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Abstract

Interpreting Deep Reinforcement Learning (DRL) models is important to enhance
trust and comply with transparency regulations. Existing methods typically explain
a DRL model by visualizing the importance of low-level input features with super-
pixels, attentions, or saliency maps. Our approach provides an interpretation based
on high-level latent object features derived from a disentangled representation. We
propose a Represent And Mimic (RAMi) framework for training 1) an identifiable
latent representation to capture the independent factors of variation for the objects
and 2) a mimic tree that extracts the causal impact of the latent features on DRL
action values. To jointly optimize both the fidelity and the simplicity of a mimic
tree, we derive a novel Minimum Description Length (MDL) objective based on
the Information Bottleneck (IB) principle. Based on this objective, we describe a
Monte Carlo Regression Tree Search (MCRTS) algorithm that explores different
splits to find the IB-optimal mimic tree. Experiments show that our mimic tree
achieves strong approximation performance with significantly fewer nodes than
baseline models. We demonstrate the interpretability of our mimic tree by showing
latent traversals, decision rules, causal impacts, and human evaluation results.

1 Introduction

Deep neural networks have enabled Reinforcement Learning (RL) agents to extract relevant features
from image observations and achieve human-level control [1, 2, 3] by modeling action-value functions.
Despite their promising performance, the learned knowledge remains implicit in these black-box
neural structures, which hinders understanding the importance of input features and how they
influence decisions. Most previous DRL interpretations aimed to visualize attention masks [4, 5] or
saliency maps [6, 7] for input states. These interpretations are commonly based on entangled raw
features in high-dimensional input space, and some recent studies [8, 9, 10] showed that the generated
attention masks are inconsistent for local samples in that very different attention distributions can yield
equivalent predictions. Moreover, these point-wise importance maps do not identify the underlying
causal relationships between target variables and complex inputs.

An alternative approach for generating post-hoc global explanations is mimic learning [11], which
allows distilling the knowledge from an opaque DRL model to a transparent tree model. Some recent
works [12, 13] built linear model trees to imitate the DRL action-value functions. These trees are
learned for the high-dimensional input space; therefore they require numerous splits for building a
tree with promising regression performance. The large tree size increases the complexity of their
interpretations and makes it difficult to generate human-understandable decision rules. Previous
models [14, 15] constrained the tree complexity by empirically setting some hyper-parameters (e.g,
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maximum depth), which, however, limits the mimic performance. It is unclear how to jointly optimize
the simplicity and the fidelity of tree models to find a "sweet-spot".

To find an attractive trade-off between simplicity and fidelity, we develop a Represent And Mimic
(RAMi) framework based on the Information Bottleneck (IB) principle [16]. The goal of IB is
learning a bottleneck representation to compress input signals while maximizing the information
about a target variable, which defines an information-theoretic objective that views mimic learning as
a data compression process. Our novel IB objective facilitates learning a mimic tree as the bottleneck
to approximate the action advantages from the DRL model with a minimum number of splits. To
learn IB-optimal mimic trees for DRL interpretation, RAMi integrates two components.

1) An Identifiable Multi-Object Network (IMONet) that detects objects from high-dimensional input
space and learns an object representation to embed the objects with a limited number of latent
variables. This representation is a) well-disentangled, meaning that each variable independently
captures one factor of variation in a detected object, b) identifiable, allowing the mimic tree to
uniquely extract the underlying causal relation from DRL models, and c) interpretable, in order to
generate understandable DRL explanations. The interpretability is demonstrated with illustrative
examples of latent traversals and human evaluation.

2) A Monte Carlo Regression Tree Search (MCRTS) algorithm that learns mimic trees based on the
latent features from the object representation. MCRTS incorporates the IB principle into its search
heuristic by deriving a Minimum Description Length (MDL) objective. Unlike previous tree learners
that deterministically select a split by evaluating only its local influence, MCRTS looks ahead to
global mimic performance and generates a compact distribution of candidate trees with explorations.

Our empirical evaluation shows that IMONet+MCRTS achieves a promising mimic performance
with significantly fewer splits than other baseline models and an important reduction in the size of
tree interpretation. To demonstrate how the learned mimic tree makes its target action-advantage
function interpretable we show causal relations and results of counterfactual interventions can be
extracted from it. We validate the tree interpretations by 1) comparison with previous interpretable
RL models, and 2) a survey that collects human evaluations.

