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Abstract

We propose Visualize-then-Retrieve (VisRet),
a new paradigm for Text-to-Image (T2I) re-
trieval that mitigates the limitations of cross-
modal similarity alignment of existing multi-
modal embeddings. VisRet first projects tex-
tual queries into the image modality via T2I
generation. Then, it performs retrieval within
the image modality to bypass the weaknesses
of cross-modal retrievers in recognizing sub-
tle visual-spatial features. Experiments on
three knowledge-intensive T2I retrieval bench-
marks, including a newly introduced multi-
entity benchmark, demonstrate that VisRet
consistently improves T2I retrieval by 24.5%
to 32.7% NDCG@10 across different em-
bedding models. VisRet also significantly
benefits downstream visual question answering
accuracy when used in retrieval-augmented
generation pipelines. The method is plug-
and-play and compatible with off-the-shelf
retrievers, making it an effective module for
knowledge-intensive multi-modal systems.

1 Introduction

Text-to-Image (T2I) retrieval is the task of selecting
the most relevant images from a visual corpus
based on a textual query. It plays a crucial role
in enabling knowledge-intensive applications that
require supporting textual inputs with rich visual
content (Chen et al., 2022; Wang et al., 2023;
Sheynin et al., 2023; Braun et al., 2024).

A common approach to T2I retrieval is to embed
both the query and candidate images into a shared
representation space, where similarity scores are
computed (Frome et al., 2013; Kiros et al., 2014).
However, obtaining accurate similarity rankings
that capture fine-grained semantics in both text and
image remains a long-standing challenge. Prior
studies have observed that cross-modal embeddings
often behave like “bags-of-concepts”, failing to
model structured relationships among visual ele-
ments (Yiiksekgoniil et al., 2023; Kamath et al.,

2023). For instance, Figure 1 presents a query that
requires images of an entity (a Barnacle Goose)
at specific postures (wings unfolded) to answer.
While the embedding model succeeds at matching
the entity type, it struggles to recognize subtler
visual-spatial features such as the pose of the
wing (unfolded) and the camera perspective (up-
shot). To address these limitations, existing work
has explored improving the embedding quality
(Radford et al., 2021; Yu et al., 2022), query
reformulation (Levy et al., 2023), and multi-stage
reranking pipelines (Liu et al., 2024; Feng et al.,
2025). Yet, all these strategies are ultimately
constrained by the intrinsic difficulty of cross-
modal similarity alignment, as they cannot bypass
the stage of text-to-image similarity search.

We propose Visualize-then-Retrieve (VisRet), a
novel retrieval paradigm that decomposes T2I
retrieval into two stages: text-to-image modality
projection followed by within-modality retrieval.
Concretely, the textual query is first visualized
as one or more images via a T2l generation
model. Then, the visualized query, which better
exhibits the desired visual-spatial features, is used
to perform image-to-image retrieval.

Compared to prior methods, VisRet offers two
key advantages. First, visualizations provide a
more expressive and intuitive medium for encoding
multiple compositional concepts such as entities,
poses, and spatial relations, which are difficult to
express via text alone. As shown in Figure 1, the
visualized query is able to accurately depict the
desired entity, posture, and camera angle at the
same time. Second, by operating entirely within the
image modality during retrieval, VisRet avoids the
weaknesses of cross-modal retrievers and instead
leverages the stronger capacity of these retrievers
in uni-modal retrieval (Koishigarina et al., 2025).

We evaluate VisRet on three challenging T2I
retrieval benchmarks: INQUIRE-Rerank (Vendrow
et al., 2024), Visual-RAG (Wu et al., 2025), and
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Figure 1: An overview of VisRet. Compared to the traditional T2I retrieval pipeline, VisRet first projects the text
query into the image modality via T2I generation and then performs within-modality retrieval.

Visual-RAG-ME, a new benchmark we introduce
that features feature comparison questions across
multiple entities. Results show that VisRet substan-
tially outperforms baseline T2I retrieval methods
and a strong LLM-based query rewriting approach
(84.2). When CLIP (Radford et al., 2021) is used as
the retriever, VisRet outperforms the two baselines
by 32.7% and 15.6% higher NDCG @10 respec-
tively, averaged over three benchmarks. With ES-V
(Jiang et al., 2024) as the retriever, the performance
gain becomes 24.5% and 12.4%. Moreover, VisRet
enhances downstream performance in retrieval-
augmented generation (RAG) settings (§4.3). It
improves T2I question answering accuracy on
Visual-RAG and Visual-RAG-ME by 3.8% and
15.7% in top-1 retrieval setting and 3.9% and 11.1%
in top-10 retrieval setting. Our code and benchmark
will be shared publicly to facilitate future research.

2 Related Work

T2I Retrieval Benchmarks Early T2I retrieval
benchmarks evaluate the ability to identify images
based on their paired human-written captions.
These datasets span multiple domains and include
widely used benchmarks such as Flickr8K (Hodosh
et al., 2013), Flickr30K (Young et al., 2014),
and Fashion200K (Han et al., 2017). As multi-
modal embedding models have matured, more
challenging benchmarks have been introduced to
assess retrieval in knowledge-intensive settings.
These newer datasets—such as WebQA (Chang
et al., 2022), INQUIRE (Vendrow et al., 2024),
Visual-RAG (Wu et al., 2025), and MRAG-Bench
(Hu et al., 2024)—shift the focus from caption
matching to retrieving images that contain the
knowledge necessary to answer complex natural
language questions. These tasks challenge re-
trieval systems to support downstream reasoning in

retrieval-augmented generation (RAG) pipelines.

