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ABSTRACT

Video processing is generally divided into two main categories: processing of the
entire video, which typically yields optimal classification outcomes, and real-time
processing, where the objective is to make a decision as promptly as possible. The
latter is often driven by the need to identify rapidly potential critical or dangerous
situations. These could include machine failure, traffic accidents, heart problems,
or dangerous behavior. Although the models dedicated to the processing of entire
videos are typically well-defined and clearly presented in the literature, this is
not the case for online processing, where a plethora of hand-devised methods
exist. To address this, we present PrAViC, a novel, unified, and theoretically-based
adaptation framework for dealing with the online classification problem for video
data. The initial phase of our study is to establish a robust mathematical foundation
for the theory of classification of sequential data, with the potential to make a
decision at an early stage. This allows us to construct a natural function that
encourages the model to return an outcome much faster. The subsequent phase is
to present a straightforward and readily implementable method for adapting offline
models to the online setting with recurrent operations. Finally, PrAViC is evaluated
through comparison with existing state-of-the-art offline and online models and
datasets, enabling the network to significantly reduce the time required to reach
classification decisions while maintaining, or even enhancing, accuracy.

1 INTRODUCTION

In recent years, there has been a notable increase in the utilization of convolutional neural networks
(CNNss) across a range of fields where the capacity to make expeditious decisions could be crucial.
This includes such fields as medicine (Krenzer et al., [2023; [Sapitri et al.| [2023), human action
recognition (HAR) (Mollahosseini et al.,|2016; Yang & Dail, [2023), and autonomous driving (Wu
et al.,|2017). However, despite the growing prevalence of CNNs in these domains, there remains a
lack of a unified approach to the problem of making early decisions based solely on the initial frames.
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Conversely, numerous offline approaches have
been proposed (see, e.g., (Bhola & Vish-
wakarmal, [2024; [Karim et al.| 2024} |[Kaseris
et al., 2024} Ming et al.| 2024; [Yao et al.,[2019))
to address the problem of video data classifica-
tion. However, these models usually require ac-
cess to entire videos, which precludes their real-
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time applicability. Although certain techniques
have been developed to facilitate the adaptation
of offline models to the online domain (e.g.,
those proposed by [Kopiiklii et al.|(2022)) or|Xiao
et al.| (2023))), there remains a need for the de-
velopment of more generalizable solutions that
can accommodate diverse forms of data.
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Figure 1: Our approach consists of three compo-
nents: an online classifier generating Classifica-
tion Scores, an Aggregation module, and an Early-
Detection mechanism.

To address the aforementioned gap, we propose a novel probabilistic adaptation framework for real-
time video classification (PrAViC), see Fig.[I] In contrast to traditional methodologies, our approach
allows for the adoption of existing 3D CNN models, wherein subtle adjustments are made to leverage
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the strengths of traditional CNN-3D networks while addressing specific challenges related to depth
processing and feature extraction. Moreover, our strategy paves the way for recursive utilization. The
implications of this technological development are far-reaching, impacting a multitude of domains
including industry, medicine, and public safety. In these fields, the capacity to conduct rapid real-
time analysis is of paramount importance for informed decision-making and the implementation of
proactive measures.

In the experimental study, we demonstrate the efficacy
of our approach when applied to a selection of state-of-
the-art offline and online models trained on three real-
world datasets, including two publicly available datasets, o
UCF101 (Soomro et al.,[2012), EgoGesture (Zhang et al., g
2018), Jester (Materzynska et al.l [2019), and Kinetics-
400 (Kay et al.| 2017), as well as a closed-access real Ultra-
sound dataset, comprising Doppler ultra-317 sound images
representing short-axis and suprasternal views of newborn
hearts. Moreover, we introduce an innovative function
that enables the model to make earlier exits (decisions)
when sufficient evidence is accumulated. The impact of L‘% o0 : - :
such a solution is illustrated in Fig.[2] By integrating this o ' []‘3 0y 01 00
function into the training objective (see Eq. (3)), the model : 05 M NEw)
optimizes the timing of its decisions, enhancing efficiency

with occasional slight loss of accuracy.

5000

10000

Figure 2: Progress of the model’s early
decision function during training.

