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Abstract
Membership inference attacks (MIAs) are a
canonical way to assess a machine learning
model’s privacy properties. While many ap-
proaches have been proposed for conducting
MIAs on language models, the extant literature
has suffered numerous difficulties in constructing
clean evaluations to test new techniques. In par-
ticular, subtle distribution shifts between member
and non-member sets can completely change per-
formance; recent work has underscored this by
showing that “blind” methods with no access to
the underlying model can perform far better than
published methods on the same benchmarks. In
this paper, we propose the first pipeline for princi-
pled evaluation of membership inference attacks
against LLMs. Our approach leverages the insight
that training data before and after a fixed point dur-
ing training are drawn from the same distribution
with minimal contamination; therefore, all open-
source models with intermediate checkpoints and
public training data are membership inference
testbeds. We apply our framework to a half-dozen
published attacks on the Pythia and OLMo family
of models, from 70M to 7B parameters. To fa-
cilitate further privacy research, we open-source
a modular library for designing and implement-
ing attacks in this setting: https://github.
com/safr-ai-lab/pandora_llm.

1. Introduction
Large language models (LLMs) have become indispensable
workhorses for knowledge-intensive tasks, from summariz-
ing medical records and drafting clinical notes to screening
legal contracts and flagging anomalous financial transac-
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tions. As these models are increasingly deployed in high-
stakes arenas such as healthcare and finance, privacy has
become a first-order requirement for responsible use. As
such, recent security research has revisited a threat model
long studied for classifiers and regressors: that of mem-
bership inference attacks (MIAs) (Liu et al., 2021; Shokri
et al., 2017). In an MIA, an adversary with some level of
access to the model attempts to decide whether a particular
example was used in a model’s training data (“member”)
or is merely drawn i.i.d. from the same distribution (“non-
member”). Highly accurate MIAs against LLMs would be
useful not only to demonstrate privacy leakage, but could
also be adopted as practical probes for related phenom-
ena, including quantifying memorization during training
(Zhou et al., 2023) and empirically evaluating the success
of machine unlearning techniques (Kurmanji et al., 2023;
Pawelczyk et al., 2023; Hayes et al., 2024).

While there has been a recent surge of research on MIAs
against LLMs (Duan et al., 2024; Li et al., 2023; Mattern
et al., 2023), it has been notoriously difficult to imple-
ment a correct MIA evaluation benchmark for pre-trained
LLMs (Das et al., 2025; Maini & Suri, 2024). In partic-
ular, (Das et al., 2025) showed that many evaluations for
MIAs commonly used in the literature are beaten by sim-
ple supervised learning methods trained on i.i.d splits of
member/non-member data that have no access to the un-
derlying model. This means the accuracy of these MIAs
primarily emerges from the distributional differences be-
tween member and non-member examples rather than the
privacy properties of underlying LLM. For instance, (Shi
et al., 2023) proposed using temporal differences (from
training data cutoffs of models) to construct member and
non-member sets with the WikiMIA benchmark, where
Wikipedia articles written before Jan 1st, 2017 were treated
as the member data and articles after Jan 1st, 2023 were
treated as non-member data. While reasonable at first glance,
as such cutoffs enforce the member/non-member distinction,
these sets are separable for another reason: their contents are
distinct due to changing writing patterns over time. Indeed,
(Das et al., 2025) trained a simple bag-of-words classifier
that could distinguish between member and non-member
data without the underlying model with a True Positive Rate
(TPR) of 94.7% at a False Positive Rate (FPR) at 5%, far
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outperforming the best attack proposed on the benchmark.

In this paper, we begin with an overview of the challenges
researchers have faced in creating theoretically clean eval-
uations for membership inference. Then, we instantiate a
cleaner dataset split for two common open LLM families,
sanity checking them with “blind baselines” to verify the
splits do not suffer from those same challenges. Finally,
we benchmark a slate of common methods on these clean
dataset splits, finding more limited performance.