T2I Retrieval Methods There have been exten-
sive research on improving text-to-image retrieval
from different perspectives. First, a number of
works aim to train better multi-modal embeddings
by designing better training objectives and data
mixtures (Faghri et al., 2018; Radford et al., 2021;
Yu et al., 2022; Li et al., 2022). Other studies
improve various stages in the retrieval pipeline,
such as textual query expansion (Levy et al., 2023;
Lee et al., 2024) and reranking (Liu et al., 2024;
Feng et al., 2025). Finally, a recent line of work
introduces generative image retrieval (Li et al.,
2024; Qu et al., 2025), which trains a generative
model to directly memorize an index of the image
corpus. Different from these existing approaches,
VisRet expands the query semantics by directly
visualizing it in the image space, thereby alleviating
the workload of cross-modal retrieval. In addition,
VisRet is a training-free plug-and-play framework
that can accommodate any off-the-shelf retriever.

3 Approach

3.1 Problem Formulation

Given a textual query ¢ and an image corpus Z, the
task of Text-to-Image retrieval aims to retrieve n >
1 images y1, ..., yn € Z that best correspond to the
semantics in q. Our paper further considers the
task of Visual Question Answering (VQA), where
the query is a knowledge-seeking question, with an
expected answer a.

In this paper, we consider a basic retrieval-
augmented generation (RAG) VQA pipeline: A
multi-modal retriever R retrieves k images from
Z, denoted as {r1,...,7} = R(¢q,Z) C Z. Then, a
large vision-language model (LVLM) M directly
generates the answer based on the question and the
retrieval results M(q, R(q,Z)).



. Visual-RAG Visual-RAG-ME | INQUIRE-Rerank-Hard
Retrieval Method
R@1 R@10 R@30 N@1 N@10 N@30 | N@1 N@10 N@30| N@1 N@10 N@30
Retriever = CLIP
Original Query 0.210 0.583 0.737 0.210 0.355 0.385 [0.220 0.423 0.435| 0.000 0.355 0412
Query Expansion 0.238 0.586 0.737 0.238 0.360 0.395 |0.410 0.575 0.572 | 0.136  0.349  0.407
Visualize-then-Retrieve |0.251 0.645 0.793 0.251 0.431 0.438 | 0.460 0.632 0.605 | 0.170 0.452  0.455
- multi-image | 0.246  0.637 0.772 0.246 0.414 0.421 [0.480 0.629 0.605 | 0.237 0.428  0.469
Retriever = E5-V
Original Query 0.240 0.568 0.706 0.240 0.386 0.407 [0.340 0.465 0.486 | 0.000 0.319  0.407
Query Expansion 0.223 0.560 0.719 0.223 0.368 0.391 |0.460 0.569 0.566 | 0.170 0.367 0.412
Visualize-then-Retrieve |0.299 0.673 0.801 0.299 0.452 0.461 | 0.560 0.643 0.622 | 0.220 0.377  0.425
- multi-image | 0.307 0.645 0.772 0.307 0.442 0.446 |0.520 0.640 0.617 | 0.203  0.384  0.445

Table 1: Evaluation results across three T2I retrieval benchmarks using different retrieval strategies and retrievers.
The best results in each column within each retriever group are boldfaced. R = Recall. N = NDCG.

3.2 Visualize-then-Retrieve

We introduce Visualize-then-Retrieve (VisRet), a
two-staged T2I retrieval pipeline that bridges the
modality gap through modality projection. Figure 1
illustrates the pipeline with an intuitive example.

Modality Projection The first stage of VisRet
leverages a T2I generation system 7 to directly
generate m visualizations {v1,...,v,} = T(q).
Empirically, we find it helpful to use an LLM
within 7 to first rephrase ¢ into a T2 instruction ¢/,
before feeding into existing T2I generation models
such as Stable Diffusion (Esser et al., 2024). To
generate diverse {v1, ..., Un, }, randomness can be
injected either into ¢’ or into the T2I generation.

Within-Modality Retrieval In the second stage,
VisRet performs retrieval within the image modal-
ity. Specifically, each synthesized image v; €
{v1,...,un} is independently used to retrieve a
ranked list of images from the corpus:

R(vi, ) = [V, .l
To aggregate the m separate retrieval results, we
apply Reciprocal Rank Fusion (RRF) (Cormack

et al., 2009). RRF assigns a fusion score to each
candidate image 7 based on its rank across m lists:

m
1
SCorerrp(r) = g —_
A+ rank; (7)

where rank; (r) is the rank position of image  in list
R(vi, Z), and X is a hyperparameter that controls
the influence of lower-ranked items. The final top-k
retrieval result is formed by selecting the highest-
scoring images according to scorerrp(r).

4 Results and Analyses

4.1 Experimental Setup

We evaluate on three challenging benchmarks: (1)
INQUIRE-Rerank (Vendrow et al., 2024), a T2I
retrieval benchmark requiring accurate knowledge
of species appearance and behavior. We perform
additional filtering to remove overly simple queries
and call the resulting dataset INQUIRE-Rerank-
Hard. (2) Visual-RAG (Wu et al., 2025), a T2I
retrieval and VQA benchmark featuring visual
knowledge intensive questions on features of natu-
ral species that are not commonly documented in
text corpus. (3) Visual-RAG-ME, a new benchmark
we introduce featuring queries that compare the
same visual feature across multiple entities. We
present the benchmark details in Appendix A.