In conclusion, our contributions can be summarized as

follows:

» we introduce PrAViC, a novel, unified, and theoretically-based probabilistic adaptation
framework for online classification of video data, which encourages the network to make a
decision at an early stage,

* we propose a straightforward and easy to implement method for adapting offline video
classification models to online use,

» we conduct experiments which indicate that the PrAViC is capable of facilitating earlier
classification decisions while maintaining, or even improving, accuracy when compared to
selected offline and online state-of-the-art solutions.

2 RELATED WORKS

While video-based 3D networks have been widely studied in offline settings (Bhola & Vishwakarmal
2024; Karim et al., [2024} [Kaseris et al., |[2024} Ming et al., 2024} |Yao et al.| [2019), developing online
models remains still a challenge. Such online models are able to real-time classification, enabling
applications such as emergency situations detection or medical diagnostics.

In consideration of the video as a series of consecutive frames, each frame may be classified on an
individual basis through the application of 2D CNN models (Kumar, 2019). This approach represents
an online technique and demonstrates effectiveness in real-time classification, due to the limited
number of parameters involved. However, the absence of temporal information from the video
as a whole may present a limitation, potentially leading to misclassifications such as predicting
“sitting down” when the action involves transitioning from sitting to standing. Consequently, in order
to develop a model capable of processing online data in real-time, researchers frequently elect to
utilize 2D networks, complemented by supplementary mechanisms for the management of temporal
data (Chang & Huang| 2024} [Shen et al.l 2023; Wang et al.| 2021} Xiao et al.||2023; Xu et al., 2023).
For instance, the authors of (Xiao et al., 2023)) employed a temporal shift module (TSM). Their
approach involves shifting a portion of the channels along the temporal dimension, thereby facilitating
the capture of temporal relationships.

On the other hand, it has been demonstrated that 3D CNNs yield superior accuracy in video classifi-
cation tasks compared to 2D CNNs (Carreira & Zisserman) |[2017). Consequently, novel approaches
have been devised that utilize distinct versions of 3D convolutional kernels. A number of studies
have proposed the development of dedicated architectures for online 3D networks, including those
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presented by Kim et al.|(2024])), Krenzer et al.| (2023)), |Sapitri et al.|(2023)), and |Yang & Dai| (2023)),
which are designed to operate in real-time.

Another commonly utilized approach is the combination of 3D CNN architectures with various long
short-term memory (LSTM) models. For example, |[Lu et al.|(2024)) introduce a DNN that merges 3D
DenseNet variants and BiLSTM. In turn, |Chen et al.|(2023) propose a combination of R2plus1D and
ConvLSTM in a parallel module. The proposed network utilizes the attention mechanism to extract
the features that require attention in the channel and the spatial axes.

An alternative approach to the problem of online video classification, as proposed by Ustek et al.
(2023)), involves combining a vision transformer for human pose estimation with a CNN-BiLSTM
network for spatio-temporal modelling within keypoint sequences. Similarly, attention mechanisms,
in conjunction with transformer layers, have also been employed in (Huang et al., 2023).

The concept of converting various well-known resource-efficient 2D CNNs into 3D CNNs, as
proposed by [Koptiklii et al.[ (2020), is the most closely related to our approach. In this context,
Kopiiklii et al.| (2022) investigate the potential of adapting 3D CNNs (particularly the 3D ResNet
family of models) for online video stream processing. Their approach involves the elimination of
temporal downsampling and the utilization of a cache to store intermediate volumes of the architecture,
which can then be accessed during inference. A comparable solution has also been proposed by
Hedegaard & Iosifidis|(2022), who advanced the concept of weight-compatible reformulation of 3D
CNNs, designated as Continual 3D Convolutional Neural Networks (Co3D CNNs). Co3D CNNs
facilitate the processing of videos in a frame-by-frame manner, utilizing existing 3D CNN weights,
thereby obviating the necessity for further finetuning.

3 PROBABILISTIC ADAPTATION FRAMEWORK FOR REAL-TIME VIDEO
CLASSIFICATION (PRAVIC)

This section presents the details of the proposed PrAViC model (Probabilistic Adaptation Framework
for Real-time Video Classification). For the reader’s convenience, the problem of video classification
is divided into offline and online. In the offline case, where the entire video is available, classification
can be performed by processing the entire video. In the online case, where consecutive images are
obtained, the objective is to make a decision using only a partial subset of the potentially available
frames. For the sake of simplicity, we limit our discussion to the case of a binary classification.