Contributions. 1) We propose a RAMi framework that enables representing the object information
with our novel IMONet and searching for the optimal mimic tree with the MCRTS algorithm. 2) We
derive an information-theoretic IB-MDL objective that incorporates both the fidelity and simplicity
for mimic tree learning. 3) We introduce our method of leveraging the mimic tree to compute feature
importance and extract causal relations from a DRL model.

2 Represent and Mimic Framework

We propose a Represent And Mimic (RAMi) framework based on the Information Bottleneck (IB)
principle. RAMi separately interprets the feature extraction and the decision making process of a
DRL model with 1) an interpretable latent representation and 2) a transparent mimic tree.

2.1 Mimic Learning for DRL

RAMi applies mimic learning [11] to learn post-hoc interpretations for a DRL model by transferring
its knowledge to a mimic tree φ. To facilitate the knowledge distillation, mimic learners utilize
soft-outputs from deep models as targets to supervise the training process of mimic trees. DRL models
typically compute value functions (V (s) or Q(s,a)) to estimate the expected cumulative rewards
at state s. These value functions explicitly influence the RL decisions by controlling the policy
gradient: Q(s,a)∇π(a|s) [17] or determining the action: â = arg maxaQ(s,a) [18]. Compared
to the policy π(a|s), value functions evaluate candidate actions or states more directly. Based on
the value functions, one can compute an advantage value for each action by subtracting a baseline:
y = Q(s,a) − V (s)1, which creates unbiased action-specific evaluations with less variance. Our
mimic learner utilizes action advantages as the mimic targets, allowing us to understand when an
action can outperform others by a certain advantage.

1Action advantages can be defined as V (s′) + r − V (s) if Q function is unknown (e.g., in A3C).
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2.2 IB Method for Representing and Mimicking

We derive an objective for our RAMi framework based on the Information Bottleneck (IB) princi-
ple [16]. An ideal mimic tree achieves a promising approximation performance (fidelity) with a
minimum number of splits (simplicity). The IB objective naturally integrates both goals, by encourag-
ing a bottleneck representation to compress the input signals X and preserve as much of the relevant
information about mimic targets Y (action advantages) as possible. The IB objective is:

max
ω

[
Iω(Φ, Y )− λIω(Φ, X)

]
(1)

where I denotes the mutual information, and λ is a Lagrange multiplier. −Iω(Φ, X) controls how
much the mimic model compresses the input data, and Iω(Φ, Y ) measures how well the mimic
model preserves information about targets2. The IB principle defines what we mean by a good
representation, in terms of the fundamental trade-off between having a concise representation and
one with good mimic performance [19]. However, in practice, it is difficult to learn a mimic tree from
high-dimensional and entangled raw inputs (e.g., images and text embeddings), so we learn a latent
object representation from input space and then build a mimic tree upon latent features. Inspired by
the deep variational IB [19], The objective for our RAMi framework is given by the following result.

Theorem 1 Consider a dataset of sizeN with input features x and prediction target y. LetLq(yn) =
− log q(yn|φ) denote the description length for encoding the target yn, let Lp(φ) = − log p0(φ)
denote the description length for encoding the mimic model φ. Optimizing the IB objective is
equivalent to maximizing its lower bound, which is:

1

N

N∑
n=1

{
Eq(z|xn)[log p(xn|z)]− λDKL[q(z|xn)‖p0(z)]−

Eq(z|xn)

[
Eq(φ|z)

(
Lq(yn) + λLp(φ)

)
− λH[q(φ|z)]

]}
(2)

= ELBo objective + IB-MDL objective + Entropy Regularizer

The proof can be found in the appendix. This lower bound defines two sub-objectives: 1) the Evidence
Lower Bound (ELBo) objective enables learning an object representation for inputs q(Z|X) with our
IMONet (Section 3). 2) The IB-MDL objective, for which we design a MCRTS algorithm (Section 4).
MCRTS learns a compact distribution over mimic trees q(Φ|Z) where we select the optimal mimic
tree φ∗ to achieve a "sweet-spot" between fidelity and simplicity.

3 Learning Object Representation

This section introduces the Identifiable Multi-Object Network (IMONet). The observed inputs from
the RL environment are state-action-reward triplets xn = [sn,an, rn]. Actions and rewards are often
well-disentangled in low dimensions, so our IMONet learns a disentangled latent representation for
capturing the object features from states. We 1) introduce the key properties of IMONet that enable
extraction of causal relationships, 2) describe the model structure and 3) discuss the interpretability
for the learned latent representation.