For all the three benchmarks, we evaluate T2I
retrieval with Recall@k and NDCG@k with k =1,
10, 30. For Visual-RAG and Visual-RAG-ME, we
additionally use an LLM judge to evaluate the end-
to-end VQA accuracy, following Wu et al. (2025).

For the experiments presented in the main text,
we use CLIP and E5-V as the retriever, GPT-40
(OpenAl, 2023b) as the downstream reader, and
gpt-image-1 (OpenAl, 2025) as the T2I Model to
generate m = 3 images. We analyze more model
choices in Appendix B and present all the prompts
and other hyperparameters in Appendix C.

4.2 Retrieval Performance

Table 1 summarizes retrieval performance across
all benchmarks and retrievers. We compare four
strategies: using the original textual query, apply-
ing query expansion via an LLM, our proposed
VisRet, and VisRet with only a single generated
image ("-multi-image"). Across all datasets, VisRet
consistently outperforms both the original query



Dataset Question Ground Truth Baseline Generated Image VisRet
Does the Mountain Tree Frog Rank:49, ; Rank:4,
(scientific name: Hyla eximia) NDCG@10: NDCG@10:
have any distinctive pattern on the 0.00 0.39
underside of its body?
Visual-RAG
How many petals are on each Rank:143, Rank:2,
of the Tower Mustard (scientific NDCG@10: NDCG@10:
name: Turritis glabra)’s flowers? § 0.00 0.76
A male and female cardinal Rank:12, Rank:1,
INQUIRE sharing food NDCG@10: NDCG@10:
0.00 1.00

Table 2: Examples: VisRet improves retrieval by highlighting visual features implied by the textual query.

and query expansion baselines by a large margin.
When CLIP is used as the retriever, VisRet outper-
forms the original query and LLM-based rephrase
by 32.7% and 15.6% relatively higher NDCG@10
over three benchmarks. Similar trends hold when
E5-V is used as the retriever, exhibiting 24.5% and
12.4% performance gain in NDCG@10. Further,
using only one generated image as the query only
slightly harms the performance, indicating the
flexibility of VisRet. Table 2 presents several
examples to demonstrate how the visualization
step successfully captures subtle visual semantics
implied by the original text query. We present more
analyses on the T2I model and the rephrase LLM
in Appendix B.1 and Appendix B.2.

4.3 Downstream QA Performance

To assess the utility of VisRet in real-world applica-
tions, we evaluate its downstream VQA accuracy
in a RAG pipeline. We compare three settings:
(1) using only the model’s internal knowledge,
(2) RAG with original text query-based retrieval
and (3) RAG with VisRet. Figure 2 shows the
QA accuracy on Visual-RAG and Visual-RAG-ME
using GPT-40 as the LVLM reader and CLIP as the
retriever. The original query results in low-quality
retrieval augmentation, even slightly harming the
performance on Visual-RAG in top-1 retrieval
setting compared to no retrieval. By contrast,
VisRet significantly improves QA accuracy in both
top-1 and top-10 settings on both benchmarks,
boosting accuracy to 0.538 on Visual-RAG and
0.700 on Visual-RAG-ME. Remarkably, on Visual-
RAG-ME, VisRet outperforms top-10 retrieval in
the original query setting with only top-1 retrieval,
highlighting its high accuracy in retrieving the
images containing the required features. Overall,
the results confirm that VisRet not only improves
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Figure 2: Downstream RAG-based VQA accuracy on
Visual-RAG and Visual-RAG-ME with CLIP as the
retriever and GPT-4o0 as the reader LVLM.

retrieval accuracy but also leads to tangible gains in
downstream VQA performance. In Appendix B.3,
we further demonstrate that VisRet can bring
similar performance gains to other models as
the VQA reader. In Appendix B.4, we analyze
the performance of directly using the generated
images as the context and find that while T2I
generation improves retrieval, it still cannot replace
the retrieved natural images in most cases.

5 Conclusion

This work introduces VisRet, a framework that
visualizes text queries to enable more accurate T21I
retrieval. By operating entirely in the visual domain
during retrieval, VisRet addresses key limitations
of cross-modal embedding alignment. Our experi-
ments confirm that visualized queries substantially
improve both retrieval precision and downstream
VQA accuracy across three benchmarking datasets
and two retrievers. The simplicity and modularity
of VisRet open up promising directions for future
knowledge-intensive multi-modal systems.



Limitations

While this paper has proposed a novel framework
and achieves strong empirical performance, our
study has a few limitations as well. First, gen-
erating high quality images as queries can incur
non-negligible latency costs. We would like to
emphasize that retrieval is often a pipeline and the
improved retrieval accuracy saves latency from a
range of downstream operations such as reranking
over a large number of candidates or iterative
retrieval. Also, for applications that are accuracy-
driven but not latency-sensitive, such as deep
research, the latency of VisRet is often justifiable.
Another limitation is that the paper only considers
off-the-shelf T2I generation models and frozen
embedding weights. Further work can consider
using in-domain images to further fine-tune or
condition the T2I generation model, producing
visualizations that emphasize salient features while
mitigating noise from domain shifts. It is also
a promising direction to use T2I generation to
synthesize more text-image alignment data to
further improve the knowledge of the embedding
model of fine-grained implied semantics.

