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Abstract

Large Language Models (LLMs) showcase re-001
markable abilities, yet they struggle with limi-002
tations such as hallucinations, outdated knowl-003
edge, opacity, and inexplicable reasoning. To004
address these challenges, Retrieval-Augmented005
Generation (RAG) has proven to be a viable006
solution, leveraging external databases to im-007
prove the consistency and coherence of gen-008
erated content, especially valuable for com-009
plex, knowledge-rich tasks, and facilitates con-010
tinuous improvement by leveraging domain-011
specific insights. However, RAG is not with-012
out its limitations, including a limited con-013
text window, irrelevant information, and the014
high processing overhead for extensive contex-015
tual data. In this comprehensive work, we ex-016
plore the evolution of Contextual Compression017
paradigms, providing an in-depth examination018
of the field. We also introduce a state-of-the-art019
evaluation framework and benchmark. Finally,020
we outline the current challenges and suggest021
potential research and development directions,022
paving the way for future advancements in this023
area.024

1 Introduction025

The pioneering accomplishments of large language026

models (LLMs) have galvanized research initia-027

tives across both industrial and academic spheres.028

These LLMs showcase their capacity to converse029

with humans in a natural and articulate manner,030

excelling across various tasks such as document031

summarization, Q&A systems, conversational AI,032

and coding assistants. Despite their advancements,033

LLMs continue to struggle with tasks that require034

specialized knowledge or domain-specific exper-035

tise. (Kandpal et al., 2023). Notably, they may036

produce “hallucinations” (Zhang et al., 2023) when037

confronted with out-of-scope queries or requests038

that necessitate up-to-date knowledge. To address039

these challenges, Retrieval-Augmented Generation040

(RAG) leverages external knowledge bases to re- 041

trieve relevant document snippets, utilizing seman- 042

tic similarity metrics to identify the most pertinent 043

information. By tapping into external knowledge 044

sources, RAG successfully alleviates the issue of 045

generating inaccurate content, thereby increasing 046

the reliability of LLMs and paving the way for their 047

widespread adoption in real-world applications. 048

However, RAG also has its challenges. One is- 049

sue is that when retrieving relevant documents, the 050

important information may be buried in a large 051

amount of irrelevant text, leading to inefficient and 052

poor responses. Another challenge is that current 053

language models have a limited input length, which 054

causes their performance to decline when process- 055

ing lengthy documents, such as academic articles, 056

research papers, or literary works. This constraint 057

has fueled research into developing methods to 058

increase the input length while maintaining the 059

model’s accuracy and efficiency. 060

This paper aims to shed light on the latest ad- 061

vancements in contextual compression methods, 062

with a focus on their application in retrieval-based 063

systems. Our research involves a comprehensive 064

review of methodologies, metrics, and benchmarks, 065

which we systematically categorize into a novel 066

taxonomy. Our taxonomy, as shown in Figure 1, 067

presents a structured and comprehensive frame- 068

work for categorizing and analyzing Contextual 069

Compression techniques for LLMs. Our investi- 070

gation involves a comprehensive analysis of es- 071

tablished techniques, such as semantic compres- 072

sion, in-context auto-encoder compressors, and 073

auto-compressors, among others. Furthermore, our 074

research highlights the ongoing challenges in this 075

field and provides a roadmap for future investiga- 076

tions. We emphasize the need for collective efforts 077

to create a sustainable and environmentally respon- 078

sible future for LLMs. 079
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Semantic
Compression

Context Distillation Learning by distilling context (Snell et al., 2022), Gisting (Mu et al., 2024)

Prompting

Soft Prompts
The Power of Scale for PEPT (Lester et al., 2021),
OptiPrompt (Zhong et al., 2021), Recurrentgpt (Zhou et al., 2023),
P-Tuning (Liu et al., 2022)

Prompt Compression Prompt compression and contrastive conditioning (Wingate et al., 2022)

Task-Agnostic
Prompt Compression

LLMLingua (Jiang et al., 2023b), LongLLMLingua (Jiang et al., 2023a),
LLMLingua-2 (Pan et al., 2024)

Efficient Attention
Operations

Transformer-XL (Dai et al., 2019), Longformer (Beltagy et al., 2020), FlashAttention (Dao et al., 2022),
LongLoRA (Chen et al., 2023b)