3.1 Disentangled Representation for Causal Interpretation

The high-dimensional state features from the RL environment are often entangled (e.g., highly
correlated pixels in an image), which makes causal inference from the raw input space impossible.
IMONet utilizes a Variational Auto-Encoder (VAE) framework [20] that converts state features
to a disentangled latent representation (i.e., p(Z) =

∏D
d=1 p(Zd)). After optimizing a generative

model for the observed states that utilizes the latent representations, the independent latent variables
capture complete state information. The independence implies that there is no (unobserved or
observed) confounder between two latent variables [21, 22]. This property enables mimic learners
to model causal relations between latent variables Z and the target variable Y following a Causal
Decision Tree [23]. (Section 5.2 shows examples of causal relations). Since the latent representation
encodes complex RL states with few latent variables, the efficiency of causal inference is improved
significantly.

2X , Y , Z, and Φ are random variables; x, y, z, and φ are instances of random variables, so p(X) represents
a distribution while p(x) defines a probability. Fω(·) is the functional parameterized by ω.
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3.2 Identifiability of Latent Representation

Identifiability is one of the most fundamental properties for uniquely identifying the causal relations
between inputs and targets. If a latent representation is unidentifiable, there exists multiple distri-
butions with the same generative performance, and the variables between two distributions can be
completely entangled, meaning that they develop inconsistent factorizations for the same inputs [24]
(see Section E.1 in appendix for examples). With unidentifiable representations, the mimic learner
can return many different causal relations between the latent and target variables.

To better understand this problem, we define identifiability in the unsupervised representation learning
setting as follows: p(Z) is identifiable up to equivalence ∼B , if ∀s ∈ S, p(s) =

∫
p(s|z)p(z)dz

=
∫
p(s|z′)p(z′)dz =⇒ ∃B, c s.t. T (p(Z)) = BT (p(Z ′)) + c, where function T computes

sufficient statistics of a distribution, c is a vector, and B is an invertible matrix (that represents a
bijective mapping). IfB is a permutation matrix, we have identfiability up to a permutation, otherwise
up to scaling [25]. Previous work [24] proved that without including an inductive bias (e.g., specific
model designs or additional observations), it is impossible to learn identifiable representations without
supervising signals. To ensure the identifiability of the latent object representation, IMONet 1) utilizes
a Multi-Object Network (MONet) [26] structure that is specially designed to capture variations of
objects, and 2) employs a conditionally factored prior p(Z|A,R) =

∏
d p(Zd|A,R) where each

variable Zd has a univariate Gaussian distribution. Following an Identifiable VAE (IVAE) design
[25], IMONet learns a conditional approximate posterior q(Z|S,A,R) as the state representation.

Figure 1: Mean Correlation Coefficients (MCC) for the examined variational encoders (including VAE, Condi-
tional VAE, MONet and IMONet) trained in the Flappy Bird (left), Space Invaders (middle), and Assault (right)
environments. We report the mean±variance MCC scores computed from three independent runs.

Evaluation. We evaluate the identifiability of IMONet by comparing its Mean Correlation Coefficient
(MCC) with other variational encoders. MCC measures whether it is possible to identify latent
variables from one model with variables from another model (up to point-wise transformations).
To compute MCC, we 1) independently train two encoders based on the same structure, 2) pair
latent variables from the encoders, by solving a linear sum assignment problem for the best overall
correlation, 3) average the correlation coefficients between paired latent variables at different training
steps. The results (Figure 1) demonstrate that conditioning variables and an object network can
consistently improve the identifiability of latent representations, whereas VAEs show no evidence of
identifiability. This finding is consistent with [24, 25].

3.3 Model Implementation

IMONet decomposes a state s into object-level components with spatial masks (m1, ...,mK) from a
multi-layer convolutional attention network (mk indicates whether the kth object is present in each
pixel, see examples in Figure 2). Conditioning on mk, r, and a, IMONet independently encodes each
component with an encoder-decoder Conditional VAE (CVAE). To train IMONet, we decompose the
ELBo from our IB objective (Theorem 1) into an object-oriented variational lower bound:

(3)

log

K∑
k=1

mkpd(s|zk)− βDKL

( K∏
k=1

qenc(zk|s,a, r,mk)‖p(zk|a, r)
)
−

K∑
k=1

λDKL

(
q(mk|s,a, r)‖pd(mk|zk)

