
Under review as a conference paper at ICLR 2024

MUSKETEER: JOINT TRAINING/INFERENCE FOR
MULTI-TASK VISION-LANGUAGE MODEL WITH TASK
EXPLANATION PROMPTS

Anonymous authors
Paper under double-blind review

ABSTRACT

We present a sequence-to-sequence vision-language model whose parameters are
jointly trained on all tasks and fully shared among multiple tasks, resulting in a
single model which we named Musketeer. The integration of knowledge across
heterogeneous tasks is enabled by a novel feature called Task Explanation Prompt
(TEP). TEP reduces interference among tasks, allowing the model to focus on their
shared structure. With a single model, Musketeer achieves results comparable to
or better than strong baselines trained on single tasks, almost uniformly across
multiple tasks.

1 INTRODUCTION

Multi-task training of a homogeneous architecture can be beneficial when tasks are synergistic. Lan-
guage models such as ChatGPT (OpenAI, 2023) and InstructGPT (Ouyang et al., 2022) benefit from
the fact that all tasks in which they are trained share the same data space (input), representation space
(architecture), and hypothesis space (output). Their objectives can be seamlessly unified (Paolini
et al., 2021) and shared knowledge can be encoded in the weights of a single backbone. In vi-
sion, however, tasks can be heterogeneous and possibly antagonistic: Different tasks have different
hypothesis spaces. Furthermore, multi-modal tasks can have different input spaces. For instance,
Visual grounding requires mapping images onto semantic classes and their corresponding locations
or bounding boxes; visual question answering (VQA) maps an image and a string of text represent-
ing a question onto a string of text representing the answer. Sharing knowledge among such diverse
tasks presents technical challenges, since their hypothesis spaces are not directly comparable. Even
when mapped to a shared representation, heterogeneous tasks can interfere with each other, when
variability that is useful for a task is detrimental to another. Recent foundation models aiming to
support a wide variety of downstream tasks have separate “strong heads” tailored to different tasks,
resembling a model zoo built on an embedding with only part of the parameters shared among tasks.
This (i) limits the harvesting and exploitation of information shared among tasks, (ii) causes an in-
crease in model complexity, and (iii) limits the extensibility to tasks beyond those for which the
individual heads were trained.

We aim to design a jointly-trained vision-language model that can be trained jointly on multiple
tasks, based on a representation learned by a common encoder-decoder architecture with fully shared
parameters (Fig. 2). The benefit would be shared structure, formats, and information across tasks that
(i) improves performance, ideally making the jointly-trained models as good as specialists trained
on each single task and (ii) reduces model complexity through parameter sharing.

Towards these goals, we present Musketeer: a jointly-trained vision-language model that can per-
form multiple tasks without task-specific heads and fine-tuning, while achieving competitive per-
formance compared to previous jointly-trained models (Tab. 4) and even single-task-fine-tuned spe-
cialist models (Tab. 2). Achieving the above goals requires developing novel methods to avert task
interference. Rather than forcing task separation rigidly through the design of the architecture, we
propose to train the model so that it can instantiate task-specific processing pathways at inference
time using semantically rich Task Explanation Prompts (TEPs). TEPs are structured text explana-
tions, fed to the model both at training and inference time, that describe input and output spaces,
datasets and their format, and instance prompts (Fig. 1). TEP tokens leverage structural seman-
tic information using natural language to guide the training and inference processes. This allows

1

Under review as a conference paper at ICLR 2024

Task-Explanation-Prompt
Example:

Dataset Description: RefCOCO is a dataset for referring expressions in images, which is built on top of the COCO dataset. ...
Input Format: A task prompt, a text describing the target region and an image containing the target region.
Output Format: x0 + y0 + x1 + y1
Output Description: horizonal coordinates of leftupper points of target region + vertical coordinates of leftupper points of target region + ...
Instance Prompt: Which region does the text “man on the horse” describe?

One-hot Prompt Base Prompt
Example:

0100000 + “man on the horse”

Example:

Which region does the text “man on the horse” describe?

Baselines

Figure 1: Example of TEP and baseline prompts for visual grounding. One-hot Prompt: representing task as
a fixed vector. Base Prompt: standard prompting adopted by prior arts (Wang et al., 2022; Lu et al., 2022).

Musketeer to avoid task interference not by forcing task specialization in the architecture, but by
fostering informational specialization in the trained model, so task-specific processing pathways
inside the trained model can be accessed at inference time by choosing a proper TEP.

1.1 KEY CONTRIBUTIONS IN RELATION TO PRIOR WORK

Recent vision-language models at scale can be broadly categorized into four groups: 1) Encoders
like CLIP (Radford et al., 2021b) that can be used as the backbone but do not themselves directly
address most of the downstream tasks. 2) Systems like Florence (Yuan et al., 2021) that share a core
visual encoder but still have separate heavy decoders for individual downstream tasks. 3) Models
such as OFA (Wang et al., 2022) with a common architecture that can be jointly pre-trained, but
separately fine-tuned on individual tasks without sharing the same encoder-decoder parameters. 4)
Frameworks such as Unified-IO (Lu et al., 2022) and UniTAB (Yang et al., 2022) that do have a
common backbone with shared parameters, but fall short in achieving competitive performance to
single-task-tuned models because of the task interference.

Some of these models, once pre-trained, can be used for downstream tasks, but require task-specific
adapters to modify the architecture/parameter for a particular task. This creates a discrepancy
between pre-training and fine-tuning, the latter effectively performed on a different architecture.
Well-trained adapters tend to be task-specific and not easily transferable across tasks. Even with-
out adapters, task-specific fine-tuning can be expensive, especially if it needs to be performed for
multiple downstream tasks, spawning multiple task-specific models, each of which has lost its multi-
tasking ability.

Musketeer is architecturally similar to sequence-to-sequence foundation models such as OFA (Wang
et al., 2022) and Pixel2Seq (Chen et al., 2021; 2022) that also forgo task-specific adapters in favor
of a fully-shared model. However, in our experiments we have found that previous unified VL
frameworks (Chen et al., 2021; 2022; Wang et al., 2022) do not achieve high performance in multi-
tasking due to the inability of their prompts to manage interference between tasks (See BaseP results
in Tab. 3). Therefore, task-specific fine-tuning in OFA (Wang et al., 2022) is still necessary to avoid
substantial degradation of downstream task performance. This is especially cogent in multi-modal
models that unify tasks as general question-answering problems, where the input question is often
insufficient to characterize the task and differentiate it from other tasks on which the model has
been trained. For example, in visual grounding of some concept V , the prompt “Which region does
the text V describe” requires the model to interpret “find” and represent the word “region” with
sets of coordinates on the image plane, which do not have a meaningful (topologically consistent)
representation in natural language.

If we are to integrate vision-language tasks under the same representation, which in our case is
tokenized and processed with a Transformer-based architecture (Vaswani et al., 2017), we need to
frame each task in a way that specifies, as precisely and unambiguously as possible, hetero-
geneous hypothesis spaces, data formats and configurations, using textual tokens. This is the

2

Under review as a conference paper at ICLR 2024

 <1oc 199> <loc 26> <loc 305 > <loc 224>

Two men ride horses along the sea

Two men.

Yes.

horse

 <1oc 199> <loc 26> <loc 305 > <loc 224> ...

Summarized text.

Image Caption

 VQA

Visual Entailment

Image Classification

Object Detection

Text Summary

Transformer
Encoder

Autoregressive
Decoder

Visual Grounding

Image Tokens

Text Tokens

Image Input

Multi-task
Finetuning & Testing

TEP - Task X

Concat

Text Inputs

e.g. "man on the horse."

Multi-modal Task Vision Task Language Task

Figure 2: Pipeline overview of multi-tasking of Musketeer. “TEP-Task X” denotes Task Explanation Prompt
(TEP) for a specific task, e.g., visual grounding. After Multi-task fine-tuning, Musketeer is capable of per-
forming a variety of tasks under a single architecture and fully-shared parameters in a sequence-to-sequence
manner. Each task is specified by a structural Task Explanation Prompt, which provides explicit instructions
for conducting each specific task.

key idea behind Task Explanation Prompts: Use the intrinsic structural tasking specification with
semantics of natural language to induce the model to align and separate tasks depending on their
degree of synergy or interference. It is not just a matter of providing the model with information
about which task is to be performed: If this is done with nameless labels, for instance, one-hot vec-
tors corresponding to a selection of discrete configuration, performance is degraded, as we show in
our ablation studies (Tab. 6). The rich and structured information in TEPs includes descriptions of
the dataset, the input and output format for each task, and an output description of the task target
(Fig. 1). The resulting model not only improves efficiency through parameter sharing, but performs
on-par or better than each of the specialized models, in all but one evaluations we have performed.

Through the use of TEPs, Musketeer is able to harvest synergistic information in heterogeneous
tasks, including visual grounding, image classification, visual entailment, image captioning, visual
question answering, and text summarization. In summary, our contributions are

• A jointly trained sequence-to-sequence model with all tasks contributing to training a single
shared backbone, where parameters shared across all tasks, is shown in Fig. 2.

• We introduce a novel approach to controlling interference among heterogeneous multi-
modal tasks by leveraging structural tasking specifications, using Task Explanation
Prompts (Fig. 1). TEPs foster task-specific processing pathways without the need for spe-
cialized architectural modules or heads. Fig. 3 provides a motivation of TEP by demonstrat-
ing the intrinsic similarity of multi-modal tasks in specific aspects by leveraging sharing
knowledge using subprompts.

• An empirical analysis of the proposed model, Musketeer, that illustrates TEP’s effective-
ness compared to other prompt baselines (Tab. 3, 7 and 10) while retaining high perfor-
mance even on small data by concurrent training (Tab. 8).

In an ablation analysis (Tab. 6), we also illustrate the critical role of the explanation prompt in speci-
fying and unifying tasks, allowing the trained model to leverage synergies and minimize interference
among tasks.