Extrapolation and
Interpolation

Exploring length generalization in LLMs (Anil et al., 2022), Positional Interpolation(PI) (Chen et al., 2023a),
YaRN (Peng et al., 2023)

Context Window
Extension Extending context window of LLMs via semantic compression (Fei et al., 2023)

Pre-Trained
Language Models

AutoCompressors Adapting LMs to compress contexts (Chevalier et al., 2023)

LongNET LongNET: Scaling transformers to 1B tokens (Ding et al., 2023)

In-Context Auto-Encoders In-context autoencoder for context compression in a LLM (Ge et al., 2023)

RECOMP Retrieve-Compress-Prepend (Xu et al., 2024)

Retrievers

LLMChainExtractor LangChain’s Method (Chase, 2017-)

EmbeddingsFilter LangChain’s Method (Chase, 2017-)

DocumentCompressorPipeline LangChain’s Method (Chase, 2017-)

Figure 1: Taxonomy of Contextual Compression Methods for Large Language Models.

2 Methods080

2.1 Semantic Compression081

Semantic compression is a technique that helps082

identify common patterns of thought in a specific083

context by generalizing terms. It uses a "domain084

frequency dictionary" to establish the context and085

disambiguate multiple possible meanings of words.086

This approach, based on semantic networks, of-087

fers improvements over existing natural language088

processing techniques.089

Semantic compression reduces the number of090

terms in a text document by replacing less frequent091

terms with more general terms (their hypernyms)092

using a semantic network and term frequency data.093

This compression minimizes information loss and094

enables efficient processing, especially in tasks in-095

volving vector space models (Baeza-Yates et al.,096

1999), (Erk and Padó, 2008). It also helps ad-097

dress linguistic (Sinha and Mihalcea, 2007) chal-098

lenges like polysemy and synonymy (Krovetz and099

Croft, 1992) by replacing multiple rare terms with100

a single, more general concept. By using statisti-101

cal analysis and frequency dictionaries, semantic102

compression can handle polysemic concepts more103

effectively and with lower error rates than other104

techniques. These efforts can be summarized into105

five approaches: Context Distillation, Prompting,106

Efficient Attention Operations, Extrapolation and107

Interpolation, and Context Window Extension.108

2.1.1 Context Distillation 109

Recent studies have demonstrated that augmenting 110

language models (LMs) with contextual informa- 111

tion, such as task descriptions, illustrative exam- 112

ples, and explanatory notes (Chen et al., 2021), 113

(Scheurer et al., 2022), can substantially enhance 114

their performance capabilities. This approach can 115

even facilitate zero-shot learning (Wei et al., 2021), 116

(Victor et al., 2022) and enable models to tackle 117

complex tasks by generating sequential reasoning 118

steps (Nye et al., 2021), (Wei et al., 2022), (Zhou 119

et al., 2022). 120

While LMs perform better with context tokens, 121

this advantage disappears when the tokens are re- 122

moved. Additionally, processing context tokens re- 123

quires extra computation, which can be a drawback. 124

The context tokens can also be very long, and it’s 125

unclear how to handle them when they exceed the 126

context window size. These limitations are similar 127

to human cognitive limitations (Wason and Evans, 128

1974), such as struggling with complex tasks and 129

having limited working memory (Baddeley, 1992). 130

Humans overcome challenges through practice, 131

which allows them to "distill" knowledge into 132

habits and muscle memory. For example, learn- 133

ing to type a phone number becomes automatic 134

with repetition, freeing up conscious reasoning for 135

more complex tasks 1. This process is essential 136

1procedural learning vs. declarative learning - https://
en.wikipedia.org/wiki/Procedural_knowledge
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for building skills and knowledge, enabling us to137

tackle increasingly intricate challenges.138

Researchers in NLP (Askell et al., 2021), (Snell139

et al., 2022) are exploring techniques to fine-tune140

language models, such as context distillation and141

"Gisting". Context distillation involves generating142

"practice" questions, having the model reason step-143

by-step, and fine-tuning it to predict answers from144

simpler prompts. This helps the model internal-145

ize skills, like step-by-step addition (ref Figure 2).146

"Gisting" (Mu et al., 2024) compresses instructions147

into concise key-value attention prefixes, saving148

computational resources and generalizing well to149

new tasks. As depicted in Figure 3, the approach150

involves learning a gist model by incorporating151

gist tokens during instruction tuning, enabling the152

model to handle prompt compression and instruc-153

tion following simultaneously.154

Figure 2: Internalization of step-by-step reasoning via
context distillation (Snell et al., 2022)