)
where 1) the first term is a decoder log-likelihood that defines the reconstruction performance for a

mixtures of decoder outputs. The state decoder pd(s|zk) is implemented by deconvolution layers. 2)
The second term is the KL-divergence (KLD) between the conditional approximate posteriors for
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each component and a conditional prior. The approximate posterior is implemented by:

qenc(z|s,a, r,mk) := N (µq, diag(σ2
q)) s.t. [µp,σ

2
q] = ψq[ψconv(s,mk), ψmlp(a, r)] (4)

ψmlp and ψq are multi-layer perceptrons while ψconv denotes a convolutional network. The prior
p(z|a, r) is implemented by another Gaussian function without ψconv. 3) The last term defines
the KLD between the mask generated by the attention network and the mask reconstructed by the
CVAE. Our attention network q(mk|s,a, r) is implemented by U-Net [27], which is implemented
a layer-by-layer convolutional neural network with instance normalization, followed by a sigmoid
function that transfers logistics to attentions. The mask decoder pd(mk|zk) applies the same structure
as our state decoder.

Learning an object representation for the RL states is applicable in practice since 1) a RL state
can typically be represented by a limited number of objects, and 2) the agent can interact with
the RL environment to generate sufficient data for learning such a representation. Object-Oriented
RL [28, 29, 30] has demonstrated that an agent can master RL games by modeling the object
dynamics, so we utilize features from the object representation as the inputs to mimic learners: we
sample latent features zk from each component posterior qenc(Zk|S = s, A = a, R = r,M = mk),
concatenate them with the conditioning values, and feed the entire vector [z1,...,K ,a, r] to MCRTS .

3.4 Interpreting Latent Variables

IMONet learns a symbolic abstraction of state space by representing object variations (e.g., shapes
and locations) with latent variables. A latent variable Zk,d (the dth variable for the kth object)
captures an independent factor of object variations. A common approach to reveal the information
captured by Zk,d is latent traversing [26, 31, 32]: we randomly choose images and inspect how the
reconstruction components change asZk,d is traversed from (empirical) minimum to maximum values.
Figure 2 illustrates the objects captured by attention masks from IMONet and shows two examples
of latent traversals in a flappy bird environment. We include a human evaluation to demonstrate the
interpretability of latent variables (Section 5.2). The appendix includes more examples (Section E.3 ).

Figure 2: Visualizations for IMONet outputs. IMONet decomposes a state sreal into three objects with masks m1

(for the background), m2 (for pillars) and m3 (for the bird), where white/dark colors mark captured/uncaptured
regions. The generations from the decoder are ŝ1, ŝ2, and ŝ3. We show two latent traversals [33] for interpreting
Z3,1 (the 1st variable for the 3rd object) and Z2,3 (the 3rd variable for the 2nd object). Z3,1 captures the vertical
distance between the bird and a pillar, and Z2,3 captures the length of the left pillar (highlighted by blue frames).

4 Learning Mimic Tree Interpretations

This section introduces the approach to infer a mimic tree with the IB-MDL objective (in Theorem 1)
and a Monte Carlo Regression Tree Search (MCRTS) algorithm to find the optimal tree.

4.1 Inferring Mimic Trees with IB-MDL

We define Lp(φ) and Lq(yn) in the IB-MDL objective for mimic tree inference. The goal of MDL is
to find regularity and simplicity in the data by viewing learning as a compression problem. There are
two agents with complete copies of the latent features zn, but only the sender agent knows the target
labels yn. The sender agents transmits to the receiver agent a description of the missing labels using
as few bits as possible; we use a mimic tree to encode the information. The optimal mimic tree is

5



defined to be the one that enables sending the minimum description length of (a) encoding the tree
structure Lp(φ), and (b) encoding the exceptions Lq(yn) at each leaf node.

(a) Encoding Tree Structure: We convert the binary tree structure to a string that records the splits (f )
and leaf predictions (ŷ) (e.g., 1,f0,1,f1, 0, ŷ0, 0, ŷ1, 0, ŷ2 where we mark splits and leaves with 1 and
0) with depth-first search [34]. The next proposition gives the encoding cost Lp(φ).