2. Related Work
MIAs refer to a class of methods that can determine if
a given data point z was included in the training dataset
of a particular model θ. They were initially motivated by
privacy considerations; if an adversary can determine if
z was used to train θ with accuracy higher than the base
rate, then information theoretically θ must encode some
information about z that the attack is able to leverage. The
setup to evaluate such MIAs is fairly straightforward: given
an initial dataset D, some subset of the data is set aside prior
to training (or sampled from the distribution after training)
as a validation set Dnonmem, and some dataset Dmem is used
for training to produce a new model θ. Then the following
process is repeated a set number of times:

1. Flip a fair coin. If heads, sample with replacement
z ∼ Dmem; otherwise, sample z ∼ Dnonmem.

2. Given z and some access to θ, the MIA produces a
score p for that data point.

Given a membership inference score, for any threshold τ ,
there is a corresponding membership inference attack that
predicts z ∈ Dmem if and only if p < τ . Each τ corresponds
to a point on the Receiver Operating Characteristic (ROC)
curve for the binary classification. As is common in the
literature, to evaluate MIAs in this paper, we report the area
under the ROC curve (AUC) as well as the TPR at low FPR
of each method. The latter metric is widely used in the
literature because any attack which can extract with high
confidence even a small fraction of the training data poses a
serious privacy risk (Carlini et al., 2022).

One key assumption underlies this evaluation scheme: indi-
vidual samples in the training and validation data are drawn
i.i.d. from the same distribution P. Clearly, if θ contains
no information about Dmem then the maximum attack ac-
curacy is 50%, since Dmem and Dnonmem have identical
marginal distributions. Thus in this case, any additional in-
formation about whether z ∼ Dmem or z ∼ Dnonmem must
come from the model θ. On the other hand, if Dmem and
Dnonmem differ in some way that is independent of whether
θ is trained on it, then the maximum attack accuracy can

be 100% even if the θ contains no information about Dmem.
Imagine training an LLM on text which always begins with
the phrase The quick, brown fox jumps. In that
case, an MIA which knows nothing about the model θ can
still achieve perfect accuracy by simply detecting if a given
z begins with this phrase.

Existing Evaluations. Existing evaluations for MIAs fall
in three broad categories. Several papers introduce bench-
marks using the temporal cutoff approach of WikiMIA (Shi
et al., 2023; Liu et al., 2024). Others utilize train/val splits
of open models, most commonly using The Pile dataset with
the Pythia family of models (Biderman et al., 2023; Gao
et al., 2020). The MIMIR benchmark refines this approach,
with an additional deduplication step of the non-member
sets against training data1 (Duan et al., 2024).

Train/Validation Overlap. Fuzzy notions of membership
and what consitutes a unique data point also pose a bottle-
neck to rigorous evaluation (Hayes et al., 2025; Liu et al.,
2025; Meeus et al., 2025). Even the published validation
sets, which are supposed to be selected i.i.d from the same
data corpus along with the training data, can be problematic
for serving as a membership inference testbed. For instance,
(Duan et al., 2024) show that there is substantial overlap
between the training and validation sets for The Pile, which
is the dataset used to train the Pythia and GPT-NeoX series
of models, an oft-used benchmark for MIA papers.

Challenges of Deduplication. The Pythia family of mod-
els includes those trained on a deduplicated version of The
Pile’s training set; however, since only the training data
is deduplicated, it has a different distribution than the val-
idation split of The Pile. One solution, used in MIMIR,
deduplicates the validation set against the train set—but
this approach is not perfectly sound either, as this induces a
different marginal distribution on member vs. non-member
points. To see this, consider the setting where there are two
very rare documents in the corpus. If both documents are
split into the training corpus, only one will be included post
deduplication; on the other hand, if they are both included
in the validation split, they will both make it through pre-
processing since they will only be deduplicated against the
training set. It is easy to verify that the marginal probabil-
ity that z is the rare document differs for the training and
validation data. Indeed, (Meeus et al., 2025) find that a bag-
of-words classifier is able to achieve extremely high AUCs
(up to 0.86 on certain splits), implying that deduplication
causes distribution shifts that violate the MIA assumptions.

