, yaw and pitch angles of the camera will

Table 3: Real-world experiments. Maniwhere outperforms MV-MWM with +53.5% on average.

Method / Task Drawer LiftCube Pickplace dex CloseLaptop Handover Average

MV-MWM 2.0% 12.0% 0% 20.0% 2.0% 7.2 ± 8.5 %

Maniwhere 65.7% 78.0% 52.0% 72.0% 36.0% 60.7±16.8%
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camera view

Figure 5: Real-world snapshots. Real-world experiments under different visual conditions.
be randomized. Figure 5 exhibits snapshots of real-world settings. As shown in Table 3, consistent
with the simulation results, Maniwhere outperforms MV-MWM on all tasks. The experiment indicates
that Maniwhere not only narrows the sim2real gap but also enables the trained robots to achieve the
real-world generalization ability. More details and results can be found in Appendix and webpage.

STN features. Figure 3 (b) illustrates that when facing real-world images, the STN layer assists the
agent in transforming inputs from different viewpoints to closely resemble the fixed view used during
training, thus facilitating the camera-view generalization and acquiring view-invariant representations.

3.5 Ablations

Ablation Success
Rate

Maniwhere 86.5±3.9%
w/o. multi-view objective 29.4±5.0 %

w/o. STN 65.3±7.7 %

w/ TCN 65.8±5.1 %

Table 4: Experimental results showcasing
various ablations.

To investigate the necessity of each component in
Maniwhere, we ablate two main design choices in
Maniwhere, including the multi-view contrastive rep-
resentation learning objective and STN module. Our
ablations are conducted on two lifting tasks and one
pickplace task. As shown in Table 4, we observe
that the multi-view objective contributed significantly
to the improvement; without it, the model would be
deprived of its ability to generalize across different
camera views. Meanwhile, the integration of the STN
enhances the model’s capacity to understand and adapt to spatial view changes. Furthermore, we
adopt TCN loss [34], which also applies multi-view contrastive learning, to replace our multi-view
objective. The results reveal that there remains a significant generalization performance gap compared
with Maniwhere, highlighting the advantages of our approach.

3.6 Qualitative Analysis

To delve deeper into the reasons behind Maniwhere’s superior performance, we examine it from the
aspects of visual representations and Q-value functions of RL.

t-SNE Dim 1

t-S
NE

 D
im

 2

Q-Value Embeddings
Original
Ours
w/o contrastive

Figure 6: Q-value embedding distribu-
tion.

Q-value distribution. Conceptually, if an RL agent can
produce the Q-value distribution from noisy visual inputs
that closely approximates that obtained from the original
images, the trained agent can be regarded as a more ro-
bust and generalizable learner. [12, 9] We visualize the
representation of the penultimate layer of the critic using
t-SNE to examine how the Q-distribution differs under
various viewpoints with our proposed multi-view represen-
tation learning method. As shown in Figure 6, our method
maintains a distribution similar to that of the original fixed
viewpoint, whereas relying solely on the objective in Eq 4
fails to adapt to different camera views. Consequently,
Maniwhere not only closes the distance between visual
embeddings to obtain more robust visual representations, but also narrows the gap between Q-
distributions, further stabilizing training and enhancing agent’s visual generalization ability.

Trajectory embedding. For the visual representation side, we visualize the feature maps of images
rendered from different viewpoints along the same execution trajectory, and then apply t-SNE to
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View 1

View 2

View 3

Figure 7: Trajectory embedding visualization. We capture images from 3 viewpoints at the
same moment while executing an identical trajectory. As the timestep progresses, the color of the
embedding becomes increasingly darker. We find that they exhibit similar visual representations.

embed the feature maps. Figure 7 shows that Maniwhere is capable of mapping the images from
different viewpoints into the similar regions as well as maintain consistency throughout the entire
execution trajectory.