1.2 OTHER RELATED WORK IN BROADER CONTEXT

Multi-modal Pretraining. Large Transformer models have found fertile ground in modeling
language, which is naturally tokenized. They are typically pre-trained as masked autoencoders on
large corpora, and then fine-tuned for specific downstream tasks such as named-entity recognition,
relation extraction, or question answering (Mikolov et al., 2010; Graves, 2013; Howard & Ruder,
2018; Devlin et al., 2018; Sutskever et al., 2011; Brown et al., 2020; Raffel et al., 2020; Zhong et al.,
2022). This paradigm has more recently been adopted in modeling sensory data such as sound or
images, despite the absence of a natural tokenization (Chen et al., 2020; Hendricks et al., 2021; Tan
& Bansal, 2019; Wang et al., 2021a; Alayrac et al., 2020; Jain et al., 2021; Jia et al., 2021; Radford
et al., 2021b). However, unlike in language, these models do not exhibit the same few-shot prowess
due to task interference, which prompts the need to fine-tune them, which at the scale of current
model is often prohibitively expensive. This has spawned a variety of expedients including task
adapters (Yuan et al., 2021; Li et al., 2022b), trained on frozen pre-trained backbones (Tsimpoukelli

3

Under review as a conference paper at ICLR 2024

et al., 2021; Li et al., 2023). However, such adapters are saturated by task-specific information and
decrease, rather than improve, transferability as more task adapters are used.

Prompt-based Learning. To enhance the effectiveness of pre-trained models, prompt-oriented fine-
tuning has gained traction in the NLP community. This approach reformulates the objective of
downstream tasks to be more similar to that of pre-training by inserting manually designed (Schick
& Schütze, 2021; 2020), automatically searched (Jiang et al., 2020) or tunable soft prompt tokens (Li
& Liang, 2021) with adapters (Hu et al., 2022) into the input text. One recent work, ProQA (Zhong
et al., 2022), utilizes a structural prompt to distinguish different Question Answering (QA) tasks.
While Musketeer also employs TEP in a structural form, we differ by exploring its effectiveness in
a wider range of multi-modal and multi-tasking scenarios.

Prompt-tuning has demonstrated that large language models can learn effectively in context and im-
prove performance on few-shot tasks. This has motivated the development of prompt tuning meth-
ods for multi-modal pretrained models, which incorporate modifications or adapters for prompts
into either frozen language models (Tsimpoukelli et al., 2021) or CLIP (Radford et al., 2021a)-like
models (Gao et al., 2021; Zhang et al., 2021). These methods aim to adapt the pre-trained model to
the specific task more efficiently, in contrast to Musketeer which focuses on a joint model without
task-specific adaptation.

Unified Frameworks. Task-specific adapters can be used to train a model on multiple tasks, but
task-specific information is not shared in the core model. To facilitate transfer across tasks, (Kaiser
et al., 2017) propose a uniform format for representing tasks. Others unify heterogenous tasks in
different modalities: VLT-5 (Cho et al., 2021) and UNICORN (Yang et al., 2021) have demon-
strated text-generation-based multi-modal pretrained models. Meanwhile, PERCEIVER (Jaegle
et al., 2021) and PERCEIVERIO (Jaegle et al.) propose a simple framework that can process infor-
mation from multiple modalities with a uniform byte-sequence representation. Other approaches,
such as UNIT (Hu & Singh, 2021) and FLAVA (Singh et al., 2021), unify tasks across different
modalities by designing various task-specific layers. Cross-task fine-tuning has also been shown
effective in model-based reinforcement learning (Xu et al., 2023). All these approaches require
task-specific adapters and fine-tuning tailored to the specific task at hand.

Other works have aimed to derive a joint model that can handle multiple tasks without single task
fine-tuning. For instance, (Aghajanyan et al., 2021; Wei et al., 2021; Aribandi et al., 2021) is effec-
tive at multi-task fine-tuning on language tasks, but unable to handle vision tasks which are more
diverse in format. Flamingo (Alayrac et al., 2022) takes visual inputs, but only supports text gen-
eration as outputs, while Uni-Perceiver (Zhu et al., 2021; Li et al., 2022a) is a contrastive model
that does not support text-to-text generation. In contrast, Musketeer achieve multitasking without
task-specific architectures or task-specific fine-tuning.

2 MUSKETEER

2.1 TASKS & DATASETS

Diverse Tasks. Musketeer is trained on seven distinct tasks, each embodied in a different dataset
and corresponding benchmark:

• Image Caption (COCO (Chen et al., 2015)): The input is a single image, and the output is
a string of text that accurately describes it, as assessed by human annotators.

• Visual Grounding (RefCOCO (Yu et al., 2016; Mao et al., 2016)): The input is an image
and a text query, and the output is the location on the image that corresponds to the query
in the form of the coordinates of a bounding box.

• Visual Entailment (SNLI-VE (Xie et al., 2019)): The input is an image and a textual
premise about the input image, and the output is a ternary decision on whether the hy-
pothesis is supported by the image (yes / no / maybe).

• Visual Question Answering (VQA) (VQAv2 (Goyal et al., 2017)): The input is an image
and a question in textual form, and the output is a textual answer to the question.

• Image Classification (ImageNet (Deng et al., 2009)), where the model is required to assign
an input image to one of a predefined set of classes.

4

Under review as a conference paper at ICLR 2024

• Text Summarization (Gigaword (Rush et al., 2015)): The input is a text, and the output is
the abstractive summarization of the given input text.

• Object Detection (COCO (Chen et al., 2015)): The input is an image, and the output is a
textual representation of the coordinates of a bounding box, along with a class label for
the object contained within, assumed to be from a finite set of known labels. Following
OFA (Wang et al., 2022), we use the detection task only for training.

We train Musketeer on all these tasks jointly, and evaluated the model performance on each task,
using the benchmark corresponding to the datasets quoted, in comparison with models specifically
adapted or fine-tuned for these tasks.

2.2 TASK EXPLANATION PROMPT

For a jointly-trained model to be capable of performing different tasks without needing task-specific
adapters or fine-tuning, it needs to have enough task-specific data to fully understand and differ-
entiate each task, as well as to determine which task to conduct. To address this issue, prior NLP
arts (McCann et al., 2018; Raffel et al., 2020) have adopted a prompting paradigm by adding a task
description to input sequences, such as asking “What is the summary?” However, this can be chal-
lenging in the context of unifying multi-modal tasks that involve signals such as images, which
require inference of physical properties. For instance, recent multi-modal jointly-trained meth-
ods (Yang et al., 2022; Lu et al., 2022) have shown apparent performance drops in multi-tasking
training compared to models fine-tuned for specific tasks, despite the use of standard prompting
schemes. To tackle above issues, we propose a novel approach that avoids rigid task separation
in the model’s architecture. Instead, we suggest training the model to instantiate task-specific pro-
cessing pathways by utilizing semantically rich Task Explanation Prompts (TEP). As illustrated in
Fig. 1, the TEP is a structural prompt consisting of five key components covering detailed instruc-
tions, which is expected to aprovide explicit formulation for each task to the model, including:

Im
ag

e C
las

sifi
cat

ion

Dete
cti

on

Vis
ua

l G
rou

nd
ing

Cap
tio

n

Vis
ua

l E
nta

ilm
en

t
VQA

Tex
t S

um
mari

zat
ion

Image Classification

Detection

Visual Grounding

Caption

Visual Entailment

VQA

Text Summarization

1.0 0.61 0.6 0.58 0.78 0.76 0.68

0.61 1.0 0.84 0.82 0.76 0.77 0.62

0.6 0.84 1.0 0.83 0.74 0.76 0.59

0.58 0.82 0.83 1.0 0.73 0.73 0.6

0.78 0.76 0.74 0.73 1.0 0.92 0.77

0.76 0.77 0.76 0.73 0.92 1.0 0.72

0.68 0.62 0.59 0.6 0.77 0.72 1.0

TEP - Data Description

Im
ag

e C
las

sifi
cat

ion

Dete
cti

on

Vis
ua

l G
rou

nd
ing

Cap
tio

n

Vis
ua

l E
nta

ilm
en

t
VQA

Tex
t S

um
mari

zat
ion

Image Classification

Detection

Visual Grounding

Caption

Visual Entailment

VQA

Text Summarization

1.0 0.52 0.46 0.7 0.51 0.65 0.69

0.52 1.0 0.92 0.62 0.53 0.58 0.6

0.46 0.92 1.0 0.62 0.54 0.56 0.58

0.7 0.62 0.62 1.0 0.64 0.71 0.9

0.51 0.53 0.54 0.64 1.0 0.66 0.62

0.65 0.58 0.56 0.71 0.66 1.0 0.77

0.69 0.6 0.58 0.9 0.62 0.77 1.0

TEP - Output Description

Im
ag

e C
las

sifi
cat

ion

Dete
cti

on

Vis
ua

l G
rou

nd
ing

Cap
tio

n

Vis
ua

l E
nta

ilm
en

t
VQA

Tex
t S

um
mari

zat
ion

Image Classification

Detection

Visual Grounding

Caption

Visual Entailment

VQA

Text Summarization

1.0 0.96 0.83 0.84 0.87 0.87 0.72

0.96 1.0 0.8 0.8 0.84 0.84 0.69

0.83 0.8 1.0 0.95 0.94 0.98 0.78

0.84 0.8 0.95 1.0 0.89 0.92 0.71

0.87 0.84 0.94 0.89 1.0 0.97 0.79

0.87 0.84 0.98 0.92 0.97 1.0 0.81

0.72 0.69 0.78 0.71 0.79 0.81 1.0

TEP - Input Format

Im
ag

e C
las

sifi
cat

ion

Dete
cti

on

Vis
ua

l G
rou

nd
ing

Cap
tio

n

Vis
ua

l E
nta

ilm
en

t
VQA

Tex
t S

um
mari

zat
ion

Image Classification

Detection

Visual Grounding

Caption

Visual Entailment

VQA

Text Summarization

1.0

0.58

0.59

1.0

0.63

1.0

1.0

0.58

1.0

0.94

0.58

0.62

0.58

0.58

0.59

0.94

1.0

0.59

0.65

0.59

0.59

1.0

0.58

0.59

1.0

0.63

1.0

1.0

0.63

0.62

0.65

0.63

1.0

0.63

0.63

1.0

0.58

0.59

1.0

0.63

1.0

1.0

1.0

0.58

0.59

1.0

0.63

1.0

1.0

TEP - Output Format

Figure 3: TEP subprompts’ similarity matrices. They are constructed by computing cosine distances between
TEP subprompts, which are obtained by inputting TEP subprompts into a language model. These matrices
demonstrate the similarities among TEP subprompts across various tasks. The similarity matrices of different
types of prompts are included in Supplementary.

