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Abstract

Recent advances in Large Language Models
(LLMs) have led to remarkable progresses in
medical consultation. However, existing medi-
cal LLMs overlook the essential role of Elec-
tronic Health Records (EHR) and focus pri-
marily on diagnosis recommendation, limit-
ing their clinical applicability. We propose
DialLLM, the first medical LLM that inte-
grates heterogeneous EHR data into clinically
grounded dialogues, enabling clinical test rec-
ommendation, result interpretation, and di-
agnosis prediction to better align with real-
world medical practice. To construct clini-
cally grounded dialogues from EHR, we de-
sign a Clinical Test Reference (CTR) strat-
egy that maps each clinical code to its cor-
responding description and classifies test re-
sults as "normal" or "abnormal". Addition-
ally, DiaLLM employs a reinforcement learn-
ing framework for evidence acquisition and
automated diagnosis. To handle the large ac-
tion space, we introduce a reject sampling strat-
egy to reduce redundancy and improve explo-
ration efficiency. Furthermore, a confirmation
reward and a class-sensitive diagnosis reward
are designed to guide accurate diagnosis pre-
diction. Extensive experimental results demon-
strate that DialLLM outperforms baselines in
clinical test recommendation and diagnosis pre-
diction. Our code is available for review!.

1 Introduction

Rapid advancements in LLMs (Touvron et al.,
2023; Wu et al., 2023) expanded opportunities to
improve diagnostic assistance and patient interac-
tions in the healthcare domain(Biswas, 2023; Li
et al., 2023; Shah, 2024; Singhal et al., 2023), and
clinical conversational systems (Wang et al., 2023a;
Yang et al., 2024b) have emerged as a promising
approach to enhance clinical reasoning and assist
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Patient Name Gender Alert
Smith Surfa-Drugs
Phone Age
365-5372-2186 27 M

Date Code System Code Results Units
20190104 LOINC 48643-1 8434 mL/min/{1.73_m2}
20190104 ICD-10 R10.12
20190110 LOINC 48647-5 90.86 mL/min/{1.73 m2}
20190110 LOINC 8462-4 93 mm[HG]
20190115 LOINC 2160-0 0.73 mg/dL
20190115 LOINC 29463-7 175 Ib a
20190117 ICD-10 Q65.89
20190117 ICD-10 M87.00

Figure 1: Structured representation of EHR data, illus-
trating patient demographics, symptoms, clinical tests
(e.g., lab test, vital signs), and physician decisions over
time. Symptoms and diagnoses are encoded using ICD
codes, while clinical tests follow the LOINC system.

doctors with diagnosis. However, as shown in Ta-
ble 1, existing studies primarily rely on synthetic di-
alogues generated from medical knowledge graph
(Wang et al., 2023a) or open medical Question An-
swer (QA) (Labrak et al., 2024) and are difficult to
work on real-world healthcare settings which use
Electronic Health Records (EHR). Furthermore,
the diagnosis workflow involves multiple critical
sub-tasks, including the inquiry of clinical lab tests
and the interpretation of their results before giving
the diagnosis results, which are often neglected in
current approaches (Zhou et al., 2023; Liu et al.,
2024). Consequently, existing explorations in the
clinical conversational system are still far from
practical healthcare scenarios, primarily due to
challenges in understanding EHR and adapting to
real-world diagnosis workflows (Li et al., 2024).
How to learn from EHR data? EHR data is a
comprehensive digital record encompassing a pa-
tient’s medical history, treatments, test results, and
clinical decisions. As shown in Figure 1, EHR cap-
tures multiple clinical visits and can be structured
as a dialogue for clinical conversational systems.
However, its heterogeneity and domain-specific
nature pose a fundamental challenge, limiting com-
patibility with existing LLMs (Li et al., 2024). Un-
like general NLP tasks, EHR data includes nu-
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Model Main Data Source Function Training Method Language
ChatDoctor (Li et al., 2023) Medical Consultation Website  Diagnosis Assistance SFT English
DoctorGLM (Xiong et al., 2023) Physician-Patient Dialogues Diagnosis Assistance SFT Chinese
BenTsao (Wang et al., 2023a) Medical knowledge Graphs Diagnosis Assistance SFT Chinese
Zhongjing (Yang et al., 2024b) Proprietary data, Crawled data  Diagnosis Assistance SFT + RLHF Chinese
Biomistral(Labrak et al., 2024) Medical QA Diagnosis Assistance SFT English
Meditron (Chen et al., 2024) PubMed articles Diagnosis Assistance SFT English
Diagnosis Assistance,
DiaLLM EHR data Test Results Analysis, PPO English

Clinical Test Ordering

Table 1: Comparison of Data Sources, Function, Training Method, and Language across Popular Medical Conversa-

tional Models.

merical values, categorical attributes from clinical
tests, and domain-specific terminologies such as
ICD codes and LOINC lab identifiers (Sui et al.,
2024; Liang et al., 2024). These complexities re-
quire precise numerical reasoning and contextual
understanding. While LLMs benefit from massive
text-based data and are trained using next-token
prediction (Zhao et al., 2023), they exhibit signif-
icant weaknesses in understanding numeric and
specialized clinical knowledge (Sui et al., 2024).

Which Service should Clinical Conversa-
tional System Provide? The second challenge lies
in the alignment between LLM-supported conver-
sational system and clinical workflows. As shown
in Table 1, existing works primarily focus on diag-
nosis assistance using "symptom-diagnosis" con-
versational data, which oversimplifies the diagnos-
tic process and limits practical applicability. In
a typical diagnostic scenario, a patient presents
symptoms, prompting the clinician to iteratively
gather information through inquiries and clinical
lab tests. This process follows a cycle of ‘evidence
acquisition, results interpretation, and diagnosis
confirmation’, with the patient’s medical trajec-
tory information promptly recorded in the EHR
data. Simulating clinicians’ evidence acquisition
and automated diagnosis process within LLMs still
remains unexplored (Zhou et al., 2023).

