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Abstract

Recent advances in Large Language Models001
(LLMs) have led to remarkable progresses in002
medical consultation. However, existing medi-003
cal LLMs overlook the essential role of Elec-004
tronic Health Records (EHR) and focus pri-005
marily on diagnosis recommendation, limit-006
ing their clinical applicability. We propose007
DiaLLM, the first medical LLM that inte-008
grates heterogeneous EHR data into clinically009
grounded dialogues, enabling clinical test rec-010
ommendation, result interpretation, and di-011
agnosis prediction to better align with real-012
world medical practice. To construct clini-013
cally grounded dialogues from EHR, we de-014
sign a Clinical Test Reference (CTR) strat-015
egy that maps each clinical code to its cor-016
responding description and classifies test re-017
sults as "normal" or "abnormal". Addition-018
ally, DiaLLM employs a reinforcement learn-019
ing framework for evidence acquisition and020
automated diagnosis. To handle the large ac-021
tion space, we introduce a reject sampling strat-022
egy to reduce redundancy and improve explo-023
ration efficiency. Furthermore, a confirmation024
reward and a class-sensitive diagnosis reward025
are designed to guide accurate diagnosis pre-026
diction. Extensive experimental results demon-027
strate that DiaLLM outperforms baselines in028
clinical test recommendation and diagnosis pre-029
diction. Our code is available for review1.030

1 Introduction031

Rapid advancements in LLMs (Touvron et al.,032

2023; Wu et al., 2023) expanded opportunities to033

improve diagnostic assistance and patient interac-034

tions in the healthcare domain(Biswas, 2023; Li035

et al., 2023; Shah, 2024; Singhal et al., 2023), and036

clinical conversational systems (Wang et al., 2023a;037

Yang et al., 2024b) have emerged as a promising038

approach to enhance clinical reasoning and assist039

1https://anonymous.4open.science/r/
DiaLLM-E3B3

Figure 1: Structured representation of EHR data, illus-
trating patient demographics, symptoms, clinical tests
(e.g., lab test, vital signs), and physician decisions over
time. Symptoms and diagnoses are encoded using ICD
codes, while clinical tests follow the LOINC system.

doctors with diagnosis. However, as shown in Ta- 040

ble 1, existing studies primarily rely on synthetic di- 041

alogues generated from medical knowledge graph 042

(Wang et al., 2023a) or open medical Question An- 043

swer (QA) (Labrak et al., 2024) and are difficult to 044

work on real-world healthcare settings which use 045

Electronic Health Records (EHR). Furthermore, 046

the diagnosis workflow involves multiple critical 047

sub-tasks, including the inquiry of clinical lab tests 048

and the interpretation of their results before giving 049

the diagnosis results, which are often neglected in 050

current approaches (Zhou et al., 2023; Liu et al., 051

2024). Consequently, existing explorations in the 052

clinical conversational system are still far from 053

practical healthcare scenarios, primarily due to 054

challenges in understanding EHR and adapting to 055

real-world diagnosis workflows (Li et al., 2024). 056

How to learn from EHR data? EHR data is a 057

comprehensive digital record encompassing a pa- 058

tient’s medical history, treatments, test results, and 059

clinical decisions. As shown in Figure 1, EHR cap- 060

tures multiple clinical visits and can be structured 061

as a dialogue for clinical conversational systems. 062

However, its heterogeneity and domain-specific 063

nature pose a fundamental challenge, limiting com- 064

patibility with existing LLMs (Li et al., 2024). Un- 065

like general NLP tasks, EHR data includes nu- 066
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Model Main Data Source Function Training Method Language

ChatDoctor (Li et al., 2023) Medical Consultation Website Diagnosis Assistance SFT English
DoctorGLM (Xiong et al., 2023) Physician-Patient Dialogues Diagnosis Assistance SFT Chinese
BenTsao (Wang et al., 2023a) Medical knowledge Graphs Diagnosis Assistance SFT Chinese

Zhongjing (Yang et al., 2024b) Proprietary data, Crawled data Diagnosis Assistance SFT + RLHF Chinese
Biomistral(Labrak et al., 2024) Medical QA Diagnosis Assistance SFT English
Meditron (Chen et al., 2024) PubMed articles Diagnosis Assistance SFT English

DiaLLM EHR data
Diagnosis Assistance,
Test Results Analysis,
Clinical Test Ordering

PPO English

Table 1: Comparison of Data Sources, Function, Training Method, and Language across Popular Medical Conversa-
tional Models.