4 Related Work

Generalization in visual RL. In recent years, multiple works have resorted to addressing the critical
issue of generalization [6, 35, 36, 37, 38, 39, 40, 41, 42]. Based on the strong data augmentation, sev-
eral studies integrate advanced methods such as pre-trained visual encoders [13], saliency maps [14],
and normalization techniques [41] to enhance the visual generalization capabilities of agents. Despite
these advancements, current methods primarily address only variations in visual appearances and fall
short when confronted with other types of visual changes. Another line of works devote to solving
the camera view changes. For instance, MoVie [29] utilizes an inverse dynamics model to facilitate
the model adapt to a novel view pattern. However, it is limited to a singular type of view and cannot
accommodate multiple different view patterns. Meanwhile, MV-MWM [5] leverages model-based
RL to train a multi-view masked encoder. However, its dependency on demonstrations for task
completion remains a significant limitation. Moreover, these two approaches are unable to adapt to
the changes of visual appearances. On the contrary, Maniwhere offers a versatile visual RL approach
that is compatible with multiple visual generalization types and does not require any demonstrations.

Representation learning for visuomotor control. Representation learning plays a critical role in
visuomotor control tasks [43, 44, 45, 46, 47, 48, 49, 50, 51]. Recent works [13, 52, 53] have verified
that leveraging the pre-trained visual encoders via representation learning approaches can facilitate
the execution of numerous downstream control tasks. Furthermore, SODA [10] utilizes a BYOL-style
objective to decouple augmentation from policy learning. RL3D [3] pretrains a deep voxel-based 3D
autoencoder and continually finetunes the representation with in-domain data. H-index [54] applies
the keypoint detection and pose estimation method to derive a customized representation for the hand.
In contrast to these works, Maniwhere not only strives to obtain generalizable visual representations
but also seeks to enable these representations to bridge the sim2real gap.

5 Conclusion and Limitations

In this paper, we present Maniwhere, a visual generalizable framework for reinforcement learning.
Maniwhere leverages multi-view representation learning to acquire the view consistency information,
and utilize curriculum randomization and augmentation approach to train generalizable visual RL
agents. Our experiments demonstrate that Maniwhere can adapt to diverse visual scenarios and
achieve sim2real transfer in a zero-shot manner. In the future, we plan to enhance Maniwhere’s
generalization ability across broader camera ranges and more diverse visual scenarios. Beyond visual
generalization, we intend to incorporate spatial generalization methods to handle more complex
object spatial relationships, with the ultimate goal of developing a robust sim2real framework.
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Appendix

A Task Description

Figure 8: Snapshot of all tasks and test visual scenarios.

Lift Cube: This task involves a UR5 arm equipped with a Robotiq gripper. A red cube is placed on
the table. The agents arerequired to grasp the cube and lift it off the table. A reward greater than
250 is considered a success. We lock 3 out of the 6 DoFs of the UR5 arm to restrict unnecessary
movements and reduce the action space, facilitating more efficient RL learning.

Pull Drawer: This task contains a UR5 arm equipped with a Robotiq gripper. A drawer is placed on
the table. The agents need to approach the handle and pull the drawer open. A reward greater than
230 is considered a success. We lock 3 out of the 6 DoFs of the UR5 arm.

Pick Cube To Bowl: Except for the red cube, we additionally place a bowl on the table. The agent
needs to lift the cube and place it into the bowl. A reward greater than 230 is considered a success.
We lock 3 out of the 6 DoFs of the UR5 arm.

Button with Dex: This task involves a Franka arm equipped with an Allegro Hand. The agent is
required to press the button to receive the reward. A reward greater than 250 is considered a success.
We lock 3 out of the 7 DoFs of the Franka arm and the DoFs of Allegro Hand.

Close-Laptop Dex: This task is equipped with a Leap Hand, an XArm, and a Ranger Mini 2 base
from AgileX. The agent requires to close the laptop on the table. We lock the DoFs of Leap hand and
4 DoFs of Franka Arm. When the joint of the laptop is smaller than 1.7 rad, we consider it a success.

LiftCube Dex: This task involves a Franka arm equipped with an Allegro Hand. The agent is
required to grasp the cube and lift it off the table. A reward greater than 50 is considered a success.
We lock 3 out of the 7 DoFs of the Franka arm and use 4 DoFs of Allegro Hand (The rest of the DoFs
will be set to a default value to keep a proper gesture).