Motivation of DialLLM. In this work, we pro-
pose a novel conversational agent, named DialLLM,
which provides an EHR-grounded transformation
pipeline and explicitly models clinicians’ reason-
ing processes for evidence acquisition and auto-
mated diagnosis.

Technically, the EHR-grounded transformation
aims to convert EHR data into dialogues that are
aligned with common-sense knowledge and inter-
pretable to LLMs. It first converts the EHR data
into a single or multi-turn dialogue dataset, struc-
tured according to the patient’s clinical visit time-

line. Then, we translate the heterogeneous dia-
logue into clinically-grounded text by designing
a Clinical Test Reference (CTR) strategy. The
CTR facilitates (1) the translation of standardized
clinical codes (such as ICD-9/10, LOINC) into
clinically-grounded text; and (2) the interpretation
of clinical test results, conditioned on the patient’s
age and gender.

On top of transformed EHR data, DiaLLM mod-
els evidence acquisition and automated diagnosis
with a reinforcement learning framework. A policy
network selects clinical tests (i.e., take actions) or
terminates the process to make a diagnosis. Upon
termination, a supervised classification model is
invoked for disease diagnosis. To handle the large
action space of clinical tests, we introduce a novel
rejection sampling strategy (Bardenet et al., 2014;
Fan et al., 2023; Mandel et al., 2016) that pre-filters
redundant or unnecessary tests, ensuring only clin-
ically relevant ones are selected. Meanwhile, since
patients can have multiple diagnoses and disease
distributions exhibit a long-tail pattern across popu-
lations, we propose a new confirmation reward and
a class-sensitive classification reward to enhance
diagnosis prediction.

Evaluation. We propose a comprehensive eval-
uation framework for medical LL.Ms, assessing
both single-turn and multi-turn consultations. Ex-
perimental results show that DiaLLM outperforms
both general-purpose and medical-specific LLMs
in clinical test selection and diagnosis prediction.
Our ablation study reveals that integrating the EHR-
grounded transformation pipeline and specialized
reward modeling significantly improves clinical
test comprehensiveness, result interpretation, and
early diagnosis accuracy.

2 Related Works

Representation Learning for EHR data. The ma-
jority of existing studies enhance medical code rep-



resentations by incorporating external relational in-
formation through medical ontologies (Choi et al.,
2017; Panigutti et al., 2020) and knowledge graphs
(Jiang et al., 2023b; Wang et al., 2023b). How-
ever, these established medical knowledge sources
are restricted to specific diseases (Si et al., 2021).
Recent works have attempted to derive clinical
concept embeddings from large-scale medical text
corpora (Ye et al., 2021), learning relational graphs
through self-supervised learning (Yao et al., 2024),
contrastive learning (Cai et al., 2022), or generating
medical concepts directly using LLMs (Ma et al.,
2024). However, these approaches often lack clin-
ically grounded annotations, making the learned
embeddings incompatible with LLM inputs.
Another line of research improves clinical pre-
diction performance by learning from clinical test
results. Existing works derive partition functions to
learn from numerical and categorical clinical test
results (La Cava et al., 2019), employing methods
such as XGBoost (Chen and Guestrin, 2016), addi-
tive models (Hastie, 2017), piecewise linear func-
tions (Montomoli et al., 2021), and logic-based
rule learning (Ren et al., 2024). However, these
approaches can be susceptible to biases introduced
by patient population variations and may not align
with established guidelines for interpreting test re-
sults (Ren et al., 2024).
Diagnosis-oriented Conversational System.
Early research primarily focused on ICU-
based temporal EHR data (Yoon et al., 2019;
Fansi Tchango et al., 2022; Qin et al., 2024; He
and Chen, 2022) or specific diagnosis categories
(He and Chen, 2022; Fansi Tchango et al., 2022),
and proposed to model evidence inquiry and
diagnosis as a Markov decision process (MDP)
(Tang et al., 2016). With the rise of foundation
models, clinical conversational systems have been
explored by tuning on various medical corpora,
including clinical conversations collected from
online medical consultation website (Li et al.,
2023), symptom-diagnosis dialogues (Toma et al.,
2023), medical question-answering pairs (Han
et al., 2023), and knowledge graph-generated
dialogues (Yang et al., 2024b; Wang et al.,
2023a). However, these curated datasets deviate
from real-world data distribution, lack essential
clinical test support and do not interpret lab test
results. These shortcomings limit their real-world
applicability. For a comprehensive review, see
(Zhou et al., 2023). In contrast, our approach
constructs single-turn and multi-turn dialogue data

leveraging real-world EHR data, and facilitates lab
test requesting and diagnosis prediction.

3 Methodology

3.1 Diagnostic Conversational System Setup

Task Definition and Notations. DialLLM encap-
sules the evidence acquisition and diagnosis au-
tomation with the following steps:

1. Initial Query: The patient provides demo-
graphic information d and symptoms s.

2. Clinical Test Recommendation: The LL.M
agent suggests initial clinical tests cg.

3. Test Result Analysis and Follow-ups: Upon
receiving the patient’s initial clinical test
results v, the agent conducts a clinically
grounded analysis and iteratively recom-
mends additional follow-up tests c¢~o and
interprets new results v¢~g to gather further
evidence. This process continues until a con-
clusive diagnosis is achieved.

