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Abstract

Dataset distillation seeks to synthesize a compact distilled dataset, enabling models
trained on it to achieve performance comparable to models trained on the full
dataset. Recent methods for large-scale datasets focus on matching global distri-
butional statistics (e.g., mean and variance), but overlook critical instance-level
characteristics and intraclass variations, leading to suboptimal generalization. We
address this limitation by reformulating dataset distillation as an Optimal Trans-
port (OT) distance minimization problem, enabling fine-grained alignment at both
global and instance levels throughout the pipeline. OT offers a geometrically
faithful framework for distribution matching. It effectively preserves local modes,
intra-class patterns, and fine-grained variations that characterize the geometry of
complex, high-dimensional distributions. Our method comprises three components
tailored for preserving distributional geometry: (1) OT-guided diffusion sampling,
which aligns latent distributions of real and distilled images; (2) label-image-
aligned soft relabeling, which adapts label distributions based on the complexity
of distilled image distributions; and (3) OT-based logit matching, which aligns
the output of student models with soft-label distributions. Extensive experiments
across diverse architectures and large-scale datasets demonstrate that our method
consistently outperforms state-of-the-art approaches in an efficient manner, achiev-
ing at least 4% accuracy improvement under IPC=10 settings for each architecture
on ImageNet-1K.

1 Introduction

The expansion of data has fueled advances in deep learning, but also introduced prohibitive costs
in storage, computation, and energy [1, 2, 3]. To address these challenges, dataset distillation
aims to synthesize a small set of training samples to expedite model training while maintaining
comparable performance [4]. Such distillation not only improves accessibility and cost-efficiency,
but also facilitates practical applications such as knowledge transfer [5], federated learning [6, 7], and
continual learning [8, 9]. Moreover, it provides a valuable lens to investigate the theoretical principles
underlying training efficiency and representation capacity in deep learning [10, 11].

Traditional dataset distillation methods can be broadly categorized into optimization-based [12, 13,
14, 15] and distribution-matching-based approaches [16, 17, 18, 19]. Despite their effectiveness,
these methods remain largely restricted to small-scale, low-resolution datasets such as MNIST [20],
CIFAR [21], or downsampled ImageNet subsets [22]. This limitation stems from the prohibitive
computational cost of alternating optimization between the distilled data and the condensation
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Figure 1: (a) Distributions with identical mean or variance may differ geometrically, causing biases in
global-statistics-based optimization. (b) We decompose the OT objective into three stages: OT-guided
diffusion sampling, label-image-aligned soft relabeling, and OT-based logit matching. (c) Our method
consistently outperforms prior approaches across architectures on ImageNet-1K (IPC = 10).

model [23], and the reliance on integrated image representations that demand costly pixel-level
refinement [24]. Recent efforts have explored generative and model-inversion-based techniques to
overcome these scalability bottlenecks. Model-inversion-based methods [25, 26, 27, 28], originally
proposed under data-free distillation framework [29, 30], rely entirely on global batch-normalization
statistics extracted from pretrained models. While simple, this design imposes an inherent limitation:
it fundamentally lacks the ability to recover or preserve instance-level, local distributional structures.
In contrast, generative-model-based methods [24, 31, 32, 33] leverage real image samples during the
sampling process, showing potential to approximate the true data distribution more faithfully.

However, existing generative approaches have yet to fully realize this promise, as they still solely
focus on matching global gradient statistics. Besides, the fine-grained distributional structures are
not properly captured by cosine-similarity-based diversity guidance, resulting in local mode collapse
and distributional mismatch in the distilled set. To address this limitation, we propose a principled
reformulation grounded in Optimal Transport (OT), which enables fine-grained distributional ge-
ometry alignment between real distribution and model output distribution. Specifically, we define
distributional geometry alignment as preserving distribution-level global and local structures (e.g.,
coarse-grained patterns and subclass densities), rather than image-level features. Our key insight
is that each real data point encapsulates rich intra-class semantic variation, such as the distinctive
traits of different subclasses or local modes within the same class. OT inherently provides a geo-
metrically faithful and perceptually aligned measure of distributional differences [34], making it
especially promising for preserving and transferring these fine-grained semantic structures during
distillation [35].

Building upon this, we formulate dataset distillation as an OT distance minimization problem. As
shown in Figure 1, to make the alignment process tractable and optimization-friendly, we decompose
the total OT distance into three complementary objectives that altogether contribute to its minimiza-
tion: (1) instance-level transport in image latent space, (2) label-image alignment in label space, and
(3) batch-wise logit alignment between new model predictions and soft targets. Such decomposition
ensures alignment through the sequential stages of dataset distillation, ranging from image generation
and label assignment to student model training. In the first stage, latent space transport is achieved
by continuously computing the OT distance between the accumulated synthetic images (including
the newly generated samples) and the real image batches at each sampling step. The gradients from
this computation are used to guide the diffusion sampling process. In the second stage, we align
the complexity of the synthetic image distribution with that of the soft label distribution, thereby
narrowing the OT distance between the distilled data and the real data. In the final stage, we transfer
the rich distributional geometric information embedded in the distilled set to new student models by
minimizing the batch-wise OT distance between the student outputs and the soft-label distributions.

We evaluate our method across a diverse range of architectures, including ResNet, MobileNet,
EfficientNet, Swin Transformer, ConvNet, and ConvNeXt. Our approach consistently outperforms
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state-of-the-art methods across all datasets, architectures, and IPCs, achieving particularly strong
results on ImageNet-1K [22] under the challenging IPC=10 scenario. Our contributions are threefold:

• We propose a novel perspective of dataset distillation by formulating the task as an OT dis-
tance minimization problem. We decompose the objective into three tractable components.

• We systematically enhance distributional geometry alignment through key stages of the
pipeline, including image sampling, soft label relabeling, and student model logit matching.

• We demonstrate the effectiveness and generalizability of our method across a broad range of
datasets and model architectures, which significantly surpass existing techniques.

2 Related Works

Numerous studies have investigated dataset distillation: initial works target low-resolution, small-
scale datasets, while more recent methods address large-scale, higher-resolution scenarios.

2.1 Small-scale distillation methods

Traditional dataset distillation methods can be broadly classified into optimization-based and
distribution-matching (DM)-based approaches. Optimization-based methods [12, 13, 36, 14, 15]
adopt a bi-level optimization framework, where model parameters are updated in the outer loop while
synthetic data are refined in the inner loop to match gradients or trajectories. In contrast, DM-based
methods [16, 17, 18, 37, 38, 19] directly align the feature distributions of real and synthetic data,
thereby avoiding costly nested optimization. However, all these methods exhibit high model depen-
dence on the condensation model, which limits the versatility of the distilled datasets in generalizing
across different architectures [39, 40]. Also, they incur significant time and memory costs due to
three factors: (1) treating synthetic data as fixed entities, (2) requiring exhaustive pixel-level refine-
ments, and (3) relying on real data for image refinement. As a result, traditional dataset distillation
approaches are predominantly applied to small-scale datasets.

2.2 Large-scale distillation methods

Recent methods for large-scale, high-resolution datasets fall into two main categories: model-
inversion-based and generative-model-based methods. Model-inversion-based methods [27, 28, 23,
41, 42, 43] compress the real dataset into a compact model representation, eliminating the need
for real data during image refinement. This reduces memory overhead and allows scaling to large
datasets such as ImageNet-1K [22]. However, the lack of real data in the reconstruction process
results in the loss of fine-grained instance-level information, which hinders the distilled dataset
from accurately capturing the structural properties and instance-specific characteristics of the real
distribution. Generative-model-based methods [32, 44, 45, 46, 24] leverage pretrained generative
models to avoid pixel-level refinements. While generating one sample at a time reduces memory
overhead and avoids treating data as fixed entities, independently synthesizing each sample prevents
the distilled dataset from maintaining a coherent overall distribution, thereby limiting its ability
to capture the full diversity and structural relationships of the real data distribution. Due to their
inherent exclusion of real data during reconstruction, model-inversion-based methods fail to preserve
fine-grained structures of the real distribution; accordingly, we adopt the generative-model-based
paradigm as our starting point. We address the shortcomings of both families by proposing an OT
framework that ensures distributional geometry alignment throughout the distillation process.

3 Preliminaries

Given images x ∼ q(x), define the induced latent distribution qZ by z0 = E(x), z0 ∼ qZ(z0), where
E is the encoder mapping images into latent space. A latent diffusion model learns pϕ(z0) ≈ qZ(z0) ,
from which we can efficiently sample. Let D be a decoder that reconstructs images via x̂ = D(z0).
The forward noising process corrupts the clean latent z0 via Gaussian perturbations:

zt =
√
αtz0 +

√
1− αtϵ, ϵ ∼ N (0, I), (1)
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Table 1: Distributions involved in dataset distillation. All are defined over the joint space X × Y ,
where X denotes the image space and Y denotes the label space.
Distribution Image Source Label Source Description

µtrue(x,y) Real (full) Images Ground-truth y(x) True data-label distribution
ν
(soft)
distill (x,y) Distilled (generated) Images Teacher soft label t(x) Distilled data with soft label

ν
(hard)
distill (x,y) Distilled (generated) Images One-hot label yonehot(x) Distilled data with hard label

νnew(x,y) Distilled (generated) Images Student logit output s(x) Output of the model trained on S

where αt controls the noise schedule. The reverse process reconstructs clean samples via a parame-
terized denoising function ϵϕ(zt, t), iteratively refining noisy inputs with update function s:

zt−1 = s(zt, t, ϵϕ(zt, t)). (2)

Guided diffusion [47] modifies this process by introducing an auxiliary guidance function G(zt, t)
that adjusts the sampling trajectory. This allows generation to be conditioned on labels, structural
priors, or more abstract objectives by modifying s(zt, t, ϵϕ) to optimize for a task-specific constraint.

Influence-Guided Diffusion (IGD) [24] leverages guided diffusion for dataset distillation by modifying
the reverse sampling process to generate training-optimal data. Instead of passively sampling from
pϕ(x), IGD introduces trajectory influence function and diversity function into the diffusion process
to prioritize samples. Given a guided diffusion framework, IGD modifies the sampling update as:

zt−1 = s(zt, t, ϵϕ)− ρt∇ztGI(zt, t)− γt∇ztGD(zt), (3)

where GI(zt, t) represents the influence function for global distributional trajectory matching, and
GD(zt) enforces diversity to prevent redundancy in the distilled dataset.