Figure 3: Gisting - Each vertical rectangle here rep-
resents a stack of Transformer activations (Mu et al.,
2024)

2.1.2 Prompting155

Soft Prompts - As depicted in Figure 4, soft156

prompt tuning enables the adaptation of pre-trained157

Transformers without modifying their underly-158

ing parameters, as demonstrated in recent studies159

(Lester et al., 2021), (Zhong et al., 2021), and (Liu160

et al., 2022). It entails adding novel embeddings161

to the input sequence and fine-tuning only these162

new parameters while keeping the remainder of the163

model’s architecture frozen. This approach is cate-164

gorized as a parameter-efficient fine-tuning method165

(PEFT) (Lialin et al., 2023), and bears resemblance166

to prefix tuning, which prepends task-specific vec- 167

tors to the attention states instead of the input se- 168

quence (Li and Liang, 2021). 169

Figure 4: From 11 billion for a tuned model to just
20,480 for a tuned prompt, a reduction of over 5 orders
of magnitude (Lester et al., 2021)

Prompt Compression - In their work, (Wingate 170

et al., 2022) hypothesize using a soft prompt sp 171

to compress information from a context ctx. They 172

use a pre-trained LM pLM to generate continua- 173

tions cty ∼ pLM(· | ctx) based on the context, 174

and then calibrate the model’s outputs with the soft 175

prompt sf , pLM(cty | sf) to the outputs based on 176

the context ctx, pLM(cty | ctx). They find that 177

soft prompts effectively preserve abstract knowl- 178

edge and improve guided output. Nevertheless, this 179

method necessitates distinct optimization for each 180

novel context, lacking the ability to leverage knowl- 181

edge across analogous contexts. 182

Task-Agnostic Prompt Compression - Current 183

methods for compressing natural language prompts 184

remove tokens or lexical units based on informa- 185

tion entropy from a language model like LlaMa-7B. 186

However, using information entropy as a compres- 187

sion metric has two limitations: 1) it only considers 188

unidirectional context, which may miss important 189

information, and 2) it doesn’t perfectly align with 190

the goal of prompt compression. 191

To address these issues, (Pan et al., 2024) pro- 192

pose a data distillation approach to compress 193

prompts while retaining essential information. 194

They introduce an extractive text compression 195

dataset and frame prompt compression as a token 196

classification problem (preserve or discard) (Refer 197

to Figure 5). The key benefits are as follows: 198

1. Comprehensive Information Capture: By 199

leveraging a Transformer encoder, the method 200

captures essential details from the full bidirec- 201

tional context. 202

2. Reduced Latency: Smaller models explicitly 203
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learn the compression objective, leading to204

lower latency.205

3. Faithfulness: The compressed prompt re-206

mains faithful to the original content.207

Figure 5: Overview of LLMLingua-2 (Pan et al., 2024)