merical values, categorical attributes from clinical067

tests, and domain-specific terminologies such as068

ICD codes and LOINC lab identifiers (Sui et al.,069

2024; Liang et al., 2024). These complexities re-070

quire precise numerical reasoning and contextual071

understanding. While LLMs benefit from massive072

text-based data and are trained using next-token073

prediction (Zhao et al., 2023), they exhibit signif-074

icant weaknesses in understanding numeric and075

specialized clinical knowledge (Sui et al., 2024).076

Which Service should Clinical Conversa-077

tional System Provide? The second challenge lies078

in the alignment between LLM-supported conver-079

sational system and clinical workflows. As shown080

in Table 1, existing works primarily focus on diag-081

nosis assistance using "symptom-diagnosis" con-082

versational data, which oversimplifies the diagnos-083

tic process and limits practical applicability. In084

a typical diagnostic scenario, a patient presents085

symptoms, prompting the clinician to iteratively086

gather information through inquiries and clinical087

lab tests. This process follows a cycle of ‘evidence088

acquisition, results interpretation, and diagnosis089

confirmation’, with the patient’s medical trajec-090

tory information promptly recorded in the EHR091

data. Simulating clinicians’ evidence acquisition092

and automated diagnosis process within LLMs still093

remains unexplored (Zhou et al., 2023).094

Motivation of DiaLLM. In this work, we pro-095

pose a novel conversational agent, named DiaLLM,096

which provides an EHR-grounded transformation097

pipeline and explicitly models clinicians’ reason-098

ing processes for evidence acquisition and auto-099

mated diagnosis.100

Technically, the EHR-grounded transformation101

aims to convert EHR data into dialogues that are102

aligned with common-sense knowledge and inter-103

pretable to LLMs. It first converts the EHR data104

into a single or multi-turn dialogue dataset, struc-105

tured according to the patient’s clinical visit time-106

line. Then, we translate the heterogeneous dia- 107

logue into clinically-grounded text by designing 108

a Clinical Test Reference (CTR) strategy. The 109

CTR facilitates (1) the translation of standardized 110

clinical codes (such as ICD-9/10, LOINC) into 111

clinically-grounded text; and (2) the interpretation 112

of clinical test results, conditioned on the patient’s 113

age and gender. 114

On top of transformed EHR data, DiaLLM mod- 115

els evidence acquisition and automated diagnosis 116

with a reinforcement learning framework. A policy 117

network selects clinical tests (i.e., take actions) or 118

terminates the process to make a diagnosis. Upon 119

termination, a supervised classification model is 120

invoked for disease diagnosis. To handle the large 121

action space of clinical tests, we introduce a novel 122

rejection sampling strategy (Bardenet et al., 2014; 123

Fan et al., 2023; Mandel et al., 2016) that pre-filters 124

redundant or unnecessary tests, ensuring only clin- 125

ically relevant ones are selected. Meanwhile, since 126

patients can have multiple diagnoses and disease 127

distributions exhibit a long-tail pattern across popu- 128

lations, we propose a new confirmation reward and 129

a class-sensitive classification reward to enhance 130

diagnosis prediction. 131

Evaluation. We propose a comprehensive eval- 132

uation framework for medical LLMs, assessing 133

both single-turn and multi-turn consultations. Ex- 134

perimental results show that DiaLLM outperforms 135

both general-purpose and medical-specific LLMs 136

in clinical test selection and diagnosis prediction. 137

Our ablation study reveals that integrating the EHR- 138

grounded transformation pipeline and specialized 139

reward modeling significantly improves clinical 140

test comprehensiveness, result interpretation, and 141

early diagnosis accuracy. 142

2 Related Works 143

Representation Learning for EHR data. The ma- 144

jority of existing studies enhance medical code rep- 145
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resentations by incorporating external relational in-146

formation through medical ontologies (Choi et al.,147

2017; Panigutti et al., 2020) and knowledge graphs148

(Jiang et al., 2023b; Wang et al., 2023b). How-149

ever, these established medical knowledge sources150

are restricted to specific diseases (Si et al., 2021).151

Recent works have attempted to derive clinical152

concept embeddings from large-scale medical text153

corpora (Ye et al., 2021), learning relational graphs154

through self-supervised learning (Yao et al., 2024),155

contrastive learning (Cai et al., 2022), or generating156

medical concepts directly using LLMs (Ma et al.,157

2024). However, these approaches often lack clin-158

ically grounded annotations, making the learned159

embeddings incompatible with LLM inputs.160

Another line of research improves clinical pre-161

diction performance by learning from clinical test162

results. Existing works derive partition functions to163

learn from numerical and categorical clinical test164

results (La Cava et al., 2019), employing methods165

such as XGBoost (Chen and Guestrin, 2016), addi-166

tive models (Hastie, 2017), piecewise linear func-167

tions (Montomoli et al., 2021), and logic-based168

rule learning (Ren et al., 2024). However, these169

approaches can be susceptible to biases introduced170

by patient population variations and may not align171

with established guidelines for interpreting test re-172

sults (Ren et al., 2024).173

Diagnosis-oriented Conversational System.174

Early research primarily focused on ICU-175

based temporal EHR data (Yoon et al., 2019;176

Fansi Tchango et al., 2022; Qin et al., 2024; He177

and Chen, 2022) or specific diagnosis categories178

(He and Chen, 2022; Fansi Tchango et al., 2022),179

and proposed to model evidence inquiry and180

diagnosis as a Markov decision process (MDP)181

(Tang et al., 2016). With the rise of foundation182

models, clinical conversational systems have been183

explored by tuning on various medical corpora,184

including clinical conversations collected from185

online medical consultation website (Li et al.,186

2023), symptom-diagnosis dialogues (Toma et al.,187

2023), medical question-answering pairs (Han188

et al., 2023), and knowledge graph-generated189

dialogues (Yang et al., 2024b; Wang et al.,190

2023a). However, these curated datasets deviate191

from real-world data distribution, lack essential192

clinical test support and do not interpret lab test193

results. These shortcomings limit their real-world194

applicability. For a comprehensive review, see195

(Zhou et al., 2023). In contrast, our approach196

constructs single-turn and multi-turn dialogue data197

leveraging real-world EHR data, and facilitates lab 198

test requesting and diagnosis prediction. 199

3 Methodology 200

3.1 Diagnostic Conversational System Setup 201

Task Definition and Notations. DiaLLM encap- 202

sules the evidence acquisition and diagnosis au- 203

tomation with the following steps: 204

1. Initial Query: The patient provides demo- 205

graphic information d and symptoms s. 206

2. Clinical Test Recommendation: The LLM 207

agent suggests initial clinical tests c0. 208

3. Test Result Analysis and Follow-ups: Upon 209

receiving the patient’s initial clinical test 210

results v0, the agent conducts a clinically 211

grounded analysis and iteratively recom- 212

mends additional follow-up tests ct>0 and 213

interprets new results vt>0 to gather further 214

evidence. This process continues until a con- 215

clusive diagnosis is achieved. 216

4. Diagnosis Prediction: The system ultimately 217

predicts the diagnosis y. 218

Problem Formulation. This process can be 219

modeled as a Markov Decision Process (MDP) 220

M(S,A,R, γ), where: S = S ′ ∪ {s⊥} is the 221

state space, with s⊥ as the terminal state. A = 222

A′ ∪ {a⊥} is the action space, with a⊥ as the stop 223

action. γ is the discount factor. Each dialogue 224

consists of at most T turns, where T represents the 225

maximum number of visits recorded in the EHR 226

data. At turn t, the state st ∈ S ′ encodes socio- 227

demographics, acquired evidence and dialogue his- 228

tory ht: 229

st = {d, s, ct,vt,ht}. (1) 230

At turn t, the agent selects an action at, determin- 231

ing whether to request further tests or stop. The 232

clinical test recommendation model πθ(at|st) gov- 233

erns test selection, while the diagnosis prediction 234

model πϕ(y|s⊥) makes the final diagnosis. 235

Overview of DiaLLM. In this work, we present 236

DiaLLM designed to enhance evidence acquisi- 237

tion, result interpretation, and the diagnostic work- 238

flow. It consists of two key components: (1) a 239

transformation strategy that constructs dialogues 240

from heterogeneous EHR data, aligning them to 241

common-sense texts for the ease of understanding 242

by LLMs; and (2) a reinforcement learning frame- 243

work to empower the base LLM with evidence 244
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DiaLLM
PPO