• Data Description: Description of how this dataset is built, including information of data
source, dataset contents and labeling specification, which is generated by ChatGPT and
verified by human.

• Input Format: Summary of how the input multi-modal sequence is formulated. (E.g., by
concatenating prompts and image features for image caption, or prompts, text and image
features for visual grounding.)

• Output Format: Specification of how the output sequence is expected to formulate. (E.g.,
a word in finite set for image classification, or four coordinate tags describing a region for
visual grounding.)

• Output Description: Detailed description of generation targets to specify Output Format.
• Instance Prompt: Conclusive short prompt containing the input text (if any).

As explained above, TEP uses structural natural language descriptions to define the dataset domain
(Data Description), specify the input/output format of modalities used in a particular task, clarify the
desired output (Output Description), and provide an overview of the current task (Instance Prompt).
These guidelines reduce interference among tasks by specifying differences and similarities of tasks
in data and hypothesis space. For example, as illustrated in Fig. 3, TEP specifies the differences
between the output spaces of tasks such as text summarization and image classification, ensuring

5

Under review as a conference paper at ICLR 2024

Table 1: Tasks and corresponding datasets used to validate the feasibility of multi-task fine-tuning. “566k
(120k)” denotes expanded dataset from 120k samples to 566k by random tiling. “ratio” refers to the proportion
of the original training set that is utilized for training data.

Task Image Classification Object Detection Image Caption Visual Entailment Visual Grounding VQA Text Summarization Total
Dataset ImageNet ratio COCO ratio COCO ratio SNLI-VE ratio RefCOCO ratio VQAv2 ratio Gigaword ratio -
Subsetsmall 50k 4% 50k 42% 50k 9% 50k 9% 50k 41% 50k 4% 50k 1% 350k
Subsetvg 121k 10% 121k (118k) 100% 121k 21% 121k 22% 121k 100% 121k 9% 121k 3% 847k
Subsetcaption 566k 47% 566k (118k) 100% 566k 100% 566k (529k) 100% 566k (121k) 100% 566k 44% 566k 15% 3962k

that they do not interfere with each other. On the other hand, TEP enables sharing of commonly
required information among tasks. For instance, if multiple tasks are required to output localization
bounding boxes (e.g., Visual Grounding and Detection), output formats of TEP for these tasks would
be similar, allowing sharing information among them. TEP outperforms other candidate subprompts
like soft prompts (learnable vectors (Li & Liang, 2021; Zhong et al., 2022)), and is compared to two
baseline prompts in Tab. 3 . More discussions on the selection of TEP subprompts can be found in
Section 3.5.

2.3 ARCHITECTURE & TRAINING

Unified Architecture. We use an encoder-decoder architecture without task-specific heads as
backbone to our model (as shown in Fig. 2). Our encoder and decoder consist of stacked Trans-
former layers, each composed of self-attention Transformers, cross-attention Transformers (only in
decoders), and feed-forward neural networks (FFN). We use residual connections and head scal-
ing for self-attention to stabilize training. Layer Normalization is applied before each multi-head
self-attention layer and FFN. To maintain the positional information of words, we employ separate
parameterizations for computing word contextual correlation and positional correlation, and then
combine them additively, as described in (Ke et al., 2020). We also follow the practice of previous
models (Radford et al., 2018; Lewis et al., 2020) by applying byte-pair encoding (BPE) (Sennrich
et al., 2016) to the given text sequence to convert it into a subword sequence, which we then embed
into features. For image data, we use a pretrained ResNet (He et al., 2016) to convert the input im-
age into a feature of the hidden layer size, following the approach of (Dai et al., 2021; Wang et al.,
2021b; 2022). In the encoding process, the preprocessed text, image, and Task Explanation Prompt
tokens will be concatenated together in a sequential manner to form a single input sequence for the
encoder. Following (Chen et al., 2022; Wang et al., 2022), information from different modalities
is shared within a global multi-modal vocabulary across all tasks, and no parametric task-specific
adapters will be added to downstream tasks.

Balanced Sampling. To avoid the data imbalance and overfitting to any particular task, we adopt
a balanced sampling strategy during training. Specifically, we sample equal number of data from
all seven tasks at each iteration, and then conduct individual forward propagation for each task in a
single mini-batch, enabling their corresponding pre- and post-processing steps (such as Trie-based
search (Cormen et al., 2009; Wang et al., 2022) for classification tasks). The gradients computed
for all tasks are then aggregated for the final update, as suggested in (Aghajanyan et al., 2021), to
ensure that every task is involved in the gradient updating process.

Joint Optimization. Instead of using task-specific loss functions, which can improve performance
on individual tasks, we opted for a standard cross-entropy loss that is applied to all tasks. This
decision simplifies the training process and creates a more homogeneous space for losses across
tasks. This allows for a more direct comparison of task performance and avoids the issue of specific
tasks dominating the gradients. We also choose to forego multi-stage fine-tuning (like (Aghajanyan
et al., 2021; Yang et al., 2022)) and task-specific hyperparameters tuning, which may potentially
achieve better performance but require considerable human effort.

Inference. For tasks evaluated here, we perform auto-regressive sequence prediction. Additionally,
for classification, visual entailment, and VQA tasks, we adopt Trie (Cormen et al., 2009) post-
processing, as recommended in OFA (Wang et al., 2022), to avoid generating invalid label outside
the closed set.

3 EXPERIMENTS

In this section, we first outline the composition of the training dataset for various scales and the
training method for Musketeer. Next, we present the multi-tasking capability of Musketeer and its
comparative results against the specialist OFA model and other advanced multi-tasking models that

6

Under review as a conference paper at ICLR 2024

Table 2: Performance comparison to OFA specialist models reported in (Wang et al., 2022), which are noted
as “OFA-VG” (for visual grounding), “OFA-VE” (for visual entailment), and “OFA-Cap” (for caption). Mus-
keteer support multi-tasking and have been shown to achieve comparable or even superior performance to
specialist models which can only perform a specific task. Please note that we only perform single stage joint
training, without extra CIDEr optimization stage which may further improve caption performance. “data us-
age” refers to the proportion of the original training set that is utilized for training data.

Model Training Set Multi-Tasking Visual Grounding Visual Entailment Caption
data usage val test-A test-B data usage dev test data usage B@4 CIDEr

OFABase-VG RefCOCO ✗ 100% 88.5 90.7 83.3 - - - - - -
OFABase-VE SNLI-VE ✗ - - - - 100% 89.3 89.2 - - -
OFABase-Cap COCO (caption) ✗ - - - - - - - 100% 41.0 138.2
MusketeerBase Subsetvg ✓ 100% 88.4 91.0 84.4 22% 86.3 86.7 21% 38.7 130.7
MusketeerBase Subsetcaption ✓ 100% 88.7 91.2 85.5 100% 89.2 89.1 100% 40.9 137.2
OFALarge-VG RefCOCO ✗ 100% 90.1 92.9 85.3 - - - - - -
OFALarge-VE SNLI-VE ✗ - - - - 100% 90.3 90.2 - - -
OFALarge-Cap COCO (caption) ✗ - - - - - - - 100% 42.4 142.2
MusketeerLarge Subsetvg ✓ 100% 90.7 93.2 86.9 22% 88.7 88.5 21% 40.7 136.9
MusketeerLarge Subsetcaption ✓ 100% 90.8 93.1 87.6 100% 89.9 90.2 100% 42.5 140.2

Table 3: Evaluation of multi-tasking performance of Musketeer. TEP outperforms other prompts consistently,
making TEP demonstrates competitive performance across tasks, despite no task-specific fine-tuning or adap-
tation. B@4, R-1, R-2 and R-L denote BLEU@4, ROUGE-1, ROUGE-2, and ROUGE-L respectively.

Model Training Set Prompt Type Visual Grounding Visual Entailment VQA Caption Image Text Summary
val test-A test-B dev test test-dev B@4 CIDEr Classification R-1 R-2 R-L

MusketeerBase Subsetsmall

one-hot 84.2 87.1 80.3 82.6 82.1 68.5 35.9 120.1 52.2 32.7 14.2 30.4
BaseP 85.8 88.8 81.7 83.4 83.5 69.2 37.3 125.5 53.4 33.1 14.7 30.8
TEP 87.5 90.3 83.1 84.9 84.5 70.6 38.3 130.3 56.5 33.4 15.1 31.1

MusketeerBase Subsetvg

one-hot 86.1 87.8 81.2 84.2 84 68.8 36.5 123.7 58.2 33.9 15.2 31.4
BaseP 87.5 90.1 83.4 85.1 85.0 69.6 37.6 127.8 59.1 34.2 15.6 31.8
TEP 88.4 91.0 84.4 86.3 86.7 71.4 38.7 130.7 62.1 34.5 16.0 32.3

MusketeerBase Subsetcaption

one-hot 86.2 87.7 82.2 85.9 85.5 69.9 37.6 128.8 59.7 34.4 16.0 32.2
BaseP 87.6 90.4 83.3 87.2 86.9 70.4 38.8 134.2 60.4 34.9 16.4 32.4
TEP 88.7 91.2 85.5 89.2 89.1 72.0 40.9 137.2 62.9 35.1 16.7 32.8

MusketeerLarge Subsetsmall
BaseP 89 92 84.3 85.9 86.0 73.2 38.3 130.4 63.2 34.5 15.9 32.1
TEP 89.7 92.3 86.0 87.5 87.2 74.1 40.3 135.7 65.6 34.8 16.2 32.3

MusketeerLarge Subsetvg
BaseP 90.1 92.4 85.9 87.8 87.7 73.7 39.5 133.2 67.4 35.2 16.4 32.6
TEP 90.7 93.2 86.9 88.7 88.5 74.7 40.7 136.9 69.7 35.4 16.9 33.1

MusketeerLarge Subsetcaption
BaseP 90.2 92.6 86.0 88.0 87.9 74.1 40.9 137.9 68.1 35.7 16.9 33.2
TEP 90.8 93.1 87.6 89.9 90.2 75.0 42.5 140.2 70.2 36.0 17.3 33.5

do not require task-specific fine-tuning. Additionally, we show the performance of Musketeer can be
improved by including more tasks in the training set. Finally we conduct ablation studies to analyze
the functioning mechanism of TEP.