2.1.3 Efficient Attention Operations208

The self-attention mechanism in LLMs leads to209

an inference cost that scales quadratically with210

sequence length, prompting the development of211

various methods to alleviate this complexity. For212

example:213

• Transformer-XL (Dai et al., 2019) - employs214

a recurrent architecture that operates on seg-215

ments, paired with a novel positional encoding216

technique.217

• Longformer (Beltagy et al., 2020) - intro-218

duces sparse attention, scaling linearly with219

sequence length.220

• FlashAttention (Dao et al., 2022) - uses chunk-221

ing and re-computation to avoid quadratic at-222

tention complexity.223

However, these methods can be expensive to224

train and struggle with out-of-distribution content225

lengths (Ding et al., 2023). To address this, Lon-226

gLoRA (Chen et al., 2023b) provides a computa-227

tionally efficient fine-tuning method with minimal228

resource requirements. For further insights, refer229

to the study by (Huang et al., 2023).230

2.1.4 Extrapolation and Interpolation231

In the field of NLP, researchers are investigating232

methods to extend the capabilities of existing lan-233

guage models, initially trained on brief texts, to234

process longer sequences during inference (Anil235

et al., 2022). One approach is to alter positional em-236

beddings, which are typically designed for shorter237

contexts. The Rotary Position Embeddings (RoPE)238

from LLaMA is a key foundation for several studies239

in this area. For example:240

• Position Interpolation (PI) (Chen et al., 2021) 241

applies a linear transformation to input posi- 242

tional indices. 243

• YaRN (Peng et al., 2023) leverages neural tan- 244

gent kernel-inspired mechanisms to scale up 245

the context window to 64,000 and 128,000 246

tokens. 247

2.1.5 Context Window Extension 248

Researchers (Fei et al., 2023) propose a semantic 249

compression method that distills long texts into 250

concise forms, retaining their meaning and broad- 251

ening the context window (Figure 6). This method 252

occurs before inputting tokens into pre-trained lan- 253

guage models and is customizable and optimized 254

for specific tasks. It outperforms existing meth- 255

ods in various tasks, including question answering, 256

summarization, and few-shot learning, without re- 257

quiring additional parameter updates or memory 258

consumption, making it computationally efficient.

Figure 6: 1) clustering the input text into thematic
groups, represented as a graph, to facilitate topic-based
analysis, 2) tuning the thematic segments using pre-
trained models to preserve crucial details, and 3) re-
assembling the refined chunks in their original order
- reducing the text length by approximately 6-8 times.
Additionally, other techniques like extrapolation and
interpolation can be used to further extend the length
(Fei et al., 2023)

259

2.2 Pre-Trained Language Models (PLMs) 260

The development of PLMs has revolutionized the 261

field of NLP. The first generation of PLMs, such 262

as Skip-Gram (Mikolov et al., 2013b), word2vec 263

(Mikolov et al., 2013a), and GloVe (Pennington 264

et al., 2014), used shallow neural networks (Qiu 265

et al., 2020) to obtain word embeddings. The sec- 266

ond generation, including CoVe (McCann et al., 267

2017), ELMo (Peters et al., 2018), BERT (Devlin 268

et al., 2018), and GPT (Radford et al., 2018), fo- 269

cused on learning dynamic word embeddings us- 270

ing transformers. The pre-training and fine-tuning 271

approach has achieved remarkable success in var- 272

ious NLP tasks. Moreover, recent breakthroughs 273
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in prompt learning (Liu et al., 2023a) have empow-274

ered PLMs to accomplish few-shot or zero-shot275

learning with minimal labeled data. Notable exam-276

ples of successful PLMs include ChatGPT, GPT-4,277

Gemini, Claude, LlaMA-3, Mixtral, etc.278

2.2.1 AutoCompressors279

The authors of (Chevalier et al., 2023) propose280

teaching PLMs to compress text into summary vec-281

tors (Lester et al., 2021), which are significantly282

shorter than the original text (often 1-2 orders of283

magnitude shorter). These vectors have a two-284

pronged function: 1) they allow the LM to handle285

long documents by extending its context window286

with minimal computational overhead, and 2) they287

accelerate inference for pre-computed and cached288

text.289

AutoCompressors, proposed by (Chevalier et al.,290

2023), are trained To distill key information into291

summary vectors, generated sequentially from ex-292

tended documents (Figure 7). The approach builds293

upon the Recurrent Memory Transformers (RMT)294

architecture (Bulatov et al., 2022), introducing sum-295

mary accumulation and training with randomly seg-296

mented inputs. This enhances long-range informa-297

tion retention and facilitates reasoning across mul-298

tiple passages. AutoCompressors can be seeded299

with PLMs and fine-tuned on long sequences. They300

improve perplexity for long documents and demon-301

strate robust compression capabilities across dif-302

ferent domains, making them valuable for various303

downstream applications.304

Figure 7: AutoCompressors recursively generate sum-
mary vectors from long documents, using them as
soft prompts for subsequent segments (Chevalier et al.,
2023)