Base Chat Model

# Clinical Code Translation

# Clinical Test Interpretation

Clinical Test Reference

EHR Grounded Transformation

Construction of Multi-turn Dialogues Lab Test Order + Diagnosis Assistance

…

𝒕 = 𝟏 [Demographic Information + Symptom]

𝒂𝟏 [Clinical Test Recommendation]

𝒕 = 𝟐 [Patient Test Results]

𝒂𝟐 [Test Results Comprehension + Test Recommendation]

𝒕 = 𝐓 [Diagnosis Recommendation]

My blood pressure diastolic results is 93 

mm[HG], my weight is 175 lb.

I’m smith. I’m a white female with age of 27. I 

shows the  symptom of  left upper quadrant pain. 

Do you have suggested lab test for me?

I suggest you take blood pressure diastolic test 

and measure your weight.

Good! Your blood pressure diastolic is normal 

and your body weight is normal. I further 

recommend you further take …

I reviewed the whole conversation, you are mostly 

diagnosed with specified congenital deformities of hip 

and Idiopathic aseptic necrosis of bone.

Clinical Test 

Recommendation
Diagnosis 

Prediction Model

𝑠𝑡

LLMs

𝑎𝑡 ො𝑦Large Space

Confirmation 

Reward

Class-sensitive 

Reward

1. Sample from 𝜋 ȁ𝑎𝑡 𝑠𝑡 .

2. Compute acceptance

probability 𝑝𝑎𝑐𝑐 𝑎𝑡 𝑠𝑡 .

3. Accept with probability
𝑝𝑎𝑐𝑐 𝑎𝑡 𝑠𝑡 .

4. If rejected, resample.

Reject Sampling

Patient

Clinician

Figure 2: DiaLLM operates in two stages: (I) Dialogue Data Construction, where EHR data is transformed into
clinically grounded dialogue data, and (II) Reward Modeling, which optimizes clinical test selection and diagnosis
prediction. In Stage I, DiaLLM converts clinical test codes and results into texts using our constructed Clinical
Test Reference. In Stage II, we adopt a novel rejection sampling strategy to handle the large action space and
incorporate two reward signals to facilitate diagnosis prediction learning.

acquisition and automated diagnosis capabilities,245

for which we design a reject sampling strategy and246

several reward signals to facilitate learning. Both247

components will be detailed later in this section.248

3.2 Dialogue Data Construction from EHR.249

We introduce an EHR transformation strategy to250

convert structured EHR into clinically grounded di-251

alogues. This process begins by segmenting patient252

visit records into conversational episodes when253

clinical visit intervals are within one week. A ma-254

jor challenge lies in representing medical termi-255

nologies (e.g., codes and lab test identifiers) and256

interpreting lab results. While text-driven LLMs257

excel in natural language understanding and reason-258

ing, they lack direct exposure to structured EHR259

data. To address this, we manually curate a Clini-260

cal Test Reference data to translate heterogeneous261

EHR data in a clinically meaningful manner.262

The transformation comprises two components:263

(1) Clinical Code Translation that converts special-264

ized medical terms, including symptom codes s,265

diagnosis codes y, and clinical test codes ct into266

clinically grounded and common-sense language267

that is easily understandable by LLMs. An exam-268

ple of the clinical code translation data is provided269

in Table 6 in the Appendix. (2) Clinical Test Inter- 270

pretation that transforms heterogeneous lab test re- 271

sults using domain knowledge, including grounded 272

reference ranges conditioned on gender and age, 273

and classifies test results as ’normal’ or ’abnormal’. 274

An example of the clinical test interpretation data 275

is shown in Table 7 in the Appendix. 276

Details of Clinical Test Reference database. For 277

clinical code translation, symptom and diagnosis 278

codes are commonly recorded using the ICD sys- 279

tem, such as ICD-9 and ICD-10. To standardize 280

code descriptions, we build a comprehensive code- 281

base that includes ICD-9, ICD-10, and a mapping 282

from ICD-9 to ICD-10 for standardization. Clin- 283

ical tests are generally coded using the LOINC 284

system. We annotate 735 clinical test code de- 285

scriptions (including both lab test and vital sign 286

codes) 2 which cover most of diseases to ensure 287

comprehensive coverage and standardization. 288

For clinical test interpretation, we annotate 262 289

commonly used clinical tests based on established 290

medical guidelines3. This resulted in 1,163 annota- 291

2LOINC Organization: https://loinc.org/
3LOINC Organization: https://loinc.org/, Mayo

Clinic Laboratory: https://www.testcatalog.org/
show/NAS, Corewell Health: https://corewellhealth.
testcatalog.org/show/LAB299-1
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tions 4 categorized as follows: (1) Normal Ranges292