4 Methods

4.1 Problem Statement

Dataset distillation aims to construct a compact distilled dataset S ≡ νdistill(x,y) (this means that
νdistill denotes the empirical distribution over dataset S) from a real, full dataset T ≡ µtrue(x,y),
such that |S| ≪ |T |. A student model trained on S should mimic the performance of training on
T , i.e., the output distribution νnew(x,y) of the student model should remain close to the ground-
truth distribution µtrue(x,y). We formulate the dataset distillation objective as an OT minimization
problem, where we minimize the Wasserstein distance W(µtrue, νnew) between the ground-truth and
student-induced distributions. The key distributions involved in the formulations are summarized in
Table 1. We provide a detailed description of symbols in Appendix D.

4.2 Reconstructing the Optimal Transport Distance

We now provide a theoretical decomposition of our objective, W(µtrue, νnew), by introducing two
key principles: (1) the triangle inequality partitioning the discrepancy introduced before and after
distilled set construction, and (2) a multiplicative contraction term reflecting the benefit of soft labels
over hard labels. Unlike the commonly used measures such as KL divergence and cosine similarity,
which do not satisfy the triangle inequality, the Wasserstein distance W(·, ·) is a proper metric on the
space of distributions. This property allows us to decompose the total discrepancy as:

W(µtrue, νnew) ≤W(µtrue, ν
(hard)
distill ) +W(ν

(hard)
distill , νnew). (4)

As soft labels better approximate the true label distribution than one-hot assignments, recent works
adopt soft labels instead of hard one-hot assignments, leading to the following relaxed upper bound:

W(µtrue, νnew) ≤W(µtrue, ν
(soft)
distill )︸ ︷︷ ︸

Dataset Discrepancy

+W(ν
(soft)
distill , νnew)︸ ︷︷ ︸

Logit Matching Error

. (5)

The first term captures the mismatch between the distilled and real data distribution. The second term
reflects the logit-wise alignment between the student model’s output distribution and the soft labels
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of the distilled data. Directly minimizing the first term is challenging due to too many variables to
optimize. To analyze it further, we model the soft label advantage via a multiplicative relation:

W(µtrue, ν
(soft)
distill ) = W(µtrue, ν

(hard)
distill ) · α(ν(soft)distill ) (6)

The contraction factor α(ν(soft)distill ) measures how much soft labels reduce the discrepancy between label
and image distributions compared to hard labels alone. The contraction is achieved by matching the
complexity of the teacher-provided soft label distributions to that of the distilled image distribution.
Since both ν

(hard)
distill and µtrue use one-hot (hard) labels, their Wasserstein distance can be computed

class-wise, by independently solving optimal transport between images of the same category:

W(µtrue, ν
(hard)
distill ) = Ey

[
W(µtrue(x | y), ν(hard)distill (x | y)

]
(7)

where Ey denotes the expectation over label classes, which measures the average conditional Wasser-
stein distance across classes. Putting everything together, we arrive at a structured upper bound:

W(µtrue, νnew) ≤ Ey

[
W(µtrue(x | y), ν(hard)distill (x | y)

]
· α(ν(soft)distill ) +W(ν

(soft)
distill , νnew) (8)

where each term is controlled by a distinct design choice: OT-guided diffusion sampling, label-image-
aligned soft label relabeling, and OT-based logit matching between the student model and the distilled
dataset. This decomposition allows a principled basis of our method, which explicitly targets at
minimization of each component. Our pseudocodes are provided in Appendix E.

4.3 OT-guided Diffusion Sampling (OTG)

In the remainder of this section, we optimize the three terms in Equation 8 sequentially. We now
concentrate on the first term. For each class c, we minimize the class-conditional OT distance
W(µtrue(x | c), ν(hard)distill (x | c)) through diffusion guidance: we compute the OT distance between the
distilled images and the real images in the latent space as the guiding function. At each diffusion step
during the generation of the n-th latent zc0, we draw a random batch of class-c samples from dataset
T and encode them into latent representations Zc

T . We then employ the following guidance function:

GW(zct) = W([Mc
n−1, z

c
t ],Z

c
T ) (9)

where Mc
n−1 denotes previously sampled n−1 latents for class c, and [·] represents the pythonic

concatenation.We denote [Mc
n−1, z

c
t ] as M̂c

n. The OT matrix Pλ1 can be efficiently approximated:

Pλ1 = argmin
P

〈
P,D(M̂c

n,Z
c
T )

〉
− λ1h(P), where

∑
i

Pij =
1

|Zc
T |
∀j,

∑
j

Pij =
1

n
∀i. (10)

where h(P) is the entropy of P, ⟨·, ·⟩ denotes the Frobenius inner product, λ1 > 0 is the entropy
regularization weight, D(M̂c

n,Z
c
T ) represents the cost matrix measuring the pairwise distance

between the real latent representations Zc
T and the sampled M̂c

n. Without loss of generality, we use
the ℓp-norm cost matrix and initialize the candidate transport matrix K0 as:

Dij(M̂
c
n,Z

c
T ) = ∥ M̂c

n[i]− Zc
T [j] ∥p, K0 = exp(−D

λ1
). (11)

Next, Sinkhorn normalization is applied through iterative updates to K:

K̂i ← diag
(
Ki−11n ⊘ (n1|Zc

T |)
)−1

Ki−1, Ki ← K̂idiag

((
K̂i

)T
1|Zc

T | ⊘ (|Zc
T |1n))

)−1

,

(12)
where⊘ denotes element-wise division, (·)T indicates matrix transpose. After T iterations, the optimal
transport matrix Pλ1 is obtained, and we can compute the Sinkhorn distance (an approximation of
the OT distance) W as:

Pλ1 = KT , W([Mc
n−1, z

c
t ],Z

c
T ) =

〈
P,D(M̂c

n,Z
c
T )

〉
=

∑
i,j

KT
ijDij (13)
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For the entire guided diffusion sampling, we follow the previous approach to combine the terms of
trajectory and diversity functions with our OT function. The iteration of t = TD → 1 yields zc0:

zct−1 = s(zct , t, ϵϕ)− ρt∇zc
t
GI(zct , t)− γt∇zc

t
GD(zct)− β1∇zc

t
GW(zct), (14)

where ρt, γt and β1 are weights, GI(zct , t) and GD(zct) are trajectory and diversity functions, re-
spectively. By minimizing the OT distance in the image distribution space, we account for the
contribution of individual real images and incorporate both global and local structural information,
thereby promoting fine-grained geometric alignment between distributions. Finally, we use decoder
D to convert all latent representations into images, forming the distilled image set Sx.

4.4 Label-Image-Aligned Soft Label Relabeling (LIA)

We now focus on the contraction factor α(ν(soft)distill ), which characterizes the alignment between the
complexity of the soft label distribution and that of the distilled image distribution (Appendix G.2
for details). Since the representational capacity of the distilled dataset is primarily governed by the
number of images per class (IPC), we adopt an IPC-aware strategy that minimizes the overall OT
distance. In low-IPC regimes, the distilled image distribution is less expressive and more prone to
overfitting. Assigning overly complex soft labels in such cases can introduce distributional mismatch
and degrade alignment. To mitigate this, we employ a smaller number of representative teacher models
to produce simplified, low-entropy soft labels that offer well-calibrated supervision. In contrast,
high-IPC regimes enable the distilled dataset to support greater semantic diversity. Accordingly,
we leverage a larger and more diverse set of teacher models to generate fine-grained soft label
distributions, which better capture the intrinsic structure of the true label space. Formally, for each
synthetic image, we assign the soft label as the averaged output from a set of IPC-dependent teachers:

t(xi) =
1

|T(|Sx|)|
∑

t∈T(|Sx|)

Ft(xi) =
1

|T(IPC)|
∑

t∈T(IPC)

Ft(xi), for each xi ∈ Sx, (15)

where Ft denotes the logit output function of the t-th teacher, t(xi) denotes soft label for image
xi, and T(IPC) is a subset of teacher models selected to minimize the contraction factor α. This
strategic relabeling ensures that the soft label distribution faithfully matches the capacity of the
distilled images, reducing the discrepancy term W(ν

(soft)
distill , µtrue) and thereby improving alignment.

For a fair comparison with prior methods [27, 28], we adopt the same region-level soft label storage
strategy as in FKD [48].

4.5 OT-based Student Model Logit Matching (OTM)

After obtaining a distilled set that preserves rich geometric structures of the real data, we transfer
this information to student models (i.e., new models) by aligning the distribution of their logits with
that of the real dataset. We achieve this alignment by minimizing the last term in the upper bound of
Equation 8. We consider a batch of b samples and denote the soft labels of this batch and the logit
output of a student model as t and s, respectively. Most traditional divergence measures operate on a
per-sample basis and match logits independently, thereby failing to capture inter-sample relationships.
To address this limitation, we employ a batch-wise OT distance that aligns logits while capturing
global distributional structure. Specifically, similar to Section 4.3, we use the Sinkhorn method to
efficiently solve for the OT matrix Pλ2 , with entropy regularization h(P) weighted by λ2:

Pλ2 = argmin
P
⟨P,C(t, s)⟩ − λ2h(P), where

∑
i

Pij =
1

b
∀j,

∑
j

Pij =
1

b
∀i. (16)

Here, C ∈ Rb×b is the batch-wise cost matrix, where each entry Cij measures the distance between
the soft label t(xi) and the synthetic output s(xj). Specifically, we employ the ℓp-norm:

Cij(t, s) = ∥ t(xi)− s(xj) ∥p, LSD = W(t, s) =
〈
Pλ2 ,C

〉
, (17)

Adapting Equations 11, 12, and 13 to current dimensions, we compute Pλ2 and the corresponding
batch-wise Sinkhorn distance loss LSD. For a fair comparison with previous methods [41, 23], we
use the cross-entropy loss LCE, the MSE loss LMSE, and the Sinkhorn loss LSD for distillation:

L =

b∑
i=1

κ1LCE(yonehot(xi), s(xi)) + κ2LMSE(t(xi), s(xi)) + β2LSD, (18)

where κ1, κ2, and β2 are scalar weights, yonehot(xi) denotes the hard label for the distilled image xi.
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Table 2: Performance comparison on ImageNet-1K [22] with ResNet-18. The numbers in parentheses
for “Ours” represent the number of training epochs on the distilled set for new models.

