
Masked Autoencoders are Scalable Learners of
Cellular Morphology

Oren Kraus∗ Kian Kenyon-Dean∗ Saber Saberian Maryam Fallah Peter McLean

Jess Leung Vasudev Sharma Ayla Khan Jia Balakrishnan Safiye Celik

Maciej Sypetkowski Chi Vicky Cheng Kristen Morse Maureen Makes

Ben Mabey Berton Earnshaw

Abstract

Inferring biological relationships from cellular phenotypes in high-content mi-
croscopy screens provides significant opportunity and challenge in biological
research. Prior results have shown that deep vision models can capture biological
signal better than hand-crafted features. This work explores how self-supervised
deep learning approaches scale when training larger models on larger microscopy
datasets. Our results show that both CNN- and ViT-based masked autoencoders
significantly outperform weakly supervised baselines. At the high-end of our
scale, a ViT-L/8 trained on over 3.5-billion unique crops sampled from 93-million
microscopy images achieves relative improvements as high as 28% over our best
weakly supervised baseline at inferring known biological relationships curated from
public databases. Relevant code and select models released with this work can be
found at: https://github.com/recursionpharma/maes_microscopy.

1 Introduction

A fundamental challenge in biological research is quantifying complex cellular phenotypes and
relating them across genetic and chemical perturbations [41, 53]. Image-based profiling has proven
to be a powerful approach for exploring cellular phenotypes induced by genetic and chemical
perturbations [3]. These experiments use high content screening (HCS) systems combining automated
microscopy with high throughput technologies to assay perturbations on a massive scale. Recent
public releases of HCS image sets, like RxRx3 [19] and JUMP-CP [9], consist of millions of cellular
images across 100,000s of unique perturbations and demonstrate the scalability of this approach.

HCS image sets are often analyzed with customized cell segmentation, feature extraction, and
downstream analysis pipelines [4]. Despite the many discoveries made using this approach [3],
developing robust segmentation and feature extraction pipelines using open-source software packages
[6, 47] remains challenging [8]. Alternatively, representation learning approaches do not require prior
knowledge of cellular morphology and perform significantly better on practical biological research
objectives, e.g. inferring relationships between perturbations [7]. In contrast to previous approaches
employing weakly supervised pretraining [37], in this work we train masked autoencoders (MAEs)
[24] on progressively larger HCS image sets and show that these models are scalable learners of
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Figure 1: Visualizing reconstructions from masked random validation images for different MAEs.

cellular morphology, outperforming previous state-of-the-art methods at inferring known biological
relationships in whole-genome HCS screens.

2 Related Work

Supervised learning on HCS image sets. Deep learning models have been successfully trained to
perform cell segmentation [52, 36, 48] and phenotype classification [31, 32, 39, 18], however these
supervised learning tasks require the costly creation of segmentation masks and other labels. Inspired
by the successful use of embeddings obtained from ImageNet-trained models for other datasets and
tasks [42], researchers used models trained on natural images to to featurize HCS data with varying
results [1, 40]. Others [37, 49, 44] have trained convolutional networks to classify labels obtained
from experimental metadata (e.g., perturbation class), a technique called weakly supervised learning
(WSL) [57]. Despite obtaining SOTA results when trained on small, highly-curated image sets, we
show that the performance of WSL models does not necessarily improve on larger datasets.

Self-supervised learning. Vision models pretrained with self-supervised learning (SSL) often
outperform supervised models on downstream tasks [24, 5, 10]. Unlike supervised pretraining [30],
SSL is readily applied to large datasets where labels are lacking or heavily biased. This is useful
for HCS datasets, as they contain a wide range of cellular phenotypes that are difficult for human
experts to interpret and annotate. For example, DiNO [5] is an SSL method that has been applied
to HCS [12, 23, 45, 29, 15] data, however it relies on augmentations inspired by natural images,
which may not be applicable to HCS image sets. Alternatively, masked autoencoders [24] are trained
by reconstructing masked patches from unmasked patches of an image (Fig. 1). MAEs have been
successfully applied to images [24], audio [28], video [20] and multimodal audio-video datasets [27].
However, previous attempts to train MAEs on HCS datasets have had limited success [55, 29], due in
part to limitations in compute resources and dataset size. The present work shows that MAE training
scales with both model and training set size.