that define reference ranges considering age and293

gender influences. (2) Critical Values that identifies294

thresholds indicating life-threatening conditions re-295

quiring immediate intervention. (3) Demographic296

Variability that includes age- and gender-specific297

ranges to account for physiological differences. (4)298

Units of Measurement that ensures consistency299

across international and clinical standards.300

Example. Given the EHR example: "Female, Age301

27, LOINC 2160 0.48 mg/dL," the CTR translates302

it to: "Given the patient demographic information303

(Age: 27, gender: Female). These lab tests show304

normal results: Creatinine in Serum or Plasma".305

3.3 Learning for Lab Test and Diagnosis.306

On top of transformed EHR data, DiaLLM models307

lab test acquisition and automated diagnosis using308

a reinforcement learning framework. At each step,309

the model will select follow-up lab tests (i.e., take310

actions) or termination of this process to make a311

diagnosis. To facilitate learning, we adopt rejection312

sampling to reduce the complexity. During fine-313

tuning with PPO, both a confirmation-based reward314

and a Class-sensitive Diagnosis reward are utilized.315

Rejection Sampling for Lab Test Selection. In316

the presence of cost pressure, the goal of the agent317

is to balance timely and accurate evidence acquisi-318

tion with cost-effective feature selection. The vast319

number of potential lab tests leads to a large action320

space, making direct reinforcement learning (RL)321

inefficient. To mitigate this, we introduce a strategy322

based on rejection sampling (Bardenet et al., 2014;323

Mandel et al., 2016) which pre-filters redundant or324

unnecessary lab tests before execution, ensuring325

that only clinically relevant tests are selected.326

At each decision step t, the actor model π(at|st)327

samples a candidate lab test ct from the full action328

space. Instead of executing the sampled action329

immediately, we introduce a rejection sampling330

mechanism that determines whether the test should331

be conducted based on its informativeness, cost,332

and redundancy. The probability of accepting a333

test paccept(ct|st) is defined as:334

paccept(ct | st) =
H(y | st)−H(y | st, vt)

maxct H(y | st)−H(y | st, vt)
· 1[ct /∈ Cprev],

(2)335

4Each clinical test may correspond to multiple reference
ranges conditioned on patient age and gender.

where H(y | st, vt) denotes the entropy of pre- 336

dicted diagnosis given the current sate st and value 337

vt of candidate test ct, capturing how much uncer- 338

tainty is reduced by performing ct. The redundancy 339

filter 1[ct /∈ Cprev] prevents reordering previously 340

conducted tests. 341

Confirmation Reward. As the conversation pro- 342

gresses, the agent should systematically acquire 343

more evidence to refine its belief in the correct di- 344

agnosis while minimizing uncertainty. Inspired by 345

potential-based reward shaping (Hu et al., 2020), 346

we formalize the confirmation reward Rco as: 347

RCo(st, at, st+1) = 1st+1 ̸=s⊥ · 348

(CE(ŷt+1, y)− CE(ŷt, y)) , 349

where 1st+1 ̸=s⊥ is an indicator that the terminal 350

state has not been reached yet. 351

Class-sensitive Diagnosis Reward. This reward is 352

designed to provide feedback to the agent by eval- 353

uating the quality of its final predicted diagnosis 354

with respect to the ground truth diagnosis y once 355

the interaction process is completed. To directly 356

optimize diagnosis prediction while addressing the 357

issue of class imbalance (Puthiya Parambath et al., 358

2014; Elkan, 2001), we introduce a weighted clas- 359

sification reward: 360

RCl(sT ) =
∑
yi∈y

wCl(yi) · CE(ŷi, yi), (3) 361

where wCl(yi) =
1

p(yi)
assigns a higher weight to 362

rare diagnoses based on the inverse of the class 363

frequency. This reward adjusts the importance of 364

correctly predicting minority classes, ensuring that 365

the agent focuses on both high-risk and low-risk 366

diagnoses effectively. 367

4 Experiments 368

4.1 Dataset and Task Description 369

To critically evaluate the performance of LLMs 370

on EHR data, we design the dataset with two 371

key considerations: (I) Unexposed: Ensuring that 372

the dataset has not been previously used by most 373

LLMs. (II) Predictive: Focusing on diseases that 374

can be predicted solely from EHR data, reflecting 375

their clinical applicability. Detailed data statistical 376

analysis is listed in Table 8 in Appendix A.2.1. 377

NHANES Dataset. Following (Kachuee et al., 378

2019), we construct a diabetes dataset from the 379

public National Health and Nutrition Examination 380
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Survey (NHANES) 5. The NHANES dataset does381

not include clinical visit time information, and we382

construct a single-turn dialogue based on this data.383

The dataset includes 8,897 patients and 45 het-384

erogeneous features, such as demographic data,385

lab results (e.g., total cholesterol, triglycerides),386

physical measurements (e.g., weight, height), and387

responses to questionnaires (e.g., smoking, alcohol388

consumption).389

TriNetX Dataset. TriNetX6 is a global health390

research network providing access to large-scale391

de-identified patient EHR data. TriNetX includes392

records from 33,105 de-identified patients, span-393

ning data from 1982 to 2023, collected across more394

than 100 community hospitals and 500 outpatient395

clinics. To satisfy goal (I) and (II), we extract396

data on metabolic, respiratory, and circulatory dis-397

eases, referred to as TriNetX-Metabolic, TriNetX-398

Respiratory and TriNetX-Circulatory, respectively.399

4.2 Baselines and Evaluation Metrics400

We compare DiaLLM with (1) pretrained401

foundation models7 including Mistralv0.3-7B402

Instruct (Jiang et al., 2023a), Llama3.1-8B403

Instruct (Dubey et al., 2024), Qwen2.5-7B404

Instruct (Yang et al., 2024a); and (2) medical-405

specialized models include BioMistral (Labrak406

et al., 2024), Meditron-7B (Chen et al., 2024),407

Meditron3-8B (Chen et al., 2023), Chatdoctor408

(Li et al., 2023). To evaluate zero-shot perfor-409

mance, we incorporate diagnosis labels in the410

prompt. For foundation models, we also test an411

alternative approach where we extract their gener-412

ated embeddings and train an MLP for prediction.413

We evaluate the prediction performance through414

two dimensions: (1) Coverage Ability. We use the415

recall@5 and F1 to measure the coverage ability.416

Since there are no lab test requests in single-turn417

dialogues, we evaluate lab test performance on the418

multi-turn dialogue data using recall@5. (2) Early-419

Prediction Ability. We utilize Mean Reciprocal420

Rank (MRR) to indicate the effectiveness of early421

diagnosis prediction. Details about evaluation met-422

rics are shown in A.2.2 in Appendix.423

4.3 Implementation Details424

During implementation, we select Llama3.1-8B425

as the backbone foundation model, and append a426

mean-pooling layer and a two-layer MLP to it for427

5https://wwwn.cdc.gov/nchs/nhanes/
6https://trinetx.com/
7For simplicity, we use shortened names later.