Comparsion with generative-model-based methods.

IPC D3M [31] D4M [32] TDSDM [33] DiT [44] Minimax [45] DDPS [46] DiT-IGD [24] Ours (300) Ours (1000)

10 23.6±0.1 27.9±0.7 44.5±0.4 39.6±0.4 42.1±0.3 42.1±0.3 45.5±0.5 52.9±0.1 58.6±0.3
50 32.2±0.1 55.2±0.3 59.4±0.3 52.9±0.6 59.4±0.2 59.4±0.2 59.8±0.3 61.9±0.5 64.2±0.4

Comparsion with model-inversion-based methods

IPC SRe2L [27] G-VBSM [41] RDED [28] CDA [26] SC-DD [42] EDC [23] CV-DD [25] Ours (300) Ours (1000)

10 21.3±0.6 31.4±0.5 42.0±0.1 33.5±0.3 32.1±0.2 48.6±0.3 46.0±0.6 52.9±0.1 58.6±0.3
50 46.8±0.2 51.8±0.4 56.5±0.1 53.5±0.3 53.1±0.1 58.0±0.2 49.5±0.4 61.9±0.5 64.2±0.4

Table 3: Other architecture performance comparison on ImageNet-1K [22].

Method MobileNet-V2 EfficientNet-B0 Swin Transformer ConvNeXt
IPC10 IPC50 IPC10 IPC50 IPC10 IPC50 IPC10 IPC50

SRe2L [27] 10.2±2.6 31.8±0.3 11.4±2.5 34.8±0.4 4.8±0.6 42.1±0.3 4.1±0.4 48.8±0.2
RDED [28] 40.4±0.1 53.3±0.2 31.0±0.1 58.5±0.4 42.3±0.6 53.2±0.8 48.3±0.5 65.4±0.4
EDC [23] 45.0±0.2 57.8±0.1 51.1±0.3 60.9±0.2 46.0±0.5 57.9±0.3 54.4±0.2 66.6±0.2
DiT-IGD [44] 39.2±0.2 57.8±0.2 47.7±0.1 62.0±0.1 44.1±0.6 58.6±0.5 51.9±0.2 66.8±0.5
Ours (300) 51.0±0.6 61.0±0.4 56.7±0.2 64.4±0.1 50.2±0.2 68.2±0.1 61.2±0.1 70.2±0.8
Ours (500) 54.6±0.3 63.0±0.4 59.6±0.2 66.0±0.6 56.2±1.0 69.4±0.1 64.5±0.3 71.1±1.1
Ours (1000) 57.6±0.1 63.9±0.2 62.4±0.1 66.8±0.1 63.7±0.2 70.5±0.1 67.0±0.1 71.8±0.9

5 Experiments

5.1 Experimental Settings

Dataset. Given our primary focus on large-scale dataset distillation, we evaluate our method on
the full ImageNet-1K dataset [22]. To ensure comparability across varying category scales, we
further conduct experiments on two widely used subsets, ImageNet-100 [13] and ImageNette [49].
To construct a comprehensive benchmark covering both low-resolution and high-resolution settings,
we additionally include CIFAR-100 [21]. The dataset descriptions are presented in Appendix C.

Network architectures. To evaluate the generalization capability of our method, we experi-
ment with a diverse set of network architectures, including convolutional neural networks (CNNs),
transformer-based models, and hybrid models. Specifically, we consider CNN-based architectures,
including ResNet [50], MobileNet [51],EfficientNet [52], and ConvNet [53]; a transformer-based
model, the Swin Transformer [54]; and the hybrid architecture ConvNeXt [55]. This selection
provides a comprehensive evaluation across diverse architectural paradigms and inductive biases.

Baselines. We compare our approach with a broad range of dataset distillation methods. Specifically,
we include traditional methods such as DM [16], IDC [13], and DATM [56]; model-inversion-based
methods including SRe2L [27], G-VBSM [41], RDED [28], CDA [26], SC-DD [42], EDC [23], CV-
DD [25], and DELT[57]; as well as generative-model-based methods such as D3M [31], D4M [32],
TDSDM [33], DiT [44], Minimax [45], DDPS [46], and IGD [24]. We report the top-1 test accuracy
of models trained on distilled datasets with different IPC (Images Per Class) settings to ensure a fair
and consistent comparison. Each network is trained five times from scratch to report error bars.

Implementation details. To ensure fair evaluation, we follow the configurations of IGD [24] and
EDC [23], maintaining consistency in training procedure and hyperparameter settings. For the OT
components, we set α1 = 1, γ1 ∈ {1000, 3000}, α2 = 0.1, and γ2 = 0.1. For simplicity, we set
p = 1 (ℓ1-norm). More details are in Appendix F.

5.2 Results and Discussions

Results on ImageNet-1K. We extensively evaluated our generative OT framework on ImageNet-
1K [22], comparing it against state-of-the-art dataset distillation methods, including both generative
model-based and model-inversion-based approaches, across various architectures and IPC settings.
Table 2 presents results on ResNet-18 [50]. Our method significantly outperforms prior methods
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Table 4: Performance comparison on ImageNette [49].
Model ConvNet-6 ResNetAP-10 ResNet-18

IPC 10 50 100 10 50 100 10 50 100

Hard Label

Random 46.0±0.5 71.8±1.2 79.9±0.8 54.2±1.2 77.3±1.0 81.1±0.6 55.8±1.0 75.8±1.1 82.0±0.4
DM [16] 49.8±1.1 70.3±0.8 78.5±0.8 60.2±0.7 76.7±1.1 80.9±0.7 60.9±0.7 75.0±1.0 81.5±0.4
IDC-1 [13] 48.2±1.2 72.4±0.7 80.6±1.1 60.4±0.6 77.4±0.7 81.5±1.2 61.0±0.8 77.5±1.0 81.7±0.8
DiT [44] 56.2±1.3 74.1±0.6 78.2±0.3 62.8±0.8 76.9±0.5 80.1±1.1 62.5±0.9 75.2±0.7 77.8±0.7
Minimax [45] 58.2±0.9 76.9±0.8 81.1±0.3 63.2±1.0 78.2±0.7 81.5±1.0 64.9±0.6 78.1±0.6 81.3±0.7
DiT-IGD [44] 61.9±1.9 80.9±0.9 84.5±0.7 66.5±1.1 81.0±1.2 85.2±0.8 67.7±0.3 80.4±0.8 84.4±0.8
Ours 67.0±0.9 83.1±1.0 86.5±0.5 68.0±0.3 83.8±0.6 86.4±0.6 69.1±1.9 84.6±0.4 85.9±0.2

Soft Label

SRe2L [27] - - - - - - 29.4±3.0 40.9±0.3 50.2±0.4
RDED [28] 63.5±0.6 84.3±0.3 89.2±0.7 60.8±0.5 80.5±0.3 89.3±0.6 61.4±0.4 80.4±0.4 89.6±1.0
D4M [32] 53.5±0.5 84.4±0.4 89.6±0.2 56.2±0.3 84.7±0.5 90.2±0.3 57.4±0.4 84.8±0.2 90.4±0.7
DDPSc [46] - - - - - - 62.5±0.2 83.4±0.5 90.2±0.2
DDPSs [46] - - - - - - 60.4±0.3 85.8±0.4 91.6±0.4
DiT-IGD* [24] 69.6±1.0 86.7±0.9 89.9±0.6 73.6±1.3 86.8±1.0 90.6±0.6 74.8±0.7 86.4±0.9 90.7±0.5
Ours 74.5±0.3 89.1±0.9 91.3±0.2 77.8±0.8 89.7±0.5 91.6±0.3 79.0±0.3 89.3±0.3 92.0±0.6
Full 94.3±0.5 94.6±0.5 95.3±0.6

Table 5: Performance comparison on ImageNet-100 [13].
Model IPC SRe2L [27] RDED [28] DELT [57] Ours

ResNet-18
10 9.5±0.4 36.0±0.3 28.2±1.5 47.7±0.3
50 27.0±0.4 61.6±0.1 67.9±0.6 72.6±0.1
100 30.4±0.3 74.5±0.4 75.1±0.2 79.2±0.1

ResNet-101
10 6.4±0.1 33.9±0.1 22.4±3.3 36.3±0.5
50 25.7±0.3 66.0±0.6 70.8±2.3 74.3±0.2
100 27.6±0.2 73.5±0.8 77.6±1.8 81.6±0.1

MobileNet
10 4.5±0.4 23.6±0.7 15.8±0.2 43.2±0.2
50 18.4±0.2 51.5±0.8 55.0±1.8 69.5±0.3
100 22.1±0.3 70.8±1.1 76.7±0.3 78.0±0.2

Table 6: Performance comparison on
CIFAR-100 [21] using ConvNet-3 [53].

IPC 10 50 100

DM [16] 29.7±0.3 43.6±0.4 47.1±0.4
M3D [18] 42.4±0.2 50.9±0.7 52.1±0.6
DATM [56] 47.2±0.4 55.0±0.2 57.5±0.2

SRe2L [27] 24.5±0.4 45.2±0.3 46.6±0.5
RDED [28] 48.1±0.3 57.0±0.1 58.1±0.4

D4M [32] 45.0±0.1 48.8±0.3 50.3±0.2
DiT-IDG [24] 45.8±0.6 53.9±0.6 55.9±0.4
Ours 50.7±0.2 57.5±0.3 58.7±0.2

at 300 epochs. When training is extended to 1000 epochs, performance further improves. This
shows that our distilled images and soft labels contain sufficient information for continued optimiza-
tion. Beyond ResNet, we evaluated generalization on MobileNet-V2 [51], EfficientNet-B0 [52],
Swin Transformer [54], and ConvNeXt [55] (Table 3). Our framework consistently surpasses prior
approaches across all architectures. The larger performance gain at lower IPC settings highlights
its ability to better preserve fine-grained distributional details. When IPC is low, existing dataset
distillation methods struggle to cover the full data distribution, leading to significant discrepancies
between the learned distribution and the real distribution. In contrast, our approach explicitly aligns
the latent space distribution, logit-level semantic consistency, and label-image relationships, ensuring
that even with limited synthetic samples, our distilled set comprehensively represents the real data.