PickPlace Dex: This task involves a Franka arm equipped with an Allegro Hand. The agent is
required to grasp the cube and lift it off the table and place it to the box. A reward greater than 50
is considered a success. We lock 3 out of the 7 DoFs of the Franka arm and use 4 DoFs of Allegro
Hand (The rest of DoFs will be set to a default value to keep a proper gesture). Additionally, we use
the moving average technique to smooth the motion.

Handover Dex: We utilize two Franka arms, one equipped with a gripper and the other with an
Allegro hand. This task requires cooperation between the two arms; the gripper must grasp a spatula
and pass it to the hand. Success is determined if the distance between the hand and the object is less
than 0.03 meters.
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B Implementation Details

B.1 Environment Randomization Parameters

Table 5: Domain randomization parameters in Maniwhere.

Attribute Value
UR5 joint armature 0.1 · (1± 0.1) kg m2

UR5 shoulder pan joint damping 360 · (1± 0.1) N s/m
UR5 shoulder lift joint damping 280 · (1± 0.1) N s/m

UR5 elbow joint damping 250 · (1± 0.1) N s/m
UR5 wrist joint damping 280 · (1± 0.1) N s/m

Franka joint armature 0.1 · (1± 0.1) kg m2

Franka joint damping 1 · (1± 0.1) N s/m
XArm joint damping 15 · (1± 0.1) N s/m

XArm joint frictionloss 4 · (1± 0.1)

Object cube size 0.05 · (1± 0.1) m
Table height [−0.01, 0.01] m

Cube randomized range [0.6 ∼ 0.8,−0.15 ∼ 0.15] m
Dex cube randomized range [0.65 ∼ 0.85,−0.1 ∼ 0.11] m
Drawer randomized range [0.7 ∼ 0.8,−0.3 ∼ −0.2] m
Button randomized range [0.6 ∼ 0.8,−0.15 ∼ 0.15] m
Laptop randomized range [−0.125 ∼ −0.075] m

Laptop angle randomized range [−0.15 ∼ −0.05] rad

Camera looking target position in world frame [0.6, 0.0, 0.2]

Camera elevation angle [10.5, 30.5]°
Camera azimuth angle [−60, 60]°

Camera Fov [38, 46]°
Camera Distance [1.12, 1.54] m

Action-delay [0, 2] timesteps
Control timestep [0.016, 0.024] s

B.2 Curriculum Randomization

For each task, a threshold of 2e5 steps is established as the initial frame for domain randomization.
The randomization parameters will vary exponentially within the ranges specified in Table 5 starting
from the 2e5-step mark (the Close Laptop task beginning at 7e4 step). Concurrently, the stabilizing
objective described in Eq 4 will process augmented images from the fixed view prior to this threshold,
and will incorporate augmented images from the moving view thereafter.

B.3 Hyper-Parameters

We list the training hyper-parameters used in Maniwhere in Table 6.

C Additional Results

C.1 Real-world Experiments

Real-world setup. Due to the limitation that a single PC cannot control two Franka arms simulta-
neously, we developed a control logic framework using zmq to coordinate three PCs. In this setup,
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Table 6: Hyper-parameters in Maniwhere.

Hyper-parameters Value
Input size 128 × 128

Discount factor γ 0.99
Replay Buffer size int(1e7)

Feature dim 256
Action repeat 1
N-step return 3

Optimizer Adam
Frame stack 3

Temperature of InfoNCE 0.1
Learning Rate of STN 1e-4

λ 200

Simulation Sim2Real Transfer

Camera View

Figure 9: More real-world snapshots.. We exhibit more real-world snapshots in challenging real-
world visual scenarios.

one PC is regarded as the client, while the other two serve as servers. The client PC receives visual
input and performs network inference, subsequently transmitting the inferred actions via socket
connections to the two server PCs. The server PCs are responsible for controlling the Franka arms
and executing the received actions. This process is iterative, with the servers sending new visual
input back to the client for continuous processing. Given that MV-MWM has a large model size and
requires substantial memory for loading, we deployed it on a desktop equipped with an RTX 3090
GPU. In contrast, the deployment of Maniwhere demands significantly less hardware, allowing it to
perform inference even on CPU desktops. Regarding the camera setup, we establish the evaluation
viewpoints at three yaw angular ranges: [0, 5°], [10, 25°], and [40, 55°], on both the left and right
sides. Additionally, across the five trials conducted at each viewpoint, the camera height will be
varied within a range of -3 to 3 cm.