lab test recommendation and diagnosis prediction. 428

During tuning, r is set to 16 for the LoRA adapters 429

(Hu et al., 2021). Batch size is set to 4 and learning 430

rate is 1e − 4. Training epoch is set to 5. We 431

randomly run each experiment twice and report 432

the mean. We run experiments on four A100, and 433

train:eval:test is set to 8:1:1. 434

4.4 Main Results and Analysis 435

Results on Single-turn Prediction. For single- 436

turn diagnosis, additional lab test query is not 437

needed. For space limitation, experimental re- 438

sults are presented in Table 2 and Table 4 in Ap- 439

pendix A.2.3. Several key observations can be 440

made from the following dimensions: (1) Supe- 441

riority of DiaLLM. It is obvious that DiaLLM 442

consistently outperforms all baselines, demonstrat- 443

ing its effectiveness. This improvement is mainly 444

due to the EHR transformation pipeline and re- 445

warding models for PPO, which incorporate clini- 446

cally grounded knowledge, thereby enhancing the 447

model’s decision-making abilities. (2) Impact of 448

Tuning. Comparing base models (e.g., Mistralv0.3- 449

7B, Llama3.1-8B, Qwen2.5-7B) with their super- 450

vised fine-tuned counterparts, we observe substan- 451

tial performance gains across all metrics, hight- 452

lighting the importance of task-specific fine-tuning 453

in improving decision-making in clinical dialogue 454

tasks. (3) Performance of clinical-Specific Mod- 455

els. The performance of BioMistral and ChatDoc- 456

tor is significantly lower than that of fine-tuned 457

general-purpose models. This suggests that current 458

biomedical LLMs are primarily trained for gen- 459

eral clinical tasks, such as clinical QA, rather than 460

being optimized for real medical data. (4) Com- 461

parison with Fine-Tuned Baselines. Among fine- 462

tuned models, those on Llama3.1-8B and Qwen2.5- 463

7B perform competitively. However, DiaLLM con- 464

sistently outperforms them, indicating that its en- 465

hanced clinical grounding and policy optimization 466

contribute to superior prediction. 467

Results on Multi-turn Prediction. For multi- 468

turn dialogue data, models can query additional 469

lab tests before giving the final prediction. As 470

shown in Table 3, performance of DiaLLM signifi- 471

cantly exceeds baseline models, similar to previous 472

single-turn cases. The performance of general- 473

used LLMs, e.g., Mistralv0.3-7B, Llama3.1-8B, 474

Qwen2.5-7B still falls short in comparison to fine- 475

tuned models and DiaLLM, indicating that they 476

lack the clinical specificity necessary for multi-turn 477

dialogues. Medical-specific LLMs like BioMis- 478

6
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Model TriNetX-Metabolic TriNetX-Respiratory TriNetX-Circulatory
Recall@5 F1 MRR Recall@5 F1 MRR Recall@5 F1 MRR

Mistralv0.3-7B 3.64 11.89 10.12 4.54 7.84 12.09 10.98 8.67 17.57
Llama3.1-8B 5.34 9.28 10.95 7.49 12.05 15.48 17.02 10.89 22.97
Qwen2.5-7B 8.58 10.51 12.11 10.03 10.64 16.25 5.84 7.82 9.68

BioMistral 39.67 13.82 26.10 25.95 15.50 33.78 20.01 16.62 31.08
ChatDoctor 19.16 11.57 20.82 35.88 9.71 26.29 10.03 10.03 18.34
Meditron-7B 6.84 9.31 11.66 11.58 10.34 16.80 15.07 14.71 18.88
Meditron3-8B 5.99 6.46 10.74 11.98 13.28 15.42 10.13 16.04 19.34

Mistralv0.3-7Bmlp 66.72 50.92 45.61 67.71 54.95 45.64 67.51 55.95 45.74
Llama3.1-8Bmlp 68.11 55.01 45.76 67.66 56.80 45.77 66.72 56.23 45.76
Qwen2.5-7Bmlp 69.16 52.95 45.72 67.66 55.21 45.71 68.86 55.18 45.79

DiaLLMs 79.54 76.21 47.33 78.19 74.82 48.18 77.75 74.36 48.14

Table 2: Performance Comparison of DiaLLM and Baselines on the Constructed Single-turn Dialogue.

Model
TriNetX-Metabolic TriNetX-Respiratory TriNetX-Circulatory

Diagnosis Lab Test Diagnosis Lab Test Diagnosis Lab Test
Recall@5 F1 MRR Recall@5 Recall@5 F1 MRR Recall@5 Recall@5 F1 MRR Recall@5

Mistralv0.3-7B 6.89 8.07 13.23 0.58 14.44 16.02 11.98 1.96 18.00 16.93 25.39 0.21
Llama3.1-8B 12.44 11.84 14.79 8.52 18.22 17.84 26.08 0.75 12.72 13.24 21.24 1.87
Qwen2.5-7B 7.56 16.68 17.86 0.61 5.56 8.90 15.03 1.33 8.22 9.23 15.23 1.75

Meditron-7B 4.22 8.31 13.28 1.21 8.89 13.04 14.67 0.79 12.22 12.43 21.90 1.29
Meditron3-8B 16.22 21.25 21.57 2.90 17.33 15.38 24.32 1.37 8.22 15.25 17.26 1.91
BioMistral 9.37 13.54 16.62 2.33 12.67 19.51 22.98 1.70 4.44 13.37 10.56 0.79
Chatdoctor 6.87 9.71 18.92 1.77 2.89 9.66 9.44 0.95 16.00 19.22 22.08 1.18

Mistralv0.3-7Bmlp 57.90 56.03 37.42 10.45 59.76 59.14 38.90 10.51 59.56 58.90 39.93 10.39
Llama3.1-8Bmlp 57.31 55.92 37.43 10.64 61.22 59.58 39.42 10.97 61.21 59.47 40.13 10.16
Qwen2.5-7Bmlp 58.01 56.72 38.37 11.04 61.91 60.21 39.72 11.13 60.89 58.54 38.46 10.30