Results on ImageNet subsets. To further compare with prior works and to evaluate our method
under reduced-category settings, we conduct experiments on two ImageNet subsets, varying both
class selection and class count. As shown in Tables 4 and 5, our method consistently outperforms
all baselines. Notably, we observe significant performance improvements under both hard label and
soft label settings. This demonstrates that OT-guided sampling effectively captures fine-grained
sample information, contributing to the learning of the new model. During the subsequent OT
distance minimization phases, this extracted information is systematically transferred to the new
model, resulting in enhanced performance. Robustness tests are conducted in Appendix G.8.

Results on CIFAR-100. We evaluate our method on CIFAR-100 [21] to assess its generalizability
on low-resolution datasets, as summarized in Table 6. To ensure a broad comparison, we include
traditional low-resolution-oriented methods, along with model-inversion-based and generative-model-
based methods, both specially designed for large-scale datasets. Unlike most existing methods that
specialize in either low-resolution or high-resolution datasets, our approach achieves state-of-the-art
performance on ImageNet [22] while maintaining superior results on CIFAR. This further highlights
the robustness of our OT-driven strategy in preserving distributional characteristics across scales.
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Table 7: Ablation Study on ImageNette [49] under IPC=10. Note:
Here, “w/o LIA” denotes soft relabeling with the teacher ensemble
from high-IPC settings, without adapting to the current IPC.

Model Hard Label Soft Label
w/o OTG w OTG w/o OTG w/o LIA w/o OTM Full

ConvNet-6 61.9 67.0 72.5 74.3 73.2 74.5
ResNetAP-10 66.5 68.0 74.2 76.4 75.9 77.8

ResNet-18 67.7 69.1 77.2 77.8 77.5 79.0

Table 8: Mean runtime per class
(sampling) or per epoch (match-
ing) on ImageNet-1K [22].

Stage Method IPC=10 IPC=50

Samp. w/o OTG 97.1s 537.4s
w OTG 97.7s 540.3s

Match. w/o OTM 23.2s 126.1s
w OTM 23.3s 126.6s

Table 9: Distilled set generation time (IPC=10, ImageNet-
1K, 8×4090). PreS: Presample, PostS: Postsample.

EDC [23] 3h PreS +3h PostS + 5h Recover + 0.4h Relabel
Ours 3.4h Diffusion Sample + 0.3h Relabel

Table 10: Effect of α on ImageNette [49].

Teachers ResNet-18 w/o LIA w LIA
α 0.906 0.903 0.643

Avg. Acc. 76.0 76.2 77.1

Impact of different components. Our OT-guided diffusion sampling effectively transfers the
geometric structure of the image space distribution to the distilled images. This alignment is further
enhanced by the Label-Image-Aligned Soft Relabeling, which narrows the distributional gap between
the distilled and real data. During student model training, the OT-based student logit matching module
faithfully propagates this information to the new model. This further reinforces alignment between
the original distribution µtrue and the learned distribution νnew. As shown in Table 7, each component
involved in minimizing the OT distance plays a critical role, underscoring the necessity of aligning
distributions throughout the entire pipeline. More validations are provided in Appendix G.3.

Runtime analysis. As shown in Table 8, the additional time overhead introduced by our OT
constraint is consistently less than 1%. Table 9 provides a breakdown of the time required for each
step in generating the distilled set for both our method and the state-of-the-art model-inversion-
based method, EDC [23]. Our approach is notably faster than EDC, which further demonstrates its
efficiency.

Discussion of contraction factor α. Table 10 reports the values of α measured under different
soft label generation strategies. Our LIA strategy significantly reduces the OT distance between the
distilled data and the real data, allowing the distilled data to capture more information of the real
distribution. This leads to a substantial performance improvement. More discussion in Appendix G.2.

Sensitivity analysis. As shown in Table 11, our method delivers consistently high accuracy over a
broad range of OT-related hyperparameter settings, demonstrating low sensitivity. This robustness
eliminates exhaustive tuning and enables straightforward deployment across diverse scenarios. It also
makes our approach readily scalable. Additional results and analyses are available in Appendix G.1.
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Figure 2: Comparison of generated images from different methods on ImageNet-100 (IPC = 10).
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Table 11: Impact of different OT hyperparameters.
β1 λ1 β2 λ2 ConvNet ResNetAP ResNet

Hard Label

1 1000 - - 67.0±0.9 68.0±0.3 69.1±1.9
1 10000 - - 66.3±0.7 68.5±0.3 68.9±0.8
10 1000 - - 65.8±0.5 67.5±0.5 68.7±1.1

Soft Label

1 1000 0.1 0.1 74.5±0.3 77.8±0.8 79.0±0.3
1 1000 0.1 1 74.6±0.8 76.3±0.8 78.2±1.0
1 1000 1 0.1 74.3±0.5 78.1±0.3 77.4±0.2

Figure 3: Training accuracy curves of ResNet-18 (left) and MobileNet (right). IGD: DiT-IGD.

Visualizations. Figure 2 illustrates a qualitative comparison among DiT [44], DiT-IGD [24], and our
method. DiT often produces visually similar outputs that lack semantic diversity. DiT-IGD introduces
diversity without aligning with the underlying real data distribution, leading to non-representative or
incorrect generations. Furthermore, its influence estimation is based solely on intraclass averaged
statistics, which results in perceptible blurring. In contrast, our approach explicitly models both
instance-specific characteristics and fine-grained distributional structures, thereby enabling faithful
approximation of the real data manifold. We also present the test accuracy at each logit-matching
step in Figure 3. Our method achieves faster convergence and consistently higher accuracy, especially
in early epochs, demonstrating superior sample informativeness and stronger distribution alignment
when compared to EDC [23] and DiT-IGD [24]. Please refer to Appendix H for more visualizations.

6 Conclusion

We propose a principled framework for generative large-scale dataset distillation by formulating it as
an OT distance minimization problem. Our approach explicitly decomposes the total OT distance
into three interpretable components and systematically minimizes each to ensure comprehensive
distributional alignment. This allows new models trained on distilled data to behave similarly to
models trained on the full dataset, regardless of architecture. Extensive experiments across diverse
datasets and model architectures validate the effectiveness and generalizability of our method.

Broader Impact. Our distilled datasets lower carbon footprints associated with new model training,
fostering sustainable AI development. They also enable efficient learning in federated and continual
learning scenarios, enhancing data privacy and model adaptation across distributed systems.
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Appendix

A Overview

This appendix provides comprehensive supplementary materials to further elaborate on our method’s
theoretical foundations, experimental setup, and empirical findings. It includes the following sections:

• Section B: More Related Work. Detailed discussions on prior studies, with an emphasis
on optimal transport and guided diffusion sampling

• Section C: Dataset Descriptions. Comprehensive descriptions of all datasets used in
our experiments, including ImageNet-1K [22], ImageNette [49], ImageNet-100 [13], and
CIFAR-100 [21].

• Section D: Symbol Table. A complete summary of key mathematical notations, hyperpa-
rameters, and definitions referenced throughout the paper.

• Section E: Pseudocode. Step-by-step pseudocode for the proposed pipeline, detailed proce-
dures for OT-alignment in different stages, and the calculation process for the contraction
factor α.

• Section F: Implementation Details. Full specifications of hyperparameter settings, training
schedules, and augmentation strategies across all datasets used in our experiments.

• Section G: Further Experimental Analyses. Additional experiments, including sensitivity
studies (G.1), in-depth analysis of the contraction factor (G.2), comparisons with alternative
distance metrics (G.3), runtime analysis (G.4), data coverage evaluation (G.5), expanded
comparisons with other baselines (G.6 and G.7), robustness evaluation under adversarial
attacks (G.8) and evaluation under extremely low-IPC settings G.9.
This section constitutes the core of the appendix, offering deep empirical analyses of the contraction
factor α and the robustness properties of the distilled models. Other experiments further strengthen
and extend the key findings presented in the main text.

• Section H: More Visualization Results. Additional qualitative visualizations, including t-SNE plots
and synthesized images, to assess semantic coverage and distributional diversity.

• Section I: Limitations. Critical discussion of the imitations of our framework.

• Section J: Broader Impact. Reflections on the broader societal, ethical, and practical implications of
our dataset distillation method.

Together, these supplementary materials provide a complete and transparent view of our method,
support full reproducibility, and offer additional insights that complement and strengthen the main
paper.

B More Related Work

Optimal transport OT theory provides a principled mathematical framework for comparing
probability distributions by computing the minimal cost required to transform one distribution
into another. Compared to KL divergence and Jensen-Shannon (JS) divergence, OT provides a
more geometrically faithful measure of distributional differences, particularly when dealing with
distributions with non-overlapping supports [58, 59]. The Wasserstein distance, also known as
OT distance, effectively quantifies distributional discrepancies and has been widely applied in
image generation [60, 61, 62], causal discovery [63, 64], unsupervised learning [65, 66, 67], and
reinforcement learning [68, 69, 70, 71]. However, its exact computation is intractable for high-
dimensional data due to prohibitive complexity. To overcome this, the Sinkhorn distance introduces
entropy regularization, making OT computation more efficient and numerically stable [72]. This
regularized variant extends OT applications to domain adaptation [73, 74, 75],classification [76, 77],
and knowledge distillation [34, 35, 78]. In this work, we propose a generative model-based OT
framework designed to achieve precise distributional alignment throughout the dataset distillation
process. Our approach optimizes the distilled dataset to minimize the OT distance between any
student model’s output distribution and the real data distribution, ensuring improved generalization.
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Guided diffusion sampling Guided diffusion sampling enhances the generative capabilities of
pre-trained diffusion models by incorporating external guidance during the reverse process to steer
generation toward desired semantics [79]. Early methods, such as classifier guidance [80], inject
gradients from pre-trained classifiers into the sampling process to condition generation. However,
this approach necessitates domain-specific classifiers trained on noisy intermediate latents, which are
often impractical. Classifier-free guidance [81] addresses this limitation by training the model with
both conditional and unconditional objectives, enabling control without external models. Building
upon this, Wang et al. [82] introduced linear operator-based guidance, constraining the diffusion
process to the null space of known measurement operators; nonetheless, this strategy faces challenges
in generalizing to nonlinear mappings. Subsequent works [83, 84, 85] extend guidance to inverse
problems through iterative optimization and plug-and-play conditioning. Concurrently, methods like
those proposed by Gopalakrishnan Nair et al. [86], Yu et al. [47], and Bansal et al. [87] introduce
generic guidance functions by injecting gradients from task-specific losses computed on denoised
intermediate states, thereby broadening applicability without necessitating model retraining. Inspired
by these methods, Influence-Guided Diffusion (IGD) [24] leverages guided diffusion for dataset
distillation by modifying the reverse sampling process to generate training-optimal data. However,
its reliance on matching global distributional trajectories and introducing diversity through random
perturbations often leads to suboptimal alignment, neglecting discriminative yet informative local
characteristics in favor of global averaging. To overcome this limitation, we propose an optimal
transport-based guidance strategy that explicitly aligns the geometric structure of real and synthetic
distributions, achieving fine-grained consistency in guided diffusion sampling.