Proposition 1 Given a regression tree with L splits, the total cost (in bits) of describing the tree
structure with the string encoding method is:

Lp(φ) = log
(2L− 1)2

L
3
2 (L− 1)

1
2

+ (2L− 1)H(
L

2L− 1
) + O(L−1) (5)

(b) Encoding the Exceptions: Traditional MDL tree algorithms [35] are proposed for classification
trees to handle discrete labels. Their exception-encoding methods are infeasible with continuous
predictions, so we utilize an alternative approach that models the distribution of action advantages at
a leaf node i with a Gaussian distribution N (ŷtreei (φ), σ̂2

i (φ)). Given a mimic tree φ, ŷtreei and σ̂2
i

model the prediction and the scale of exception at the leaf i respectively. Inspired by the variance
reduction objective in classic regression trees, we utilize the log-variance to measure the cost of

encoding exceptions, so Ep(yn)[Lq(yn)] := log
[∑L+1

i=0
N leaf

i

N σ̂2
i

]
where N and N leaf

i denote the

total data size and the number of data points on the ith leaf node respectively.

4.2 MCRTS Implementation
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Figure 3: MCRTS structure, where a tree node records partition
cells and an edge stores a number of visits NV and an estimate
Q(J, f). fk

l : Zd < v denotes the kth split at layer l, which checks
whether Zd is smaller than a value v. The layer number l equals the
number of splits in a path. ¬fl denotes splitting ends.

MCRTS (Figure 3) takes latent fea-
tures zn ∈ RK×D (K and D de-
note the number of objects and latent
size respectively) from our IMONet
and the conditioning values an, rn
as inputs. It explores different splits
by maintaining multiple candidate
mimic trees that are trained to approx-
imate action advantages Y . To initi-
ate a tree search, MCRTS stores all
the instances (data points) in a cell
cell(〈z1,a1, r1; y1〉, 〈z2,a2, r2; y2〉,
〈z3,a3, r3; y3〉, . . . ) at the root node.
An edge in the MCRTS search tree
represents a split f in the mimic tree.
This binary split passes the instances
from a parent cell to two partition cells
in child nodes. Each MCRTS edge records a number of visits NV (J, f) and an estimate QMC(J, f)
of the expected splitting influence. Each node J contains a series of partition cells constructed by
splits from the root node: J := {cell1(〈z1,a1, r1; y1〉, 〈z3,a3, r3; y3〉, . . . ), cell2(〈z2,a2, r2; y2〉,
〈z4,a4, r4; y4〉, . . . ), cell3(. . . )}. MCRTS learns a compact distribution of mimic trees p(Φ|Z). A
mimic tree φ ∈ Φ can be extracted from MCRTS by following a path from the root to a leaf node Jl,
so φ := {f0 . . . fl−1, Jl}. A partition celli in Jl defines a leaf node in the mimic tree φ, and the leaf
prediction is ŷtreei =

∑
y∈celli y/N

leaf
i . Appendix (E.1) provides a mimic tree extraction example.

Searching: MCRTS implements a tree search by running M plays from a starting node Js (which is
initialized to be the root node and updated after each move) with root parallelization [36]. At the mth

play, MCRTS implements four phases including:

1) Selection: Traverse the tree from Js to a leaf node by selecting the split fl,m at each layer to
maximize the Upper Confidence Bound (UCB) [37]:

fl,m = arg maxf

[
QMC

m−1(Jl, f) + cpuct

√
log(m−1)

NVm−1(Jl,f)+1

]
(6)

where cpuct controls the scale of exploration. Similar to the entropy regularizer (Theorem 1),
a large cpuct prevents over-frequent visits to a node. 2) Evaluation: Evaluate the selected leaf
Jleaf with reward: rMC(Jleaf ) = −Lq(yn) − λLp(φ). 3) Expansion: Expand the leaf node
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Table 1: Mimic performance. We use the Variance Reduction (VR) and Variance Reduction Per Leaf (VR-PL)
metrics since they are common regression objectives and optimized by the IB-MDL objective. Results for other
regression metrics (Root Mean Square Error and Mean Absolute Error) and the corresponding variances are
recorded in Table B.2 in appendix. w+ indicates that each leaf node has an extra linear regression model. We
omit the results for the raw-input-based MCRTS since it is computational intractable.