Standard offline case We are given a video V' = [V, ..., V], which is represented as a sequence
of images V; (frames). Then, the network ¢ : V — [0, 1] returns the (soft) probability that V' belongs
to the positive class. The final decision is based on the threshold 7, where typically 7 = 1/2. Thus if
¢(V') > 7, we conclude that the class of V' is positive.

An important observation is that given the knowledge what was the decision of the model for every
threshold 7, we can compute the probability ¢(V).

Proposition 3.1 We have
(V) = Prob(¢(V) < 7: 7 ~ unifpg 17). (1)

The above formula can be interpreted as selecting a random threshold value 7 from the interval [0, 1]
and calculating the probability of being below the threshold. This is useful as in the case of online
models, we have the natural definition of the threshold, and consequently it will allow to deduce the
probabilistic model behind.

The subsequent paragraph addresses the question of how the offline model can be applied to the
online procedure.

Online (early exit) procedure We describe the standard general setting for the online early exit
model. We assume that the frames arrive consecutively (on occasion, we permit them to arrive in
groups of, e.g., two, four, or eight frames). Thereafter, given a trained classification network ¢ (as
described in the previous paragraph), we fix a threshold 7 € [0, 1] and proceed with the following
steps:
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1. start with k = 0;

2. load V}, and compute px, = ¢([Vo, ..., Vil]);

3. if p; > 7, then return class 1 (positive) for V = [Vg, ..., V,];else put k = k + 1;
4.

if K = n + 1, then stop the algorithm and return class 0 (negative); else return to step 2.

The objective of the aforementioned procedure is to allow making the decision of V' being in a
positive class before loading all frames from V. It should be noted that if we operate in the offline
mode, where we have access to all data, the above algorithm can be constrained to computing
p = max{py,...,pr}, and then determining that the class of V is negative if p < 7, or positive
otherwise.

The underlying concept of our proposed solution is that of a continuous probabilistic model for the
decision threshold of activity detection. This is discussed in detail in the following paragraph.

Probabilistic model First, observe that once the aforementioned procedure is completed, we are
only aware of the decision that has been made, but we lack the information necessary to calculate the
probability of the given outcome. Without this information, it is not possible to use BCE loss and
fine-tune the model. To address this issue, we apply the probabilistic concept from Proposition 3.1}
which allows us to calculate the soft probability of the decision, given the knowledge that the decision
was made for an arbitrary threshold. Then we get that the probability that V' has the positive class in
the online case is given by

p(V) = max(po, .. .,pn), Where p; = ¢([V, ..., Vi]). 2)

This is of paramount importance insofar as our objective is for the model to make more timely
decisions (see Fig. 3).
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Figure 3: The left image shows a probabilistic model where the outcome is determined by selecting
the maximum value of p; (in this case, 0.89). The right image shows an alternative approach where
the model can exit earlier based on the available probabilities. In this example, the model terminates
with a probability of 0.42 at the 1st step, a probability of 0.18 at the 3rd step, and a probability of
0.29 at the 4th step.

Expected time of early exit To proceed to the probabilistic approach, we first calculate the expected
time our model will make an early exit. For a fixed video V, let Ty, denote the random variable that
returns the time we have made an early exit and oo when no early exit was made. We are interested
in calculating the function Exit(V'), which represents the expected time of early exit (provided that
it has been made). In order to achieve this, we define the random variable W = Ty |Ty < oo,
with values from the set {0, 1,...,n}, as follows: we draw a random variable 7 uniformly from
the interval [0, max; p;], and for the given value of 7, we return the first index k € [0, n] for which
pr > 7. Then we have

EW)=pW2>1)+...4p(W>n)=n—-PV <0)—...—P(V<n-1). 3)
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Finally, we get

n—1
Exit(V) =n— g >0 max p; € [0,n] and NE(V) = 1Exit(V) € [0,1]. )
* ¢=0 =0

The function NE is defined as a normalization of Exit(V) with respect to the number of frames. It
returns O if we have made the exit (with probability one) on the frame Vj, and 1 if we cannot exit
before V,, and the probability of exit in V,, is positive.