4. Diagnosis Prediction: The system ultimately
predicts the diagnosis y.

Problem Formulation. This process can be
modeled as a Markov Decision Process (MDP)
M(S, A, R,7), where: S = S’ U {s } is the
state space, with s; as the terminal state. A4 =
A’ U{a_ } is the action space, with a; as the stop
action. +y is the discount factor. Each dialogue
consists of at most 7" turns, where 7" represents the
maximum number of visits recorded in the EHR
data. At turn ¢, the state s; € S’ encodes socio-
demographics, acquired evidence and dialogue his-
tory hy:

st = {d, s, c¢, v, by} (D

At turn ¢, the agent selects an action ag, determin-
ing whether to request further tests or stop. The
clinical test recommendation model 7y (ag|s¢) gov-
erns test selection, while the diagnosis prediction
model 74(y|s ) makes the final diagnosis.

Overview of DiaLLLLM. In this work, we present
DialLLM designed to enhance evidence acquisi-
tion, result interpretation, and the diagnostic work-
flow. It consists of two key components: (1) a
transformation strategy that constructs dialogues
from heterogeneous EHR data, aligning them to
common-sense texts for the ease of understanding
by LLMs; and (2) a reinforcement learning frame-
work to empower the base LLM with evidence
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Figure 2: DiaLLM operates in two stages: (I) Dialogue Data Construction, where EHR data is transformed into
clinically grounded dialogue data, and (II) Reward Modeling, which optimizes clinical test selection and diagnosis
prediction. In Stage I, DialLLM converts clinical test codes and results into texts using our constructed Clinical
Test Reference. In Stage II, we adopt a novel rejection sampling strategy to handle the large action space and
incorporate two reward signals to facilitate diagnosis prediction learning.

acquisition and automated diagnosis capabilities,
for which we design a reject sampling strategy and
several reward signals to facilitate learning. Both
components will be detailed later in this section.

3.2 Dialogue Data Construction from EHR.

We introduce an EHR transformation strategy to
convert structured EHR into clinically grounded di-
alogues. This process begins by segmenting patient
visit records into conversational episodes when
clinical visit intervals are within one week. A ma-
jor challenge lies in representing medical termi-
nologies (e.g., codes and lab test identifiers) and
interpreting lab results. While text-driven LLMs
excel in natural language understanding and reason-
ing, they lack direct exposure to structured EHR
data. To address this, we manually curate a Clini-
cal Test Reference data to translate heterogeneous
EHR data in a clinically meaningful manner.

The transformation comprises two components:
(1) Clinical Code Translation that converts special-
ized medical terms, including symptom codes s,
diagnosis codes y, and clinical test codes ¢t into
clinically grounded and common-sense language
that is easily understandable by LLMs. An exam-
ple of the clinical code translation data is provided

in Table 6 in the Appendix. (2) Clinical Test Inter-
pretation that transforms heterogeneous lab test re-
sults using domain knowledge, including grounded
reference ranges conditioned on gender and age,
and classifies test results as "normal’ or *abnormal’.
An example of the clinical test interpretation data
is shown in Table 7 in the Appendix.
Details of Clinical Test Reference database. For
clinical code translation, symptom and diagnosis
codes are commonly recorded using the ICD sys-
tem, such as ICD-9 and ICD-10. To standardize
code descriptions, we build a comprehensive code-
base that includes ICD-9, ICD-10, and a mapping
from ICD-9 to ICD-10 for standardization. Clin-
ical tests are generally coded using the LOINC
system. We annotate 735 clinical test code de-
scriptions (including both lab test and vital sign
codes) 2 which cover most of diseases to ensure
comprehensive coverage and standardization.

For clinical test interpretation, we annotate 262
commonly used clinical tests based on established
medical guidelines®. This resulted in 1,163 annota-

2LOINC Organization: https://loinc.org/

SLOINC Organization: https://loinc.org/, Mayo
Clinic Laboratory: https://www.testcatalog.org/
show/NAS, Corewell Health: https://corewellhealth.
testcatalog.org/show/LAB299-1


https://loinc.org/
https://loinc.org/
https://www.testcatalog.org/show/NAS
https://www.testcatalog.org/show/NAS
https://corewellhealth.testcatalog.org/show/LAB299-1
https://corewellhealth.testcatalog.org/show/LAB299-1

tions % categorized as follows: (1) Normal Ranges
that define reference ranges considering age and
gender influences. (2) Critical Values that identifies
thresholds indicating life-threatening conditions re-
quiring immediate intervention. (3) Demographic
Variability that includes age- and gender-specific
ranges to account for physiological differences. (4)
Units of Measurement that ensures consistency
across international and clinical standards.
Example. Given the EHR example: "Female, Age
27, LOINC 2160 0.48 mg/dL," the CTR translates
it to: "Given the patient demographic information
(Age: 27, gender: Female). These lab tests show
normal results: Creatinine in Serum or Plasma".

3.3 Learning for Lab Test and Diagnosis.

On top of transformed EHR data, DiaLLM models
lab test acquisition and automated diagnosis using
a reinforcement learning framework. At each step,
the model will select follow-up lab tests (i.e., take
actions) or termination of this process to make a
diagnosis. To facilitate learning, we adopt rejection
sampling to reduce the complexity. During fine-
tuning with PPO, both a confirmation-based reward
and a Class-sensitive Diagnosis reward are utilized.
Rejection Sampling for Lab Test Selection. In
the presence of cost pressure, the goal of the agent
is to balance timely and accurate evidence acquisi-
tion with cost-effective feature selection. The vast
number of potential lab tests leads to a large action
space, making direct reinforcement learning (RL)
inefficient. To mitigate this, we introduce a strategy
based on rejection sampling (Bardenet et al., 2014;
Mandel et al., 2016) which pre-filters redundant or
unnecessary lab tests before execution, ensuring
that only clinically relevant tests are selected.