1They create several member/non-member splits such that all
non-member points with more than a p-proportion overlap in n-
grams with any training data point are removed, for various settings
of n and p.
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It is important to note that these difficulties are in some sense
unique to LLMs; for classical supervised machine learning
(ML), e.g., training an image classifier, the evaluator will
typically have access to the entire dataset and can choose
the train/val partition before training the model. Because
privacy researchers typically cannot train their own LLMs
from end-to-end, the setup to evaluate MIAs for LLMs is
not as simple. Thus it is extremely vital that we design
experimental evaluations for MIAs that we verify are clean.

3. Our MIA Evaluation Pipeline
In this section, we will describe a clean method to derive
member and non-member splits. This method only relies on
access to the model checkpoints in the middle of training
and the training data order, which is available for many
models, like the Pythia family or OLMo (Groeneveld et al.,
2024; Kim et al., 2025). We will also describe the procedure
to generate member and non-member data using different
checkpoints during the training, checking it against blind
MIAs as in (Das et al., 2025; Maini & Suri, 2024).

Member and non-member data generation. Recall that
the LLM data collection and training procedure typically
involves forming documents taken from links scraped from
the web, which are then tokenized and packed into train-
ing examples of a fixed size. These packed examples are
deduplicated against each other and shuffled to form the
training order of the model (Figure 1). This shuffling of the
training order will be the key to our MIA evaluation setup.
In our setup, we select a model, e.g., Checkpoint 300 in Fig-
ure 1, using the data before the checkpoint as the member
data (herein {B2,B4,B1}) and the data after the checkpoint
(herein {B3}) as the non-member data. We then evaluate
the model at that checkpoint. Because the data before and
after are drawn from the same distribution, the member and
non-member data have the same marginal distributions.

B1 B2 B3 B4

B2 B4 B1 B3

Chkpt 0 100 200 300 400

Figure 1. The shuffling of packed samples to construct the training
data of Pythia and our checkpoint-based method to evaluate MIAs.
In this scenario, we would sample from chunks {B2,B4,B1} for
member data and chunk {B3} for the nonmember data to evaluate
MIAs for the model at checkpoint 300.

Generating and learning from features. Using member
and non-member data generated in the previous steps, we

can evaluate different MIAs. We release our codebase as a
modular Python library, with documentation and tests, that
allows one to implement and benchmark new MIAs in this
setting. We also implement (and in Section 4, benchmark)
many MIAs from extant literature, including: simple loss
thresholding (Yeom et al., 2018), Min-K (Shi et al., 2023),
Min-K%++ (Zhang et al., 2025), Zlib entropy (Carlini
et al., 2020), ReCaLL (Xie et al., 2024), and MoPe (Li
et al., 2023).

Blind MIAs. Finally, our pipeline implements many
“blind” MIAs as a baseline check that member and non-
member data don’t have distributional differences easily
checkable with a simple supervised learning method. For
a given set of splits, we train classifiers on statistical rep-
resentations of the text, incuding Bag of Words, TF-IDF,
Word2Vec representations (Mikolov et al., 2013), and BERT
embeddings (Devlin et al., 2019). Full details on the training
details of these classifiers is available in the Appendix.

4. Results
Setup. We instantiate our evaluation on the Pythia family
of models, which were trained for 143,000 optimizer steps
on a deduplicated version of The Pile, representing approx-
imately 1.5 epochs. We evaluate the model at step 97,000
(over 95% of the way through a full epoch), uniformly sam-
pling data points before and after this step.2

We also benchmark our method on the OLMo family of mod-
els trained on the Dolma dataset (Groeneveld et al., 2023;
Soldaini et al., 2024). Due to computational constraints, we
only benchmark OLMo results on the 7B parameter model.
We use the checkpoint at step 400,000, which represents
88% of the way through the first epoch of training. Full
results are available in Appendix C.

Blind MIAs. First, we validate that blind MIAs without
any access to the model, like supervised learning techniques
on a split of member and non-member data points, get no
signal in our setting (Table 1). In all settings, we train three
different classifiers (logistic regression, random forest, and
a neural network) on 4,000 points from member and non-
member classes; then we evaluate our classifier on 1,000
points from each class. We report the best test AUC among
these three methods in Table 1 (and Table 3 in the Appendix).
For every AUC we report, we also provide standard error
intervals computed over 1,000 bootstraps. Full details on
the supervised classifiers are available in Appendix A.