Loss function for PrAViC Now we will describe how to incorporate the NE function into the loss
function in a way that encourages the model to exit earlier. However, we do not want to stimulate
the model too much so as not to provoke wrong decisions. To do this, we set a parameter A € [0, 1]
that tells us how large a percentage of confidence we are willing to potentially sacrifice in order to
make the decision early. Consequently, we define the objective for image V' with class y € {0,1} as
follows:

lossy(V,y) = BCE_loss(V, y) + ylog(A + (1 — A)NE(V)). Q)
It is evident that for videos belonging to the negative class, the loss function remains the standard
BCE loss.

For A = 1, the additional part of the loss function is equal to 0, which discourages the model from
making early decisions. As the value of v approaches 0, the model is encouraged to make decisions
as rapidly as possible, even if this results in a loss of accuracy. We will mark the A for which the
model was trained by using it as the subscript in PrAViC,.

Remark 3.1 Note that in Eq. (3) we do not penalize the points with negative class, in other words we
do not encourage the model to make earlier decisions in this case. This follows from our motivation
coming from real life situations, where class 1 corresponds to an emergency-type event (heart or
machine failure, car accident, etc.) and should be detected as early as possible, while class 0
corresponds to the default (normal) state of the system.

4 ARCHITECTURE OF THE MODEL

This section presents the modifications and extensions to the CNN-3D architecture that form the basis
of our proposed approach. They include specific changes to key layers, including the convolution
and batch normalization layers, as well as a unique method for processing the network’s head. These
modifications are designed to leverage the strengths of traditional CNNs while addressing specific
challenges related to depth processing and feature extraction. The following paragraphs provide a
detailed breakdown of each component and its role in our approach.

Architecture for fine-tuning We outline the modifications made to the classic 3D CNN architecture
to adapt it to our approach. While most components of a standard CNN architecture remain unchanged,
we specifically alter the 3D convolution processing, batch normalization, and layer pooling. For
3D convolutions, we modify only those layers where the kernel size responsible for the depth (i.e.,
processing movie frames) is greater than 1. Our modification ensures that the kernels do not extend
to the last deep channel. To achieve this, we replicate the input boundary on the front side before
performing the multiplication operation, as illustrated in Fig.[4] For pooling layers, our modification
involves replicating only the first depth channel.

The next essential mechanism in CNN networks is batch normalization (loffe & Szegedy, 2015)). It
involves calculating the mean and standard deviation for individual dimensions within mini-batches
and training gamma and beta parameters during network training. This process ensures consistent and
stable training across the network by maintaining the integrity of feature scaling and normalization,
which is crucial for effective spatiotemporal pattern learning. In our approach, we modify this
mechanism by statically determining the number of depth channels from which the statistics (mean
and standard deviation) will be calculated. These statistics are then used to transform the remaining
depth channels.

It is important to note that through these operations, each layer of our model only retains information
from the preceding depth channels. In addition, our approach has a unique property: when provided
with inputs of the same video, one containing k& frames and the other n frames (k < n, where the
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Figure 4: Illustration of the mechanism of the classical 3D convolution (left) with parameters: padding
1, stride 2, and kernel size 3, compared to our modified convolution (right). Note that the proposed
change in input processing does not change the kernel weights.

second input is an extension of the first by n — k frames), the network produces identical outputs,
constrained to the dimensions of the output of the first £ depth channels of the inputs.

Head design Here we describe the modifications to the head of the CNN network that allow for
online training and recursive evaluation, as shown in Fig. 5] Typically, in the case of a CNN, the
head consists of the last linear layer, so in our approach we leave the head as a linear layer, but we
will process the output of the last convolutional layer differently than in a classical CNN network.
We assume that vy, . .., v, € RP represent the outputs of the last convolutional and pooling layers,
considering only the height and width dimensions, while keeping the depth dimension as it is after
the last convolutional layer. With this representation, following the standard offline approach, we

perform a mean aggregation of the representations relative to time ¢ € [0, ..., n|:
L
Wy =77 D Ui (6)
i=0

