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1 INTRODUCTION

Blood pressure (BP) increases throughout life, and is controlled by several feedback mechanisms
in mammals. Therefore, high resolution BP data may contain information related to the health and
functionality of those systems, and the organism as a whole (Parati et al., 2023). Today, time series
data like heart rate (Zhou et al., 2016) & (Fujiwara et al., 2016), 3D accelerometry (Le Goallec et al.,
2023), EEG (Engemann et al., 2022), and ECG (Lima et al., 2021) are being successfully used to
predict the onset/diagnosis of various diseases, and the occurrence of disease episodes. We believe
BP data has the potential to achieve similar results.

Using surface-level measures like standard deviation and coefficient of variation (dispersion), ap-
proximate entropy and sample entropy (entropy), indices of detrended fluctuation analysis, and fre-
quency domain analysis did not succeed in classifying age using BP data (Bakkar et al., 2021) &
(Fares et al., 2022). According to (Martinez-Rı́os et al., 2021), various shallow and deep learning
methods have been extensively used on BP data to predict the class of established hypertension. As
far as we know, there is little to no work done on the use of blood pressure data to estimate age
among other physiological data, as well as diagnosing diseases other than hypertension.

2 METHODS

We collected beat-to-beat BP data from rats of different age groups, and attempted to classify their
age (Young; 12-weeks vs. old; 24-weeks) using a 5-layer ConvNet. BP data were systematically
down-sampled, and spectrograms were computed (Figure 1A) before being fed into the ConvNet.
Saliency maps were generated to help understand the frequency and pixel utilization of 100 Hz BP
data. Methods are discussed at length in appendix A.

3 RESULTS

Classification performance exceeded 90% at all BP sampling rates, and improved relatively as the
sample rate increased, with the exception of the slight decrease in performance at 90 Hz sample rate
(Figure 1B). In the 100 Hz BP data (Figures 1C and 1D), we observed that lower frequencies were
utilized the most by the model, but the difference in utilization between frequencies was minute.
Higher frequency components appear to contribute less but nonetheless could point to previously
unknown spectro-temporal patterns that the model identifies for age classification.
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Figure 1: A: A sample spectrogram of a 12-week old rat. B: Model performance over BP sample
rates 40-140 Hz. C: Saliency map of the same rat. D: Time-averaged saliency against frequency
values in the 100 Hz sample rate BP data.
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A APPENDIX: METHODS

A.1 ANIMAL SUBJECTS, AND DATA EXTRACTION

Here, we evaluate the capacity of a machine learning, convolutional neural network (CNN) in clas-
sifying arterial pressure signals collected from young vs. old rats. Four- to five-week-old Sprague
Dawley (n = 139), male or female rats were fed a high-calorie or a normal diet for 12 or 24 weeks,
representing young vs. old rats, respectively. A subset of female rats (n=12) underwent ovariectomy
(removal of the ovaries); 6 of which were supplemented with estrogen, and another subset of male
rats (n = 6) underwent myocardial infarction induction. At weeks 12 or 24, anesthetized rats were
instrumented for invasive hemodynamics monitoring via a pressure transducer inserted through the
carotid artery. Beat-to-beat arterial pressure signals of length 300 seconds were collected for each
rat at a 1000 Hz sample rate. Age classification was carried on this heterogeneous population to
simulate real-world data.

A.2 MODEL ARCHITECTURE

Our model consisted of five convolutional layers, separated each by batch normalization, Re-LU
activation, and max pooling. The outcome of the 5th convolutional layer had 40% of data dropped
out and was delivered to a fully connected layer and then to a softmax function. The model utilized
cross entropy for a loss function and Adam for an optimization function.

A.3 DATA PREPROCESSING AND THE MODELING PROCESS

To understand the effect of sample rate on classification performance, we systematically down-
sampled the blood pressure data from 1000 Hz to 40-140 Hz (10 Hz increments from 40-100 Hz,
120 Hz and 140 Hz), and each sample rate was modeled independently for 10 times using different
random seeds (producing a total of 90 runs). For each run, time series BP data were sliced into 16.67s
bins, and Fourier-transformed to form a library of spectrograms for each age group. The model was
run on each sample rate, and evaluated using classification accuracy, AUROC, and AUPRC. Models
were trained for 30 epochs each, with a batch size of 25, 0.00005 learning rate, and no regularization.
Eighty percent of the data were randomly allocated for training and 10% each for validation and
testing.
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A.4 SALIENCY MAPS

We used the model trained on 100 Hz sample rate BP data to backpropagate the model accuracy
score of the spectrograms, producing heat maps of the gradients of each pixel, which represent the
degree to which they were utilized during the classification process. We then averaged all saliency
maps into a single heat map to understand the patterns of pixel utilization across all spectrograms,
and averaged all pixel columns across all saliency maps to investigate common patterns of frequency
utilization.
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