C Dataset Description

ImageNet-1K ImageNet-1K [22], also known as the ILSVRC 2012 dataset, is a large-scale image
classification benchmark comprising 1,000 object categories. It contains approximately 1.28 million
training images, 50,000 validation images, and 100,000 test images. The dataset is organized
according to the WordNet hierarchy, with each synset corresponding to a distinct semantic concept.
ImageNet-1K has been instrumental in advancing deep learning research and remains a standard
benchmark for evaluating image classification models in large-scale settings.

ImageNette ImageNette [49] is a curated subset of ImageNet, consisting of 10 relatively easy
categories, including “tench”, “English springer”, “cassette player”, “chain saw”, “church”, “French
horn”, “garbage truck”, “gas pump”, “golf ball”, and “parachute”. It was introduced to facilitate
rapid experimentation and prototyping of image classification models, particularly under limited
computational budgets. All images are resized to a resolution of 224 × 224 pixels, providing a
lightweight yet meaningful benchmark for distillation and robustness studies.

ImageNet-100 ImageNet-100 [13] is another subset derived from ImageNet-1K, comprising 100
randomly selected classes. Each class typically contains around 1,000 training images and 300
test images, maintaining a relatively balanced distribution. ImageNet-100 provides a manageable
yet challenging benchmark for evaluating classification performance, especially in scenarios where
computational efficiency and rapid iteration are prioritized.

CIFAR-100 CIFAR-100 [21] is a widely used benchmark dataset for image classification, extending
the number of classes from 10 (CIFAR-10) to 100. Each class contains 600 images, with all images
having a resolution of 32× 32 pixels. Despite its compact size, CIFAR-100 presents a significant
classification challenge due to its high intra-class variability and fine-grained label structure, making
it a valuable resource for developing and assessing lightweight classification models.

D Symbol Description

To enhance clarity, a detailed description of mathematic symbols in the present study is provided in
Table 12.
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Table 12: Descriptions of all symbols, functions, and hyperparameters introduced in the main paper.
Symbol Definition

E Encoder to transform image into the latent space
D Decoder to reconstruct latent code back to the image space
S Distilled (synthetic) dataset
T Real (full) dataset
x Image
z0 Latent code of clean sample
zt Latent code of noisy sample at time step t
zct Latent code of class-c noisy sample at time step t
αt Noise schedule controlling the perturbation at time step t
ϵ Gaussian noise
ϵϕ Denoising function parameterized by ϕ
s Reverse diffusion update function
G Guidance function in guided diffusion
GI Influence function for general alignment
GD Diversity function enforcing diversity in distilled data
GW Guidance function based on optimal transport
Mc

n Previously sampled n latents for class c
M̂c

n Concatenation of Mc
n−1 and the latent zct under sampling

Zc
T Latent representations of class c from the real dataset
p Norm order

Pλ1 Optimal transport matrix for guided diffusion sampling with regularization
D Latent space cost matrix for guided diffusion sampling
Kt Transport matrix at the t-th step of Sinkhorn normalization
T Sinkhorn iterations
TD Diffusion denoising iterations
Pλ2 Optimal transport matrix for logit matching with regularization
C Batch-wise cost matrix for logit matching
Ft The logit output function of the t-th teacher
t Soft label for a batch
s Student model output for a batch
ti Soft label for the i-th image in a batch

yonehot(xi) One-hot hard label for the i-th image in a batch
b Batch size

h(P) The entropy of P
νdistill Distilled data distribution
νsoft

distill Distilled data distribution with soft label
νhard

distill Distilled data distribution with hard label
µtrue Real dataset distribution
νnew Output of the student model after training on the distilled set

W(µtrue, νnew) Wasserstein distance between real dataset and student model output
ρt Weight for influence function in the reverse sampling process
γt Weight for diversity function in the reverse sampling process
β1 Weight for the optimal transport guidance in the reverse sampling process
λ1 Entropy regularization weight for optimal transport matrix
λ2 Entropy regularization weight for logit matching

α(ν
(soft)
distill ) Contraction factor quantifying the benefit of soft labels

IPC Images per class in the dataset
T Set of teacher models
Sx Distilled image set
κ1 Weight for cross-entropy loss in logit matching
κ2 Weight for mean squared error loss in logit matching
β2 Weight for Sinkhorn distance loss in logit matching
LCE Cross-entropy loss
LMSE Mean squared error loss
LSD Sinkhorn distance loss
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E PseudoCode

We present the pseudocode for our pipeline in Algorithm 1. The detailed calculation of the optimal
transport (OT) distance for OT-guided Diffusion Sampling is provided in Algorithm 2, while the
OT-based Student Model Logit matching is outlined in Algorithm 3. For efficient computation,
we approximate the contraction factors using features in the latent space, enabling dimensionality
reduction while preserving critical information.

Algorithm 1 OT-based Generative Dataset Distillation Framework

Require: Real dataset T = {(xi, yi)}, teacher models T, target IPC, diffusion model G, encoder E,
decoder D, student model S

Ensure: Distilled dataset Sx and trained student model S
1: for each class c = 1 to C do
2: Encode real samples: Zc

T ← E({xi : yi = c})
3: for sample index n = 1 to IPC do
4: Sample latent zcTD

using diffusion model G
5: for t = TD to 1 do
6: Compute OT-guidance GW(zct) w.r.t. Zc

T and previously sampled latents Mc
n−1

7: Update latent using guidance: zct−1 ← s(zct , t, ϵϕ)− ρt∇GI − γt∇GD − β1∇GW
8: end for
9: Append zct−1 to Mc

10: end for
11: end for
12: Decode all latents: Sx ← D(Mc

IPC) for all c
13: Select teacher set T(IPC) according to IPC level
14: for each image xi ∈ Sx do
15: Generate soft label: t(xi)← 1

|T|
∑

t∈T Ft(xi)

16: end for
17: for each training batch B ⊂ Sx do
18: Get soft labels t and student outputs s← S(B)
19: Compute batch-wise OT loss LSD ←W(t, s)
20: Compute per-sample CE and MSE loss: LCE =

∑
LCE(yonehot, s), LMSE =

∑
LMSE(t, s)

21: Total loss: L = κ1LCE + κ2LMSE + β2LSD
22: Update student model S using gradient descent
23: end for
24: return Sx, S

Algorithm 2 Computation of OT-based Guidance for Image Latent Sampling

Require: Previously sampled latents Mc
n−1, current latent zct , a random batch of real class latents

Zc
T , regularization weight λ1, iteration number T

Ensure: Optimal transport distance as guidance value GW(zct)

1: Concatenate latent: M̂c
n ← [Mc

n−1, z
c
t ]

2: Compute cost matrix: Dij ← ∥M̂c
n(i)− Zc

T (j)∥p
3: Initialize kernel matrix: K← exp(−D/λ1)
4: Set iteration counter t← 0
5: while t < T do
6: Row normalization: K← diag

(
K1n ⊘ (n · 1|Zc

T |)
)−1

·K

7: Column normalization: K← K · diag
(
K⊤1|Zc

T | ⊘ (|Zc
T | · 1n)

)−1

8: Increment iteration counter t← t+ 1
9: end while

10: Final transport matrix: Pλ1 ← K
11: Compute guidance: GW(zct)← ⟨Pλ1 ,D⟩ =

∑
i,j P

λ1
ij Dij

12: return GW(zct)
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Algorithm 3 Computation of Batch-wise OT for Student Logit Matching

Require: Teacher output t, Student output s,
Hyper-parameter λ2, Maximum number of iterations T

Ensure: Sinkhorn loss LSD
1: Apply softmax: t← Softmax(t), s← Softmax(s)
2: Compute distance matrix Cij(t, s) = ∥ t(xi)− s(xj) ∥p
3: Compute kernel matrix K← exp

(
− C

λ2

)
4: Set iteration counter t← 0
5: while t < T do
6: Row normalization: K← K⊘

(
K1b1

T
b

)
7: Column normalization: K← K⊘

(
1b1

T
b K

)
8: Increment iteration counter t← t+ 1
9: end while

10: Sinkhorn loss LSD ← ⟨K,C⟩ =
∑

i,j KijCij

11: return LSD

Algorithm 4 Class-wise OT Distance in Label–Image Space for Contraction Factor α Calculation

Require: Real latent sets ZT ∈ RN1×d, distilled latent sets ZS ∈ RN2×d;
One-hot labels HT ∈ {0, 1}N1×C , soft labels SS ∈ [0, 1]N2×C ;
Regularization parameter ε > 0, iterations T

Ensure: Average classwise OT distance Lavg
1: Compute pairwise cost matrix Cij ← ∥ZT (i)− ZS(j)∥p
2: Initialize list of valid class distances W
3: for each class c = 1 to C do
4: ã← HT [:, c], b̃← SS [:, c]

5: if
∑

i ãi = 0 or
∑

j b̃j = 0 then
6: continue
7: end if
8: a← ã/

∑
i ãi

9: b← b̃/
∑

j b̃j

10: K← exp(−C/ε)
11: Initialize u← 1/N1

12: Initialize v← 1/N2

13: for t = 1 to T do
14: u← a/(K · v + δ)
15: v← b/(K⊤ · u+ δ)
16: end for
17: γ ← diag(u) ·K · diag(v)
18: Lc ←

∑
i,j γijCij

19: Append Lc to list L
20: end for
21: W← 1

|L|
∑

c Lc

22: return W

21



F Implementation Details

To ensure a fair and rigorous evaluation, we adopt the training protocols and experimental configu-
rations established by IGD [24] and EDC [23], maintaining full consistency in model architecture,
optimization settings, and evaluation pipelines. Following Minimax [45] and IGD, we utilize a latent
DiT model from Pytorch’s official repository and an open-source VAE model from Stable Diffusion.
DDIM [88] with 50 denoised steps is used as the vanilla sampling method for generation. Also, all
hyperparameters related to trajectory and diversity guidance are directly inherited from IGD, while
the settings for student model logit matching follow those of EDC, with the exception of parameters
introduced by our optimal transport (OT) framework. Notably, most of the OT-specific hyperparame-
ters are set to fixed values across all datasets, and we observe that they require minimal tuning to
achieve strong performance. This demonstrates the robustness of our method and its low sensitivity to
OT parameter variations. Comprehensive hyperparameter configurations for all benchmark datasets
including ImageNet-1K, ImageNette, ImageNet-100, and CIFAR-100 are detailed in Tables 13, 14,
15, and 16, respectively.