At each decision step ¢, the actor model 7(ay|s)
samples a candidate lab test ¢; from the full action
space. Instead of executing the sampled action
immediately, we introduce a rejection sampling
mechanism that determines whether the test should
be conducted based on its informativeness, cost,
and redundancy. The probability of accepting a
test Paceept (Ct|st) is defined as:

H(y | St) —H(y \ St,vt)
maxe, H(ZJ | St) - H(y | St,Ut)

: 1[Ct ¢ Cprev]a

paccept(ct | St) =

2

*Each clinical test may correspond to multiple reference
ranges conditioned on patient age and gender.

where H(y | s¢,v;) denotes the entropy of pre-
dicted diagnosis given the current sate s; and value
v of candidate test ¢, capturing how much uncer-
tainty is reduced by performing c;. The redundancy
filter 1{c; ¢ Cprev] prevents reordering previously
conducted tests.

Confirmation Reward. As the conversation pro-
gresses, the agent should systematically acquire
more evidence to refine its belief in the correct di-
agnosis while minimizing uncertainty. Inspired by
potential-based reward shaping (Hu et al., 2020),
we formalize the confirmation reward R, as:

RCO(sta ag, St+1) - 1st+17ésJ_ .
(CE(Z)t—l-la y) - CE(Qt, y)) )

where 1, , 2«5, is an indicator that the terminal
state has not been reached yet.

Class-sensitive Diagnosis Reward. This reward is
designed to provide feedback to the agent by eval-
uating the quality of its final predicted diagnosis
with respect to the ground truth diagnosis y once
the interaction process is completed. To directly
optimize diagnosis prediction while addressing the
issue of class imbalance (Puthiya Parambath et al.,
2014; Elkan, 2001), we introduce a weighted clas-
sification reward:

Ra(st) = Y wai(yi) - CE@i i), (3)

Yi€Y

where wcy(y;) = @ assigns a higher weight to
rare diagnoses based on the inverse of the class
frequency. This reward adjusts the importance of
correctly predicting minority classes, ensuring that
the agent focuses on both high-risk and low-risk
diagnoses effectively.

4 Experiments

4.1 Dataset and Task Description

To critically evaluate the performance of LLMs
on EHR data, we design the dataset with two
key considerations: (I) Unexposed: Ensuring that
the dataset has not been previously used by most
LLMs. (II) Predictive: Focusing on diseases that
can be predicted solely from EHR data, reflecting
their clinical applicability. Detailed data statistical
analysis is listed in Table 8 in Appendix A.2.1.
NHANES Dataset. Following (Kachuee et al.,
2019), we construct a diabetes dataset from the
public National Health and Nutrition Examination



Survey (NHANES) 3. The NHANES dataset does
not include clinical visit time information, and we
construct a single-turn dialogue based on this data.
The dataset includes 8,897 patients and 45 het-
erogeneous features, such as demographic data,
lab results (e.g., total cholesterol, triglycerides),
physical measurements (e.g., weight, height), and
responses to questionnaires (e.g., smoking, alcohol
consumption).

TriNetX Dataset. TriNetX® is a global health
research network providing access to large-scale
de-identified patient EHR data. TriNetX includes
records from 33,105 de-identified patients, span-
ning data from 1982 to 2023, collected across more
than 100 community hospitals and 500 outpatient
clinics. To satisfy goal (I) and (II), we extract
data on metabolic, respiratory, and circulatory dis-
eases, referred to as TriNetX-Metabolic, TriNetX-
Respiratory and TriNetX-Circulatory, respectively.

4.2 Baselines and Evaluation Metrics

We compare DialLLM with (1) pretrained
foundation models’ including Mistralve.3-7B
Instruct (Jiang et al., 2023a), Llama3.1-8B
Instruct (Dubey et al, 2024), Qwen2.5-7B
Instruct (Yang et al., 2024a); and (2) medical-
specialized models include BioMistral (Labrak
et al., 2024), Meditron-7B (Chen et al., 2024),
Meditron3-8B (Chen et al., 2023), Chatdoctor
(Li et al., 2023). To evaluate zero-shot perfor-
mance, we incorporate diagnosis labels in the
prompt. For foundation models, we also test an
alternative approach where we extract their gener-
ated embeddings and train an MLP for prediction.

We evaluate the prediction performance through
two dimensions: (1) Coverage Ability. We use the
recall@5 and F1 to measure the coverage ability.
Since there are no lab test requests in single-turn
dialogues, we evaluate lab test performance on the
multi-turn dialogue data using recall@5. (2) Early-
Prediction Ability. We utilize Mean Reciprocal
Rank (MRR) to indicate the effectiveness of early
diagnosis prediction. Details about evaluation met-
rics are shown in A.2.2 in Appendix.

4.3 Implementation Details

During implementation, we select Llama3.1-8B
as the backbone foundation model, and append a
mean-pooling layer and a two-layer MLP to it for

>https://wwwn.cdc.gov/nchs/nhanes/
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lab test recommendation and diagnosis prediction.
During tuning,  is set to 16 for the LoRA adapters
(Hu et al., 2021). Batch size is set to 4 and learning
rate is le — 4. Training epoch is set to 5. We
randomly run each experiment twice and report
the mean. We run experiments on four A100, and
train:eval:test is set to 8:1:1.