3 Methods

Datasets. We investigate the scaling properties [56] of cellular image sets by evaluating models
trained on the following four microscopy datasets. RxRx1 [49] is a publicly-available proprietary Cell
Painting dataset with 125,510 images of 4 human cell types under 1,108 different siRNA perturbations
across 51 experimental batches. RxRx3 [19] is a publicly-available proprietary Cell Painting dataset
with over 2.2 million images of HUVEC cells under 17,063 CRISPR knockouts (over 6 guides) or
1,674 compounds across 180 experimental batches. RPI-52M and RPI-93M (Recursion Phenomics
Imageset) are private datasets with 52 million and 93 million proprietary Cell Painting and Brightfield
images, respectively. To our knowledge, these are the largest HCS datasets collected for model
training purposes. All evaluations are performed on RxRx3, which is the largest publicly available
whole-genome HCS image set.

Weakly supervised learning. As a baseline, we employ the 28-million parameter DenseNet-
161 backbone implemented in [49], trained to predict cellular perturbations and producing 128-
dimensional embeddings, with and without adaptive batch normalization (AdaBN) [34].
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Figure 2: StringDB recall as a function of training
FLOps. Similar results hold for other databases.
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U-Nets. We adapt U-Nets [43] for masked autoencoding (MU-Nets) by training to reconstruct masked
sections of input images. We train MU-Nets as described in Xun et al. [55] and report results for
MU-Net-M and MU-Net-L, which have 52- and 135-million parameters, respectively. MU-Net-M’s
downsampling scale is set to 32/64/128/256/512. MU-Net-L incorporates an additional scale of 1024.
In each case, the decoder mirrors the encoder’s scale configuration. After an initial hyperparameter
search (see A.1.2), we trained both models with a mask ratio of 25% and kernel size of 5.

Vision transformers. We train vision transformers (ViTs) [16, 46, 14, 56] as MAEs following the
implementation in He et al. [24]. We report results for ViT-S, ViT-B, and ViT-L encoders [16],
containing 22-, 86-, and 304-million parameters, respectively, and producing 384-, 768-, and 1024-
dimensional embeddings, respectively. We explore the use of 8x8 and 16x16 patch sizes and 75%
and 25% mask ratios (Fig. 1). A 25-million parameter decoder [24] is used for patch reconstructions.
Note that 8x8 patches induce a sequence length 4 times greater than 16x16 patches and is thus more
computationally expensive.

Training. Models were trained on Recursion’s HPC cluster, BioHive-1, for up to 100 epochs on as
many as 128 80GB-A100 GPUs, depending on the size of the model and dataset. 256 x 256 x 6 image
crops were randomly sampled from 2048 x 2048 x 6 images, augmenting with random horizontal and
vertical flips. For each dataset, we use a validation set of center-cropped images from full experiments
unseen during training.

Scaling to ViT-L/8+. We scale training based on the results of smaller models trained on smaller
datasets [14, 25, 38, 56], as visualized in Figure 2 (total FLOps is based on Touvron et al. [51]). Our
largest model, ViT-L/8+, was trained for over 20,000 GPU hours, learning from over 3.5 billion
image crops sampled from RPI-93M. Inspired by [54], we added a term to the loss function to prevent
divergence and improve texture reconstruction.

Inference. The metrics of Section 4 are calculated on the gene knockout experiments of RxRx3 [19],
requiring the embedding of ~140 million image crops for each encoder. See A.2 for details.

4 Results

An important use of HCS data is the accurate inference of biological relationships amongst genetic
and chemical perturbations. We evaluate each model’s ability to capture known relationships using the
multivariate metrics described in Celik et al. [7]. Briefly, each model’s embeddings are first aligned
across experimental batches using TVN (typical variation normalization) [1], fitted to the negative
experimental controls across all batches. Following TVN, we correct for possible chromosome
arm biases known to exist in CRISPR-Cas9 HCS data [33]. We compute the embedding of each
perturbation by taking the spherical mean over its replicate embeddings. We use the cosine similarity
of a pair of perturbation representations as a relationship metric, setting the origin of the space
to the mean of negative experimental controls. We compare these similarities with the annotated
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Table 1: Recall of known relationships in top and bottom 5% of cosine similarities by model backbone
and training set, with results for each database (CORUM/hu.MAP/Reactome/StringDB). DenseNet-
161 backbones are trained via WSL, all others via SSL. See Fig. 3 for recall at other percentiles.