3.1 TRAINING DATASET COMPOSITION

Given the significant variation in training dataset size across seven tasks (ranging from 118k for
SNLI-VE to 1.3M for VQAv2), jointly training Musketeer with all data results in data imbalance,
leading to inadequate multi-tasking ability. To address this, we sample equivalent amounts of train-
ing data for each task. We also create subsets in varying sizes, as outlined in Tab. 1, we train
Musketeer on subsets in three scales in terms of total number of samples, Subsetsmall: consists of
50k samples for each task. Subsetvg: consists of 120k samples for each task and contains the entire
RefCOCO dataset for visual grounding. Subsetcaption: consists of 560k samples for each task and
contains the entire COCO dataset for image captioning.

3.2 EXPERIMENTAL SETUP

Unlike (Wang et al., 2022), we directly evaluate the joint-task trained model without any task-
specific fine-tuning. As suggested in (Yang et al., 2022; Wang et al., 2022; Li et al., 2022a), we
initialize weights of Musketeer from pretrained model in (Wang et al., 2022). During joint training,
all images are cropped to a size of 480 × 480, with 16 × 16 patches. The maximum text sequence
length of both the encoder and decoder is set to 512 as in (Wang et al., 2022). Our optimizer of
choice is AdamW (Loshchilov & Hutter, 2019), with (β1, β2, ϵ) = (0.9, 0.999, 1e− 8) and a learn-
ing rate of 1e− 4, which is controlled by a linearly decayed scheduler with a warmup ratio of 0.01.
We further apply dropout regularization with a ratio of 0.1 and weight decay of 0.01 during training.
For more information on our implementation, please refer to the Supplementary.

3.3 EFFECTIVENESS OF MUSKETEER

In this section, we firstly compare our proposed Musketeer with OFA specialist models. Then our
investigation focuses on the effectiveness of the Task Explanation Prompt (TEP) in comparison to
baseline prompts across 6 diverse tasks with various scales of training data and model sizes.

7

Under review as a conference paper at ICLR 2024

Table 4: Comparison of Musketeer with other jointly-trained models without task-specific fine-tuning. #Param
is the number of trainable model parameters. Musketeer outperforms the methods listed uniformly, despite
its relatively compact size. Please note that we only report the results without any task-specific fine-tuning
(consistent to Musketeer) and both Musketeer models are trained on the Subsetcaption dataset, which means
Musketeer only utilizes 44% of VQAv2 training data.

Model #Param Visual Grounding Visual Entailment Caption VQA
val test-A test-B dev test B@4 CIDEr

Pixel2seq-v2 (Chen et al., 2022) 132M - - - - - 34.9 - -
Flamingo (Alayrac et al., 2022) - - - - - - - 113.8 -
UniTAB (Yang et al., 2022) - 88.5 - - - - - 115.8 69.1
Unified-IOBase (Lu et al., 2022) 241M - - - 85.6 - - - 61.8
Unified-IOLarge (Lu et al., 2022) 776M - - - 86.1 - - - 67.8
Unified-IOXLarge (Lu et al., 2022) 2,925M - - - 91.1 - - 126.3 77.9
Uni-Perceiver-v2Base (Li et al., 2022a) 308M - - - - - 35.4 116.9 -
Uni-Perceiver-v2Large (Li et al., 2022a) 446M - - - - - 36.5 122.5 -
MusketeerBase 182M 88.7 91.2 85.5 89.2 89.1 40.9 137.2 72.0
MusketeerLarge 472M 90.8 93.1 87.6 89.9 90.2 42.5 140.2 75.0

Table 5: Ablation on Musketeer trained with varying task numbers on Subsetsmall (50k samples for each task) .
“#Task=1” denote specialist models which is evaluated on their corresponding training tasks (3 models in total).
“#Task=3,5,7” denotes multi-task fine-tuned models. For the tasks we use here, please refer to Supplementary.

#Task Visual Grounding Visual Entailment Caption
val test-A test-B dev test B@4 CIDEr

1 (VG) 86.4 88.4 81.9 - - - -
1 (VE) - - - 84.5 84.2 - -

1 (Caption) - - - - - 38.2 128.9
3 86.0 89.0 81.3 84.6 84.5 37.1 123.9
5 86.3 88.9 81.8 84.5 84.6 38.2 128.5
7 87.5 90.3 83.1 84.9 84.5 38.3 130.3

One for all: Musketeer vs OFA specialist models. Musketeer uses the same architecture and pre-
trained weights as OFA (Wang et al., 2022), which is currently the state-of-the-art method for many
visual language tasks such as visual grounding (RefCOCO), image captioning (COCO), and visual
entailment (SNLI-VE). We show that Musketeer achieves highly competitive multi-tasking perfor-
mance by comparing its jointly trained model with OFA specialist models in Tab. 2. Unlike OFA
specialist models, Musketeer can perform multiple tasks simultaneously without any task-specific
fine-tuning. Moreover, our results show that Musketeer could achieve comparable, or even better
performance than OFA specialist models. For instance, on the visual grounding task, Musketeer
outperforms OFA specialist models across all test splits. Considering OFA is a strong specialist VL
baseline model , those findings indicate that Musketeer demonstrates significant efficacy in transfer-
ring knowledge across various tasks and attaining superior performance in multitasking.

Comparison with baseline prompt and one-hot prompt. To show the effectiveness of TEP in
Musketeer, we utilize OFA (Wang et al., 2022) prompt as our baseline prompt (noted as BaseP),
which describes the task in one single, straightforward sentence. One could consider Base Prompt
trained Musketeer as a natural extension of OFA (Wang et al., 2022) that can perform multiple tasks.
Another simple prompt we adopt is one-hot prompt which employs a one-hot vector as the prompt
(noted as one-hot). Results in Tab. 3 show that TEP consistently outperforms the other prompts,
regardless of task type, model size, or training dataset scale.

3.4 COMPARISON WITH STATE-OF-THE-ART METHODS

We present the performance results of Musketeer, along with other multi-task models, in Tab. 4.
Our exclusive attention is directed towards multi-task performance, and we present the results for
all models without any task-specific fine-tuning. Musketeer is trained on Subsetcaption, which con-
tains 100% of the data for visual grounding, visual entailment, and image captioning. It shows
that Musketeer surpasses other multi-task models substantially across several tasks, affirming the
effectiveness of it. The only exception is that Unified-IOXLarge performs better than Musketeer on
visual entailment and VQA. Nonetheless, it’s worth noting that Unified-IOXLarge has a significantly
larger (6.2 times) model size than Musketeer. Besides, it uses 100% of the VQA training data, while
Musketeer only utilizes 44%.

8

Under review as a conference paper at ICLR 2024

Table 6: Ablations on specific TEP subprompts. We report performance of MusketeerBase trained on Subsetsmall
with varying TEP settings. Best results are achieved by TEP with all four subprompts, suggesting each sub-
prompt’s positive contribution to the overall performance.

Prompt Type Data Description I/O Format Output Description Instance Prompt Visual Grounding Visual Entailment Caption
val test-A test-B dev test B@4 CIDEr

one-hot ✗ ✗ ✗ ✗ 84.2 87.1 80.3 82.6 82.1 35.9 120.1
BaseP ✗ ✗ ✗ ✓ 85.8 88.8 81.7 83.4 83.5 37.3 125.5
TEP w/o Instance Prompt ✓ ✓ ✓ ✗ 85.6 88.7 81.5 83.7 83.5 36.3 126.7
TEP w/o I/O ✓ ✗ ✗ ✓ 86.7 89.5 82.7 84.3 84.2 38.2 130.0
TEP w/o Data Description ✗ ✓ ✓ ✓ 87.2 90.1 83.0 84.4 84.2 38.4 130.3
TEP ✓ ✓ ✓ ✓ 87.5 90.3 83.1 84.9 84.5 38.3 130.3

Table 7: Ablations on other TEP subprompt candidates. None of the 3 listed candidates demonstrate significant
performance improvements on all three tasks, therefore not adopted.

Prompt Type Visual Grounding Visual Entailment Caption
val test-A test-B dev test B@4 CIDEr

BaseP 85.8 88.8 81.7 83.4 83.5 37.3 125.5
+ fixed task vector 85.1 88.2 81.0 83.5 83.6 37.1 124.9
+ learnable task vector 84.9 87.8 80.7 83.7 83.6 37.4 125.5
+ task description (Wiki) 84.5 87.9 79.3 82.5 82.4 36.9 125.2
+ task description (ChatGPT) 85.7 88.5 81.9 84.1 83.9 37.0 124.5
TEP 87.5 90.3 83.1 84.9 84.5 38.3 130.3
+ fixed task vector 86.9 89.9 81.7 84.5 84.6 37.9 127.5
+ learnable task vector 86.2 88.7 80.9 83.7 83.9 37.5 125.9
+ task description (Wiki) 87.2 90.3 83.0 84.3 84.2 38.0 128.0
+ task description (ChatGPT) 87.4 90.2 82.9 85.0 84.6 38.2 130.0

3.5 ABLATION STUDIES

Joint training/inference under a single model: More tasks, better accuracy. For multimodal
tasks, generally, if the training sample amount for existing tasks remains unchanged, adding new
tasks into a multi-modal jointly-trained model training may lead to decreased performance for exist-
ing tasks (Lu et al., 2022; Yang et al., 2022). However, when sufficient types of tasks are available for
joint training, Musketeer achieves comparable performance to specialist models on existing tasks.
Results in Tab. 5 illustrate that for Musketeer, even if the training sample amount for existing tasks
remains the same, the addition of more tasks (from 3 tasks to 7 tasks) can still improve the per-
formance of existing tasks. Also, when the task amount increases to 7, multi-task Musketeer can
surpass the single-task tuned Musketeer, which is typically considered as the upper-bound perfor-
mance in previous studies (Lu et al., 2022; Yang et al., 2022).