Table 13: Hyperparameter setting on ImageNet-1K [22].
Config Value Explanation

Guided Diffusion Sampling

k 5 ρt = k ·
√
1− αt· ∥ϵϕ(zt,t,c)∥

∥∇ztGI(ẑ0|t)∥
γt 120 Weight for Diversity Guidance
β1 1 Weight for OT Sampling Guidance
λ1 1000 Entropy Regularization Weight
T 20 Sinkhorn Iterations, Same for Logit Matching

Soft Label Relabeling

Epochs 300, 500, 1000 300 for comparison with most baselines
Batch Size 50 Use 100 when IPC = 50
T(IPC = 10) ResNet-18, ShuffleNet NA

T(IPC = 50)
ResNet-18, MobileNet,
EfficientNet, ShuffleNet NA

Student Model Logit Matching

Optimizer AdamW NA
Learning Rate 0.001 Only use 1e-4 for Swin-Transformer
EMA Rate 0.99 Control EMA-based Evaluation
κ1, κ2 1, 0.025 Inherit from EDC
β2 0.1 Weight for LSD
λ2 0.1 Entropy Regularization Weight
Scheduler Smoothing LR Schedule ζ = 2

Augmentation RandomResizedCrop
RandomHorizontalFlip NA

G Further Experimental Analyses

G.1 More Sensitivity Analysis

In the main text, we presented a preliminary sensitivity analysis of key hyperparameters. To further
evaluate their impact on performance, we conduct extensive ablation studies, with results summarized
in Figures 4, 5, 6, 7 and Table 17. Overall, we observe that our method exhibits strong robustness to
most hyperparameter settings: performance remains stable across a broad range of values. We select
the hyperparameters by considering trade-offs among different architectures. Specifically, increasing
the value of β1 slightly improves the performance of ConvNet, but degrades that of ResNet-18. We
therefore set β1 = 1 to balance this trade-off. Similarly, increasing β2 enhances performance on
ResNet-AP, but negatively affects both ResNet-18 and ConvNet. Thus, we choose β2 = 0.1 to
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Table 14: Hyperparameter setting on ImageNette [49].
Config Value Explanation

Guided Diffusion Sampling

k 5 ρt = k ·
√
1− αt· ∥ϵϕ(zt,t,c)∥

∥∇ztGI(ẑ0|t)∥
γt

50 when IPC=10
120 when IPC=50 or 100 Weight for Diversity Guidance

β1 1 Weight for OT Sampling Guidance

λ1
1000 when IPC=10

3000 when IPC=50 or 100 Entropy Regularization Weight

T 20 Sinkhorn Iterations, Same for Logit Matching

Soft Label Relabeling

Epochs 1000 Same for reproducing IGD

Batch Size 50 when IPC=10
100 when IPC=50 or 100 NA

T(IPC = 10) ResNet-18, MobileNet NA

T(IPC = 100)
ResNet-18, MobileNet,
EfficientNet, ShuffleNet Same for IPC=50

Student Model Logit Matching

Optimizer AdamW NA
Learning Rate 0.001 NA
EMA Rate 0.99 Control EMA-based Evaluation
κ1, κ2 1, 0.025 Inherit from EDC
β2 0.1 Weight for LSD
λ2 0.1 Entropy Regularization Weight
Scheduler Smoothing LR Schedule ζ = 2

Augmentation
RandAugment

RandomResizedCrop
RandomHorizontalFlip

NA
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Figure 4: Effect of β1 (OT sampling weight) on
ImageNette [49] (IPC=10).
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Figure 5: Effect of λ1 (entropy regulariza-
tion weight for sampling) on ImageNette [49]
(IPC=10).

achieve the best average performance. In contrast, reducing either β1 or β2 consistently harms all
model variants, which highlights the importance and effectiveness of our OT-based regularization
terms. Since the latent and feature spaces differ in scale, we apply separate scaling factors λ1

and λ2 to normalize their contributions. As shown in the figures, setting λ1 = 1000 and λ2 =
0.1 yields a favorable trade-off across architectures. Taken together, our approach demonstrates
two complementary aspects of robustness: (1) most OT-related hyperparameters exhibit consistent
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Table 15: Hyperparameter setting on ImageNet-100 [13].
Config Value Explanation

Guided Diffusion Sampling

k 5 ρt = k ·
√
1− αt· ∥ϵϕ(zt,t,c)∥

∥∇ztGI(ẑ0|t)∥
γt 120 Weight for Diversity Guidance
β1 1 Weight for OT Sampling Guidance
λ1 1000 Entropy Regularization Weight
T 20 Sinkhorn Iterations, Same for Logit Matching

Soft Label Relabeling

Epochs 300 NA
Batch Size 100 NA
T(IPC = 10) ResNet-18, ShuffleNet NA

T(IPC = 100)
ResNet-18, MobileNet,
EfficientNet, ShuffleNet Same for IPC=50

Student Model Logit Matching

Optimizer AdamW NA
Learning Rate 0.001 NA
EMA Rate 0.99 Control EMA-based Evaluation
κ1, κ2 1, 0.025 Inherit from EDC
β2 0.1 Weight for LSD
λ2 0.1 Entropy Regularization Weight
Scheduler Smoothing LR Schedule ζ = 2

Augmentation RandomResizedCrop
RandomHorizontalFlip NA

Table 16: Hyperparameter setting on CIFAR-100 [21].
Config Value Explanation

Guided Diffusion Sampling

k 5 ρt = k ·
√
1− αt· ∥ϵϕ(zt,t,c)∥

∥∇ztGI(ẑ0|t)∥
γt 120 Weight for Diversity Guidance
β1 1 Weight for OT Sampling Guidance
λ1 1000 Entropy Regularization Weight
T 20 Sinkhorn Iterations, Same for Logit Matching

Soft Label Relabeling

Epochs 1000 NA
Batch Size 50 NA
T(IPC = 10) ResNet-18, ShuffleNet NA

T(IPC = 100)
ResNet18, ConvNet,

MobileNet, WRN, ShuffleNet Same for IPC=50

Student Model Logit Matching

Optimizer AdamW NA
Learning Rate 0.001 NA
EMA Rate 0.99 Control EMA-based Evaluation
κ1, κ2 1, 0.025 Inherit from EDC
β2 0.1 Weight for LSD
λ2 0.1 Entropy Regularization Weight
Scheduler Smoothing LR Schedule ζ = 2

Augmentation
RandAugment

RandomResizedCrop
RandomHorizontalFlip

NA
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Figure 6: Effect of β2 (OT matching weight) on
ImageNette [49] (IPC=10).
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Figure 7: Effect of λ2 (entropy regularization
weight for logit matching) on ImageNette [49]
(IPC=10).

Table 17: Effect of T on ImageNette [49] (IPC=10).
T 5 10 20 50 100

ResNet-18 77.9 78.6 79.0 78.8 78.9
ConvNet-6 73.8 74.3 74.5 74.7 74.6

behavior across different scenarios, requiring little to no manual adjustment, and in practice we only
select λ1 from the set {1000, 3000} while keeping all other OT-related hyperparameters fixed (see
Section F for default values); and (2) performance remains stable even when these parameters vary
within reasonable ranges, eliminating the need of careful tuning.

G.2 Further Analysis of the Contraction Factor α

We provide a formal characterization and empirical analysis of the contraction factor α, which
quantifies the degree to which soft labels reduce the discrepancy between the label and image
distributions compared to hard labels. This factor plays a critical role in interpreting the effectiveness
of soft supervision in dataset distillation. For efficient computation, we approximate the contraction
factors using features in the latent space, enabling dimensionality reduction while preserving critical
information.

Definition and Computation To compute α, we compare the class-conditional optimal transport
(OT) distances from the real dataset to two variants of the distilled dataset: one annotated with soft
labels ν(soft)distill and one with hard labels ν(hard)distill . The contraction factor is then defined as the relative
improvement in transport distance under soft supervision: α = W(µtrue, ν

(soft)
distill )/W(µtrue, ν

(hard)
distill ).

Let ZT ∈ RN1×d and ZS ∈ RN2×d denote latent embeddings extracted from real and distilled
images, respectively. We construct the pairwise cost matrix using an ℓp norm:

Cij = ∥ZT (i)− ZS(j)∥p, C ∈ RN1×N2 . (19)

For each class c ∈ {1, . . . , C}, we extract the marginal label distributions over samples: ã(c) = HT [:

, c] for real hard labels, and b̃(c) = SS [:, c] for distilled soft labels, where HT ∈ {0, 1}N1×C and
SS ∈ [0, 1]N2×C . These are normalized into valid probability vectors:

a(c) =
ã(c)∑
i ã

(c)
i

, b(c) =
b̃(c)∑
j b̃

(c)
j

. (20)

We then perform entropic regularized OT using the Sinkhorn algorithm. The Gibbs kernel is defined
as:

K = exp

(
−C

ε

)
, (21)
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Table 18: Effect of α on ImageNet-1K [22] (IPC=10). Config A: ResNet-18. Config B: ResNet-18,
MobileNet, EfficientNet, ShuffleNet. Config C: ResNet-18, MobileNet, AlexNet, ShuffleNet. Config
D: ResNet-18, ShuffleNet.