4.4 Main Results and Analysis

Results on Single-turn Prediction. For single-
turn diagnosis, additional lab test query is not
needed. For space limitation, experimental re-
sults are presented in Table 2 and Table 4 in Ap-
pendix A.2.3. Several key observations can be
made from the following dimensions: (1) Supe-
riority of DialLLM. It is obvious that DiaLL.M
consistently outperforms all baselines, demonstrat-
ing its effectiveness. This improvement is mainly
due to the EHR transformation pipeline and re-
warding models for PPO, which incorporate clini-
cally grounded knowledge, thereby enhancing the
model’s decision-making abilities. (2) Impact of
Tuning. Comparing base models (e.g., Mistralv0.3-
7B, Llama3.1-8B, Qwen2.5-7B) with their super-
vised fine-tuned counterparts, we observe substan-
tial performance gains across all metrics, hight-
lighting the importance of task-specific fine-tuning
in improving decision-making in clinical dialogue
tasks. (3) Performance of clinical-Specific Mod-
els. The performance of BioMistral and ChatDoc-
tor is significantly lower than that of fine-tuned
general-purpose models. This suggests that current
biomedical LLMs are primarily trained for gen-
eral clinical tasks, such as clinical QA, rather than
being optimized for real medical data. (4) Com-
parison with Fine-Tuned Baselines. Among fine-
tuned models, those on Llama3.1-8B and Qwen2.5-
7B perform competitively. However, DiaLLM con-
sistently outperforms them, indicating that its en-
hanced clinical grounding and policy optimization
contribute to superior prediction.

Results on Multi-turn Prediction. For multi-
turn dialogue data, models can query additional
lab tests before giving the final prediction. As
shown in Table 3, performance of DialLLM signifi-
cantly exceeds baseline models, similar to previous
single-turn cases. The performance of general-
used LLMs, e.g., Mistralv0.3-7B, Llama3.1-8B,
Qwen?2.5-7B still falls short in comparison to fine-
tuned models and DialLLM, indicating that they
lack the clinical specificity necessary for multi-turn
dialogues. Medical-specific LLMs like BioMis-
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TriNetX-Metabolic

TriNetX-Respiratory

TriNetX-Circulatory

Model Recall@5 FI MRR Recall@5 FI MRR Recall@5 FI  MRR
Mistralv0.3-7B 364  11.89 1012 454  7.84 12.09 1098 867 17.57
Llama3.1-8B 534 928 1095 749 1205 1548  17.02  10.89 22.97
Qwen2.5-7B 858  10.51 1211  10.03  10.64 16.25 584  7.82 9.68
BioMistral 39.67  13.82 26.10  25.95 1550 33.78  20.01  16.62 31.08
ChatDoctor 19.16  11.57 20.82 3588  9.71 2629  10.03  10.03 18.34
Meditron-7B 6.84 931 11.66 11.58 10.34 16.80 15.07 14.71 18.88
Meditron3-8B 599 646 1074 1198 1328 1542 1013  16.04 19.34
Mistralv0.3-7B,,,,  66.72 5092 4561  67.71 5495 4564 6751 5595 45.74
Llama3.1-8B,,,, 6811  55.01 4576  67.66  56.80 4577  66.72  56.23 45.76
Qwen2.5-7B,, 69.16  52.95 4572  67.66  55.21 4571  68.86  55.18 45.79
Dial.LMs 7954 7621 4733 7819 7482 4818 7775 7436 48.14

Table 2: Performance Comparison of DiaLLM and Baselines on the Constructed Single-turn Dialogue.

TriNetX-Metabolic

TriNetX-Respiratory

TriNetX-Circulatory

Model

Diagnosis Lab Test Diagnosis Lab Test Diagnosis Lab Test

Recall@5 Fl1 MRR Recall@5 |Recall@5 F1 MRR Recall@5 | Recall@5 F1  MRR Recall@5

Mistralv0.3-7B 6.89 8.07 13.23 0.58 14.44  16.02 11.98 1.96 18.00  16.93 25.39 0.21
Llama3.1-8B 1244  11.84 14.79 8.52 18.22  17.84 26.08 0.75 12.72  13.24 21.24 1.87
Qwen2.5-7B 7.56 16.68 17.86 0.61 5.56 8.90 15.03 1.33 8.22 9.23 15.23 1.75
Meditron-7B 4.22 8.31 13.28 1.21 8.89 13.04 14.67 0.79 12.22 1243 21.90 1.29
Meditron3-8B 16.22 21.25 21.57 2.90 17.33 15.38 24.32 1.37 8.22 15.25 17.26 1.91
BioMistral 9.37 13.54 16.62 2.33 12.67  19.51 22.98 1.70 4.44 13.37 10.56 0.79
Chatdoctor 6.87 9.71 18.92 1.77 2.89 9.66 9.44 0.95 16.00  19.22 22.08 1.18
Mistralv0.3-7B,,,;,  57.90  56.03 37.42  10.45 59.76  59.14 38.90 10.51 59.56 5890 39.93 10.39
Llama3.1-8B,;,, 57.31 55.92 37.43 10.64 61.22  59.58 39.42  10.97 61.21  59.47 40.13  10.16
Qwen2.5-7B,1, 58.01  56.72 38.37 11.04 61.91 60.21 39.72 11.13 60.89  58.54 38.46  10.30
DialL.LMs 70.22 7359 41.88 1143 70.89 7512 40.52 12.31 71.11 7539 4334 11.55

Table 3: Performance Comparison of DiaLLM with Baselines on the Constructed Multi-turn Dialogue.

tral, Meditron, and ChatDoctor underperform com-
pared to general-purpose models such as Llama3.1-
8B and Qwen2.5-7B. This is likely due to their
training on open medical QA datasets or synthetic
medical dialogues, which fail to capture the com-
plexity of real-world clinical practice.