Model backbone RxRx1 [49] RxRx3 [19] RPI-52M RPI-93M

DenseNet-161 .38/.31/.19/.33 .36/.27/.17/.32 – –
DenseNet-161 w/ AdaBN .48/.35/.23/.42 .46/.30/.19/.38 – –

MU-Net-M – .56/.38/.23/.42 – –
MU-Net-L – .57/.37/.23/.43 .58/.39/.24/.44 .58/.39/.25/.44
MAE ViT-S/16 – .52/.37/.23/.41 .51/.36/.22/.40 –
MAE ViT-B/16 – .57/.39/.23/.43 .54/.37/.23/.42 –
MAE ViT-B/8 – – .60/.40/.25/.46 –
MAE ViT-L/16 – .56/.37/.23/.43 .61/.41/.26/.46 –
MAE ViT-L/8+ – – .61/.42/.27/.47 .62/.44/.27/.48

Table 2: Recall (at 5% false positive rate) of StringDB relationships for select models on three
different gene sets defined in Sivanandan et al. [45].

Training dataset Model backbone PoC-124 MoA-300 DG-1640

RxRx1 [49] WSL DenseNet-161 w/ AdaBN .79 .24 .15
RxRx3 [19] MAE ViT-S/16 .74 .19 .14
RPI-52M MU-Net-L .79 .20 .15
RPI-93M MAE ViT-L/8+ .80 .23 .17
CP-1640 [45] DiNO ViT-S/8 .53 .12 .14

relationships found in the following public databases: CORUM [22], hu.MAP [17], Reactome [21],
and StringDB [50] (with >95% combined score).

Table 1 reports the recall of known relationships amongst the top and bottom 5% of all cosine
similarities between CRISPR knockout representations in RxRx3. Note how both recall and image
reconstruction (see Fig. 1) improve with larger models, larger training sets, smaller patches, and larger
mask ratio. In Figure 2 we see that recall strongly correlates with training FLOps, a function of both
model and training set size (see A.3 for similar results trends on other databases). Figure 3 shows
similar trends in recall for other similarity percentiles. In contrast, the performance of re-implemented
WSL baselines [49] decreases when the dataset is scaled from RxRx1 to RxRx3, which could be
due to the chromosome arm bias present in CRISPR-Cas9 systems [33] or other factors such as the
increased size of the label set.

We compare these models with recent results from an alternative HCS platform combining pooled
CRISPR screening with Cell Painting [45]. Table 2 reports recall at 5% FPR in StringDB on three
gene sets defined in Sivanandan et al. [45]. The ViT-L/8+ MAE trained on RPI-93M yields a minimum
20% relative improvement in gene set performance over CP-DiNO 1640 (a ViT-S/8), which was
trained on ~1.5 million single-cell images. We note the significant differences in assay technology,
cell lines, and modeling methodology between the two platforms, making their direct comparison
impossible using this metric. Nonetheless, we hope this comparison brings the field closer to an
accepted set of benchmarks for evaluating models trained on HCS datasets.

5 Conclusion

This work demonstrates that scaling properties [56] apply to learning representations of cellular
morphology that can accurately infer known biological relationships. Unlike previous approaches that
use weakly supervised learning [37, 49] on small, curated datasets, we showed that the performance
of MAEs on biologically meaningful benchmarks scales to massive HCS image sets. In future
work, we will continue to scale model and training set sizes even further. We will also explore new
applications of this technology beyond predicting biological relationships, with the ultimate goal of
creating general-purpose foundation models of cellular biology.
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A Appendix

A.1 Model hyperparameters

RxRx1 models were trained for 100 epochs, RxRx3 models for 50 epochs, and RPI-52M / 93M models
were trained for up to 50 epochs, with early stopping depending on when validation performance
plateaued. All models (except those using AdaBN) use random sampling without replacement over
the full dataset to create training batches. Readers are encouraged to read [49] for more details on
batch construction for AdaBN models.

Models were trained on Nvidia A100-80GB GPUs with data-distributed parallel (DDP) training and
PyTorch 2.0. Each model was trained on 16 to 128 GPUs, depending on the size of the model and
dataset. We accelerated training speed by training with large batch sizes, as described below.

A.1.1 Weakly supervised learning

Our weakly supervised CNN models were trained as standard classifiers to predict the perturbation
applied in the cellular image, given a random crop as input. We use the DenseNet-161 backbone and
a neck that outputs 128-dimensional embeddings for each sample, implemented exactly following the
model architecture presented in [49]. We trained with a crop size of 256 x 256 x 6 and batch size of
4,096. We found that training with a specially-tuned SGD optimizer yielded the best performance for
these models versus other optimizers. Furthermore, we observed that issues such as chromosome arm
bias [33] become significantly more pronounced for WSL classifiers trained on large datasets like
RxRx3.