Teachers Config A Config B Config C Config D

α 1.00 0.99 0.95 0.93
Acc (ResNet-18) 50.3 52.3 52.7 52.9

Acc (Swin) 47.2 47.8 49.2 50.2

Table 19: Effect of α on ImageNet-1K [22] (IPC=50). Config A: ResNet-18. Config B: ResNet-18,
MobileNet, EfficientNet, ShuffleNet. Config C: ResNet-18, MobileNet, AlexNet, ShuffleNet. Config
D: ResNet-18, ShuffleNet.

Teachers Config A Config B Config C Config D

α 0.97 0.16 0.97 1.00
Acc (ResNet-18) 62.3 61.9 60.8 60.5

Acc (Swin) 65.5 68.2 65.5 65.3

where ε controls regularization strength. The scaling vectors u and v are initialized uniformly as:

u0 ← 1/N1, v0 ← 1/N2, (22)

and iteratively updated as:

ut+1 =
a(c)

Kvt + δ
, (23)

vt+1 =
b(c)

K⊤ut+1 + δ
, (24)

where δ ensures numerical stability. After T iterations, the transport plan is:

γ(c) = diag(u) ·K · diag(v), (25)

and the classwise OT cost becomes:

Lc = ⟨γ(c),C⟩ =
∑
i,j

γ
(c)
ij Cij . (26)

Averaging over the valid class set C (i.e., classes with non-zero support in both distributions) yields:

W(µtrue, ν
(soft)
distill ) =

1

|C|
∑
c∈C
Lc. (27)

To compute the counterpart W(µtrue, ν
(hard)
distill ), we replace SS with its hard label projection Sh

S ∈
{0, 1}N2×C and repeat the same computation.

Empirical Insights We conduct several additional experiments, with results shown in Tables 18
and 19. Our empirical analysis provides several important observations regarding the role of the
contraction factor α in guiding effective distillation. We first find that α is highly sensitive to the
diversity and calibration quality of the teacher ensemble, and this sensitivity is modulated by the IPC
(images per class) setting. In low-IPC regimes (e.g., IPC=10), using overly complex or inconsistent
teacher predictions increases the optimal transport distance W(µtrue, ν

(soft)
distill ), leading to smaller α

values and ultimately harming the generalization ability of the distilled dataset. Conversely, when IPC
is sufficiently high (e.g., IPC=50), stronger and more expressive teacher distributions better capture
the semantic structure of the real data, resulting in larger α values and improved alignment between
real and synthetic distributions.

Second, we observe that deliberately reducing α, thereby explicitly minimizing the overall optimal
transport distance, leads to significant improvements in downstream model performance. This effect
is particularly evident under both settings, where configurations with smaller α (e.g., Config D)
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Table 20: Comparison of our optimal transport-based distance with other measures for guided
diffusion sampling on ImageNet-1K [22].

IPC MMD MMD (RKHS) Ours

10 49.4 50.3 52.9
50 60.4 60.6 61.9

Table 21: Comparison between the sample-wise and batch-wise optimal transport distance for student
model logit matching on ImageNet-1K [22]. OOM: CUDA out of memory.

Level ResNet-18 MobileNet-V2
IPC=10 IPC=50 IPC=10 IPC=50

Sample-wise 50.6 60.8 OOM OOM
Batch-wise 52.9 61.9 51.0 61.0

achieve better Top-1 accuracy across both the ResNet-18 and Swin Transformer. These results
empirically confirm that shrinking the distributional gap through controlling α facilitates more
efficient and effective knowledge transfer. Third, in high-IPC regimes, when a single teacher is used
(e.g., Config A), student models that share the same architecture as the teacher can fully exploit
the teacher’s architectural biases, achieving strong performance. However, such tight alignment
may limit generalization to unseen architectures. By appropriately contracting α, we encourage the
distilled dataset to encode more transferable, architecture-independent features, thereby improving
the student’s adaptability to diverse downstream architectures. Overall, these findings validate α as
a principled and tunable indicator of distillation quality, and highlight the importance of strategic
contraction strategies tailored to both teacher complexity and downstream generalization targets.

G.3 Comparison with Other Distance Measure

For guided diffusion sampling Unlike conventional metrics such as cosine similarity, KL diver-
gence, or mean squared error, which rely on explicit instance-level alignment, optimal transport (OT)
enables distribution-level alignment without enforcing one-to-one correspondences. This property
makes OT particularly well-suited for dataset distillation scenarios, where the number of synthetic
samples is significantly smaller than that of the original dataset, and direct pairing is often infeasible
or suboptimal. While Maximum Mean Discrepancy (MMD)-based measures have also been adopted
for distribution alignment without requiring exact correspondences, they primarily focus on matching
global distributional statistics and fail to capture fine-grained pairwise relations between individual
instances in the real and synthetic distributions. In contrast, our OT-based formulation explicitly
models such pairwise interactions and thus facilitates more accurate and semantically consistent
guidance during the diffusion sampling process. As shown in Table 20, our method consistently
outperforms MMD and MMD with reproducing kernel Hilbert spaces (RKHS) baselines on ImageNet-
1K under both low-IPC and high-IPC settings. These results underscore the importance of modeling
instance-level correspondences for effective guidance and highlight the superiority of OT in capturing
the geometry of complex data distributions.

For student model logit matching Table 21 illustrates the consistent superiority of batch-wise
OT distance over sample-wise OT distance. This result highlights that batch-wise Sinkhorn distance
is more effective in transferring the distributional geometry captured by the distilled set from label-
image space to the newly trained student models. The sample-wise logit matching approach treats
each instance independently, failing to account for the global structure and correlations within a batch.

Table 22: Performance comparison of logit matching methods on ImageNette (IPC=10).
Network ConvNet-6 ResNetAP-10 ResNet-18

MMD 72.6 75.3 76.4
KL 73.0 75.4 77.6
OTM 74.5 77.8 79.0

27



Table 23: Distribution coverage comparison among different methods.
Threshold DiT [44] DiT-IGD [24] Ours

10 40.2 40.8 41.6
12 54.6 56.3 57.5

In contrast, our batch-wise formulation preserves inter-sample relationships, enabling more faithful
distributional alignment and resulting in more robust knowledge transfer. Moreover, when dealing
with datasets containing a large number of classes (e.g., 1,000 classes in ImageNet-1K), the batch-wise
approach substantially reduces memory consumption and avoids the CUDA out-of-memory issues
frequently encountered by sample-wise matching, further enhancing its scalability.Also, although KL
and MMD serve as simpler divergences, they are inherently limited. KL divergence is applied per
sample and ignores inter-sample relationships, while MMD matches only global statistics. In contrast,
our OTM applies batch-wise OT alignment between student logits and soft labels, capturing the joint
distributional structure of samples. This enables OT to faithfully preserve inter-sample geometry and
match structural uncertainty in the soft labels, which KL and MMD overlook. As shown in Table 22,
this leads to a clear performance gain:

G.4 More Discussions on Runtime

While EDC [23] reduces the runtime during the recovery phase compared to previous work, it does
not fully optimize for multi-GPU parallelism across its various processes. Specifically, the pre-
sampling and post-sampling phases during initialization do not benefit from multi-GPU parallelism,
as parallelizing these steps does not result in substantial time reduction. Moreover, the recovery
phase is inherently constrained by data loading and model-inversion methods, and beyond four GPUs,
further increases in parallelism yield minimal improvements in runtime. In contrast, our approach
is designed to optimize each class separately, with the sampling process dependent only on images
sampled from the same class and the corresponding real images. As a result, our method scales more
efficiently with the number of GPUs, with runtime decreasing nearly inversely proportional to the
number of GPUs. Furthermore, when the need for high IPC arises, our method can be adapted to
split high-IPC tasks into several lower-IPC ones for parallel processing, maintaining strong parallel
efficiency and further enhancing its applicability in real-world scenarios.

G.5 Data Coverage Analysis

To assess the representational fidelity of the distilled dataset, we adopt a coverage-based evaluation
metric. Specifically, for each data point in the original dataset, we determine whether it has at least
one nearest neighbor in the distance dataset within a predefined distance threshold. This metric
reflects how well the surrogate data captures the underlying structure of the original distribution. As
shown in Table 23, our method consistently achieves higher coverage compared to baseline methods
across multiple thresholds. The improvements are observed over both the original DiT [44] model
and DiT-IGD [24], indicating that our approach provides better distributional alignment. Notably, the
performance gap widens as the threshold increases, further validating the robustness of our distilled
data in covering diverse modes of the original dataset.

G.6 Comparison with DWA

DWA [89] enhances diversity by adjusting the statistics of the squeezed network based on each
generated sample. However, it still relies solely on global statistics, specifically the mean and
variance associated with batch normalization (BN), and thus fails to capture the rich instance-level
information and geometric distributional structures inherent in the real dataset. Visualizations from
the DWA paper further illustrate that, while the directed weight adjustment improves the diversity of
the distilled dataset, the distribution remains concentrated, failing to adequately cover the majority of
the real data distribution. In Table 24, we compare our method with DWA across multiple student
models, and the results clearly demonstrate a significant performance advantage of our approach.
This further emphasizes the importance of leveraging fine-grained instance-level information for
achieving improved model performance and more faithful distributional alignment.
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Table 24: Comparison with DWA [89] on ImageNet-1K [22].

Method ResNet-18 MobileNet-V2 EfficientNet-B0
IPC10 IPC50 IPC10 IPC50 IPC10 IPC50

DWA [89] 37.9±0.2 55.2±0.2 29.1±0.3 51.6±0.5 37.4±0.5 56.3±0.4
Ours 52.9±0.1 61.9±0.5 51.0±0.6 61.0±0.4 56.7±0.2 64.4±0.1

Table 25: Comparison between WMDD [43] and our method on ImageNette [49] and ImageNet-
1K [22] under different IPC settings.

Dataset ImageNette ImageNet-1K
IPC 10 50 10 50
WMDD 64.8±0.4 83.5±0.3 38.2±0.2 57.6±0.5
Ours 79.0±0.3 89.3±0.3 52.9±0.1 61.9±0.5

G.7 Comparison with WMDD

Although both our method and WMDD [43] utilize optimal transport (OT), they differ significantly
in both methodology and motivation, leading to distinct formulations and implementations.