Ethics Statement

In this section, we describe the ethical considera-
tions related to this paper.

Potential Risks Although the goal of this paper
is to introduce techniques to improve the text-to-
image retrieval performance, the new approach
could create new social risks. Specifically, in addi-
tion to the neural embedding model, our approach
involves two neural models: an LLM and a T2I
generation model. It is possible for these large
models to bring in new social bias in generating
the visualize query and thus bias the retrieval
results. For instance, when depicting certain
scenes of social activity, the models could reinforce
stereotypical social roles. We urge practitioners
to implement model debiasing and bias detection
measure when deploying our proposed T2I retrieval
method in real-world applications.

Artifact Release Our Visual-RAG-ME annota-
tion is based on Visual-RAG, which is under CC
BY-NC 4.0 license and the images shared by the
iNaturalist 2021 dataset, which are under one of CC
BY 4.0, CC BYNC 4.0, CC BY-NC-ND 4.0, CC
BY-NC-SA 4.0, CC0 1.0, CC BY-ND 4.0, CC BY-
SA 4.0. We adhere to the intended non-commercial

research use of iNaturalist 2021 dataset and do not
re-distribute the images. Following Visual-RAG,
we will release our Visual-RAG-ME annotations
under CC BY-NC 4.0 license.

Human Annotation Two authors, who are gradu-
ate students studying Natural Language Processing,
are the only annotators involved in Visual-RAG-
ME annotation. Both annotators are supported
by the research stipend and the annotation work
counted into the working hours. Consent was
obtained from both annotators before benchmark
curation. The entire benchmark creation process
was automatically determined exempt by the in-
stitution’s IRB policy. The annotators actively
discussed whenever they encounter ambiguity dur-
ing annotation and reached agreements before
proceeding. After the benchmark annotation, we
performed a round of human auditing to ensure no
question may cause privacy or ethics concerns.

Al Assistant Use Al assistants, specifically Chat-
GPT, are used only for revising the paper draft,
fixing grammar mistakes, and improving the out-
look of the figures.
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Supplementary Material: Appendices

A Benchmark Data Details

In this section, we present the details of Visual-
RAG data processing and Visual-RAG-ME anno-
tation. Then, we provide the details of how we
processed INQUIRE-Rerenk-Hard. Finally, we
document the dataset statistics and the baseline
T2I retrieval performance of CLIP (Radford et al.,
2021) and E5-V (Jiang et al., 2024) in Table 3.

A.1 Visual-RAG and Visual-RAG-ME

Visual-RAG (Wu et al., 2025) releases 391 queries
with associated image names from iNaturalist 2021
(Horn et al., 2021) and corresponding retrieval
labels'. To prepare the data, we download the
original iNaturalist 2021 dataset and re-collect the
images from the train and test set. We were able to
identify all annotated images in Visual-RAG except
a single image due to a likely path error.

We annotate Visual-RAG-ME as an extension
of Visual-RAG to visual question answering in
the multi-entity setting. Concretely, Visual-RAG-
ME reuses the visual features queried in Visual-
RAG and constructs questions that compares those
features between the organism covered in Visual-
RAG with another similar entity, for which we
manually annotate a new set of retrieval labels.
The Visual-RAG-ME annotation pipeline consists
of three steps: second entity identification; query
composition and filtering; retrieval label annotation
and balancing. We next describe the steps in detail.

Second Entity Identification The goal of this
step is to identify entities that are biologically
close to the original entities in Visual-RAG so
that plausible and challenging questions could be
constructed. For this purpose, for each entity
covered in Visual-RAG, we use BM25 (Robertson
and Walker, 1994) to retrieve ten entities that have
the closest full scientific names.

Query Composition and Filtering In this step,
we (the authors) manually traverse all the 391
questions in Visual-RAG and attempt to construct
a corresponding multi-entity question. A question
is constructed when we can identify images for the
second entity that clearly depict the same feature
as in the positive images for the original entity in
Visual-RAG. The question we compose generally

"https://github.com/visual-rag/visual-rag

VR VR-ME IR-Hard
# Queries 391 50 59
|Query| (word count) | 18.5  25.1 6.0
# Images (per entity) 264 263 100
# Positives (per entity) | 14.3 20.8 12.5
CLIP Recall@1 0.210 0.220 0.000
E5-V Recall@1 0.240 0.340 0.000

Table 3: Dataset statistics and baseline performance. VR
denotes Visual-RAG and IR denotes INQUIRE-Rerank.

take a comparison style that asks whether the two
organisms have the same feature or which organism
feature a more extreme stylistic feature (e.g., lighter
coloration, smoother surface etc.). We were able to
construct 82 multi-entity questions after this step.
Next, we perform a round of filtering to remove (1)
the questions that both GPT-40 and GPT-40-mini
can answer correctly without image information
and (2) questions can cover overly similar topics.
After the filtering step, we ended up with 50 high
quality multi-entity queries.

Retrieval Label Annotation and Balancing Fi-
nally, for each question, we collect images of the
second entity from iNaturalist and annotate their
retrieval label. A positive label is assigned only if
the image clearly displays the feature required to
answer the question. For some of the questions, we
find that a large number of positive images exist in
the iNaturalist database. We therefore implement a
filtering step where at most 50 positive images are
kept for each entity. Table 8 shows two examples
with their questions and ground-truth images.