2Note that the use of intermediate checkpoints is an additional
access assumption, but most literature already assumes access to a
1-epoch intermediate checkpoint to ensure that each datapoint is
seen a uniform number of times.
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Table 1. Sanity check: supervised model-free (“blind”) MIAs get
no signal on our cleaned split of The Pile.

Blind MIA Best AUC AUC SE TPR1%

BoW (Tokens) 0.505 0.0128 0.01
TFIDF (Tokens) 0.503 0.0127 0.006

W2V (Text) 0.490 0.0131 0.015
BERT (Text) 0.497 0.0127 0.012

Existing MIAs. After validating our dataset, we bench-
mark the MIAs listed in Section 3, which we implement in
our library. We find that current MIAs have limited success
on our dataset drawn from the pre-training data (see Table 2).
Note that this does not exclude the possibility that on certain
subsets of the training data (in particular, the GitHub doc-
uments in The Pile), MIAs can still be performant, which
was found in previous works (Duan et al., 2024).

5. Conclusion
In this paper, we identify subtle distributional pitfalls of pre-
vious MIA evaluations for LLMs and propose a principled
framework to avoid them. Our pipeline supports several pop-
ular open model families and we benchmark many existing
attacks on it. Finally, this work provides a clear call-to-
action for future model releases: the underlying dataset
should be processed and deduplicated in tandem, then split
into training and validation sets for minimal contamination
and matching distributions.

6. Limitations
While our setting is general and can be instantiated across
many open model families, there are several limitations and
areas for future work. First, our framework requires open
training data, model checkpoints, and the exact permutation
of training examples throughout training. While many open
model families provide this information, others, e.g., Llama
and Qwen, do not (Touvron et al., 2023; DeepSeek-AI et al.,
2025; Yang et al., 2025). Despite this important limitation to
any checkpoint-based approach, we argue that this method-
ology enables us to investigate MIA efficacy much more
rigorously than existing work, and hope that it encourages
model providers to release this auxiliary information in the
future. Second, due to computational and data constraints,
we only evaluated MIAs on models pretrained almost ex-
clusively on English web data. Finally, in our experimental
setup, we do not benchmark any models larger than 7 bil-
lion parameters, again due to compute constraints. We are
excited by future work verifying the extent of our negative
results across scales, data subsets, languages, and training
paradigms.

Table 2. We benchmark several published MIAs against the Pythia
family of models on our cleaned split of The Pile.

Model MIA AUC AUC SE TPR1%

70m LOSS 0.513 0.0130 0.006
70m Min-K 0.500 0.0130 0.012
70m Min-K++ 0.496 0.0128 0.011
70m Zlib 0.499 0.0129 0.016
70m MoPe 0.487 0.0126 0.025
70m ReCaLL 0.490 0.0130 0.010

160m LOSS 0.513 0.0130 0.007
160m Min-K 0.500 0.0127 0.011
160m Min-K++ 0.499 0.0126 0.014
160m Zlib 0.499 0.0127 0.016
160m MoPe 0.495 0.0132 0.015
160m ReCaLL 0.490 0.0124 0.006
410m LOSS 0.512 0.0128 0.007
410m Min-K 0.498 0.0132 0.006
410m Min-K++ 0.496 0.0126 0.014
410m Zlib 0.499 0.0127 0.016
410m MoPe 0.504 0.0130 0.014
410m ReCaLL 0.493 0.0131 0.008

1b LOSS 0.513 0.0122 0.007
1b Min-K 0.502 0.0125 0.007
1b Min-K++ 0.498 0.0126 0.013
1b Zlib 0.500 0.0129 0.016
1b MoPe 0.495 0.0126 0.015
1b ReCaLL 0.487 0.0123 0.008

2.8b LOSS 0.506 0.0131 0.007
2.8b Min-K 0.489 0.0124 0.006
2.8b Min-K++ 0.489 0.0126 0.014
2.8b Zlib 0.499 0.0129 0.016
2.8b MoPe 0.493 0.0131 0.006
2.8b ReCaLL 0.498 0.0131 0.010
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A. Attack Details.
Supervised Learning for Classifiers. We use random forest, logistic regression, and a neural network as supervised
classifiers for our model-free blind baselines (traditional word embedding features). For random forest, we use 100 trees
with no limit on maximum depth and the Gini impurity splitting criterion. For logistic regression, we use a default lbfgs
solver with 1,000 iteration maximum and L2-regularization. For neural network, we train for 10 epochs on a batch size
of 128 using the Adam optimizer with a learning rate of 0.001, with a ReLU architecture of 4 layers going from input
dimension to 250, to 100, to 10, then to 1 dimensions.