WMDD [43] is a distribution-matching-based distillation method that applies OT in a single, offline
step to compute a Wasserstein barycenter over the real data’s feature distribution. This barycenter is
then used as a fixed target throughout training, where synthetic images are optimized to match it using
a standard L2 loss in the feature space. In contrast, we introduce a fundamentally different generative
paradigm where OT is not a static, one-off computation, but a dynamic guidance mechanism integrated
throughout the entire data synthesis and training pipeline. Specifically, OT guides the sampling of
synthetic images by aligning latent representations, regulates the soft label relabeling process by
matching label complexity to the image distribution, and structures the training loss of the student
model by aligning its logits to the relabeled targets.

The motivation behind WMDD is to replace the use of simple data summaries, such as the feature
means often targeted by MMD-based methods, with a more geometrically meaningful summary,
namely the Wasserstein barycenter, derived from the Wasserstein metric. In contrast, our method is
driven by the need to address inherent limitations in generative distillation pipelines, which often fail
to preserve the fine-grained geometry of the real data distribution—particularly intra-class variations
and local modes. These aspects are explicitly addressed in our framework through a multi-stage,
OT-guided design.

We compare the top-1 accuracy of our method with WMDD under different images-per-class (IPC)
settings on both the ImageNette and ImageNet-1K datasets in Table 25.

G.8 Robustness Evaluation

To assess the robustness of student models trained with distilled datasets, we follow the evaluation
protocol established in DD-RobustBench [90], utilizing adversarial attacks implemented in the Tor-
chAttacks library [91]. As shown in Tables 26 and 27, we evaluate models trained on ImageNette [49]
under IPC=10 and IPC=50 settings, measuring both standard test accuracy and adversarial robustness
against a variety of attack methods.

Our method consistently achieves higher clean accuracy and substantially improves robustness
compared to MTT [14] across different perturbation budgets (|ε| = 4/255 and |ε| = 8/255). These
improvements can be attributed to the distributional properties enforced by our optimal transport
(OT)-based distillation framework. By minimizing the OT distance between the synthetic and real
data distributions, our method preserves not only class-level statistics but also fine-grained, instance-
level geometric structures. This leads to the learning of semantically faithful and smoother decision
boundaries, which are inherently more resilient to adversarial perturbations. Moreover, our OT-guided
diffusion sampling produces visually more coherent and perceptually realistic images compared to
other types of approaches. The generated synthetic samples better preserve the semantic integrity and
natural variability of the original data, providing stronger perceptual signals during model training.
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As a result, the student model benefits from a more robust feature space that aligns well with human
perception, further enhancing adversarial robustness beyond purely decision-boundary-level effects.

In contrast, methods that primarily match global statistics or rely on heuristic trajectory guidance,
such as MTT, often produce synthetic datasets lacking such structural fidelity, resulting in brittle
decision boundaries that are more vulnerable to attacks.

From a theoretical perspective, prior works [92, 93] have established a strong connection between
adversarial robustness and the sharpness of decision boundaries: sharper, more irregular boundaries
tend to amplify adversarial vulnerability, whereas flatter, smoother boundaries promote robustness.
By aligning not only global distributions but also the local transportation cost between real and
synthetic samples, OT encourages the distilled student model to form flatter and more coherent
decision surfaces aligned with the real data geometry.

Moreover, from a loss landscape perspective, minimizing the OT distance guides optimization towards
flatter minima, where small input perturbations induce minimal output changes. This connection is
well supported by prior studies [94, 95], which show that flatter loss surfaces correlate strongly with
improved adversarial robustness. Together, these empirical and theoretical insights demonstrate that
preserving distributional geometry via optimal transport provides a principled and effective pathway
for enhancing the adversarial robustness of models trained on distilled datasets.

Table 26: Performance comparison on DD-RobustBench [90] evaluated on ImageNette [49], under
a perturbation budget of |ε| = 4/255. Results for MTT [14] are directly copied from the DD-
RobustBench benchmark.

Attack Methods IPC=10 IPC=50
MTT [14] Ours MTT [14] Ours

Clean Accuracy 66.4 69.1 67.7 84.6
FGSM 10.8 20.8 8.4 24.0
PGD 4.6 9.2 2.6 9.8
CW 4.6 12.0 1.4 14.8
VMI 5.4 9.0 2.0 11.2
Jitter 12.2 20.4 13.0 23.8

Table 27: Performance comparison on DD-RobustBench [90] evaluated on ImageNette [49], under
a perturbation budget of |ε| = 8/255. Results for MTT [14] are directly copied from the DD-
RobustBench benchmark.

Attack Methods IPC=10 IPC=50
MTT [14] Ours MTT [14] Ours

Clean Accuracy 66.4 69.1 67.6 84.6
FGSM 0.8 11.0 1.8 14.8
PGD 0.2 2.8 1.2 15.0
CW 0.2 9.6 0.2 6.8
VMI 0.2 0.8 0.2 2.0
Jitter 11.4 12.4 9.8 14.6

G.9 Evaluation on Low-IPC Settings

We have conducted additional experiments on ImageNet-1K [22] for the challenging settings of
IPC=1, IPC=2, and IPC=5. The results of these new experiments are presented in the Table 28.

Importantly, in the IPC=1 setting, since only one synthetic image is generated per class, the OTG
process cannot leverage previously distilled samples for alignment. Instead, for each class, we
compute the OT distance between its single synthetic candidate and the corresponding real images in
the latent space to guide generation.
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Table 28: Performance comparison of different methods on ImageNet-1K under small IPCs (1, 2, 5).
Best results are in bold.

IPC Method

DM FrePo TESLA SRe2L RDED EDC DiT-IGD Ours

1 1.5 7.5 7.7 0.4 6.6 12.8 10.7 15.9
2 1.7 9.7 10.5 – 16.5 22.8 20.6 25.9
5 – – – – 23.8 39.5 38.6 45.7

H More Visualization Results

H.1 T-SNE Results

To assess the effectiveness of our OT-guided diffusion sampling, we present the t-SNE [96] results in
Figure 8. The diversity in IGD is driven solely by cosine-similarity based diversity guidance, without
leveraging the distributional structure of the real dataset. This limitation leads to insufficient coverage
of critical regions in the true data distribution, such as the central region of the green (Cassette
player), the lower part of the blue (Tench), and the middle-upper section of the purple (Church) areas.
Consequently, several important subclasses are absent from the distilled dataset, resulting in the new
model failing to learn relevant intra-class variations and important subclass-specific information. In
contrast, our approach iteratively computes the optimal transport distance between the real dataset
and the distilled set, explicitly incorporating both intra-class structures and finer substructures of the
real data. This enables our distilled dataset to capture a broader range of essential submodalities and
regions, facilitating a more comprehensive transfer of information to the new model, and minimizing
information loss. By employing the optimal transport distance as an additional supervision signal
during the new model’s training, we ensure the effective transfer of this enriched information, leading
to significant improvements in model performance.

(a) IGD (b) Ours

Figure 8: Visualization study for sample distributions of distilled datasets (IPC=10) generated by
IGD [24] and Ours versus the original ImageNette [49] dataset. The dark points represent the distilled
set, while the light points represent the real (original) set. The diversity in IGD [24] is driven solely
by random diversity guidance, lacking awareness of the real data distribution. As a result, it fails to
cover critical regions such as such as the central region of the green class (Cassette player), the lower
part of the blue class (Tench), and the middle-upper section of the purple class (Church). In contrast,
our method incorporates both intra-class structures and fine-grained substructures of the real data,
which allows it to effectively cover most subclass regions.

H.2 Distilled Images

Figures 9 and 10 provide additional visual comparisons between IGD [24] and our method, as well
as standalone visualizations of our distilled dataset. Our method effectively captures the structural
information of the real data distribution, resulting in high-fidelity samples with semantic diversity
that faithfully reflects the underlying real-world distribution.
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Figure 9: Additional visualization comparing the distilled datasets generated by IGD [24] and our
approach on ImageNet-1K [22] (IPC=10).
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Figure 10: Additional visualizations for our distilled set on ImageNet-1K [22] (IPC=10).
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I Limitations

Our current framework inherits the trajectory influence guidance mechanism from IGD [24], which,
while effective for improving the general and global alignment of sampled data, introduces substantial
computational overhead. Specifically, the additional sampling steps required to maintain trajectory
consistency significantly slow down the generation process compared to the vanilla DiT [44], which
operates without such constraints. In future work, we aim to reformulate the guidance process to
retain benefits while reducing the reliance on explicit trajectory tracking, thereby enabling faster and
more scalable sampling.

J Broader Impact

Our work aims to reduce dataset size while maintaining performance, enabling model training
with significantly lower computational and storage costs. This can lower the entry barrier for
institutions with limited resources and promote environmentally sustainable AI development [97].
Moreover, our distilled datasets have the potential to facilitate efficient learning in federated and
continual learning scenarios, thereby enhancing data privacy and supporting model adaptation across
distributed systems. However, as with most data-driven approaches, there exists a risk that the distilled
data may retain or amplify biases present in the original datasets. This could lead to unintended
consequences, particularly in sensitive applications. Additionally, by accelerating the deployment of
compact models, our method may inadvertently contribute to insufficiently audited systems being
widely adopted. We emphasize the importance of responsible deployment, including bias auditing,
fairness-aware design, and transparency, and encourage future work to explore these aspects more
thoroughly.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: Our abstract and introduction accurately reflect the paper’s contributions to
generative large-scale dataset distillation.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Yes, we discuss this in Appendix I.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
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Justification: This paper does not include theorems or lemmas.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer:[Yes]
Justification: Yes, we provide sufficient implementation details in in Section 5.1 and Ap-
pendix F.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: We provide code in the supplementary materials, and provide anonymous
Github link.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: Experimental setting is described in Section 5.1 and Appendix F.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report error bars in Tables 1, 2, 3, 4, 5, 6.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We provide the computer resouces in Section 5.1.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: Our research conform with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: We discuss the broader impact in Appendix J.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: All assets used in the paper, including datasets, are publicly available. Proper
credits are given to the creators or original owners of these datasets where applicable.
The licenses and terms of use for these datasets are explicitly mentioned and respected in
accordance with their respective guidelines.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We have attached our code and user instructions in the supplementary materials
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

40



16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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