2.2.2 LongNET 305

Overcoming sequence length limitations in lan- 306

guage models has several advantages, including 307

improved interactions with human language, better 308

capture of complex causality and reasoning, and 309

reduced catastrophic forgetting. However, scaling 310

up sequence length poses a challenge in balancing 311

computational complexity and model expressiv- 312

ity. RNN-style models and state space models (Gu 313

et al., 2021), (Smith et al., 2022), (Fu et al., 2022), 314

(Poli et al., 2023) have been proposed, but they 315

have limitations from the perspective of paralleliza- 316

tion and model adaptability (Fathi et al., 2023). 317

An alternative approach is to reduce the complex- 318

ity of Transformers (Vaswani et al., 2017), such 319

as using sliding windows or convolution modules 320

for attention, or sparse attention. LongNet (Ding 321

et al., 2023), a novel approach, replaces the at- 322

tention mechanism with "dilated attention", which 323

achieves linear computational complexity and log- 324

arithmic dependency between tokens. This allows 325

LongNet to efficiently scale sequence lengths to 1 326

billion tokens, overcoming the constraints of com- 327

putation and memory. 328

2.2.3 In-Context Auto-Encoders 329

Modeling long-range dependencies is a hurdle for 330

Transformer-based LMs (Vaswani et al., 2017) due 331

to their self-attention mechanism. Previous re- 332

search by (Beltagy et al., 2020), (Bulatov et al., 333

2022), and Ding (Ding et al., 2023) has attempted 334

to cope with this issue through architectural in- 335

novations, but these approaches often struggle to 336

maintain performance in long contexts, as under- 337

scored by (Liu et al., 2024). A novel approach, 338

"context compression", is proposed by (Ge et al., 339

2023), which recognizes that an LLM can represent 340

the same information in varying lengths. They in- 341

troduce the In-context Autoencoder (ICAE), which 342

compresses lengthy contexts into a fixed number 343

of memory buffers using a learnable encoder and a 344

fixed decoder (Figure 8). The ICAE is pre-trained 345

using auto-encoding and language modeling ob- 346

jectives and fine-tuned using instruction data. The 347

approach achieves 4x context compression while 348

maintaining effective conditioning for the target 349

LLM, enabling faster and more memory-efficient 350

inference. 351

2.2.4 RECOMP 352

In their work, (Xu et al., 2024) introduce RECOMP, 353

an intermediary step for Retrieval-augmented Lan- 354
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Figure 8: Condensing an extended context into a com-
pact memory representation, which can be leveraged by
the target LLM to respond to diverse prompts. (Ge et al.,
2023)

guage Models (RALMs) (Izacard et al., 2022),355

(Borgeaud et al., 2022). RECOMP compresses re-356

trieved documents into concise textual summaries357

before integrating them during inference, reducing358

computational costs and alleviating the burden on359

LMs to process lengthy documents. The aim is360

to produce summaries that balance brevity and fi-361

delity to the original evidence documents, guiding362

the RALM to produce targeted outputs when the363

summary is used as a prefix to the input (illustrated364

in Figure 9). To achieve this, the authors train two365

types of compressors:366

1. Extractive Compressor: This compressor fil-367

ters out irrelevant sentences, retaining only the368

most pertinent ones from the retrieved docu-369

ment set.370

2. Abstractive Compressor: This compressor371

produces a summary by fusing information372

from multiple retrieved documents.373

Both compressors employ a multi-document query-374

based summarization approach (Xu and Lapata,375

2020), summarizing evidence documents concern-376

ing the input query. The authors develop training377

strategies that maximize performance on the target378

task to guarantee accurate output. Contrastive learn-379

ing is employed to train the extractive compressor380

enabling it to select key sentences effectively, while381

the abstractive compressor is distilled (West et al.,382

2021) from a large language model (like GPT-3383

or GPT-4), achieving strong summarization perfor-384

mance. This approach holds promise for enhancing385

the efficiency and efficacy of RALMs.386

2.3 Retrievers387

The retriever (Chase, 2017-) is an interface that pro-388

cesses an unstructured query and returns a curated389

Figure 9: RECOMP’s document compression technique
generates a summary that serves as input to a language
model, facilitating correct answer generation while min-
imizing encoding costs. (Xu et al., 2024)