Instance generalization. Thanks to the general grasping capabilities of the dexterous hand, Figure 10
shows that Maniwhere is not limited to a single object when executing the lifting behaviours and can
generalize across different instances with various shapes and sizes.
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cube dice (small) apple pitaya dice (big) plush toy

Figure 10: Instance Generalization. We find that Maniwhere won’t overfit to the specific object size
and shape.

C.2 Cross Embodiment

Similarity Map

UR5 Feature Map Calculate the similarity between ur5 
feature embedding and franka feature map

Choose UR5 feature

Choose the most 
similar point

Remap to the 
franka image

Figure 11: Feature Correspondence. Maniwhere can find the feature correspondence between
different embodiments.

Figure 11 illustrates that when we first select a pixel point on the UR5 original image (marked with
a red pentagram) and extract its feature (enclosed in the orange square) after passing through the
convolutional layer, we compute its normalized cosine similarity with the image feature of Franka
arm to obtain a similarity map. The point with the highest value in this map is identified as the most
similar point between two images (marked with a red pentagram). As shown in Figure 11, Maniwhere
can effectively recognize semantically consistent positions between the two different embodiments.
With respect to randomization, to enable the agent to capture the correspondence information through
the multi-view representation objective, we do not augment the moving view image in Eq 4.

C.3 View Generalization

We further investigate how Maniwhere’s performance varies across different camera view ranges. We
divide the randomized camera view range into three parts, within each of which the camera’s pitch
and field of view are randomly altered as well. The value for each range is calculated as the average
of both the left and right sides. Due to the excessive angular range in handover task potentially
obscuring the other arm, we confined the range for this task to 0-30 degrees. Table 7 illustrates that,
although Maniwhere’s performance exhibits a slight decline as the angle increases, it still retains the
capability to handle these scenarios effectively.

Table 7: Generalization across different camera view ranges. Maniwhere retains the generalization capability
to handle these scenarios effectively. We evaluate 20 episodes in each range.

Method / Task LiftCube Dex PickPlace Pickplace dex Button dex Handover

range [0, 15]° 91.3% 91.0% 82.5% 97.5% 94.0%

range [20, 35]° 88.3% 88.0% 81.5% 97.5% 94.0%

range [45, 60]° 86.9% 84.0% 65.0% 94.4% 92.0%
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C.4 Depth information helps sim2real transfer

Figure 12: Spatial illusion. These two figures are captured at the same timestep. Without depth
information, we lose the front-to-back positional relationship between the object and the gripper in
the three-dimensional world.

To ensure the depth images closely resemble real-world conditions, we first pre-process the depth
image. We introduce Gaussian noise N (0, 0.01) and depth-dependent noise N (0, depth scale),
where the depth scale equals np.abs(depth image) * 0.05. Then, we apply GaussianBlur
to smooth the noise. Additionally, the depth values are clipped to within 2 meters and normalized
to the range [0, 255]. During sim2real, we find that depth image can largely help to alleviate the
ambiguity situation. Figure 12 shows that when encountering large camera viewpoints, the agent
cannot accurately determine the grasping position since RGB information alone does not provide
the necessary front-to-back positional relationship between the object and the gripper in the 3D
world. However, by incorporating depth images, we observe a significant improvement in real-world
scenarios.

C.5 MV-MWM with data augmentation

Task Success
Rate(w/o DA)

Success
Rate (w/DA)

Button Dex 77.6±14.2 % 1.3±2.3 %

PickPlace Dex 34.0±28.9 % 8.7±13.3 %

Table 8: MV-MWM with data augmentation.