In Table 3, we present the basic statistics of
Visual-RAG-ME. While it has slightly more posi-
tive per entity compared to Visual-RAG, our new
benchmark is still challenging, with both CLIP and
ES5-V achieving a low Recall@1 due to its lengthy
and knowledge-intensive queries.

A.2 INQUIRE-Rerank-Hard

To prepare INQUIRE-Rerank-Hard, we accessed
the publicly released INQUIRE-Rerank (Vendrow
et al., 2024) benchmark?. The original test set
contained 160 queries, each paired with 100 images
retrieved by CLIP. In a pilot study, we tested
the retrieval performance of off-the-shelf CLIP
and E5-V models. Results showed that CLIP

2https://huggingface.co/datasets/evendrow/
INQUIRE-Rerank
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Method R@1 R@10 R@30|N@1 N@10 N@30
Baselines
Original Query 0.210 0.583 0.737 |0.210 0.355 0.385
LLM Rephrase 0.238 0.586 0.737 [0.238 0.360 0.395
VisRet
DALL-E 3 0.169 0.581 0.757 |0.169 0.344 0.376
Stable Diffusion 3 0.166 0.517 0.691 |0.166 0.319 0.349
Image-1 (low quality) | 0.243 0.611 0.760 | 0.243 0.397 0.415
Image-1 (high quality) | 0.251 0.645 0.793 | 0.251 0.431 0.438

Table 4: T2I Retrieval performance across different T2I generation models used for VisRet. We use GPT-40 to
generate the T2I instruction and CLIP as the retriever. R = Recall. N = NDCG. The best results are boldfaced.

Retrieval Strategy LLM R@1 R@10 R@30 N@1 N@10 N@30
Original Query - 0.210 0.583 0.737 0.210 0.355 0.385
| Llama3.1 8B Instruct |0.238 0.563 0.737 0.238 0.365 0.385
LLM Rephrase Llama 3.3 70B Instruct | 0.240 0.575 0.742 0.240 0.377 0.399

GPT-40 0.238 0.586 0.737 0.238 0.360 0.395

| Llama3.1 8B Instruct | 0.243 0.606 0.780 0.243 0.405 0.428
Visualize-then-Retrieve | Llama 3.3 70B Instruct | 0.256 0.627 0.790 0.256 0.413 0.437
GPT-40 0.251 0.645 0.793 0.251 0.431 0.438

Table 5: Retrieval performance on Visual-RAG of with CLIP retriever, using LLMs as T2I instruction generator for
VisRet. R = Recall. N = NDCG. The best results are boldfaced.

can achieve 0.438 Recall@1 while E5-V achieved
0.506 Recall@1. After manually inspecting the
data, we found that for a lot of instances, the
negative images are not challenging enough and
it is often very straightforward to identify the
ground truth images. To highlight the challenging
questions, we therefore filtered out the questions on
which either CLIP and E5-V can achieve a perfect
Recall@1. Overall, we observe that the remaining
59 questions require more nuanced image context
understanding and a higher level of knowledge of
the organism themselves, with more challenging
confounder negative images.

B VisRet: Further Analyses

In this section, we provide more comprehensive
analyses to investigate the effectiveness of VisRet
from more perspectives, including the choices of
T2I generation Model, T2I Instruction LLM, the
downstream VQA LVLM reader. Finally, inspired
by the generative retrieval literature, we conduct
a pilot study of whether the generated images
could be directly used as the knowledge context for
downstream question answering.

B.1 T2I Generation Model Choice

How strong does the T2I generation model need
to be for VisRet to work well? We compare the

default T2I generation model (Image-1 with high
quality setting) with three other models: DALL-
E 3 (OpenAl, 2023a), Stable Diffusion 3 (Esser
et al., 2024), and Image-1 with the low generation
quality setting. Table 4 shows the results with GPT-
40 as T2l instruction generation model and CLIP
as the retriever model. Interestingly, compared
to the cross-modality retrieval baselines, we find
that DALL-E 3 and Stable Diffusion 3 do not
provide significant performance improvements,
while Image-1 low quality clearly and consistently
improve the performance. The best performance
is achieved by the newest and the most expensive
Image-1 high quality setting. Together, these re-
sults suggest that a good T2I generation model with
strong instruction following ability is necessary
for VisRet. As further T2I generation methods
improve, we anticipate that building more cost-
efficient version of VisRet is a viable and promising
further direction.

B.2 T2I Instruction LLM Choice

Does VisRet work well with other LLMs as the T21
instruction generator? In Table 5, we study two
differently sized open-weight LLMs for rephrasing
the query and generating the T2I instruction:
Llama 3.1 8B Instruct and Llama 3.3 70B Instruct
(Grattafiori et al., 2024). Overall, we observe



Knowledge Visual-RAG Visual-RAG-ME
#images GPT-40-mini GPT-40 GPT-4.1 |#images GPT-40-mini GPT-40 GPT-4.1
Model Knowledge Only 0 38.49 48.47 49.23 0 41.00 51.00 47.00
. . 1 40.92 47.44 51.53 2 49.00 59.00 61.00
Direct T21 Retrieval 10 46.04 5179 57.06 10 48.00 63.00  65.00
’{]i;u;lfizgﬂ;e;_%;t;igvé 11 4181 4 4923 5716 | 2 ¢ 5300 6400 62.00
10 46.42 53.84 56.65 10 55.00 70.00 71.00

Table 6: VQA performance comparison using different LVLMs as instruction generators for VisRet and query
rephrase models. CLIP is used as the retriever. Boldfaced numbers indicate the best in each column.