Flappy Bird Space Invaders Assault
Method VR VR-PL Leaf VR VR-PL Leaf VR VR-PL Leaf

Cart 8.51E-2 8.43E-5 1007 4.96E-2 7.02E-5 705 4.79E-2 7.46E-5 642
VIPER 8.57E-2 1.88E-4 453 4.63E-2 8.80E-5 525 5.28E-2 8.09E-5 653
M5-RT 9.59E-2 8.37E-5 1144 4.54E-2 2.92E-5 1558 4.37E-2 2.73E-5 1605
M5-MT 9.56E-2 1.55E-4 612w+ 1.60E-2 1.23E-5 1303w+ 3.42E-2 2.54E-5 1351w+

GM-LMT 8.99E-2 2.99E-4 303w+ 2.07E-2 8.32E-5 249w+ 5.55E-2 1.83E-4 307 w+

VR-LMT 8.46E-2 5.36E-4 157w+ 2.65E-2 1.61E-4 166w+ 5.80E-2 1.98E-4 291 w+

VAE+CART 7.25E-2 3.44E-4 212 3.99E-2 7.86E-5 507 5.15E-2 1.16E-4 448
VAE+VIPER 7.63E-2 5.32E-4 143 4.12E-2 9.89E-5 417 4.57E-2 1.29E-4 356

VAE+GM-LMT 6.35E-2 3.51E-4 180w+ 3.39E-2 2.75E-4 123w+ 4.20E-2 1.44E-5 293w+

VAE+VR-LMT 7.95E-2 5.12E-4 154w+ 3.52E-2 2.08E-4 171w+ 5.10E-2 1.99E-4 258w+

VAE+MCRTS 7.83E-2 1.27E-3 61 4.82E-2 5.66E-4 85 6.58E-2 7.75E-4 85
IMONet+CART 8.23E-2 4.02E-4 204 5.21E-2 1.38E-4 375 5.67E-2 1.81E-4 315
IMONet+VIPER 8.50E-2 4.48E-4 191 5.26E-2 1.69E-4 313 6.05E-2 1.90E-4 319

IMONet+GM-LMT 7.87E-2 3.74E-4 212w+ 4.79E-2 3.23E-4 149w+ 5.45E-2 2.15E-4 256w+

IMONet+VR-LMT 8.21E-2 7.16E-4 115w+ 4.54E-2 3.79E-4 120w+ 6.03E-2 2.27E-4 268w+

IMONet+MCRTS 8.53E-2 1.37E-3 62 5.37E-2 7.08E-4 76 7.53E-2 9.07E-4 83

with G (the maximum exploration width) child nodes. 4) Back Up: Update the action-values:
QMC

m = (QMC
m−1NVm−1 +rMC)/(NVm−1 +1) and increment the visit count: NVm = NVm−1 +1

on all the traversed edges.

Move: After M plays, we move Js to a child node by selecting the split f̃s = arg maxfk∈F1...g(m)

NVm(Js, fk) and setting Js to a child node J̃s+1 (connected by the edge f̃s). The next play will start
from the new starting node J̃s+1. It allows MCRTS to prune the sub-optimal nodes [38].

5 Empirical Evaluation

We evaluate the mimic performance and demonstrate the interpretability of the mimic tree.

Environment and Running Settings: We study the Flappy Bird, Space Invaders, and Assaults
environments. Flappy Bird is a procedural game, where the game states are randomly generated
at each episode. Space Invaders and Assaults are commonly studied Atari games from the Gym
toolkit [39]. (Check data generation details and model hyper-parameters in Appendix).

Baseline Models: We compare previous tree-based mimic learners. The first baseline model is a
Classification and Regression Tree (CART ) [40]. We include VIPER [41] as our second baseline by
replacing its policy (decision) tree with a regression tree that imitates action values with a Q-dagger
algorithm. The third baseline is the M5 [42] regression tree training algorithm. M5 constructs a
piecewise constant tree by pruning the sub-optimal nodes. We include M5 with the Regression-Tree
option (M5-RT) and the Model-Tree option (M5-MT). M5-MT builds a linear regression model
for the instances at each leaf node while M5-RT maintains only a constant value. The last baseline
is a Linear Model Tree (LMT) [12] for interpreting action values. A recent work [13] explored
different heuristics for selecting splitting features, including Variance Reduction (VR-LMT) and
Gaussian Mixture clustering (GM-LMT). The aforementioned models are directly learnt from raw
input space (states and actions) [14]. The aforementioned models were previously learnt directly
from raw input space (states and actions). In this study of latent representation, we evaluate their
regression performance based on the latent features from both VAE and IMONet (Check appendix
for the implementation details of baseline models).