Using the aggregations w; above, we process each one separately through a linear layer A followed
by the sigmoid function o to obtain p; = o (h(w;)). The final decision of the model is determined by
the formula p = nax p;. The source code is available at https://github.com/. ..
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Figure 5: Illustration of our approach during the training phase (left) and the recursive evaluation
phase (right). During evaluation, the red area retains computations from previous frames in individual
network layers. In contrast, the yellow area represents computations for the recently introduced frame.
Without retaining the computations in the red area, they would have to be recalculated, which would
lengthen the evaluation process. This approach allows fast online processing of new frames.
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Figure 6: Comparison of accuracy and normalized exit time (NET) as a function of the custom loss
function parameter A. The top row shows results for PrAViC, with the R3D-18 as a base model
and the bottom row shows results for PrAViC, with the S3D as a base model. Note that PrAViC
tends to delay decisions and have higher accuracy as A parameter values increase, in contrast to faster
decisions and lower accuracy observed for lower parameter values. Also, encouraging the model to
make early decisions results in a small loss of accuracy. The base models, R3D and S3D, achieved
accuracies of 94.41% and 96.45%, respectively.

5 EXPERIMENTS

In this section, the experimental setup is detailed and the results that validate the effectiveness of
the proposed approach are presented. Five datasets were employed for testing purposes, comprising
four publicly available datasets (UCF101 (Soomro et al., 2012}, EgoGesture (Zhang et al., [2018]),
Jester (Materzynska et al.| 2019), and Kinetics-400 (Kay et al.l [2017)), as well as one closed-access
dataset (Ultrasound). The experiments employed a variety of architectural approaches, which are
described in detail in the corresponding subsections. The numerical experiments were conducted
using two different types of GPUs: NVIDIA RTX 4090 and NVIDIA A100 40GB.

PrAViC vs. offline baselines In this paragraph, we undertake a comparative analysis of PrAViC
with two non-online baseline approaches, namely ResNet-3D-18 (R3D-18) (Tran et al.,[2018)) and
Separable-3D-CNN (S3D) (Xie et al.| [2018). Experiments were conducted on the widely used video
benchmark dataset UCF101 (Soomro et al., [2012)).

From each video clip, 16 consecutive frames were extracted, starting with a random one. The R3D-18
model was resized to a resolution of 128 x 171, with each frame randomly cropped to 112x 112. In
contrast, the S3D model was resized to 128 x 256 resizing, with each frame randomly cropped to a
size of 224 x 224.

Initially, the R3D-18 and S3D models underwent pre-training on UCF101. Subsequently, they were
modified in accordance with the specifications outlined in Sec.[d] with the objective of transforming
the offline models into online ones. In both cases, we employed SGD as the optimizer and cross-
entropy as the loss function. The learning rates were set to 0.0002 for both of the offline models and
to 0.002 and 0.0001 for the modified R3D-18 and S3D models, respectively. Lastly, a custom loss
function, as defined in Eq. (3), was applied with the intention of forcing the model to make an earlier
decision. The effectiveness of varying values for the \ parameter, starting with 0.1 and increasing to
1, was evaluated.

Fig. [6] presents the accuracy and exit time (normalized to the interval [0,1]) obtained by the PrAViC
modification (for the A parameter varying from 0.1 up to 1) applied to the considered baselines,
namely R3D-18 and S3D. It is noteworthy that as A increases, both the accuracy and the exit time
demonstrate a tendency to rise. Furthermore, our model ultimately attains a performance level that is
nearly equivalent to that of the underlying offline models, while exhibiting a superior normalized exit
time.
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PrAViC vs. online models This paragraph presents a comparison between PrAViC and a collection
of state-of-the-art online models, including 3D-SqueezeNet, 3D-ShuffleNetV1, 3D-ShuffleNetV2,
and 3D-MobileNetV2 (Kopiikli et al., 2020). The models were trained on the EgoGesture (Zhang
et al.,|2018)) and Jester (Materzynska et al.,|2019)) datasets, which have been specifically designed for
the purpose of recognizing hand gestures from an egocentric perspective.