Different TEP subprompts. To assess the effectiveness and significance of each TEP’s subprompt
(Data Description, I/O Format, Output Description, and Instance Prompt), we conduct experiments
on Musketeer by selectively removing TEP subprompts. As shown in Tab. 6, all TEP subprompts
are essential to the full TEP performance, while Instance Prompt and I/O are significantly more
important than Data Description. Additionally, if the Instance Prompt is removed from TEP (TEP
w/o Instance Prompt in Tab. 6), it still perform significantly better than one-hot Prompt and pro-
duced comparable results to baseline Prompt (BaseP). This implies that, despite a lack of explicit
instructions on input text usage , the data and I/O description can still furnish the model with rich
information on various tasks.

Other candidate TEP subprompts. In addition to these four subprompts, we also experiment
three other candidates for TEP, including learnable task vectors (also known as soft prompts (Zhong
et al., 2022)), fixed task vectors, and task descriptions (similar to dataset descriptions generated by
ChatGPT and verified by humans). Results in Tab. 7 show that incorporating fixed or learnable task
vectors results in decreases of the model’s performance. Besides, Our experiments do not reveal
any substantial performance improvement upon the inclusion of task descriptions. In summary, an
effective subprompt for TEP must furnish the model with rich and structured description for the task.

4 CONCLUSION AND DISCUSSION

We present a jointly trained vision-language model with all-shared model parameters, Musketeer.
Musketeer utilizes longer prompts as input, which may result in around 10%-15% extra latency com-
pared to specialist OFA (see Tab. 14 in Appendix), but multiple specialist models are not required
anymore due to using fully-shared model parameters. Additionally, we observed that OFA-based
models tend to have low baseline performance on the detection task. Although Musketeers with
TEP still outperform specialist OFA, we follow OFA (Wang et al., 2022) paper and choose not to
present object detection task as our main results. For more details and discussion, please refer to the
supplementary materials.

9

Under review as a conference paper at ICLR 2024

REFERENCES

Armen Aghajanyan, Anchit Gupta, Akshat Shrivastava, Xilun Chen, Luke Zettlemoyer, and
Sonal Gupta. Muppet: Massive multi-task representations with pre-finetuning. arXiv preprint
arXiv:2101.11038, 2021. 4, 6

Jean-Baptiste Alayrac, Adria Recasens, Rosalia Schneider, Relja Arandjelović, Jason Ramapuram,
Jeffrey De Fauw, Lucas Smaira, Sander Dieleman, and Andrew Zisserman. Self-supervised mul-
timodal versatile networks. Advances in Neural Information Processing Systems, 33:25–37, 2020.
3

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katie Millican, Malcolm Reynolds, et al. Flamingo: a visual language
model for few-shot learning. arXiv preprint arXiv:2204.14198, 2022. 4, 8

Vamsi Aribandi, Yi Tay, Tal Schuster, Jinfeng Rao, Huaixiu Steven Zheng, Sanket Vaibhav Mehta,
Honglei Zhuang, Vinh Q Tran, Dara Bahri, Jianmo Ni, Jai Gupta, Kai Hui, Sebastian Ruder, and
Donald Metzler. Ext5: Towards extreme multi-task scaling for transfer learning. arXiv preprint
arXiv:2111.10952, 2021. 4

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020. 3

Ting Chen, Saurabh Saxena, Lala Li, David J Fleet, and Geoffrey Hinton. Pix2seq: A language
modeling framework for object detection. arXiv preprint arXiv:2109.10852, 2021. 2

Ting Chen, Saurabh Saxena, Lala Li, Tsung-Yi Lin, David J Fleet, and Geoffrey Hinton. A unified
sequence interface for vision tasks. arXiv preprint arXiv:2206.07669, 2022. 2, 6, 8

Xinlei Chen, Hao Fang, Tsung-Yi Lin, Ramakrishna Vedantam, Saurabh Gupta, Piotr Dollár, and
C Lawrence Zitnick. Microsoft coco captions: Data collection and evaluation server. arXiv
preprint arXiv:1504.00325, 2015. 4, 5

Yen-Chun Chen, Linjie Li, Licheng Yu, Ahmed El Kholy, Faisal Ahmed, Zhe Gan, Yu Cheng, and
Jingjing Liu. Uniter: Universal image-text representation learning. In Computer Vision–ECCV
2020: 16th European Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXX,
pp. 104–120. Springer, 2020. 3

Jaemin Cho, Jie Lei, Haochen Tan, and Mohit Bansal. Unifying vision-and-language tasks via text
generation. In ICML, 2021. 4

Thomas H Cormen, Charles E Leiserson, Ronald L Rivest, and Clifford Stein. Introduction to
algorithms. MIT press, 2009. 6

Zihang Dai, Hanxiao Liu, Quoc V Le, and Mingxing Tan. Coatnet: Marrying convolution and
attention for all data sizes. arXiv preprint arXiv:2106.04803, 2021. 6

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
erarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009. 4

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv preprint arXiv:1810.04805, 2018. 3

Peng Gao, Shijie Geng, Renrui Zhang, Teli Ma, Rongyao Fang, Yongfeng Zhang, Hongsheng Li,
and Yu Qiao. Clip-adapter: Better vision-language models with feature adapters. arXiv preprint
arXiv:2110.04544, 2021. 4

Yash Goyal, Tejas Khot, Douglas Summers-Stay, Dhruv Batra, and Devi Parikh. Making the v in vqa
matter: Elevating the role of image understanding in visual question answering. In Proceedings
of the IEEE Conference on Computer Vision and Pattern Recognition, pp. 6904–6913, 2017. 4

10

Under review as a conference paper at ICLR 2024

Alex Graves. Generating sequences with recurrent neural networks. arXiv preprint
arXiv:1308.0850, 2013. 3

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
nition. In CVPR 2016, pp. 770–778, 2016. 6

Lisa Anne Hendricks, John Mellor, Rosalia Schneider, Jean-Baptiste Alayrac, and Aida Ne-
matzadeh. Decoupling the role of data, attention, and losses in multimodal transformers. Trans-
actions of the Association for Computational Linguistics, 9:570–585, 2021. 3

Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text classification.
In Proceedings of the 56th Annual Meeting of the Association for Computational Linguistics
(Volume 1: Long Papers), pp. 328–339, 2018. 3

Ronghang Hu and Amanpreet Singh. Unit: Multimodal multitask learning with a unified trans-
former. arXiv preprint arXiv:2102.10772, 2021. 4

Shengding Hu, Ning Ding, Huadong Wang, Zhiyuan Liu, Jingang Wang, Juanzi Li, Wei Wu, and
Maosong Sun. Knowledgeable prompt-tuning: Incorporating knowledge into prompt verbalizer
for text classification. In Proceedings of the 60th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pp. 2225–2240, 2022. 4

Andrew Jaegle, Sebastian Borgeaud, Jean-Baptiste Alayrac, Carl Doersch, Catalin Ionescu,
David Ding, Skanda Koppula, Daniel Zoran, Andrew Brock, Evan Shelhamer, Olivier Hénaff,
Matthew M. Botvinick, Andrew Zisserman, Oriol Vinyals, and Joāo Carreira. Perceiver io: A
general architecture for structured inputs & outputs. In International Conference on Learning
Representations. 4

Andrew Jaegle, Felix Gimeno, Andy Brock, Oriol Vinyals, Andrew Zisserman, and Joao Carreira.
Perceiver: General perception with iterative attention. In International conference on machine
learning, pp. 4651–4664. PMLR, 2021. 4

Aashi Jain, Mandy Guo, Krishna Srinivasan, Ting Chen, Sneha Kudugunta, Chao Jia, Yinfei Yang,
and Jason Baldridge. Mural: multimodal, multitask retrieval across languages. arXiv preprint
arXiv:2109.05125, 2021. 3

Chao Jia, Yinfei Yang, Ye Xia, Yi-Ting Chen, Zarana Parekh, Hieu Pham, Quoc Le, Yun-Hsuan
Sung, Zhen Li, and Tom Duerig. Scaling up visual and vision-language representation learning
with noisy text supervision. In International Conference on Machine Learning, pp. 4904–4916.
PMLR, 2021. 3

Zhengbao Jiang, Frank F Xu, Jun Araki, and Graham Neubig. How can we know what language
models know? Transactions of the Association for Computational Linguistics, 8:423–438, 2020.
4

Lukasz Kaiser, Aidan N Gomez, Noam Shazeer, Ashish Vaswani, Niki Parmar, Llion Jones, and
Jakob Uszkoreit. One model to learn them all. arXiv preprint arXiv:1706.05137, 2017. 4

Guolin Ke, Di He, and Tie-Yan Liu. Rethinking positional encoding in language pre-training. In
International Conference on Learning Representations, 2020. 6

Mike Lewis, Yinhan Liu, Naman Goyal, Marjan Ghazvininejad, Abdelrahman Mohamed, Omer
Levy, Veselin Stoyanov, and Luke Zettlemoyer. BART: Denoising sequence-to-sequence pre-
training for natural language generation, translation, and comprehension. In ACL 2020, July
2020. 6

Hao Li, Jinguo Zhu, Xiaohu Jiang, Xizhou Zhu, Hongsheng Li, Chun Yuan, Xiaohua Wang,
Yu Qiao, Xiaogang Wang, Wenhai Wang, and Jifeng Dai. Uni-perceiver v2: A generalist model
for large-scale vision and vision-language tasks. arXiv preprint arXiv:2211.09808, 2022a. 4, 7,
8, 17

11

Under review as a conference paper at ICLR 2024

Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. BLIP: Bootstrapping language-image
pre-training for unified vision-language understanding and generation. In Kamalika Chaud-
huri, Stefanie Jegelka, Le Song, Csaba Szepesvari, Gang Niu, and Sivan Sabato (eds.), Pro-
ceedings of the 39th International Conference on Machine Learning, volume 162 of Proceed-
ings of Machine Learning Research, pp. 12888–12900. PMLR, 17–23 Jul 2022b. URL https:
//proceedings.mlr.press/v162/li22n.html. 3

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-
image pre-training with frozen image encoders and large language models. arXiv preprint
arXiv:2301.12597, 2023. 4

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. arXiv
preprint arXiv:2101.00190, 2021. 4, 6