list of documents in response. Contextual compres- 390

sion aims to address the challenges of retrieval by 391

compressing the retrieved context to only include 392

relevant information. In this context, "compress- 393

ing" encompasses both condensing the content of 394

individual documents and eliminating irrelevant 395

documents altogether. The Contextual Compres- 396

sion Retriever uses a base retriever and a Docu- 397

ment Compressor to process queries. The base 398

retriever retrieves the initial documents, which are 399

then passed through the Document Compressor to 400

shorten the list of documents by either reducing 401

the contents of individual documents or excluding 402

entire documents altogether. 403

2.3.1 LLMChainExtractor 404

In this approach, the base retriever is wrapped with 405

a ContextualCompressionRetriever. Additionally, 406

an LLMChainExtractor serves as the base com- 407

pressor. The LLMChainExtractor iterates over the 408

initially retrieved documents and extracts only the 409

relevant content for the given query. It achieves 410

this by making an additional LLM call for each 411

retrieved document and summarizing the relevant 412

information 413

2.3.2 EmbeddingsFilter 414

Making an additional LLM call for each retrieved 415

document can be both costly and slow. However, 416

the EmbeddingsFilter offers a more economical 417

and faster alternative. By embedding both the doc- 418

uments and the query, it selectively returns only 419

those documents that exhibit sufficiently similar 420

embeddings to the query. This approach optimizes 421

retrieval efficiency while maintaining relevance. 422

2.3.3 DocumentCompressorPipeline 423

The DocumentCompressorPipeline allows a seam- 424

less combination of multiple compressors in a se- 425

quence. Alongside these compressors, we can 426

incorporate BaseDocumentTransformers into our 427

pipeline. Unlike contextual compressors, these 428

transformers don’t alter the content significantly 429
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but perform specific transformations on a set of430

documents. For instance, TextSplitters can divide431

documents into smaller segments, while the Em-432

beddingsRedundantFilter identifies and filters out433

redundant documents based on embedding similar-434

ity. This modular approach enhances flexibility and435

adaptability in document processing. e.g.436

• Splitter: create small chunks437

• Redundant filter: remove similar docs — em-438

bedded439

• Relevant filter: relevant to query440

3 Metrics and Benchmarks441

3.1 Metrics442

Evaluating language model inference efficiency443

involves considering various metrics that capture444

different performance aspects, including accuracy,445

zero-shot capabilities, compression ratio, and infer-446

ence time. Within the framework of RAG-based447

solutions, the "Triad of Metrics" 2 - Groundedness,448

Context Relevance, and Answer Relevance - are449

also employed for evaluation. Achieving satisfac-450

tory performance across these metrics helps ensure451

that the language model application is reliable and452

free from hallucinations.453

Figure 10: RAG-Triad

3.1.1 Compression Ratio454

The compression ratio measures the reduction in455

size from the original uncompressed context to the456

compressed context. A higher compression ratio457

means that the compression is more efficient, as it458

achieves a greater reduction in size while preserv-459

ing the context’s coherence.460

2RAG Triad (Figure 10): https://www.trulens.org/
trulens_eval/getting_started/core_concepts/rag_
triad/

3.1.2 Inference Time 461

Inference time, also known as latency, measures 462

how long it takes for a Large Language Model 463

(LLM) to process input data and generate responses. 464

This metric is crucial for real-world applications 465

that require quick handling of user queries or pro- 466

cessing of large data volumes in real-time. 467

3.1.3 Context Relevance 468

In RAG applications, the first step is retrieval, 469

and it’s crucial to ensure that the retrieved context 470

chunks are relevant to the input query. Irrelevant 471

information in the context can lead to hallucina- 472

tions in the LLM’s answer. To evaluate context 473

relevance, the structure of the serialized record can 474

be analyzed. 475

3.1.4 Groundedness 476

After retrieving the context, an LLM transforms it 477

into an answer. However, LLMs can sometimes 478

stray from the facts and generate responses that are 479

not entirely accurate. To ensure the groundedness 480

of the application, the response can be broken down 481

into individual claims and verified by searching for 482

supporting evidence within the retrieved context. 483

3.1.5 Answer Relevance 484

Furthermore, our response must still effectively 485

address the original question. We can assess this 486

by evaluating the relevance of the final response to 487

the user’s input. 488

3.1.6 Others 489

RAG evaluation also encompasses four key abil- 490

ities that reflect the model’s adaptability and effi- 491

ciency: noise robustness, negative rejection, infor- 492

mation integration, and counterfactual robustness 493

(Chen et al., 2024), (Liu et al., 2023b). The model’s 494

quality scores are heavily influenced by its ability 495

to leverage these capabilities in diverse challenges 496

and complex scenarios: 497

1. Noise Robustness: This metric gauges a 498

model’s capacity to distinguish between rele- 499

vant and irrelevant documents, even when the 500

latter are tangentially related to the question. 501

2. Negative Rejection: The metric measures a 502

model’s capacity to recognize when the re- 503

trieved documents are insufficient to answer a 504

question, and to withhold a response accord- 505

ingly. 506

3. Information Integration: Information integra- 507

tion tests a model’s proficiency in combining 508
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relevant information from multiple documents509