DiaLLMs 70.22 73.59 41.88 11.43 70.89 75.12 40.52 12.31 71.11 75.39 43.34 11.55

Table 3: Performance Comparison of DiaLLM with Baselines on the Constructed Multi-turn Dialogue.

tral, Meditron, and ChatDoctor underperform com-479

pared to general-purpose models such as Llama3.1-480

8B and Qwen2.5-7B. This is likely due to their481

training on open medical QA datasets or synthetic482

medical dialogues, which fail to capture the com-483

plexity of real-world clinical practice.484

4.5 Ablation Study485

To evaluate the effectiveness of different compo-486

nents in DiaLLM, we conduct an ablation study to487

quantify the contributions of the EHR transforma-488

tion pipeline and the rewards in PPO. For space489

limitation, experimental results on single-turn and490

multi-turn dialogue data are shown in Figure 3,491

Figure 4 and Figure 5 in Appendix A.2.4.492

4.5.1 Ablation Study on EHR Transformation493

We assess the impact of different EHR transforma-494

tion components by progressively removing them:495

(1) DiaLLM (w/o CT): Removes code translation496

(CT). (2) DiaLLM (w/o CTI): Removes clinical497

test interpretation (CTI). (3) DiaLLM (w/o Both): 498

Removes all EHR transformation components. 499

These results highlight the importance of inte- 500

grating clinical grounded knowledge into LLMs. 501

DiaLLM (w/o Both) results in a noticeable per- 502

formance drop in both single-turn and multi-turn 503

dialogue data, confirming that the EHR transfor- 504

mation strategy enhances the model’s ability to un- 505

derstand EHR data and improves diagnostic predic- 506

tions. Besides, DiaLLM (w/o CTI) exhibits lower 507

performance than DiaLLM (w/o CT) across most 508

datasets, highlighting the necessity of understand- 509

ing clinical terminology and numerical values. 510

4.5.2 Ablation Study on Reward Modeling 511

We analyze the influence of specific PPO mecha- 512

nisms: (1) DiaLLM (w/o PPO-RJ): Removes reject 513

sampling. (2) DiaLLM (w/o PPO-Conf): Removes 514

confirmation reward. (3) DiaLLM (w/o PPO-Imb): 515

Removes imbalanced reward. Reward modeling 516

is primarily effective for multi-turn dialogue data, 517
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Figure 3: Ablation Study on Single-turn Dialogue Data.
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Figure 4: Ablation Study on Multi-turn Dialogue Data.

and experimental results are shown in Figure 4.518

Each PPO component contributes to model per-519

formance, as elaborated in the experimental results.520

In the TriNetX-Respiratory multi-turn dialogue521

dataset, removing the imbalanced reward reduces522

the F1-score to 0.6954, while removing the confir-523

mation reward lowers it to 0.7129. These declines524

highlight the importance of addressing class im-525

balance (PPO-Imb) and incorporating confidence-526

based rewards (PPO-Conf) to improve classifica-527

tion quality, balance predictions, and enhance de-528

cision reliability. Furthermore, the EHR transfor-529

mation component has a greater impact on model530

performance than reward modeling in multi-turn531

dialogue data, showing the importance of aligning532

medical terms with common-sense knowledge.533

4.6 Case Study534

We qualitatively evaluate the diagnostic recommen-535

dations of various models using the same example536

dialogue, as presented in Table 9 in the Appendix537

A.2.5. The selected case presents a complex sce-538

nario requiring not only diagnosis prediction but539

also the integration of additional clinical test evi-540

dence. DiaLLM initially recommended tests for541

carbon dioxide, chloride, etc. Upon receiving the542

results, it identified abnormalities in carbon diox-543

ide and chloride levels and suggested further tests544

for glucose and sodium. Based on these analysis,545

DiaLLMs can recommend relevant diagnoses.546

In contrast, all baseline medical LLMs lacked 547

the ability to inquire about appropriate clinical tests 548

or effectively analyze test results, highlighting a 549

significant gap in diagnostic reasoning. BioMistral 550

has a narrow diagnostic scope, potentially miss- 551

ing relevant diagnoses. While Meditron-7B and 552

8B considered a broader range of conditions, their 553

diagnostic results diverged from the ground truth. 554

ChatDoctor’s diagnoses often lacked relevance to 555

the patient’s symptoms and lab results, suggest- 556

ing limited comprehension of the medical history. 557

Among these, DiaLLM demonstrated the most 558

comprehensive and accurate diagnostic approach, 559

effectively inquiring, analyzing lab results, and 560

adjusting recommendations, showcasing superior 561

practical medical value. 562

5 Conclusion 563

In this work, we introduced DiaLLM, a clinical 564

dialogue model that enhances medical conversa- 565

tional systems through a combination of clinical- 566

grounded EHR transformation and PPO optimiza- 567

tion. Experimental results consistently show that 568

DiaLLM outperforms existing models across a va- 569

riety of metrics, demonstrating its superior predic- 570

tion ability. By integrating domain-specific knowl- 571

edge and a structured decision-making process, 572

DiaLLM offers a significant improvement over 573

both general-purpose and medical-specific LLMs 574

in complex medical dialogues. 575
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Limitations576