Knowledge Visual-RAG Visual-RAG-ME
#images GPT-40-mini GPT-40 GPT-4.1 | # images GPT-40-mini GPT-40 GPT-4.1
Model Knowledge Only 0 38.49 48.47 49.23 0 41.00 51.00  47.00
“Generated Image (Image-1) | 1 43.09 4 4245 4437 | 2 5900 5800 80.00
’{]i;u;ﬁz;;lge;_i{;t;i;‘/; [ R V) I 4923 5716 | 2 53.00 6400  62.00
10 46.42 53.84 56.65 10 55.00 70.00 71.00

Table 7: VQA performance comparison using different knowledge contexts on Visual-RAG and Visual-RAG-ME.
CLIP is used as the retriever. Boldfaced numbers indicate the best in each column.

promising results. For all the three LL.Ms, using
them to generate T2I instructions for VisRet out-
performs using the LLM themselves to rephrase
the query. While more expensive LLMs achieve a
high performance, the small 8B Llama model can
already achieve decent performance at a similar
level as GPT-4o.

B.3 Downstream VQA LVLM Choice

While we have shown the benefit of VisRet on
VQA for GPT-40, does the improvement hold
across LVLMs with different capabilities? In
Table 6, we repeat the VQA experiments with
two additional LVLMs: GPT-40-mini (version
gpt-40-mini-2024-07-18) and GPT-4.1 (version
gpt-4.1-2025-04-14). Overall, we observe sim-
ilar trends as those presented in Figure 2. Both
direct T2I retrieval and VisRer outperform only
relying on the model’s knowledge, with VisRet
substantially outperforming the former. These
results form the foundation for VisRet as a general
plug-and-play method to enhance RAG pipelines
that rely on accurate T2I retrieval.

B.4 Image Queries as Knowledge

As demonstrated by previous results, a T2I gener-
ation model with strong ability to follow instruc-
tions and generate realistic images is crucial to
the success of VisRet. It is a natural question
then, that it is still necessary to perform retrieval
instead of directly using the generated images
as the knowledge? In Table 7, we compare the
performance of using a single image as the context
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with VisRet. Overall, we observe a mixed result.
For Visual-RAG, GPT-40-mini achieves slightly
higher performance with the generated image than
top-1 retrieval, but GPT-40 and GPT-4.1 exhibit the
reverse pattern. For Visual-RAG-ME, both GPT-
40-mini and GPT-4.1 prefers the generated image
over top-1 retrieval (and even top-10 retrieval).
However, when provided with top-10 retrieved
images, the models generally exhibit a higher
VQA performance than using the generated image.
Therefore, we conclude that retrieving natural
images is still crucial for challenging VQA tasks
like Visual-RAG and Visual-RAG-MR and cannot
be fully replaced by pure T2I generation at this
stage. It is an important future work to further
combine image generation and image retrieval to
improve the quality of the retrieved knowledge.

B.5 Further Qualitative Studies

In Table 8, we additionally provide some qualita-
tive examples of how VisRet successfully improves
T2I retrieval performance. As can be observed in
top-ranked examples in text query-only retrieval,
these retrieved images often fall short in correctly
conveying visual semantics information such as
angle, body part depicted, form of the subject
depicted, visual distance of the subject, and so
on. In contrast, VisRet is able to represent the
inferred nuanced visual semantics in the image gen-
eration step first, then utilize this within-modality
semantic-rich image query to obtain precise visual
knowledge related to the VQA task.



C Implementation Details

In this section, we present the implementation
details of VisRet and baselines.

VisRet: T2I Generation To project the text
query into the image space, we first instruct an
LLM to analyze the query and highlight the key
visual features in it. The prompts for three
benchmarking datasets are shown in Figure 3,
Figure 4, and Figure 5, respectively. Then, we
wrap the rephrased query with a prompt tem-
plate “Generate a small image of the
{rephrased_query?}” to obtain the final instruc-
tion for T2I generation. We use the model
gpt-40-2024-08-06 via OpenAl API with tem-
perature = O for instruction generation and the
gpt-image-1 model for T2I generation with the
quality flag set to "high". For generating multiple
images for each query, we find that calling the
gpt-image-1 API to return multiple images given
a signle instruction already results in images
generated with a high level of diversity. Therefore,
we followed this setting in this paper and save
further perturbing the instruction as future work.

VisRet: Retrieval After obtaining the generated
visualizations, we encode both the visualized
images and the image corpus via an off-the-shelf
CLIP? or E5-V* encoder and perform a similarity
search. Cosine similarity is used as the similarity
metric. For RRF, we used A = 1 to merge the
rankings from multiple queries. All the retrieval
experiments were performed on a local server with
Nvidia A100 GPU.

VQA Answer Generation We slightly modify
the prompt in Visual-RAG to use chain-of-thought
prompting (Wei et al., 2022). Concretely, the
model is asked to always extract visual information,
perform reasoning, and conclude its reasoning with
self-verification. We show the detailed prompt in
Figure 6 and Figure 7.