4.5 Ablation Study

To evaluate the effectiveness of different compo-
nents in DiaLLLM, we conduct an ablation study to
quantify the contributions of the EHR transforma-
tion pipeline and the rewards in PPO. For space
limitation, experimental results on single-turn and
multi-turn dialogue data are shown in Figure 3,
Figure 4 and Figure 5 in Appendix A.2.4.

4.5.1 Ablation Study on EHR Transformation

We assess the impact of different EHR transforma-
tion components by progressively removing them:
(1) DiaLLM (w/o CT): Removes code translation
(CT). (2) DiaLLM (w/o CTI): Removes clinical

test interpretation (CTI). (3) DiaLLLM (w/o Both):
Removes all EHR transformation components.
These results highlight the importance of inte-
grating clinical grounded knowledge into LLMs.
DialLLM (w/o Both) results in a noticeable per-
formance drop in both single-turn and multi-turn
dialogue data, confirming that the EHR transfor-
mation strategy enhances the model’s ability to un-
derstand EHR data and improves diagnostic predic-
tions. Besides, DialLLM (w/o CTI) exhibits lower
performance than DiaLLM (w/o CT) across most
datasets, highlighting the necessity of understand-
ing clinical terminology and numerical values.

4.5.2 Ablation Study on Reward Modeling

We analyze the influence of specific PPO mecha-
nisms: (1) DiaLLM (w/o PPO-RJ): Removes reject
sampling. (2) DiaLLM (w/o PPO-Conf): Removes
confirmation reward. (3) DiaLLM (w/o PPO-Imb):
Removes imbalanced reward. Reward modeling
is primarily effective for multi-turn dialogue data,
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Figure 4: Ablation Study on Multi-turn Dialogue Data.

and experimental results are shown in Figure 4.
Each PPO component contributes to model per-
formance, as elaborated in the experimental results.
In the TriNetX-Respiratory multi-turn dialogue
dataset, removing the imbalanced reward reduces
the F1-score to 0.6954, while removing the confir-
mation reward lowers it to 0.7129. These declines
highlight the importance of addressing class im-
balance (PPO-Imb) and incorporating confidence-
based rewards (PPO-Conf) to improve classifica-
tion quality, balance predictions, and enhance de-
cision reliability. Furthermore, the EHR transfor-
mation component has a greater impact on model
performance than reward modeling in multi-turn
dialogue data, showing the importance of aligning
medical terms with common-sense knowledge.

4.6 Case Study

We qualitatively evaluate the diagnostic recommen-
dations of various models using the same example
dialogue, as presented in Table 9 in the Appendix
A.2.5. The selected case presents a complex sce-
nario requiring not only diagnosis prediction but
also the integration of additional clinical test evi-
dence. DialLLM initially recommended tests for
carbon dioxide, chloride, etc. Upon receiving the
results, it identified abnormalities in carbon diox-
ide and chloride levels and suggested further tests
for glucose and sodium. Based on these analysis,
DialLLMs can recommend relevant diagnoses.

In contrast, all baseline medical LLMs lacked
the ability to inquire about appropriate clinical tests
or effectively analyze test results, highlighting a
significant gap in diagnostic reasoning. BioMistral
has a narrow diagnostic scope, potentially miss-
ing relevant diagnoses. While Meditron-7B and
8B considered a broader range of conditions, their
diagnostic results diverged from the ground truth.
ChatDoctor’s diagnoses often lacked relevance to
the patient’s symptoms and lab results, suggest-
ing limited comprehension of the medical history.
Among these, DiaLLM demonstrated the most
comprehensive and accurate diagnostic approach,
effectively inquiring, analyzing lab results, and
adjusting recommendations, showcasing superior
practical medical value.

5 Conclusion

In this work, we introduced DialLLM, a clinical
dialogue model that enhances medical conversa-
tional systems through a combination of clinical-
grounded EHR transformation and PPO optimiza-
tion. Experimental results consistently show that
DialLLM outperforms existing models across a va-
riety of metrics, demonstrating its superior predic-
tion ability. By integrating domain-specific knowl-
edge and a structured decision-making process,
DialLLM offers a significant improvement over
both general-purpose and medical-specific LLMs
in complex medical dialogues.



Limitations

Automation of CTR Database In this work, we
recruited three medical students to annotate clin-
ical test code descriptions and clinical value ref-
erence ranges based on medical guidelines and
publicly available clinical resources (e.g., Mayo
Clinic). Our constructed Clinical Test Reference
data are crucial for diagnosis prediction using EHR
data grounded in clinical knowledge. However,
manual annotation is time-consuming and prone to
variability. Future work will focus on automating
this process to enhance efficiency and consistency.
Clincial Conversational System with Mullti-
modal Data In this work, we focus on diseases
that can be solely predicted through EHR data.
Our approach focuses on EHR data and lab tests
with numerical or textual features. With advances
in multimodal learning, integrating imaging-based
diagnostic tests, such as CT scans, could further
enrich the model’s clinical reasoning capabilities.
We also leave this extension for future exploration.