Xiaobo Liang, Lijun Wu, Juntao Li, Yue Wang, Qi Meng, Tao Qin, Wei Chen, Min Zhang, and
Tie-Yan Liu. R-drop: Regularized dropout for neural networks. Advances in Neural Information
Processing Systems, 34:10890–10905, 2021. 18

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR 2019, 2019. 7,
18

Jiasen Lu, Christopher Clark, Rowan Zellers, Roozbeh Mottaghi, and Aniruddha Kembhavi.
Unified-io: A unified model for vision, language, and multi-modal tasks. arXiv preprint
arXiv:2206.08916, 2022. 2, 5, 8, 9

Junhua Mao, Jonathan Huang, Alexander Toshev, Oana Camburu, Alan L Yuille, and Kevin Murphy.
Generation and comprehension of unambiguous object descriptions. In Proceedings of the IEEE
conference on computer vision and pattern recognition, pp. 11–20, 2016. 4

Bryan McCann, Nitish Shirish Keskar, Caiming Xiong, and Richard Socher. The natural language
decathlon: Multitask learning as question answering. arXiv preprint arXiv:1806.08730, 2018. 5

Tomas Mikolov, Martin Karafiát, Lukas Burget, Jan Cernockỳ, and Sanjeev Khudanpur. Recurrent
neural network based language model. In Interspeech, volume 2, pp. 1045–1048. Makuhari, 2010.
3

OpenAI. Introducing chatgpt. https://openai.com/blog/chatgpt, 2023. Accessed:
2023-03-06. 1, 15

Long Ouyang, Jeff Wu, Xu Jiang, Diogo Almeida, Carroll L Wainwright, Pamela Mishkin, Chong
Zhang, Sandhini Agarwal, Katarina Slama, Alex Ray, et al. Training language models to follow
instructions with human feedback. arXiv preprint arXiv:2203.02155, 2022. 1

Giovanni Paolini, Ben Athiwaratkun, Jason Krone, Jie Ma, Alessandro Achille, Rishita Anubhai,
Cicero Nogueira dos Santos, Bing Xiang, and Stefano Soatto. Structured prediction as translation
between augmented natural languages. arXiv preprint arXiv:2101.05779, 2021. 1

Alec Radford, Karthik Narasimhan, Tim Salimans, and Ilya Sutskever. Improving language
understanding by generative pre-training. URL https://s3-us-west-2.amazonaws.com/openai-
assets/researchcovers/ languageunsupervised/language understanding paper. pdf, 2018. 6

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision. In Marina
Meila and Tong Zhang (eds.), ICML 2021, volume 139 of Proceedings of Machine Learning
Research, pp. 8748–8763. PMLR, 2021a. 4

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agar-
wal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, Gretchen Krueger, and Ilya
Sutskever. Learning transferable visual models from natural language supervision. In Interna-
tional conference on machine learning, pp. 8748–8763. PMLR, 2021b. 2, 3

12

https://proceedings.mlr.press/v162/li22n.html
https://proceedings.mlr.press/v162/li22n.html
https://openai.com/blog/chatgpt

Under review as a conference paper at ICLR 2024

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. The Journal of Machine Learning Research, 21(1):5485–5551, 2020. 3, 5

Alexander M Rush, Sumit Chopra, and Jason Weston. A neural attention model for abstractive
sentence summarization. In Proceedings of the 2015 Conference on Empirical Methods in Natural
Language Processing, pp. 379–389, 2015. 5

Timo Schick and Hinrich Schütze. It’s not just size that matters: Small language models are also
few-shot learners. arXiv preprint arXiv:2009.07118, 2020. 4

Timo Schick and Hinrich Schütze. Exploiting cloze-questions for few-shot text classification and
natural language inference. In Proceedings of the 16th Conference of the European Chapter of
the Association for Computational Linguistics: Main Volume, pp. 255–269, 2021. 4

Rico Sennrich, Barry Haddow, and Alexandra Birch. Neural machine translation of rare words with
subword units. In Proceedings of the 54th Annual Meeting of the Association for Computational
Linguistics (Volume 1: Long Papers), pp. 1715–1725, 2016. 6

Amanpreet Singh, Ronghang Hu, Vedanuj Goswami, Guillaume Couairon, Wojciech Galuba, Mar-
cus Rohrbach, and Douwe Kiela. Flava: A foundational language and vision alignment model.
arXiv preprint arXiv:2112.04482, 2021. 4

Ilya Sutskever, James Martens, and Geoffrey E Hinton. Generating text with recurrent neural net-
works. In Proceedings of the 28th international conference on machine learning (ICML-11), pp.
1017–1024, 2011. 3

Hao Tan and Mohit Bansal. Lxmert: Learning cross-modality encoder representations from trans-
formers. arXiv preprint arXiv:1908.07490, 2019. 3

Maria Tsimpoukelli, Jacob L Menick, Serkan Cabi, SM Eslami, Oriol Vinyals, and Felix Hill. Mul-
timodal few-shot learning with frozen language models. Advances in Neural Information Pro-
cessing Systems, 34:200–212, 2021. 3, 4

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural informa-
tion processing systems, 30, 2017. 2

Jianfeng Wang, Xiaowei Hu, Zhe Gan, Zhengyuan Yang, Xiyang Dai, Zicheng Liu, Yumao Lu,
and Lijuan Wang. Ufo: A unified transformer for vision-language representation learning. arXiv
preprint arXiv:2111.10023, 2021a. 3

Peng Wang, An Yang, Rui Men, Junyang Lin, Shuai Bai, Zhikang Li, Jianxin Ma, Chang Zhou,
Jingren Zhou, and Hongxia Yang. Ofa: Unifying architectures, tasks, and modalities through
a simple sequence-to-sequence learning framework. In International Conference on Machine
Learning, pp. 23318–23340. PMLR, 2022. 2, 5, 6, 7, 8, 9, 17, 18

Zirui Wang, Jiahui Yu, Adams Wei Yu, Zihang Dai, Yulia Tsvetkov, and Yuan Cao. Simvlm: Simple
visual language model pretraining with weak supervision. ArXiv, abs/2108.10904, 2021b. 6

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv preprint
arXiv:2109.01652, 2021. 4

Ning Xie, Farley Lai, Derek Doran, and Asim Kadav. Visual entailment: A novel task for fine-
grained image understanding. arXiv preprint arXiv:1901.06706, 2019. 4

Yifan Xu, Nicklas Hansen, Zirui Wang, Yung-Chieh Chan, Hao Su, and Zhuowen Tu. On the
feasibility of cross-task transfer with model-based reinforcement learning. In ICLR, 2023. 4

Zhengyuan Yang, Zhe Gan, Jianfeng Wang, Xiaowei Hu, Faisal Ahmed, Zicheng Liu, Yumao Lu,
and Lijuan Wang. Crossing the format boundary of text and boxes: Towards unified vision-
language modeling. ArXiv, abs/2111.12085, 2021. 4

13

Under review as a conference paper at ICLR 2024

Zhengyuan Yang, Zhe Gan, Jianfeng Wang, Xiaowei Hu, Faisal Ahmed, Zicheng Liu, Yumao Lu,
and Lijuan Wang. Unitab: Unifying text and box outputs for grounded vision-language modeling.
In Computer Vision–ECCV 2022: 17th European Conference, Tel Aviv, Israel, October 23–27,
2022, Proceedings, Part XXXVI, pp. 521–539. Springer, 2022. 2, 5, 6, 7, 8, 9, 17

Licheng Yu, Patrick Poirson, Shan Yang, Alexander C Berg, and Tamara L Berg. Modeling context
in referring expressions. In European Conference on Computer Vision, pp. 69–85. Springer, 2016.
4

Lu Yuan, Dongdong Chen, Yi-Ling Chen, Noel C. F. Codella, Xiyang Dai, Jianfeng Gao, Houdong
Hu, Xuedong Huang, Boxin Li, Chunyuan Li, Ce Liu, Mengchen Liu, Zicheng Liu, Yumao Lu,
Yu Shi, Lijuan Wang, Jianfeng Wang, Bin Xiao, Zhen Xiao, Jianwei Yang, Michael Zeng, Luowei
Zhou, and Pengchuan Zhang. Florence: A new foundation model for computer vision. ArXiv,
abs/2111.11432, 2021. 2, 3

Renrui Zhang, Rongyao Fang, Wei Zhang, Peng Gao, Kunchang Li, Jifeng Dai, Yu Qiao, and Hong-
sheng Li. Tip-adapter: Training-free clip-adapter for better vision-language modeling. arXiv
preprint arXiv:2111.03930, 2021. 4

Wanjun Zhong, Yifan Gao, Ning Ding, Yujia Qin, Zhiyuan Liu, Ming Zhou, Jiahai Wang, Jian Yin,
and Nan Duan. Proqa: Structural prompt-based pre-training for unified question answering. arXiv
preprint arXiv:2205.04040, 2022. 3, 4, 6, 9

Xizhou Zhu, Jinguo Zhu, Hao Li, Xiaoshi Wu, Xiaogang Wang, Hongsheng Li, Xiaohua Wang, and
Jifeng Dai. Uni-perceiver: Pre-training unified architecture for generic perception for zero-shot
and few-shot tasks. arXiv preprint arXiv:2112.01522, 2021. 4