In setting up these experiments, the learned model weights (see (Koptikli et al.l 2020)) were utilized
on the data. Initially, the model heads were trained anew, followed by light retraining of the entire
model, with or without incorporation of an additional cost function to promote earlier detection. The
architectures employed in our approach were identical to those utilized in the baseline models, with
the requisite modifications detailed in Sec. ] The models were trained using the SGD optimizer with
standard categorical cross-entropy loss. The momentum, damping, and weight decay were set to 0.9,
0.9, and 0.001, respectively. The network learning rate was initialized at 0.1, 0.05, and 0.01, then
decreased by a factor of 3 with a factor of 0.1 when the validation loss reached convergence.

During the training phase, input clips were selected from random time points within the video clip. If
the video was composed of a smaller number of frames than the specified input size, a loop padding
was incorporated. For the purpose of inputting data into the network, clips comprising multiples
of 16 frames were utilized. In particular, 128 frames were used for 3D-MobileNetV2, while the
remaining models utilized 192 frames. This approach was adopted to yield 8 probability values p;,
at the network output for the MobileNet network and 12 for the other networks. A single input clip
possessed dimensions of 3 xn x112x 112, where n represents the number of frames, which varied
based on the models used (as described above).

Table 1: Comparison of top-1 (ACC@1) and top-5 (ACC@5) accuracy scores for PrAViC and baseline
models trained on the EgoGesture and Jester datasets, demonstrating the improved performance of
our approach and supporting online recursive exploitation.

Metric SqueezeNet  ShuffleNet ShuffleNetV2 MobileNetV2
Base PrAViC; Base PrAViC; Base PrAViC; Base PrAViC;

RS ACC@1 88.23 91.84 8993 99.04 9044 98.49 90.31 99.24
X

OQ‘L% ACC@5 97.63 99.20 98.28 99.73 98.36 99.16 98.22 99.79
¢ & ACC@1 90.74 90.52 93.08 94.48 93.69 9545 94.34 95.25

3
\@S ACC@5 96.75 95.99 99.50 99.53 99.57 99.59 99.63 99.62

Table 2: Top-1 (ACC@1) and top-5 (ACC@5) accuracy scores and normalized exit times (NETs) for
PrAViC with and without the early decision cost function term (i.e., with the parameter A equal to 1
and 0.9), trained on the EgoGesture and Jester datasets. We observe that penalizing late decisions
leads to reduced exit time without significantly affecting accuracy.

Metric SqueezeNet ShuffleNet ShuffleNetV2  MobileNetV2
PrAViC 1 PI‘AV]CO .9 PrAViC 1 PI‘AVICO .9 PrAviC 1 PI‘AV]CQ .9 PrAVviC 1 PrAVvi Co .9
NET 0.5 0.3 0.7 0.4 0.7 0.4 0.6 0.1

N

N
(5%? ACC@1 91.84 90.86 99.04 98.70 9849 97.00 99.24 99.58
(5% ACC@5 99.20 99.16 99.73 99.66 99.16 99.08 99.79  99.92
S
N

NET 0.2 0.05 0.6 0.25 0.55 0.05 0.5 0.05
ACCe@l 90.52 90.51 9448 94.18 9545 95.03 9525 9535
ACC@5 95.99 9594 9953 99.03 99.59 9955 99.62  99.66

Tab. [T provides a detailed comparison of the performance of PrAViC and the baseline models trained
on the EgoGesture and Jester datasets, with the presentation of the top-1 and top-5 accuracy results
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for the test set. As can be seen, PrAViC generally outperforms the other models across most metrics.
These results demonstrate the efficacy of our approach and highlight its potential to deliver superior
performance in online gesture recognition tasks. Additionally, Tab. [2]shows the results of our model
with and without a cost function term for early decisions (see Eq. (5)). We can observe that penalizing
late decisions leads to reduced exit time without significantly affecting accuracy.

Ablation study The objective of this paragraph is to investigate the impact of the proposed mean
aggregation relative to time method on model performance and decision-making time. In particular,
the influence of our method on the accuracy of the model and the exit time will be examined. The
aim is to improve the model’s ability to make timely predictions while maintaining or increasing
accuracy by aggregating information across frames in a more structured way.

We conducted experiments using the CoX3D models introduced by [Hedegaard & losifidis| (2022)),
preserving the identical experimental setting. Our modification of the CoX3D network (variants S,
M, and L) was evaluated on the test set of the Kinetics-400 dataset (Kay et al.,2017). One temporally
centered clip was extracted from each video. The publicly accessible weights were utilized without
any additional finetuning.