Ethic Statement

Data Collection This study utilizes publicly avail-
able EHR data and de-identified in-hospital records
approved for research use. To safeguard patient
privacy, we conducted a thorough review to ensure
the dataset contains no sensitive information. We
adhere to strict ethical standards in data handling
and acknowledge the research community’s com-
mitment to maintaining data integrity and privacy.
Compensation and Ethical Collaboration with
Medical Professionals We collaborated with two
senior medical graduates to identify diseases pre-
dictable solely from EHR data and to evaluate
the constructed CTR. Each was compensated 200
RMB per hour, aligning with local salary standards
to ensure fair remuneration for their expertise.
Concerning the Trustworthiness of DiaLLM
While DiaLL.M demonstrate strong diagnostic rea-
soning capabilities, its reliability in real-world clin-
ical settings is not yet fully established. Potential
risks include hallucinations, biases from training
data, and inconsistencies in medical reasoning. To
enhance trust, further research is needed to im-
prove model transparency, robustness, and valida-
tion through expert evaluation. Developing rigor-
ous verification mechanisms and integrating clini-
cian oversight will be essential for safe deployment
in medical practice.
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A Appendix

NHANES
Model Recall@l Fl  MRR
Mistralv0.3-7B 28.60 40.48 37.41
Llama3.1-8B 29.70 45.69 47.64
Qwen2.5-7B 28.97 44.83 44.38
BioMistral 36.19 48.25 43.13
ChatDoctor 39.83 54.29 46.72
Meditron-7B 36.82 52.47 47.77
Meditron3-8B 37.69 55.34 49.78
Mistralv0.3-7B,;, 91.98 92.47 97.99
Llama3.1 8By, 92.15 92.66 98.06
Qwen2.5-7B,,;;, 92.07 92.45 98.02
DialLLMs 95.94 96.07 98.97

Table 4: Performance Comparison of DiaLLM and
Baselines on NHANES Dataset.

A.1 Methodology
A.1.1 TIllustration of EHR data.

We summarize main elements and corresponding
examples in EHR data in Table 5. EHR data is het-
erogeneous and can be represented as a sequence
of tables.

A.1.2 Dialogue Data Construction from EHR

The EHR transformation comprises two compo-
nents (1) Clinical Code Translation and (2) Clinical
Test Interpretation. Examples of our constructed
Clinical Code Translation data is shown in Table 6
and examples of Clinical Test Interpretation data
is shown in 7, respectively.

A.2 Experiments

A.2.1 Statistical Analysis of Datasets.

We exclude clinical tests with a frequency of less
than 10 across the entire dataset. Additionally, we
filter out tests for which no test results are available
for each patient. Statistical analysis of datasets is
shown in Table 8.

TriNetX- TriNetX- TriNetX- NHANES
Metabolic Respiratory Circulatory

#Samples 15844 10068 6747 8897
#Diagnosis 49 47 49 4
#Clinical Test 272 301 217 45

Table 8: Statistical Analysis of Datasets.
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Figure 5: Ablation Study on NHANES Dataset.

A.2.2 Evaluation Metrics

The Mean Reciprocal Rank (MRR) is a metric
used to evaluate systems that return a ranked list of
answers to queries, focusing on the position of the
first relevant answer. A higher MRR indicates that
relevant items tend to appear higher in the ranked
list of results. It is defined as the average of the
reciprocal ranks of the first relevant answer for a
set of queries. Formally, MRR is expressed as:

QI

A.2.3 Main Results on NHANES Dataset

Experimental results on the NHANES dataset is
shown in Table 4. It can be observed that: (1)
Medical-specialized models consistently outper-
form general foundation models; (2) When adapt-
ing foundation models with an MLP classifier
trained on extracted embeddings, performance im-
proves drastically; (3) DiaLLM significantly out-
performs all baselines, demonstrating its superior
ability in diagnosis prediction. These results high-
light the effectiveness of DialLLM’s integration of
structured EHR data and reinforcement learning
framework, enabling more accurate and clinically
relevant predictions compared to both zero-shot
LLMs and embedding-based MLP classifiers.

1
MRR = —-
Q]

1
rank;

“

A.2.4 Ablation Study on NHANES Dataset

Experimental results on the NHANES dataset is
shown in Figure 5. The NHANES dataset presents
a simpler task compared to TriNetX data. The
ablation study highlights the critical role of clini-
cally grounded data transformation and rewarding
modeling for improving diagnosis performance.

A.2.5 Case Study
The case study example is presented in Table 9.



EHR Data Description Event Visit Time

Demographics General characteristics of patients Age, gender, ethnicity/race
Patient symptoms are cataloged in the ICD-10-CM R10.12: Left
Symptom ICD system under codes RO0-R99. upper quadrant pain 2019-02-15
Medical signs indicating LOINC 8462-4 82 mm[Hg] 2019-02-15
Vital Signs the status of the body’s LOINC 29463-7, 84 [Ib_av] 2019-02-19
vital functions LOINC 8480-6, 124 mm[Hg] 2019-02-22
Laborator Medical examination results, LOINC 73578-7,8 mmol/L, 2019-02-15
Results y generate are organized LOINC 6768-6 48 U/L, 2019-02-19
T in a code format LOINC 19261-7 Negative 2019-02-22
Codes representing diseases ICD- ld(z:_f((i\r/[thlg: :Ofﬁingemtal
Diagnostic and related health problems P, 2019-02-22

ICD-10-CM M25.552: Pain in left hip,

(e.g, ICD-9 and ICD-10) ICD-10-CM R06.02: Shortness of breath

Table 5: Description of key components and corresponding examples in EHR data.

LOINC Code Description
100091-8 Trypanosoma cruzi Ab [Units/volume] in Serum by Immunoassay
100092-6 Trypanosoma cruzi Ab bands panel - Serum by Immunoblot

100093-4 Trypanosoma cruzi 15-16kD IgG Ab [Presence] in Serum by Immunoblot
100094-2 Trypanosoma cruzi 21-22kD IgG Ab [Presence] in Serum by Immunoblot
100095-9 Trypanosoma cruzi 27-28kD IgG Ab [Presence] in Serum by Immunoblot
100096-7 Trypanosoma cruzi 42kD IgG Ab [Presence] in Serum by Immunoblot
100097-5 Trypanosoma cruzi 45-47kD IgG Ab [Presence] in Serum by Immunoblot
100098-3 Trypanosoma cruzi 120-200kD IgG Ab [Presence] in Serum by Immunoblot

100099-1 Trypanosoma cruzi 160kD IgG Ab [Presence] in Serum by Immunoblot
1001-7 DBG Ab [Presence] in Serum or Plasma from Donor

10010-7 R’ wave amplitude in lead AVF

100100-7 Fasciola sp IgG Ab [Presence] in Serum by Immunoassay

100101-5 Fasciola sp 8-9kD IgG Ab [Presence] in Serum by Immunoblot

100102-3 Fasciola sp 27-28kD IgG Ab [Presence] in Serum by Immunoblot

Table 6: The Mapping between LOINC Codes and their Corresponding Clinical Descriptions.