Evaluation Configuration. We evaluate all attacks using 1,000 train and validation points. For all supervised methods
used in the Pythia blind baselines, we train on 4,000 points; for all supervised methods used in OLMo baselines, we train on
8,000 points.

Other evaluation details. MoPe uses 10 perturbations with σ = 0.005, as recommended in the paper (Li et al., 2023).
For Min-K and Min-K++, we use k = 0.1. For ReCaLL, we use 100-token long prefixes as the extra conditioning.

B. Dataset Details
Pythia data construction. We evaluate a Pythia checkpoint at 97,000 steps into training. To construct the dataset for
evaluation, we randomly sample data points from steps 0 to 97,000, and then from 97,000 to 98,500 (approximately the end
of Epoch 1). We run all attacks on Pythia models trained using deduplicated training data.

OLMo data construction. OLMo 7B was trained on 1.25 epochs from the 2T token training corpus Dolma for a total
of 556,000 training steps. The remaining 0.25 epochs after the first epoch are taken from another shuffling of the training
corpus. Because our checkpoint-based method is only valid if the model did not see the data after the checkpoint, we restrict
our attention to the model state through the first epoch, after 452,000 training steps. We then choose to evaluate MIAs for
the model at checkpoint 400,000. We choose the member data by randomly sampling from data that the model saw between
checkpoints 0 and 400,000, and the non-member data by randomly sampling from data the model saw between checkpoints
401,000 and 452,000. Because the entire Dolma dataset already undergoes several different kinds of deduplicating before
being used to train OLMo (see Section 5.4 of (Soldaini et al., 2024) for details), this guarantees that member and non-member
data have the same marginal distributions.

C. OLMo Results
Blind MIAs. As with the Pythia models in Section 4 of the paper, we run blind supervised baselines for the OLMo model
as well. These results are given in Table 3.

Table 3. Sanity check: supervised model-free (“blind”) MIAs get no signal on our cleaned split of Dolma.

Blind MIA Best AUC AUC SE TPR1%

BoW (Tokens) 0.491 0.0131 0.01
TFIDF (Tokens) 0.491 0.0128 0.008

W2V (Text) 0.494 0.0129 0.012
BERT (Text) 0.496 0.0126 0.009

Other Attacks. We benchmark various MIAs from previous works, as in Section 4, this time against OLMo 7B. See
Table 4 for full results.

D. Additional Details
Compute Estimates. To run the experiments, we used a compute node with an NVIDIA A100 80GB GPU. All experiments
in this paper can be run on a single one of these GPUs. All results for pretrained MIAs are on model sizes 70M, 160M,
410M, 1B, and 2.8B for Pythia, and 7B for OLMo. To run blind baselines, we create features using 4,000 randomly sampled
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Table 4. We benchmark several published MIAs against OLMo 7B on our cleaned split of Dolma.

MIA AUC AUC SE TPR1%

LOSS 0.505 0.0125 0.01
Min-K 0.504 0.0129 0.013

Min-K++ 0.490 0.0124 0.009
Zlib 0.499 0.0128 0.019

ReCaLL 0.521 0.0130 0.011

member/non-member points, train a classifier, and evaluate the classifier on 1,000 distinct member/non-member points.
Most of these steps are runnable on a consumer laptop. As noted previously, in the pretrained setting, we evaluate all MIAs
on 1,000 points from member and non-member splits, which requires only running inference on models. In MoPe, we run
inference on ten times as many points (because we use ten perturbed models). In total these attacks took around 3 A100
GPU-days.

AI Assistants. While all work was done and checked by the authors, language models were used in the process to refine
ideas, write small snippets of code, and tune writing for clarity.
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