Table 3: The performance of the CoX3D and PrAViC X3D-based models trained on the Kinetics-400
dataset is evaluated. The accuracy and normalized exit time (NET) are calculated for the test set. It is
observed that our solution, which aggregates the temporal information in a manner relative to time,
exhibits superior performance.

X3D Variant Co Model PrAViC,; Model

Accuracy (%) NET Accuracy (%) NET
X3D-S¢4 67.33 1 67.60 0.03
X3D-Si3 60.18 1 66.43 0.27
X3D-Mgy 71.03 1 72.92 0.17
X3D-Miq 62.80 1 70.42 0.59
X3D-Lgg 71.61 1 73.47 0.03
X3D-Lg 63.03 1 69.05 0.27

The comparison results, comprising accuracy scores and normalized exit times (NETs), for the
CoX3D and PrAViC X3D-based models are presented in Tab.[3] It should be noted that while the
CoX3D models always make a decision on the last frame, PrAViC allows for the possibility of making
a decision earlier with higher accuracy.

PrAViC for medical use In our final experiment, the details of which are presented in the appendix,
we tested the PrAViC model on a real-life dataset of Doppler ultrasound images representing short-
axis and suprasternal views of newborn hearts. The standard video analysis offline model, trained
on this dataset, was modified by altering the classification layer (head) and the convolutional layers,
with particular attention paid to the batch normalization layer. These modifications permitted the
incorporation of subsequent frames in a sequential manner while the model was operational. Despite
a slight reduction in accuracy (approximately 90%) in comparison to the offline model (94%), we
were able to develop a model that reaches a final decision expeditiously (see Tab.[]in the appendix).

6 CONCLUSIONS

In this work, we propose PrAViC, a general framework for automatically modifying networks that
have been adapted for video processing to their online counterparts. The objective of PrAViC is to
identify potentially dangerous situations at the earliest possible stage. To achieve this, we introduce a
probabilistic theoretical model that underlies online data processing. We compute the mean expected
exit time and use it as a component of the loss function to encourage the model to make early
decisions. Furthermore, we propose a simple framework that translates offline models into online
counterparts. It is demonstrated that we can encourage the model to make decisions earlier without a
significant decrease in accuracy.
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Limitations In PrAViC, standard convolutions with a time component are employed. While this
enables the utilization of pre-trained networks, it does not permit the comprehensive utilization of
the full frames of the video in the residual network. This may potentially result in a minor loss of
accuracy in comparison to the offline model.

Broader impact As the utilization of online video analysis becomes increasingly prevalent in both
medical and social contexts, our methodology can be employed as a straightforward instrument for
researchers engaged in applied video processing.
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A APPENDIX

This section presents additional results that did not fit into the main paper. These supplementary
findings provide further insights and reinforce the conclusions drawn from our primary analyses. The
results discussed here include analytical approaches and complementary experiments that offer a
broader perspective on the research topic.

A.1 EXPERIMENT ON THE ULTRASOUND DATASET

We conducted an experiment, in which the PrAViC model was tested on a real medical dataset
of Doppler ultrasound images representing short-axis and suprasternal views of newborns’ hearts.
These recordings were obtained as part of an ongoing scientific research project involving pediatric
cardiologists, with the consent of the newborns’ parents. During the acquisition process, a total of
18,365 ultrasound recordings were collected. The standard video analysis offline model trained on
this dataset was modified by changing the classification layer (head) as well as the convolutional
layers, in particular batch norm. These changes, which required fine-tuning of the model, allowed for
subsequent frames to be added sequentially while the model was running. Since the classification
layer was completely new, fine-tuning started with 5 epochs of learning only this layer with a learning
rate of 1075, Subsequent training of this model for 10 epochs, with the same learning rate, but this
time with training of all changed layers, allowed to achieve accuracy of 94%. Standard Cross-entropy
as a cost function was used in both stages.