to provide well-informed answers to challeng-510

ing questions.511

4. Counterfactual Robustness: Counterfactual512

robustness measures a model’s skill in identi-513

fying and ignoring flawed or misleading infor-514

mation in documents, regardless of its aware-515

ness of potential errors.516

In brief, context relevance and noise robustness are517

crucial for evaluating the retrieval process, while518

answer groundedness, answer relevance, negative519

rejection, information integration, and counterfac-520

tual robustness are vital for assessing the quality of521

generated text.522

3.2 Benchmarks and Datasets523

The primary objective of these benchmarks and524

datasets is to assess the trade-offs between com-525

pressed and uncompressed contexts in terms of526

effectiveness, efficiency, and accuracy, covering a527

broad range of NLP tasks and applications.528

3.2.1 Common Benchmarks and Datasets529

RAG’s primary function revolves around answer-530

ing questions, encompassing various formats such531

as single-hop and multi-hop queries, multiple-532

choice options, and domain-specific inquiries, as533

well as lengthy scenarios that leverage RAG’s ca-534

pabilities. Moreover, RAG is constantly evolving535

to tackle additional tasks, including extracting rel-536

evant information, generating conversational dia-537

logue, and searching for code snippets, documenta-538

tions and even interpreting them. For more details,539

refer to the study by (Gao et al., 2023).540

4 Challenges and Future Directions541

4.1 More advanced Methods542

Research on contextual compression for LLMs is543

still in its early stages. While previous studies have544

shown compressed contexts, they still lag behind545

uncompressed contexts in terms of performance.546

By exploring more advanced compression methods547

tailored for LLMs, we can potentially bridge this548

performance gap and enhance the performance of549

uncompressed contexts.550

4.2 Performance-Size Trade-offs551

Previous research highlights the importance of bal-552

ancing LLM performance with context size, consid-553

ering hardware limitations and practical constraints.554

Despite its significance, the theoretical and empir- 555

ical foundations of this trade-off remain poorly 556

understood. Future investigations should focus on 557

conducting exhaustive examinations to drive the 558

creation of sophisticated compression techniques 559

that can meet the demands of increasingly complex 560

data sets, enabling researchers to create tailored 561

methods that effectively navigate the design space 562

and optimize performance. 563

4.3 Dynamic Contextual Compression 564

Contemporary compression approaches still utilize 565

manual compressors, such as retrievers, which of- 566

ten require an empirical methodology driven by 567

input data or task specifications. This can be a prac- 568

tical hindrance to adoption, especially in scenarios 569

like context distillation, where finding suitable stu- 570

dent templates within computational constraints 571

can be time-consuming and require multiple trials. 572

4.4 Explainability 573

Compressing pre-trained language models can 574

make them hard to understand (lacking explain- 575

ability). To fix this, using explainable compression 576

methods can help make models more interpretable, 577

easier to evaluate, and more reliable in real-life 578

scenarios. 579

5 Conclusion 580

This in-depth analysis explores the domain of con- 581

textual compression techniques, with a focus on 582

their application to LLMs. Our study encompasses 583

a broad range of compression methods, evaluation 584

metrics, and benchmark datasets, providing a com- 585

prehensive understanding of the field. By exam- 586

ining the complexities of contextual compression, 587

we identify the key challenges and opportunities 588

that arise in this area. As research in this field 589

continues to advance, the development of special- 590

ized methodologies tailored to the needs of LLMs 591

is crucial for unlocking their full potential across 592

various domains. This survey aims to serve as a 593

valuable resource, providing a detailed overview 594

of the current landscape and encouraging further 595

investigation into this vital topic. 596

Limitations 597

While this survey provides a comprehensive 598

overview of contextual compression techniques for 599

large language models, there are several limitations 600

to acknowledge. Firstly, the field of contextual 601
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compression is rapidly evolving, and this survey602

may not capture the very latest advancements in603

the area. Additionally, the focus on large language604

models may not be representative of other types of605

language models or AI systems, which may have606

different compression requirements. Furthermore,607

the survey’s reliance on existing evaluation metrics608

and benchmark datasets may not fully capture the609

complexities and nuances of contextual compres-610

sion. Moreover, the need for advanced methodolo-611

gies specifically designed for LLMs highlights the612

potential limitations of current approaches, which613

may not be scalable or effective for future LLM614

architectures. Finally, the survey’s scope is limited615

to contextual compression, and future research may616

uncover new challenges and opportunities at the617

intersection of compression and other aspects of618

LLMs.619
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