14

Under review as a conference paper at ICLR 2024

Im
ag

e C
las

sifi
cat

ion

Dete
cti

on

Vis
ua

l G
rou

nd
ing

Cap
tio

n

Vis
ua

l E
nta

ilm
en

t
VQA

Tex
t S

um
mari

zat
ion

Image Classification

Detection

Visual Grounding

Caption

Visual Entailment

VQA

Text Summarization

1.0 0.61 0.6 0.58 0.78 0.76 0.68

0.61 1.0 0.84 0.82 0.76 0.77 0.62

0.6 0.84 1.0 0.83 0.74 0.76 0.59

0.58 0.82 0.83 1.0 0.73 0.73 0.6

0.78 0.76 0.74 0.73 1.0 0.92 0.77

0.76 0.77 0.76 0.73 0.92 1.0 0.72

0.68 0.62 0.59 0.6 0.77 0.72 1.0

TEP - Data Description

Im
ag

e C
las

sifi
cat

ion

Dete
cti

on

Vis
ua

l G
rou

nd
ing

Cap
tio

n

Vis
ua

l E
nta

ilm
en

t
VQA

Tex
t S

um
mari

zat
ion

Image Classification

Detection

Visual Grounding

Caption

Visual Entailment

VQA

Text Summarization

1.0 0.52 0.46 0.7 0.51 0.65 0.69

0.52 1.0 0.92 0.62 0.53 0.58 0.6

0.46 0.92 1.0 0.62 0.54 0.56 0.58

0.7 0.62 0.62 1.0 0.64 0.71 0.9

0.51 0.53 0.54 0.64 1.0 0.66 0.62

0.65 0.58 0.56 0.71 0.66 1.0 0.77

0.69 0.6 0.58 0.9 0.62 0.77 1.0

TEP - Output Description

Im
ag

e C
las

sifi
cat

ion

Dete
cti

on

Vis
ua

l G
rou

nd
ing

Cap
tio

n

Vis
ua

l E
nta

ilm
en

t
VQA

Tex
t S

um
mari

zat
ion

Image Classification

Detection

Visual Grounding

Caption

Visual Entailment

VQA

Text Summarization

1.0 0.96 0.83 0.84 0.87 0.87 0.72

0.96 1.0 0.8 0.8 0.84 0.84 0.69

0.83 0.8 1.0 0.95 0.94 0.98 0.78

0.84 0.8 0.95 1.0 0.89 0.92 0.71

0.87 0.84 0.94 0.89 1.0 0.97 0.79

0.87 0.84 0.98 0.92 0.97 1.0 0.81

0.72 0.69 0.78 0.71 0.79 0.81 1.0

TEP - Input Format

Im
ag

e C
las

sifi
cat

ion

Dete
cti

on

Vis
ua

l G
rou

nd
ing

Cap
tio

n

Vis
ua

l E
nta

ilm
en

t
VQA

Tex
t S

um
mari

zat
ion

Image Classification

Detection

Visual Grounding

Caption

Visual Entailment

VQA

Text Summarization

1.0

0.58

0.59

1.0

0.63

1.0

1.0

0.58

1.0

0.94

0.58

0.62

0.58

0.58

0.59

0.94

1.0

0.59

0.65

0.59

0.59

1.0

0.58

0.59

1.0

0.63

1.0

1.0

0.63

0.62

0.65

0.63

1.0

0.63

0.63

1.0

0.58

0.59

1.0

0.63

1.0

1.0

1.0

0.58

0.59

1.0

0.63

1.0

1.0

TEP - Output Format

Im
ag

e C
las

sifi
cat

ion

Dete
cti

on

Vis
ua

l G
rou

nd
ing

Cap
tio

n

Vis
ua

l E
nta

ilm
en

t
VQA

Tex
t S

um
mari

zat
ion

Image Classification

Detection

Visual Grounding

Caption

Visual Entailment

VQA

Text Summarization

1.0

0.8

0.53

0.78

0.74

0.78

0.55

0.8

1.0

0.62

0.9

0.84

0.91

0.33

0.53

0.62

1.0

0.66

0.69

0.67

0.36

0.78

0.9

0.66

1.0

0.93

0.97

0.35

0.74

0.84

0.69

0.93

1.0

0.93

0.41

0.78

0.91

0.67

0.97

0.93

1.0

0.35

0.55

0.33

0.36

0.35

0.41

0.35

1.0

Task Description (ChatGPT)

Im
ag

e C
las

sifi
cat

ion

Dete
cti

on

Vis
ua

l G
rou

nd
ing

Cap
tio

n

Vis
ua

l E
nta

ilm
en

t
VQA

Tex
t S

um
mari

zat
ion

Image Classification

Detection

Visual Grounding

Caption

Visual Entailment

VQA

Text Summarization

1.0

0.77

0.72

0.73

0.7

0.63

0.69

0.77

1.0

0.69

0.72

0.67

0.57

0.63

0.72

0.69

1.0

0.77

0.74

0.73

0.7

0.73

0.72

0.77

1.0

0.75

0.62

0.63

0.7

0.67

0.74

0.75

1.0

0.69

0.68

0.63

0.57

0.73

0.62

0.69

1.0

0.64

0.69

0.63

0.7

0.63

0.68

0.64

1.0

Task Description (Wiki)

Im
ag

e C
las

sifi
cat

ion

Dete
cti

on

Vis
ua

l G
rou

nd
ing

Cap
tio

n

Vis
ua

l E
nta

ilm
en

t
VQA

Tex
t S

um
mari

zat
ion

Image Classification

Detection

Visual Grounding

Caption

Visual Entailment

VQA

Text Summarization

1.0

0.89

0.8

1.0

0.85

0.7

0.75

0.89

1.0

0.72

0.89

0.77

0.6

0.64

0.8

0.72

1.0

0.8

0.83

0.66

0.79

1.0

0.89

0.8

1.0

0.85

0.7

0.75

0.85

0.77

0.83

0.85

1.0

0.8

0.8

0.7

0.6

0.66

0.7

0.8

1.0

0.71

0.75

0.64

0.79

0.75

0.8

0.71

1.0

BaseP

Figure 4: Similarity matrices of subprompts pf TEP and other candidate prompts across seven tasks. They
are constructed by computing cosine distances between corresponding prompts, which are obtained by feeding
them into a language model.

A APPENDIX

A.1 SIMILARITY MATRICES OF OTHER PROMPTS

We further compare similarity matrices of TEP and other prompts, including Task Description
(Wiki), BaseP, and Task Description (ChatGPT (OpenAI, 2023)). As illustrated by Fig. 4, TEP’s
subprompts are effective at distinguishing different tasks by specifying their differences and shared
structure in the data and hypothesis spaces, thereby reducing task interference. In contrast, Task
Description (Wiki) is relatively poor at capturing cross-task relationships, leading to a performance
drop in multi-tasking scenarios (as shown in Tab. 7 of the main text). Although BaseP and Task
Description (ChatGPT) are more informative, they still lack some important task relationships. For
example, BaseP fails to see the similarity between VQA and visual entailment, while Task Descrip-
tion (ChatGPT) doesn’t capture the relationship between object detection and visual grounding. Our
experimental results (Tab. 3 and 7 of the main text) are consistent with these observations, showing
that Task Description (Wiki) is not beneficial to multi-tasking performance, while BaseP and Task
Description (ChatGPT) are better but still significantly outperformed by TEP.

A.2 EXTENSIONAL EXPERIMENTS
Concurrent multi-task finetuning on small data: visual grounding. One further question for
Musketeer is whether it can perform well on a task with limited training data by incorporating data
from other tasks. To explore this question, we trained MusketeerBase on visual grounding with only
32 or 100 samples, while jointly finetuning the model with six other tasks that has 50k samples each.
To verify whether Musketeer can leverage cross-task information to improve the performance of task
with limited samples, we also exclusively trained MusketeerBase on visual grounding with only 32 or
100 samples for comparison. Our results, as shown in Tab. 8, indicate that multi-task tuned models,
including both Base Prompt and TEP prompted ones, exhibit significantly better performance than
non-multi-task tuned models in such scenario. Such results indicate that Musketeer can enhance
performance on a task with limited samples by utilizing knowledge from multiple tasks. Moreover,
the TEP-prompted model outperforms Base Prompted (BaseP) models by around 3% in case of

15

Under review as a conference paper at ICLR 2024

using 32 VG samples and 4% for 100 VG samples case, which indicates that TEP is a more potent
prompt for small data with concurrent training configuration.

Table 8: Experiments on concurrent multi-task training for small data. “Multitask tuning” denotes the model
is jointly trained with other 6 tasks in Subsetsmall. Multi-task tuned models, including both Base- and TEP-
prompted models, exhibit superior performance over specialist models in this scenario.

Prompt
Type

Multitask
tuning

VG
Samples val test-A test-B

TEP ✓ 50k 87.5 90.3 83.1
BaseP ✗ 32 18.2 23.3 13.4
BaseP ✓ 32 69.1 75.2 61.9
TEP ✓ 32 72.1 79.3 65.8

BaseP ✗ 100 20.5 25.3 15.3
BaseP ✓ 100 75.1 80.3 70.5
TEP ✓ 100 79.2 84.5 74.1

Concurrent multi-task finetuning on small data: visual entailment. This section provides extra
experiments on visual entailment for Musketeer to see whether it can perform well on a task with
limited training data by incorporating data from other tasks. In addition to Sec. 3.6 in the main
text, we trained MusketeerBase on visual entailment with only 32 or 100 samples, while jointly
finetuning the model with six other tasks that has 50k samples each. Our results, as shown in
Tab. 9, consistent to former experiments and further indicate that TEP-prompted Musketeer can
better enhance performance on a task with limited samples by utilizing knowledge from multiple
tasks.

Table 9: Experiments on concurrent multi-task training for small data of visual entailment. “Multitask tuning”
denotes the model is jointly trained with other 6 tasks in Subsetsmall. TEP-prompted models exhibit superior
performance over Base-prompted models in this scenario.

Prompt
Type

Multitask
tuning

VE
Samples val test

TEP ✓ 50k 84.9 84.5
BaseP ✓ 32 67.2 67.8
TEP ✓ 32 69.4 69.5

BaseP ✓ 100 72.6 72.4
TEP ✓ 100 73.5 73.8

Replacing TEP subprompts with one-hot vector. To verify the importance of structured text
explanations in TEP, we replace subprompts except Instance Prompt in TEP with one-hot vectors,
which is noted as TEP-one-hot in Tab. 10. TEP-one-hot is still a structured prompt but removes the
detailed textual description. It’s worth noting that tasks with homogeneous I/O formats share the
same one-hot vector (e.g., VQA and image caption). Results in Tab. 10 shows that using TEP-one-
hot leads to a decrease in performance compared with TEP. These results indicate that more text
explanations with structure can boost the model performance. However, we find that TEP-one-hot
outperforms BaseP, which demonstrates that structured prompts has superiority to prompts that lack
structured information.