Adaptive batchnorm (AdaBN) is an architectural technique to enable domain adaptation [34]. Our
AdaBN-based DenseNet-161 classifiers are implemented with Ghost BatchNorm [26] in order to
train with larger batch sizes. Such models can perform effective domain adaptation, but they require
a specialized sampler during both training and inference time to ensure that each batch is constructed
from the same plate in the experiment.

A.1.2 Masked U-Nets

MU-Nets trained on RxRx3 used a global batch size of 4,096, while those trained on RPI-52M and
RPI-93M used a global batch size of 16,384. Each was trained using the AdamW optimizer [35] with
β1 = 0.9 and β2 = 0.95, weight decay of 0.05, maximum learning rate 1e-3, cyclic cosine learning
rate schedule, and no gradient clipping. We experimented with different mask ratios (25%, 50%,
75%) and kernel sizes (3, 5). We compared the performance on the recall of biological relationships,
similar to Table 1, for these values. Changing the mask ratio or kernel size did not seem to effect the
performance.

A.1.3 Masked Autoencoder Vision Transformers

MAE-ViTs on RxRx3 trained with a global batch size of 4,096, while those trained on RPI-52M and
RPI-93M used a global batch size of 16,384. Each used the Lion optimizer [11] with β1 = 0.9 and
β2 = 0.95, weight decay of 0.05, and no gradient clipping (based on the AdamW optimizer settings
from He et al. [24]). We found that training dynamics and downstream performance was significantly
better with large batch sizes and the Lion optimizer versus using the recommended batch size and
AdamW settings presented by Balestriero et al. [2]. All ViT-S and ViT-B encoders were trained with
a maximum learning rate of 1e-4 and all ViT-L encoders were trained with a maximum learning
rate of 3e-5 (cosine decay schedule), based on initial experiments and recommended Lion learning
rate settings presented in [11]. All MAE-ViTs were trained with stochastic depth [2], LayerScale
[2], flash attention [13], parallel scaling blocks [14], QK-normalization [14], and no QK-bias [14].
Stochastic depth was set to 0.1 for ViT-S and ViT-B, and 0.3 for ViT-L. All models were initialized
with random weights, as initial experiments found no benefit starting from pre-trained ImageNet
weights.

A.2 Inference

Inference runs on a large-scale distributed kubernetes T4 GPU cluster. Each well in a biology
experiment is imaged as a 2048 x 2048 x 6 int8 tensor. We tile over this image, obtaining 64 unique
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Figure 4: CORUM, hu.MAP, and Reactome recalls for ViTs as a function of training FLOps.

256 x 256 x 6 crops. Each crop is fed-forward through the encoder, and the resultant 64 embeddings
are averaged to produce a final well-aggregated embedding. Each genetics-only experiment in RxRx3
has 9 plates, and each plate has 1380 wells; therefore, nearly 800,000 samples need to be fed-forward
through the encoder for each experiment. Given the 175 genetics-only experiments in RxRx3, this
yields roughly 140 million individual samples needing to be fed-forward through each encoder (64
crops per well x 1380 wells per plate x 9 plates per experiment x 175 experiments) in order to obtain
whole-genomic representations from the model. Note that the AdaBN-based weakly supervised
models require careful mini-batch construction during both training and inference, whereas the rest
of our models are deterministic in producing embeddings of individual samples.

A.3 Additional results

Calculation of FLOps. In Figure 4 we include the scaling plots as in Figure 2, for the other three
benchmark databases (CORUM, hu.MAP, and Reactome). Floating point operations (FLOps) are
approximated based on the FLOp counts presented in Table 1 from Touvron et al. [51], which presents
FLOps for ViT-S/B/L/16 on a 224x224x3 image. We adjust flop counts by a factor of ( 16∗1614∗14 )

2 = 1.69
to account for the changed crop size, and then for 8x8 patching models we multiply by a factor
of 16 to account for the 4x more tokens and the quadratic impact this has on the attention head
computations. We lastly multiply the FLOps by the number of image crops seen during training for
each model.

Recall of other baseline models. We computed the recall metrics reported in Table 1 for a number of
rudimentary baselines. For example, we we generated random embeddings with different dimensions
(128, 384, 512, 768, 1024), as well as randomly shuffled embeddings generated by the models
illustrated in Figure 3. All of these random baselines recalled ~10% of the known relationships in each
database, consistent with the fact that the metric considers only 10% of the total cosine similarities
(top and bottom 5%). We also constructed a baseline with a simple 30-dimensional feature set built
from pixel intensity statistics of each image and applied a TVN transformation to them. The recall
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obtained for these features, .28/.26/.16/.27 for CORUM/hu.MAP/Reactome/StringDB databases, was
better than random but significantly worse than all models considered in Table 1.
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