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Abstract

Modern large language models (LLMs) achieve
impressive performance on some tasks, while
exhibiting distinctly non-human-like behaviors
on others. This raises the question of how well
the LLM’s learned representations align with
human representations. In this work, we intro-
duce a novel approach to study representation
alignment: we adopt a method from research on
activation steering to identify neurons responsi-
ble for specific concepts (e.g., “cat”) and then
analyze the corresponding activation patterns.
We find that LLM representations captured this
way closely align with human representations
inferred from behavioral data, matching inter-
human alignment levels. Our approach signifi-
cantly outperforms the alignment captured by
word embeddings, which have been the focus
of prior work on human-LLM alignment. Addi-
tionally, our approach enables a more granular
view of how LLMs represent concepts — we
show that LLMs organize concepts in a way
that mirrors human concept organization.

1 Introduction

Large language models (LLMs) exhibit impressive
performance on a variety of tasks from text sum-
marization (Basyal and Sanghvi, 2023; Jin et al.,
2024) to zero-shot common-sense reasoning (Park
et al., 2024; Shwartz et al., 2020), and are increas-
ingly deployed as a human proxy (Just et al., 2024;
Klissarov et al., 2023; Cui et al., 2024; Peng et al.,
2024). At the same time, there is a growing body
of evidence suggesting that LLMs exhibit patterns
of behavior distinctly different from humans such
as hallucinating information (Bubeck et al., 2023;
Lin et al., 2022) or memorizing complex patterns
to solve reasoning tasks (Ullman, 2023). Such
behaviors raise the question of how closely the con-
ceptual representations learned by these models
align with human conceptual representations, as
safe and trustworthy deployment of LLMs requires

such alignment. Unveiling aspects of representa-
tion alignment and understanding how to foster it
can help us identify and mitigate misaligned LLM
behaviors, increasing model trust and safety (Ope-
nAl et al., 2024; Shen et al., 2024).

Prior work has examined the relationship be-
tween human-perceived similarity among concepts
(i.e., word/image meaning) and various model-
based measures of similarity, such as confidence
(Shaki et al., 2023) or the embedding distance
(Bruni et al., 2012; Digutsch and Kosinski, 2023;
Muttenthaler et al., 2023). While there is a large
body of work on alignment in traditional NLP
models (Auguste et al., 2017; Ettinger and Linzen,
2016; Ruan et al., 2016; Sggaard, 2016) such as
GIoVE (Pennington et al., 2014) or Word2Vec
(Mikolov et al., 2013), alignment in LLMs has
proved hard to capture. Prompting approaches pro-
vide inconsistent results (Shaki et al., 2023); con-
text can have unintuitive influences on alignment
(Misra et al., 2020) and single-word embeddings do
not fully capture LLM representations. Addition-
ally, approaches relying on embedding similarity
or model responses suffer from a major limitation:
they do not reveal where in the model the concepts
are stored and make it difficult to draw conclusions
beyond coarse alignment. For example, the cosine
distance between embeddings might indicate that
“animal” and “dog” are more similar than “animal”
and “daffodil”, but it can not tell us if “dog” and
“animal” share the same neurons, limiting our abil-
ity to understand the model’s concept organization.

Here, we propose a novel way to study human —
LLM alignment in concept representation. We bor-
row a method from activation steering (Suau et al.,
2023, 2024; Rodriguez et al., 2025), to identify
which neurons are most responsible for processing
and understanding a particular concept, so-called
expert neurons. This approach was originally in-
troduced with the goal of directing LLM outputs
towards a desired direction (e.g., reducing toxicity).



Specifically, it has been shown that expert neu-
rons play a causal role in the generation of outputs
semantically related to the concept they encode.
For instance, activating the expert neurons for the
concept “dog” steers the model to generate text
consistent with it (Suau et al., 2023); conversely,
suppressing the experts for toxicity generates less
toxic text (Suau et al., 2024).

We investigate a novel application of this ap-
proach as a technique to achieve model inter-
pretability. Specifically, we show that the neurons
discovered with this method provide information
about how models represent concepts and capture
the dimensions meaningful to humans, providing
a reliable method to test model alignment. In ad-
dition, this approach enables us not only to mea-
sure alignment between human and model repre-
sentations, but also to explore additional questions,
such as whether LLLMs organize concepts in a way
that mirrors human conceptual organization (e.g.,
if “dog”, “cat”, “cheetah” , and “animal” share a
consistent set of neurons). We also track how align-
ment evolves during training for different model
sizes, shedding light on the impact of model ca-
pacity on the development of aligned representa-
tions — an aspect largely overlooked in previous
work on text-based models (Shen et al., 2024; Wei
et al., 2022). Ultimately, understanding the factors
that lead to mis-alignment can provide valuable
insight for designing interventions targeted at guid-
ing model behaviors towards human-like solutions
and enhancing their transparency (Fel et al., 2022;
Peterson et al., 2018; Toneva, 2022).

In our experiments, we focus on causal LLMs us-
ing the Pythia models (70m, 1b and 12b) for which
multiple training checkpoints are publicly available
(Biderman et al., 2023). Given a diverse set of con-
cepts across multiple domains (see Sec. 3.2), we
identify each LLM’s corresponding expert neurons.
We measure their similarity at the LLM level as
the amount of overlap between the expert neurons.
We measure alignment in two tasks. First, we look
at whether expert overlap is predictive of human-
perceived concept similarity. Second, we ask if the
alignment goes beyond simple pairwise similarities
— specifically, whether LLMs organize concepts
in a way that mirrors human conceptual structures
(Rosch, 1978). Finally, we study how the model’s
concept representations develop through training.