5.1 Fidelity versus Simplicity

This experiment evaluates mimic trees by their 1) fidelity: how well a mimic model approximates
the DRL model [12] and 2) simplicity: the size of these nonparametric trees. We divide the dataset
(50k) into training (80%), validation (10%), and testing (10%) sets and generate 5 independent runs.
Fidelity and simplicity are evaluated by the mimic performance and the number of leaves respectively.
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Table 1 shows the regression performance. MCRTS+IMONet achieves a promising regression
performance with significantly fewer leaves than other baseline models. This is because 1) IMONet
learns a concise object representation from RL states and this representation outperforms that
modelled by an unidentifiable VAE. 2) MCRTS selects splits to maximize the regression performance
at a global level, yielding a mimic tree with better fidelity. Apart from these obvious advantages, we
find that some latent features may be indistinguishable for predicting action values, and this explains
why some trees have better regression performance by building a large tree from raw inputs, while
the large tree size compromises their interpretability.

Leaf-by-Leaf Regression Performance: To study the regression efficiency, we evaluate the per-leaf
regression performance of examined models based on the latent features from IMONet. Figure 4
illustrates the performance of examined mimic trees when we constrain their number of leaves.
MCRTS achieves a leading regression performance, as it selects a split by looking ahead to the future
cumulative rewards instead of its local influence. Another key observation is that a well-explored
split from MCRTS can beat a greedy split with extra linear regressors at leaf nodes (e.g., LMTs),
allowing MCRTS to substantially improve the learning efficiency.

Figure 4: Leaf-by-leaf tree regression results based on latent features from IMONet in the Flappy Bird (left),
Space Invaders (middle), and Assault (right) environments.

5.2 Illustrative Examples of Interpretable Mimic Trees

We demonstrate the interpretability of our mimic tree by 1) illustrating the extracted rules and causal
relations, 2) comparing with previous RL interpretations and 3) conducting human evaluations. This
section uses the Flappy Bird environment as an example, where a DRL agent earns rewards by
controlling a bird to pass pillars.

Figure 5: Mimic tree. fl : Zk,d < v indicates the lth tree split is at Zk,d (dth variable for the kth object) with a
splitting value v. In the decision rules (b&c), solid / dash lines indicate tree path / causal relations.

Causal Explanations: Our mimic treeφ captures the influence of latent features on action advantages
y. Figure 5 (a) illustrates the top three layers of the mimic tree. We can interpret the influence of
a split by visualizing the expected latent values after this split. For example, after implementing
the split f1, we obtain two child nodes (cell2,1 and cell2,2). We compute the expected latent values
for the instances on these nodes (En∈cell(Zn)) and visualize the 3rd object with the decoder (since
Z3,1 captures the variation of the 3rd object). These visualizations capture the difference of object
information after splitting. They show that the instances on cell2,2 have shorter (vertical) distance
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between the bird and the upper pillar, and thus their advantages for the action ’down’ are larger. We
verify this observation by sampling an instance from both child nodes respectively. This observation
is consistent with game rules since performing the action ’down’ when the bird approaches the upper
pillar can prevent potential crashes and thus has a larger advantage.

(a) Causal Relation Extraction. Since there is no (observed/unobserved) confounder between latent
variables (section 3.1), our mimic tree can capture causal relations between splitting features and
predictions. Similar to Causal Decision Trees (CDTs) [23], a tree split f in our mimic tree represents
a context-specific causal relationship between the splitting condition f and the action advantage ŷtreei .
The context is a series of value assignments of the latent features along the path from the root to the
parent node of f . For example, the decision rule in Figure 5(b) states that having Z3,4 ≥ 0.71 is
casually related to an action advantage of 0.23 when the action is ’down’ and Z3,1 ≥ 0.12 (context).

(b) Counterfactual Analysis. Leveraging the generation ability of the IMONet decoder, our mimic
tree enables counterfactual analysis to answer “what if” questions: we show the influence on tree
prediction by intervening to set the value of Zk,d equal to some particular value, For example, in
Figure 5(c), we compute Ftree[f0, f1, . . . , fL, X

′, Y ′θ|do(Z3,1 = 0)]. To achieve this, 1) we set Z3,1

to 0 for all input latent vectors and get z′. 2) The IMONet decoder computes pd(x′|z′) and the DRL
model predicts Y ′θ with the generated observations X ′. 3) The mimic tree follows previous splits to
construct tree predictions (the splits on the intervened variables are removed). The difference of tree
prediction before and after the intervention (0.23 versus 0.11) reveals the influence of do(Z3,1 = 0).