Baselines For the LLM rephrase baseline, we
use the same prompt for VisRet T2I instruction
to highlight the most important feature that the
query is seeking. At the early stage of the prompt,
we performed manual tuning on the prompt and
found that the best-performing rephrase also serves
as the best-performing T2I generation instruction.

3https://huggingface.co/openai/
clip-vit-large-patch14-336
*https://huggingface.co/royokong/e5-v
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Therefore, we report the results with the same
prompt for the final version for the paper.

VQA Evaluation For Visual-RAG and Visual-
RAG-ME, we use the same evaluation prompt
released by the authors of Visual-RAG (Wu et al.,
2025), as shown in Figure 8. Since this prompt
is already human engineered for evaluating more
complex references and long-form answers and
the answers of Visual-RAG-ME are short and
easy to evaluate, we did not perform additional
prompt engineering. We use the same prompt and
gpt-40-2024-08-06 as the LLM judge for all the
VQA experiments in this paper.


https://huggingface.co/openai/clip-vit-large-patch14-336
https://huggingface.co/openai/clip-vit-large-patch14-336
https://huggingface.co/royokong/e5-v

Entity: Willet

Entity: Willet

Dataset Question Ground Truth Baseline Generated Image VisRet
‘What is the color of the head of larva Rank:96, Rank:1,
Urania Swallowtail Moth (scientific NDCG@10: NDCG@10:
name: Urania fulgens)? 0.00 0.66
‘What color are the ventral abdomen Rank:23, Rank:4,
S of Golden Buprestid Beetle (scien- NDCG@10: NDCG@10:
Visual-RAG tific name: Buprestis aurulenta)? 0.00 % 0.39
Are there visually distinctive scales Rank:26, > Rank:2,
on feet of Azure Tit (scientific name: NDCG@10: NDCG@10:
Cyanistes cyanus)? 0.40 - 0.76
A male and female cardinal sharing Rank:12, Rank:1,
food NDCG@10: NDCG@10:
0.00 1.00
Mexican grass-carrying wasp Vvisit- Rank:45, Rank:4,
ing a purple flower NDCG@10: NDCG@10:
0.00 0.39
INQUIRE
great golden digger wasp carrying Rank:12, o7 Rank:2,
an orthopteron NDCG@10: % NDCG@10:
0.45 0.83
male ruby-throated hummingbird in Rank:60, Rank:7,
flight NDCG@10: NDCG@10:
0.00 0.39

Visual-RAG-ME

Rank:104, ‘ o Rank:1,
. . . NDCG@10: NDCG@10:
Which one has striped primary 0.00 » 0.72
flight feathers, Willet (scientific ’ :
name: Tringa semipalmata) or Grey-
tailed tattler (scientific name: Tringa Entity:  Grey- Entity:  Grey-
brevipes)? tailed tattler tailed tattler
Rank:74, Rank:1,
NDCG@10: NDCG@10:
0.00 1.00
Entity: silvery Entity: silvery
checkerspot checkerspot
Which one has less prominent Rank:188, Rank:4,
color patterns, silvery checkerspot NDCG@10: NDCG@10:
(scientific name: Chlosyne nycteis) 0.45 - 0.88
caterpillar or theona checkerspot
E;ct?rgﬁfl:r;l ame: Chlosyne theona) Entity: theona Entity: theona
’ checkerspot checkerspot
Rank:120, Rank:3,
NDCG@10: NDCG@10:
0.52 0.85

Table 8: Additional qualitative results on the three benchmarking datasets.
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You are given a query, rephrase the query into a short descriptive phrase that highlights the key part
of the entity where the queried feature could be found. DO NOT include the asked feature (shape, color,
etc.) but instead include the part of the entity where the feature could be found. Output only the
rephrased query.

Examples:

Original query: What shape are the flowers of bush flax (scientific name: Astelia fragrans)?

Rephrased query: flowers of bush flax

Original query: Is the any specific color pattern on underside wings of tawny pipit (scientific name:
Anthus campestris) displayed during flight, or is it uniformly colored?

Rephrased query: tawny pipit with its underside wings shown

Original query: {question}

Rephrased query:

Figure 3: Prompt for instructing an LLM to generate the T2I generation instruction for Visual-RAG questions.

You are given a query about two entities, as well as an entity of interest. Rephrase the query into a
short descriptive phrase that highlights the key part of the entity of interest on which the queried
feature could be found. DO NOT include the asked feature (shape, color, etc.) but instead include the
entity name + part of the entity where the feature could be found. Output only the rephrased query.
Examples:

Original query: Are the tongues of grass snake (scientific name: Natrix helvetica) and Chicken Snake
(scientific name: Spilotes pullatus) the same color?

Entity of interest: Spilotes pullatus
Rephrased query: Chicken Snake with its tongue shown

Original query: Which one has a more slender matured legume, common milkpea (scientific name: Galega
officinalis) or narrowleaf lupin (scientific name: Lupinus angustifolius)?

Entity of interest: Galega officinalis
Rephrased query: the legume of common milkpea
Original query: {question}

Entity of interest: {entity}

Rephrased query:

Figure 4: Prompt for instructing an LLM to generate the T2I generation instruction for Visual-RAG-ME questions.

You are given an image retrieval query, rephrase the query to add in a bit detail (no longer than 30
words). The rephrased query should highlight the appearance, posture, actions of the main entity so
that it is easier to retrieve the desired image among (1) images of the same entity with different
posture and (2) images of different entities with the same posture.