We also apply the data augmen-
tation method on MV-MWM. As
shown in Table 8, MV-MWM
suffers a significant performance
drop while facing data augmen-
tation. These results are consis-
tent with the recent works [9, 12].
Naively applying data augmentation can cause instability and large variance during training. In turn,
the results also prove that simultaneously handling multiple types of generalization is non-trivial and
highlights the superiority of Maniwhere.

C.6 Regarding target object color

Although we found that the agent demonstrates strong generalization capabilities when the visual
scene is altered, including changes to the table, background, and the introduction of colorful dis-
tractors, it fails the task when the color of the target object is changed. Figure 13 exhibits that
during executing a trajectory, the agent focuses more attention on the target object while ignoring
task-irrelevant information, making it more sensitive to changes in the color of the target object. We
use the Grad-CAM [55] to visualize the agent’s attention.

C.7 The implementation of MV-MWM
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Figure 13: Visualization of the agent’s attention by Grad-CAM.

Task Original Modified (Ours)

Lift Cube 6.7±2.9 % 61.6±22 %

Pull Drawer 12.0±8.4 % 48.5±21 %

Button Dex 64.0±19.8 % 77.6±14.3 %

Table 9: The performance of our modified MV-
MWM.

We introduce additional design adjust-
ments to tailor MV-MWM to our setting,
enabling it to exhibit its potential perfor-
mance. We utilize a trained agent as an
expert to collect the same number of state-
action pairs as in the original paper for pre-
training, and ensure these pairs are from
high-reward trajectories. Furthermore, con-
sistent with Maniwhere, we employ RGBD input as the input modality. As shown in Table 9, when
facing two third-person view images during training, the modified MV-MWM demonstrates stronger
performance compared to its original version.

C.8 The utilization of data augmentation

Task without DA Ours

Lift Cube 77.6±14.2 % 81.5±7.0 %

Pull Drawer 2.7±1.1 % 75.6±9.2 %

Table 10: The effectiveness of data augmentation.

Effectively leveraging data augmentation is
crucial for achieving visual appearance gen-
eralization. Existing approaches [12, 13, 9]
have demonstrated that naively applying
data augmentation can lead to training in-
stability and divergence. To address this,
we employ the objective outlined in Eq 4, which allows for the introduction of noise to enhance
model robustness while simultaneously stabilizing Q-value training. Additionally, we integrate the
frequency-based method [11] to further improve the model’s generalization ability and narrow the
sim2real gap. As shown in Table 10, without our data augmentation approach, the agents lack
generalization capability in both simulation and real-world settings. Therefore, the data augmentation
strategy utilized in Maniwhere proves to be effective in equipping the robots with the ability to handle
visual appearance changes.

C.9 Imitation Learning

Method Success Rate

Maniwhere 68.7±2.3%
Diffusion Policy 10.7±3.1 %

Table 11: The experiment results in Imitation
Learning.

Beyond visual RL, we also conduct experiments in
Imitation Learning (IL) to verify the effectiveness
of Maniwhere. The Pickplace task with dex-hand
is selected for evaluation. In this setting, we utilize
the RL trained policy as the expert to collect 100
demonstrations, and apply Diffusion Policy [31]
with RGBD input as the training algorithm. Consistent with RL, we use the same visual encoder and
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proposed multi-view representation learning objective for training. As shown in Table 11, Maniwhere
demonstrates robust generalization capability as well.

C.10 The training curves

Figure 14 demonstrates the camera view generalization ability of Maniwhere during the whole
training process. The curves are smoothed with window size 6.
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Figure 14: The training curves of Maniwhere across tasks.

Wipe Door Lift

Figure 15: The visualization of 3 Robosuite tasks at diffrent viewpoints.

C.11 Evaluation on Robosuite

Task Success Rate

Lift 72.0± 15.2%
Door 95.2± 8.7%
Wipe 75.0± 6.2%

Table 12: The experiment on Robosuite.

In terms of reproducibility, We evaluate our
method on the widely-used robotic benchmark
robosuite [56] to verify the effectiveness of Mani-
where. We conduct 3 typical manipulation tasks in
this benchmark. As shown in the Table 12, Mani-
where can also exhibit superior performance on
three robosuite tasks. The three tasks visualization are shown in Figure 15.
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