Automation of CTR Database In this work, we577

recruited three medical students to annotate clin-578

ical test code descriptions and clinical value ref-579

erence ranges based on medical guidelines and580

publicly available clinical resources (e.g., Mayo581

Clinic). Our constructed Clinical Test Reference582

data are crucial for diagnosis prediction using EHR583

data grounded in clinical knowledge. However,584

manual annotation is time-consuming and prone to585

variability. Future work will focus on automating586

this process to enhance efficiency and consistency.587

Clincial Conversational System with Multi-588

modal Data In this work, we focus on diseases589

that can be solely predicted through EHR data.590

Our approach focuses on EHR data and lab tests591

with numerical or textual features. With advances592

in multimodal learning, integrating imaging-based593

diagnostic tests, such as CT scans, could further594

enrich the model’s clinical reasoning capabilities.595

We also leave this extension for future exploration.596

Ethic Statement597

Data Collection This study utilizes publicly avail-598

able EHR data and de-identified in-hospital records599

approved for research use. To safeguard patient600

privacy, we conducted a thorough review to ensure601

the dataset contains no sensitive information. We602

adhere to strict ethical standards in data handling603

and acknowledge the research community’s com-604

mitment to maintaining data integrity and privacy.605

Compensation and Ethical Collaboration with606

Medical Professionals We collaborated with two607

senior medical graduates to identify diseases pre-608

dictable solely from EHR data and to evaluate609

the constructed CTR. Each was compensated 200610

RMB per hour, aligning with local salary standards611

to ensure fair remuneration for their expertise.612

Concerning the Trustworthiness of DiaLLM613

While DiaLLM demonstrate strong diagnostic rea-614

soning capabilities, its reliability in real-world clin-615

ical settings is not yet fully established. Potential616

risks include hallucinations, biases from training617

data, and inconsistencies in medical reasoning. To618

enhance trust, further research is needed to im-619

prove model transparency, robustness, and valida-620

tion through expert evaluation. Developing rigor-621

ous verification mechanisms and integrating clini-622

cian oversight will be essential for safe deployment623

in medical practice.624
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A Appendix885

Model NHANES
Recall@1 F1 MRR

Mistralv0.3-7B 28.60 40.48 37.41
Llama3.1-8B 29.70 45.69 47.64
Qwen2.5-7B 28.97 44.83 44.38

BioMistral 36.19 48.25 43.13
ChatDoctor 39.83 54.29 46.72
Meditron-7B 36.82 52.47 47.77
Meditron3-8B 37.69 55.34 49.78

Mistralv0.3-7Bmlp 91.98 92.47 97.99
Llama3.1 8Bmlp 92.15 92.66 98.06
Qwen2.5-7Bmlp 92.07 92.45 98.02

DiaLLMs 95.94 96.07 98.97

Table 4: Performance Comparison of DiaLLM and
Baselines on NHANES Dataset.

A.1 Methodology886

A.1.1 Illustration of EHR data.887

We summarize main elements and corresponding888

examples in EHR data in Table 5. EHR data is het-889

erogeneous and can be represented as a sequence890

of tables.891

A.1.2 Dialogue Data Construction from EHR892

The EHR transformation comprises two compo-893

nents (1) Clinical Code Translation and (2) Clinical894

Test Interpretation. Examples of our constructed895

Clinical Code Translation data is shown in Table 6896

and examples of Clinical Test Interpretation data897

is shown in 7, respectively.898

A.2 Experiments899

A.2.1 Statistical Analysis of Datasets.900

We exclude clinical tests with a frequency of less901

than 10 across the entire dataset. Additionally, we902

filter out tests for which no test results are available903

for each patient. Statistical analysis of datasets is904

shown in Table 8.905

TriNetX-
Metabolic

TriNetX-
Respiratory

TriNetX-
Circulatory

NHANES

#Samples 15844 10068 6747 8897
#Diagnosis 49 47 49 4

#Clinical Test 272 301 217 45

Table 8: Statistical Analysis of Datasets.
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Figure 5: Ablation Study on NHANES Dataset.

A.2.2 Evaluation Metrics 906

The Mean Reciprocal Rank (MRR) is a metric 907

used to evaluate systems that return a ranked list of 908

answers to queries, focusing on the position of the 909

first relevant answer. A higher MRR indicates that 910

relevant items tend to appear higher in the ranked 911

list of results. It is defined as the average of the 912

reciprocal ranks of the first relevant answer for a 913

set of queries. Formally, MRR is expressed as: 914

MRR =
1

|Q|

|Q|∑
i=1

1

ranki
(4) 915

A.2.3 Main Results on NHANES Dataset 916

Experimental results on the NHANES dataset is 917

shown in Table 4. It can be observed that: (1) 918

Medical-specialized models consistently outper- 919

form general foundation models; (2) When adapt- 920

ing foundation models with an MLP classifier 921

trained on extracted embeddings, performance im- 922

proves drastically; (3) DiaLLM significantly out- 923

performs all baselines, demonstrating its superior 924

ability in diagnosis prediction. These results high- 925

light the effectiveness of DiaLLM’s integration of 926

structured EHR data and reinforcement learning 927

framework, enabling more accurate and clinically 928

relevant predictions compared to both zero-shot 929

LLMs and embedding-based MLP classifiers. 930

A.2.4 Ablation Study on NHANES Dataset 931

Experimental results on the NHANES dataset is 932

shown in Figure 5. The NHANES dataset presents 933

a simpler task compared to TriNetX data. The 934

ablation study highlights the critical role of clini- 935

cally grounded data transformation and rewarding 936

modeling for improving diagnosis performance. 937

A.2.5 Case Study 938

The case study example is presented in Table 9. 939
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EHR Data Description Event Visit Time

Demographics General characteristics of patients Age, gender, ethnicity/race

Symptom
Patient symptoms are cataloged in the

ICD system under codes R00-R99.
ICD-10-CM R10.12: Left

upper quadrant pain
2019-02-15

Vital Signs
Medical signs indicating
the status of the body’s

vital functions

LOINC 8462-4 82 mm[Hg]
LOINC 29463-7, 84 [lb_av]

LOINC 8480-6, 124 mm[Hg]

2019-02-15
2019-02-19
2019-02-22

Laboratory
Results

Medical examination results,
generate are organized

in a code format

LOINC 73578-7,8 mmol/L,
LOINC 6768-6 48 U/L,

LOINC 19261-7 Negative

2019-02-15
2019-02-19
2019-02-22

Diagnostic
Codes representing diseases
and related health problems
(e.g., ICD-9 and ICD-10)

ICD-10-CM Q65: Congenital
deformities of hip,

ICD-10-CM M25.552: Pain in left hip,
ICD-10-CM R06.02: Shortness of breath

2019-02-22

Table 5: Description of key components and corresponding examples in EHR data.