Lab Code Test Name Age Range Gender Reference Range Unit Critical Value
2823-3 Potassium Serum 1-18 years Any 3.4-4.7 mEq/L -
2823-3 Potassium Serum Any >18 years Any 3.5-52 mEq/L -
17861-6  Total Calcium <1 year Any 8.7-11.0 mg/dL -
17861-6  Total Calcium 1-17 years Any 9.3-10.6 mg/dL -
17861-6  Total Calcium 18-59 years Any 8.6-10.0 mg/dL -
17861-6  Total Calcium >60 years Any 8.8-10.2 mg/dL -
eGFR (Estimated . )
33914-3 Glomerular Filtration Rate) Any Any >90 mL/min/1.73m’ -
339143 CUFR (Estimated Any Any None mL/min/1.73m?  Mildly low: 60-89

Glomerular Filtration Rate)

Moderate to severe

33914-3 ¢GFR (Estlme.lted . Any Any None mL/min/1.73m?  kidney disease:
Glomerular Filtration Rate) 30-59
eGFR (Estimated . , Kidney failure:
33914-3 Glomerular Filtration Rate) Any Any None mL/min/1.73m <15

Table 7: Examples of the Manually Constructed Clinical Test Interpretation Data.
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A Sub-piece of Initial EHR Data:

Demographic Information: age: 30, gender: female, race: white

Symptom Code : R10.2, R10.32

Lab Test Code : 2028-9, 2075-0, 2951-2, 3040-3, 33037-3, 48642-3, 777-3, 1742-6, 2028-9,
2075-0

Lab Results Values : 31.0, 105.0, 83.0, 139.0,7.0, 99.0, 283.0, 27.0,

Vital Sign Code : 8302-2, 8310-5, 8462-4, 8480-6, 9279-1

Vital Sign Values : 62.0, 98.0, 70.7, 119.7, 98.7

Diagnosis Codes: E03.9, K80.62, K81.0, N80.9, K80.20, K80.10

Prompts:
Given the patient demographic information : (age: 30, gender: female, race: white).

Patient shows symptom of : (1) Pelvic and perineal pain; (2) Right lower quadrant pain.

These lab tests show normal results : (1) Carbon dioxide, totalin Serum or Plasma, (2) Chloridein
Serum or Plasma, (3) Glucosein Serum or Plasma, (4) Sodiumin Serum or Plasma, (5) Lipasein
Serum or Plasma, (6) Glomerular filtration rate/1.73 sq M predicted among non-blacksin Serum or
Plasma by Creatinine-based formula (MDRD).

These lab tests show abnormal results : (1) Plateletsin Blood by Automated count.

These vital sign show normal Results : (1) Temperature, (2) Blood Pressure (Systolic), (3) Blood
Pressure (Diastolic), (4) Respiratory Rate,

These vital sign show abnormal values : (1) Heart Rate
What are your recommended diagnosis? If you need further information, what are your recom-
mended clinical test for further decision making?

DiaLLM

I recommend you to take (1) Alanine aminotransferase in Serum or Plasma; (2) Carbon dioxide in
Serum or Plasma, (3) Chloride in Serum or Plasma.

Prompts (User):

My Alanine aminotransferase in Serum or Plasma results is 27.0 U/ L , Carbon dioxide in Serum
or Plasma is 83.0 mEq/ L, Chloride in Serum or Plasma is 139.0 mEq/L.

DiaLLM:

These lab test shows normal results: (1) Alanine aminotransferase in Serum or Plasma results;
These lab test shows abnormal results: (1) Carbon dioxide in Serum or Plasma, (2) Chloride in
Serum or Plasma. I further recommend you to take (1) Glucose in Serum or Plasma; (2) Sodium in
Serum or Plasma;

Prompts (User):

My Glucose in Serum or Plasma is 7.0 mmol /L, (2) Sodium in Serum or Plasma 99.0 mmol /L.
DiaL.LM:

These lab test shows abnormal results: (1) Glucose in Serum or Plasma; (2) Sodium in Serum or
Plasma. I recommend the following possible diagnosis: (1) disorders of thyroid gland, (2) disorders
of gallbladder, biliary tract and pancreas, (3) Noninflammatory disorders of female genital tract.

BioMistral
I recommend the following possible diagnosis: (1) Chlamydia trachomatis infection, (2) Pelvic
inflammatory disease, (3) Pelvic pain

Meditron-7B
I recommend the following possible diagnosis: (1) Pelvic inflammatory disease, (2) Acute appen-
dicitis, (3) Ovarian torsion, (4) Ectop

Meditron-8B
I recommend the following possible diagnosis: (1) Pelvic inflammatory disease, (2) Chlamydia
trachomatis infection, (3) Pelvic inflammatory disease with chlamydia trach.

Chatdoctor
I recommend the following possible diagnosis: (1) pelvic inflammatory disease, (2) tuberculosis,
(4) acute pancreat.

Table 9: Sample Responses for Case Study.
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