Original query: {question}

Rephrased query:

Figure 5: Prompt for instructing an LLM to generate the T2I generation instruction for INQUIRE-Rerank questions.
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Given a question from the user regarding a visual feature of an organism (animal, plant, etc.), answer
it using systematic reasoning. You will be provided with one or more images that may contain the key
information for answering the question. Your output should consist of two parts.

1. Reasoning:

- Look at the image carefully. Pick out the feature that can help you correctly answer the question.
- If no useful information can be inferred from the image, you should summarize your own knowledge
related to the question.

- If the image contradicts your own knowledge, you should trust the image.

- If the image is blurry, you should summarize your own knowledge related to the question.

2. Answer:
- Only your conclusion that directly answers the question.
- No need to repeat the reasoning.

Please always follow the answer format without bolding texts: "### Reasoning: {reasoning}\n### Answer:
{your_answer}"

Figure 6: Prompt for VQA on Visual-RAG.

You are a model that rigorously answers a question that compares a visual feature of two organisms
(animal, plant, etc.) using systematic reasoning. You will be provided with one or more images of both
organisms that may contain the key information for answering the question. Your output should consist
of two parts.

1. Reasoning:

- Look at the images carefully. Pick out the features that can help you correctly answer the question.
- If no useful information can be inferred from the image, you should summarize your own knowledge
related to the organism.

- If the image contradicts your own knowledge, you should trust the image.

- If the image is blurry, you should summarize your own knowledge related to the question.

- Then, compare the features of the two organisms and reason through the question step by step.

- Finally, conclude your reasoning with a verification step that confirms the correctness of your answer
based on the evidence you have gathered.

2. Answer:
- Only your conclusion that directly answers the question.
- No need to repeat the reasoning.

Please always follow the answer format without bolding texts: "#i## Reasoning: {reasoning}\n### Answer:
{your_answer}"

Figure 7: Prompt for VQA on Visual-RAG-ME.
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Please evaluate the answer to a question, score from @ to 1. The reference answer is provided, and
the reference is usually short phrases or a single keyword. If the student answer is containing the
keywords or similar expressions (including similar color), without any additional guessed information,
it is full correct. If the student answer have missed some important part in the reference answer,
please assign partial score. Usually, when there are 2 key features and only 1 is being answered,
assign 0.5 score; if there are more than 2 key features, adjust partial score by ratio of correctly
answered key feature. The reference answer can be in the form of a Python list, in this case, any one
of the list item is correct.

If student answer contain irrelevant information not related to question, mark it with "Redundant”,
but it does not affect score if related part are correct. (e.g. Question: what shape is leave of
Sanguinaria canadensis, Student Answer: shape is xxx, color is yyy, this is Redundant answer)

If student answer contain features not listed in reference answer, mark it with "Likely Hallucination”
and deduct 0.5 score. (e.g., Reference Answer: black and white. Student Answer: black white, with
yellow dots, “yellow dots” is not mentioned in reference). The reference answer sometimes contains an
add-on enclosed by brackets (), to help verifying hallucinations (e.g.: “shape is xxx (color is yyy)”).
Not mentioning add-on information in answer is not considered wrong. Answering "I don’t know"”, "Not
enough information” is considered wrong.

Format Instructions: Separate the remarks with score using "|", that is, use the syntax of: "Score:
{score} | Likely Hallucination”, "Score: {score}", "Score: {score} | Likely Hallucination | Redundant”.
If any explanation on why giving the score is needed, do not start a new line and append after remark
with brackets, e.g. "Score: {score} | Redundant | (Explanation: abc)".

Following are few examples:

Question: Is there any specific color marking around the eyes of a semipalmated plover (scientific
name: Charadrius semipalmatus)?

Reference Answer: black eye-round feather, white stripe above eyes. (sometimes connected to the white
forehead)

Student Answer: Yes, the bird has a distinctive black line that runs through the eye, which is a key
identifying feature.
Score: @ | Likely Hallucination

Student Answer: They have a black vertical band in front of the eye, a white band above the eye, and a
single black band that wraps partially around the eye, creating a partial "mask” appearance.
Score: 1

Student Answer: Yes, the semipalmated plover has a distinctive black/dark ring around its eye, surrounded
by a bright white ring or patch
Score: 0.5 | Likely Hallucination (Explanation: not white ring, but only a line above the eye)

Question: What is the typical color of the antennae of Harris’s checkerspot butterfly (scientific name:
Chlosyne harrisii)?
Reference Answer: alternating black and white band, with yellow on the tip

Student Answer: The antennae of Harris’s checkerspot butterfly are black with orange-tipped clubs.
Score: 0.5 (Explanation: not mentioning black and white)

Student Answer: The typical color of the antennae of Harris’s checkerspot butterfly is black with white
spots.
Score: 0.5 | Likely Hallucination (Explanation: not white spot but band. Not mentioning the tip)

Question: Are the leaves of burro-weed (scientific name: Ambrosia dumosa) usually covered in small
hairs?

Reference Answer: yes

Student Answer: Yes, the leaves of burro-weed (Ambrosia dumosa) are typically covered in small hairs,
giving them a grayish or whitish-green appearance.

Score: 1 | Redundant

Now, score the following question:

Question: {question}
Reference Answer: {reference_answer}

Student Answer: {model_answer}

Figure 8: Prompt for the LLM VQA judge used for Visual-RAG and Visual-RAG-ME.
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