LOINC Code Description
100091-8 Trypanosoma cruzi Ab [Units/volume] in Serum by Immunoassay
100092-6 Trypanosoma cruzi Ab bands panel - Serum by Immunoblot
100093-4 Trypanosoma cruzi 15-16kD IgG Ab [Presence] in Serum by Immunoblot
100094-2 Trypanosoma cruzi 21-22kD IgG Ab [Presence] in Serum by Immunoblot
100095-9 Trypanosoma cruzi 27-28kD IgG Ab [Presence] in Serum by Immunoblot
100096-7 Trypanosoma cruzi 42kD IgG Ab [Presence] in Serum by Immunoblot
100097-5 Trypanosoma cruzi 45-47kD IgG Ab [Presence] in Serum by Immunoblot
100098-3 Trypanosoma cruzi 120-200kD IgG Ab [Presence] in Serum by Immunoblot
100099-1 Trypanosoma cruzi 160kD IgG Ab [Presence] in Serum by Immunoblot
1001-7 DBG Ab [Presence] in Serum or Plasma from Donor
10010-7 R’ wave amplitude in lead AVF
100100-7 Fasciola sp IgG Ab [Presence] in Serum by Immunoassay
100101-5 Fasciola sp 8-9kD IgG Ab [Presence] in Serum by Immunoblot
100102-3 Fasciola sp 27-28kD IgG Ab [Presence] in Serum by Immunoblot

Table 6: The Mapping between LOINC Codes and their Corresponding Clinical Descriptions.

Lab Code Test Name Age Range Gender Reference Range Unit Critical Value
2823-3 Potassium Serum 1–18 years Any 3.4–4.7 mEq/L -

2823-3 Potassium Serum Any ≥18 years Any 3.5–5.2 mEq/L -

17861-6 Total Calcium <1 year Any 8.7–11.0 mg/dL -

17861-6 Total Calcium 1–17 years Any 9.3–10.6 mg/dL -

17861-6 Total Calcium 18–59 years Any 8.6–10.0 mg/dL -

17861-6 Total Calcium ≥60 years Any 8.8–10.2 mg/dL -

33914-3
eGFR (Estimated
Glomerular Filtration Rate)

Any Any >90 mL/min/1.73m² -

33914-3
eGFR (Estimated
Glomerular Filtration Rate)

Any Any None mL/min/1.73m² Mildly low: 60–89

33914-3
eGFR (Estimated
Glomerular Filtration Rate)

Any Any None mL/min/1.73m²
Moderate to severe
kidney disease:
30–59

33914-3
eGFR (Estimated
Glomerular Filtration Rate)

Any Any None mL/min/1.73m²
Kidney failure:
<15

Table 7: Examples of the Manually Constructed Clinical Test Interpretation Data.
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A Sub-piece of Initial EHR Data:
Demographic Information: age: 30, gender: female, race: white
Symptom Code : R10.2, R10.32
Lab Test Code : 2028-9, 2075-0, 2951-2, 3040-3, 33037-3, 48642-3, 777-3, 1742-6, 2028-9,

2075-0
Lab Results Values : 31.0, 105.0, 83.0, 139.0,7.0, 99.0, 283.0, 27.0,
Vital Sign Code : 8302-2, 8310-5, 8462-4, 8480-6, 9279-1
Vital Sign Values : 62.0, 98.0, 70.7, 119.7, 98.7

Diagnosis Codes: E03.9, K80.62, K81.0, N80.9, K80.20, K80.10

Prompts:
Given the patient demographic information : (age: 30, gender: female, race: white).

Patient shows symptom of : (1) Pelvic and perineal pain; (2) Right lower quadrant pain.

These lab tests show normal results : (1) Carbon dioxide, totalin Serum or Plasma, (2) Chloridein
Serum or Plasma, (3) Glucosein Serum or Plasma, (4) Sodiumin Serum or Plasma, (5) Lipasein
Serum or Plasma, (6) Glomerular filtration rate/1.73 sq M predicted among non-blacksin Serum or
Plasma by Creatinine-based formula (MDRD).
These lab tests show abnormal results : (1) Plateletsin Blood by Automated count.
These vital sign show normal Results : (1) Temperature, (2) Blood Pressure (Systolic), (3) Blood

Pressure (Diastolic), (4) Respiratory Rate,
These vital sign show abnormal values : (1) Heart Rate

What are your recommended diagnosis? If you need further information, what are your recom-
mended clinical test for further decision making?

DiaLLM
I recommend you to take (1) Alanine aminotransferase in Serum or Plasma; (2) Carbon dioxide in
Serum or Plasma, (3) Chloride in Serum or Plasma.
Prompts (User):
My Alanine aminotransferase in Serum or Plasma results is 27.0 U/L , Carbon dioxide in Serum
or Plasma is 83.0 mEq/L, Chloride in Serum or Plasma is 139.0 mEq/L.
DiaLLM:
These lab test shows normal results: (1) Alanine aminotransferase in Serum or Plasma results;
These lab test shows abnormal results: (1) Carbon dioxide in Serum or Plasma, (2) Chloride in
Serum or Plasma. I further recommend you to take (1) Glucose in Serum or Plasma; (2) Sodium in
Serum or Plasma;
Prompts (User):
My Glucose in Serum or Plasma is 7.0 mmol/L, (2) Sodium in Serum or Plasma 99.0 mmol/L.
DiaLLM:
These lab test shows abnormal results: (1) Glucose in Serum or Plasma; (2) Sodium in Serum or
Plasma. I recommend the following possible diagnosis: (1) disorders of thyroid gland, (2) disorders
of gallbladder, biliary tract and pancreas, (3) Noninflammatory disorders of female genital tract.

BioMistral
I recommend the following possible diagnosis: (1) Chlamydia trachomatis infection, (2) Pelvic
inflammatory disease, (3) Pelvic pain

Meditron-7B
I recommend the following possible diagnosis: (1) Pelvic inflammatory disease, (2) Acute appen-
dicitis, (3) Ovarian torsion, (4) Ectop

Meditron-8B
I recommend the following possible diagnosis: (1) Pelvic inflammatory disease, (2) Chlamydia
trachomatis infection, (3) Pelvic inflammatory disease with chlamydia trach.

Chatdoctor
I recommend the following possible diagnosis: (1) pelvic inflammatory disease, (2) tuberculosis,
(4) acute pancreat.

Table 9: Sample Responses for Case Study.
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