Comparison to other interpretations. We compare other interpretable DRL models based on 1)
Super-pixels [12] (Figure 5d) that highlight the pixels used as splitting features in a regression
tree, 2) Saliency Map [6] (Figure 5e) which is generated by perturbing the pixels within a region
and evaluating their impact on target outputs, and 3) Attention Mask [4] (Figure 5f) (from the
convolutional attention network) that represents the importance of pixels on model outputs. These
traditional models used the raw images as input during training. The learned interpretations visualize
the pixels that are important for decisions. They generally agree that the distance between the bird
and the pillar is most influential. This observation is consistent with rules extracted by our method
(Figure 5a&b) since this distance determines how likely the bird can pass the pillars to win more
rewards.

Human Evaluation. We evaluate the interpretability of the aforementioned methods with RL
practitioners from four universities. We first introduce the saliency map, mimic trees based on super-
pixels and latent variables, and then ask the participants to 1) describe the information captured by
these methods and 2) rank the corresponding interpretations. To eliminate potential bias, participants
are interviewed independently, and they are not told which methods are the baselines or the proposed
model (check Section D in appendix for further details). We present a summary of the results by
discussing the two aspects of interpretability regarding our method:

(a) Interpretability of Latent Variables. After observing the latent traversals, all (12/12) participants
correctly recognized the physical meaning of the latent variables whereas 58%(7/12) and 33.3%(4/12)
participants managed to recognize the features captured by saliency maps and super-pixels due to the
inconsistency of local samples and the complexity of tree paths.

(b) Interpretability of mimic trees. 83% (10/12) participants preferred the mimic tree based on latent
features since its tree path captures globally-consistent knowledge and its tree size is smaller than that
of the super-pixel tree (62 versus 1007, check Table 1). The rest voted for the saliency map because
they preferred straight-forward explanations.

5.3 Limitations

Computational Complexity. Since MCRTS conducts multiple simulations to explore and generate
the global-optimal mimic tree, it generally consumes more computational resources than classic re-
gression. We compare the computational complexity of our method and the baselines in the appendix.
Although IMONet compresses high-dimensional inputs into latent vectors and we parallelize the tree
search in MCRTS, empirically, it takes MCRTS a longer to determine a split.

Guarantee for Interpretability. It is generally hard to theoretically justify or numerically quantity
the level of interpretability, so we utilize illustrative examples and human evaluation to empirically
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show the interpretability. Although previous works demonstrated interpretability of latent features [26,
31, 32], there is no guarantee that these features always have a clear meaning across all RL games.

6 Related Works
We introduce previous works for interpreting DRL models.

Self-Explainable Approaches: Some recent works have explored self-explainable DRL models.
To derive human-understandable policies, these models modified existing performance-driven DRL
models (e.g., DQN) according to some specific designs, such as symbolic planning [43], decision
trees [44, 45], Generalized Value Functions (GVFs) [46], Moore Machine Networks (MMNs) [47],
transparent decision dynamics [48] or explainable feature extraction [4, 49]. These modifications
influence the decision process of DRL agents to enhance interpretability.

Post-hoc Interpretation: An alternative approach is to generate posterior explanations for DRL
models to achieve post-hoc interpretability. Existing methods commonly apply feature perturbation
to generate saliency maps [6, 7] or learn attention masks [5, 50] with the attention neural network.
These explanations are driven locally, based on computing a localization map that highlights the
important regions for current actions. It is hard for these point-wise interpretations to maintain their
consistency with explanations from other samples, which leads to unstable explanations [10]. Mimic
learning (i.e., model distillation) [11] enables the generation of globally consistent explanations from
a performance-driven DRL model. Previous works [13, 12] utilize mimic regression trees to interpret
action values from DRL models, but their training objective did not control the model complexity
and thus encouraged oversized mimic trees. Another recent work [51] proposed a tree regularizer
that adjusts the loss function of deep models by integrating the regression performance of mimic
trees. A recently proposed VIPER model [41] designed a Q-dagger algorithm to derive a tree-based
policy function following online imitation learning [52]. Our experiments evaluate an updated VIPER
model for estimating action advantages.

7 Conclusion and Societal Impacts

This paper introduced a RAMi framework based on the IB principle, following which we 1) introduced
an IMONet to learn an object representation for RL states and 2) proposed a MCRTS algorithm
to find a mimic tree with promising fidelity and simplicity. Experiments demonstrated the leading
mimic performance of our MCRTS+IMONet model. We illustrated our tree interpretations with
causal relations and human evaluation. A potential negative societal impact of our work is that it
encourages the government to endorse laws that regulate the level of transparency in AI systems.
This may increase the difficulty of deploying advanced AI systems.
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