TEP’s effectiveness on other architecture We utilized the official released VL-T5 code to train
a 3-Task model encompassing Visual Question Answering (VQA), Visual Grounding, and Image
Captioning tasks, incorporating the TEP. The resulting model, called VL-T5-All-TEP, was com-
pared against VL-T5 models trained on individual tasks as well as all tasks combined. Tab. 11
demonstrates the performance of the models. In the case of Visual Grounding (VG) and VQA tasks,
the TEP-trained VL-T5 model surpasses the results achieved by the models trained on single tasks.
For the Captioning task, TEP outperforms VL-T5-All (which uses a simple one-word prompt) and
achieves comparable results to those obtained by the single task model.

Results on object detection. Tab. 12 presents the object detection results on the COCO dataset for
both the single-task-tuned OFA and multitask-tuned Musketeers. As previously reported, the TEP
model consistently outperforms the BaseP model, demonstrating competitive performance across
tasks even without task-specific fine-tuning. However, we noticed that OFA-based models tend to

16

Under review as a conference paper at ICLR 2024

Table 10: Ablations on replacing all TEP subprompts except Instance Prompt with one-hot vector.

Prompt Type Visual Grounding Visual Entailment Caption
val test-A test-B dev test B@4 CIDEr

BaseP 85.8 88.8 81.7 83.4 83.5 37.3 125.5
TEP-one-hot 85.9 89.0 81.8 84.4 84.2 38.1 129.0
TEP 87.4 90.3 83.1 84.9 84.5 38.3 130.3

Table 11: TEP performance on VL-T5 backbone.

Model # Params VQA RefCOCOg COCO Caption
Acc Acc CIDEr

VL-T5-Single 3P 67.9 71.3 116.1
VL-T5-All P 67.2 69.4 110.8

VL-T5-All-TEP P 69.2 73.6 114.1

have low baseline performance on the detection task. Therefore, we have decided not to present the
object detection task as our primary results, in line with the OFA (Wang et al., 2022) paper. We plan
to extend the Musketeers to other backbones with stronger detection baselines in the future.

Table 12: Results on object detection for OFA and Musketeers in “base” size. “Multitask tuning is ✗” denotes
single-task-tuned models.

Model Type Multitask
tuning # Samples mAP mAR

OFA ✗ 50k 25.2 26.0
Musketeers (BaseP) ✓ 50k 24.9 25.9
Musketeers (TEP) ✓ 50k 25.8 26.4

OFA ✗ 121k 30.2 29.3
Musketeers (BaseP) ✓ 121k 29.8 28.7
Musketeers (TEP) ✓ 121k 30.4 29.4

Six task training without object detection. Although OFA-based models have low baseline
performance for object detection, Table 13 demonstrates that incorporating object detection into
joint training yields improvements in visual grounding performance. Based on these findings, we
have decided to integrate object detection into the Musketeers’ training scheme to enhance visual
grounding results.

Table 13: Musketeers performance when removing object detection. We report results of Musketeersbase
trained on seven of six tasks(w/o object detection) in Subsetsmall. Adding object detection is beneficial to visual
grounding performance.

Prompt Type # Detection Task Visual Grounding Visual Entailment Caption VQA
val test-A test-B dev test B@4 CIDEr

TEP ✗ 87.4 89.7 82.8 84.8 84.5 38.5 129.3 70.3
TEP ✓ 87.5 90.3 83.1 84.9 84.5 38.3 130.3 70.6

Training & Inference Efficiency when usin TEP. Table 14 demonstrates that Musketeer em-
ploys longer prompts as input, leading to approximately 10%-15% additional latency compared to
the specialist OFA approach. However, Musketeer eliminates the need for multiple specialist models
by leveraging fully-shared model parameters.
Table 14: Throughput (samples / second) comparison between OFA and MusketeerBase on one A100 GPU.
Our analysis includes the average training and inference throughputs towards seven tasks (batch size 2 for each
task). Musketeer demonstrates around 10%-15% extra latency overhead.

Model Training throughput Inference throughput
OFABase 7.31 24.27
MusketeerBase 6.62 20.53

A.3 IMPLEMENTATION DETAILS

Training Details. As suggested in (Yang et al., 2022; Wang et al., 2022; Li et al., 2022a), we
initialize weights of Musketeer from pretrained model in (Wang et al., 2022). We directly evalu-

17

Under review as a conference paper at ICLR 2024

ate the joint-task trained model without any task-specific fine-tuning, in contrast to (Wang et al.,
2022). To ensure consistency, all images are cropped to a size of 480 × 480, with 16 × 16
patches. We set the maximum text sequence length for both the encoder and decoder to 512,
following (Wang et al., 2022). We use the AdamW optimizer (Loshchilov & Hutter, 2019) with
(β1, β2, ϵ) = (0.9, 0.999, 1e− 8) and a learning rate of 1e− 4, which is controlled by a linearly de-
cayed scheduler with a warmup ratio of 0.01. Dropout regularization with a ratio of 0.1 and weight
decay of 0.01 is also applied during training. Our models are trained with a batch size of 16 for each
task (112 for seven tasks in total) on 8 A100 GPUs with 40GB memory. We update weights every
16 iterations. We further apply label smoothing with a factor of 0.1 and R-drop (Liang et al., 2021)
to regularize the output distribution, preventing overfitting. We also use Automatic Mixed Precision
(AMP) to train the model on FP16 precision, for faster computation.

Ablation Details Below are more details of our ablation study:

• Evaluating the effect of task number on performance: We explore the relationship be-
tween the number of tasks and multi-tasking performance by comparing the results of Mus-
keteers trained on 3 (visual entailment, visual grounding, and caption), 5 (adding object
detection and VQA), and 7 (further adding image classification and text summarization)
tasks. Tab. 5 in the main text provides a detailed comparison of the results.

• Replacing TEP subprompts with one-hot vector. We replace subprompts except Instance
Prompt in TEP with one-hot vectors. Tasks that share homogenous input/output formats
will share the same one-hot vector for the corresponding TEP subprompts. For example,
object detection and visual grounding will share the same one-hot vector for output formats.
For other subprompts like data description, each task will hold an identical one-hot vector.

Full TEP list We provide full TEP lists for each task in Tab. 15. Subprompts for each task are
specified by human, except Data description, which is obtained by ChatGPT.

18

Under review as a conference paper at ICLR 2024

Table 15: Full TEP lists for each task in structural form.
Task Subprompt Content

Object
detection

Data description COCO, or the Common Objects in Context dataset, is a large-scale dataset for
object detection, segmentation, and captioning. The dataset is commonly used to
train and evaluate object detection algorithms. Annotating a dataset like COCO
involves manually labeling the objects in each image with bounding boxes and
class labels. This is typically done by trained annotators who use specialized soft-
ware tools to draw the bounding boxes and assign the class labels to the objects
in the images.

Input format A task prompt and an image containing target objects
Output format mutiple x0 + y0 + x1 + y1
Output descrip-
tion

mutiple bounding boxes (each consistsing of horizonal coordinates of leftupper
points of target region + vertical coordinates of leftupper points of target region +
horizonal coordinates of rightlower points of target region + vertical coordinates
of rightlower points of target region)

Image
classfication

Data description ImageNet is a large-scale dataset for image classification, object detection, and
object segmentation. It contains over 14 million images, each labeled with the
name of one of 1000 object categories. The images in ImageNet are annotated
by human labelers, who have assigned a label to each image indicating the main
object or concept depicted in it. The annotation process for ImageNet involves
two steps: (1) determining the set of object categories to be used for labeling the
images and (2) labeling the images with these categories.

Input format A Task prompt and an input image
Output format Text
Output descrip-
tion

A class name this image describes

Visual
grounding

Data description RefCOCO is a dataset for referring expressions in images, which is built on top
of the COCO dataset. Referring expressions are natural language phrases that
refer to specific objects or regions in an image. For example, a referring expres-
sion might be “the dog in the center of the picture”. Annotating a dataset like
RefCOCO involves manually labeling the objects in each image with bounding
boxes and class labels, as well as creating referring expressions that refer to spe-
cific objects or regions in the image.

Input format A Task Prompt, a text describe the target region and a image containing the target
region

Output format x0 + y0 + x1 + y1
Output descrip-
tion

horizonal coordinates of leftupper points of target region + vertical coordinates
of leftupper points of target region + horizonal coordinates of rightlower points
of target region + vertical coordinates of rightlower points of target region

Image
caption

Data description In addition to object detection, the COCO dataset also includes annotations for
image captioning. Image captioning involves generating a natural language de-
scription of the objects and scenes depicted in an image. To annotate a dataset
for image captioning, annotators must assign a series of text descriptions to each
image in the dataset. These descriptions should capture the key objects and scene
elements present in the image, as well as their relationships and interactions.

Input format A Task Prompt and an input image
Output format Text
Output descrip-
tion

Text that describe the input image

Visual
entailment

Data description SNLI-VE is a dataset for visual entailment, which is the task of determining
whether a given natural language sentence is entailed by a given image. The
SNLI-VE dataset is a large-scale dataset that includes over 200,000 images and
more than 1.2 million sentence pairs. Annotating a dataset like SNLI-VE involves
manually labeling the images with sentence pairs and labels indicating whether
the sentences are entailed by the image.The sentences should be natural language
sentences that are related to the content of the images, and the labels should indi-
cate whether one sentence logically follows from the other given the information
in the image.

Input format A Task Prompt, a condition text 1 , an implied result text 2 and an image
Output format Text
Output descrip-
tion

Yes or no or maybe

VQA

Data description VQAv2 is a dataset for visual question answering (VQA), which is a task that
involves generating natural language answers to questions about images. The
VQAv2 dataset is a large-scale dataset that includes over 200,000 images and
more than 1.2 million questions and answers. Annotating a dataset like VQAv2
involves manually labeling the images with questions and answers. The questions
should be natural language questions that are related to the content of the images,
and the answers should be natural language responses that provide accurate and
relevant information about the images.

Input format A Task Prompt , a question description text and an image
Output format Text
Output descrip-
tion

Answers

Text
summarization

Data description Gigaword is a text corpus that is commonly used for training and evaluating text
summarization models. The corpus consists of over a billion words of newswire
text from various sources. To use Gigaword for text summarization, the text
needs to be annotated with summary information. One common way to do this is
by using the headline of each news article as a summary of the article itself. The
headline is typically a short, one-sentence summary of the article’s main point or
topic, making it a natural choice for summarization.

Input format A Task Prompt and a Text
Output format Text
Output descrip-
tion

Summary of input text

19