Using our own cost function provided in Eq. (3] (see the main paper), which prefers to classify as a
class 1 element as quickly as possible, if it belongs to it, allowed us to achieve slightly lower accuracy
as in the standard model, so approximately 90% regardless of the lambda parameter (see Tab. . Due
to the use of remembered history, the model accuracy was tested by introducing 16 frames into the
model, i.e., the number needed for each convolutional layer inside the model to have at least one
output representation other than padding. Only subsequent frames were added one at a time.

The model was then repeatedly evaluated on the 1-cPu 4-cPU 8-cpU
selected video with different frame delivery param- 16U —4-GRU — 8-GRU
eters. The average time from 100 evaluations was 25
taken as the result of the experiment for each set of
parameters. The first parameter was the total number

of frames delivered after all steps were completed. gl's
Due to the growing history in memory, it was ex- "~ *°
pected that the increase in time would not be linear, 05

i.e., 2 times as many frames should result in an eval- 0.0

uation more than 2 times longer. The experimental 0 20 e o 010
results confirmed this thesis. On the other hand, not

single frames but entire batches can be loaded into  Figure 7: Model evaluation on time. Each line
the model. For this reason, in the second experiment, corresponds with the device used for evalua-
the first experiment was repeated, but instead of a  tion and the number of frames inserted into the
single frame, 4 or 8 frames were fed to the model model in one step.

in each step. Thus, the history stored in the model

worked in the same way as before, but the number of reads and writes to it was reduced. Due to the
expected operation of the model on devices with lower performance, e.g., mobile devices, the first
part of the tests was carried out on a CPU. The experiments were also repeated using the CUDA
architecture. The results from both devices are presented in Fig.
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The conducted experiments have demonstrated the efficacy of the developed methodology in identify-
ing congenital heart defects (CHDs) in neonates through ultrasound imaging. CHDs, encompassing
conditions such as Tetralogy of Fallot, Hypoplastic Left Heart Syndrome, and Ventricular Septal
Defect, pose formidable diagnostic hurdles owing to their intricate nature and the subtleties inherent
in early cardiac anomalies. Regrettably, undetected instances of such defects represent a prominent
contributor to neonatal mortality rates. The adapted video analysis model utilized in this investigation
heralds a significant leap forward in the diagnostic realm pertaining to congenital heart defects.

Table 4: Classification accuracy results obtained by PrAViC, on the Ultrasound dataset. Note that
the model does not show much difference in accuracy depending on the A\ parameter, since most
decisions are made after processing the first 16 frames anyway.

A 0r 02 03 04 05 06 07 08 09 10
Accuracy(%) 86.95 88.53 88.53 90.90 90.90 91.30 91.30 90.90 90.90 88.93

A.2 STUDY OF NE FUNCTION DURING TRAINING
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Figure 8: Illustration of the progression of changes in the NE function during 3D-SqueezeNet
training process (from left to right) using the cost function given in Eq. (3) (see the main paper) for
A = 1,0.9,and 0.5, respectively. For A\ = 1, where late detection of classes is not penalized, the
NE value remains relatively stable. However, as the A parameter decreases, the NE value shows a
more noticeable decline, indicating the increasing impact of penalizing late detection on the model
performance.

Based on the 3D-SqueezeNet model, we show the course of changes in the NE function (see Eq. (@)
in the main paper) while training this model. The image demonstrates these changes using the cost
function given in Eq. (B) for A = 1,0.9,and 0.5, respectively. As depicted in Fig.[8] with A = 1,
the NE value remains relatively stable, whereas a reduction in the A parameter results in a more
noticeable decline in the NE value, highlighting the effect of penalizing late detection on model
performance.

Fig.[9]presents histograms of decisive frame numbers for PrAViC, with the R3D-18 (top row) and
S3D (bottom row) baseline models (see Sec. [5]in main paper), comprising different values of the
A parameter. In both cases, we observe that larger A values (depicted in deep blue shades) result
in higher decisive frame numbers. Conversely, smaller A values (depicted in white and light blue
shades) lead the model to make decisions much earlier, as expected.
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Figure 9: Comparison of histograms of decisive frame numbers for the R3D-18-based (top row) and
S3D-based (bottom row) PrAViC models with different loss function A parameters, varying from
0.1 to 0.9. The higher the A value, the higher the percentage of higher numbers of decisive frames.
Decreasing the A\ parameter encourages the model to make decisions earlier.
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