Our results show that human-LLM represen-
tation alignment matches inter-human alignment,
which is not detectable with prior approaches re-

lying on embedding distance. Our contributions
are:

1. We show that a method used to identify expert
neurons reliably captures concept representa-
tions in LLMs and is stable across models and
datasets.

2. We show that the representations captured
with this approach align closely with human
representations matching inter-human align-
ment, both at the level of concept similarity
and in terms of concept organization.

3. We provide an analysis of how human-model
alignment evolves with model training and
depends on model capacity. Such alignment
emerges early in training, with model size
playing only a small role.

2 Related work

Representation alignment Studies on the kinds
of representations used by humans and machines
have been of interest to many fields (e.g., cogni-
tive science, neuroscience, and machine learning;
Hebart et al., 2020; Khosla and Wehbe, 2022; Mut-
tenthaler et al., 2023; Tian et al., 2022; Sggaard,
2016). Studies on representation alignment (Su-
cholutsky et al., 2024) look specifically at the ex-
tent to which the internal representations of hu-
mans and neural networks converge on a similar
structure. Across vision and text domains, mod-
els show notable alignment with human similar-
ity judgments — typically used as a window into
human representational structures. Peterson et al.
(2018) report significant alignment between human
similarity judgments and representations of object
classification networks. In the vision domain, Mut-
tenthaler et al. (2023) find that while the training
dataset and objective function impact alignment,
model scale and architecture have no significant
effect. To our knowledge, there are no investiga-
tions of the influences of model size on alignment
specifically in LLMs. Additionally, reliably captur-
ing human-LLM alignment has proven hard. Shaki
et al. (2023) prompt GPT-3 (Brown et al., 2020) and
use response confidence as a measure of LLM rep-
resentation, which they relate to human behavioral
measures. However, they find the approach highly
unreliable — small variations in the prompt lead
to large changes in alignment. Misra et al. (2020)
show that BERT (Devlin et al., 2019) can get dis-
tracted by context, assigning lower probability to



related concepts. Digutsch and Kosinski (2023)
operationalize LLM concept similarity as the co-
sine similarity between single word representations
extracted from the embeddings matrix. While they
find that this measure predicts human-perceived
similarity of the concept pair, it is unclear how this
method can be scaled to study human-LLM align-
ment between more complex concepts like toxicity
that cannot be represented as single words. Thus,
despite the increasing interest in human-LLM align-
ment, reliable methods to study alignment are still
lacking.

Activation steering refers to a class of methods
that intervene on a generative model’s activations
to perform targeted updates for controllable genera-
tion (Rodriguez et al., 2025; Li et al., 2024; Rimsky
etal., 2024). Suau et al. (2023) propose a method to
identify sets of neurons in pre-trained transformer
models that are responsible for detecting inputs
in a specific style (Suau et al., 2024, e.g., toxic
language) or about a specific concept (Suau et al.,
2023, e.g., “dog”). Intervening on the expert neu-
ron activations successfully guides text generation
into the desired direction. In a similar spirit, Turner
et al. (2024) use a contrastive prompt to induce sen-
timent shift and detoxification, while Kojima et al.
(2024) steer multilingual models to produce more
target language tokens in open-ended generation.
Finally, Rodriguez et al. (2025) introduce a unified
approach to steer activations in LLMs and diffusion
models based on optimal transport theory. Overall,
work on activation steering demonstrates that it is
possible to find expert neurons and use them to
steer model activations towards a desired direction,
thus demonstrating the causal role of these neurons.
What we do not know is whether the set of identi-
fied expert neurons is stable across inputs (see Sec.
4) and, if so, whether these representations mirror
human knowledge structure.

3 Methods

3.1 Finding expert neurons

We adopt the finding experts approach introduced
by Suau et al. (2023) for activation steering, to
study representational alignment. Our motivation
is two-fold: a) this approach has been successfully
applied to detect neurons responsible for everyday
concepts like “dog”, which is the focus of this work;
and b) it is able to distinguish the different senses of
a homophone (e.g., “apple” as a fruit or company),

suggesting that this method is able to pick up fine-
grained semantic distinctions.

In this approach, a concept c is defined through
a set of example sentences N = N + N, where
N is a set of sentences that contain ¢ (henceforth
positive set) and N is a set of sentences that do
not contain ¢ (henceforth negative set). Next, we
obtain the activations 2¢, = {zfm}jil for every
neuron m in the model in response to the inputs
from both sets of sentences. zf, is then treated
as a prediction score for the presence of ¢, since
we know the ground truth label. The performance
of each neuron as a classifier for the concept (i.e.,
its expertise) is measured as the area under the
precision-recall curve (AP) on this task. We calcu-
late the AP score for all units. To be agnostic with
respect to the sequence length, the output of each
layer is max-pooled across the temporal dimension.
Formulated this way, the experts approach has sev-
eral advantages: as discussed above, it is sensitive
to context and can distinguish different senses of a
homophone; it can also capture concepts that can-
not be represented in one word such as toxicity
(Suau et al., 2024).

We consider neurons with an AP score above a
given threshold, 7, for a concept to be expert neu-
rons for that concept. 7 can be thought of as quality
of an expert neuron — the larger the value of 7,
the more expert a neuron is for a given concept. In
our experiments, we consider a range of values for
7 € [0.5,0.9] from a low (classification accuracy
above chance) to a high level of expertise.

3.2 Data

To understand the alignment between human and
model representations, we examine how patterns
in expert neurons relate to perceived concept simi-
larity in humans. We obtain human similarity judg-
ments from two datasets: the MEN dataset (Bruni
et al., 2014), which contains 3, 000 word pairs an-
notated with human-assigned similarity judgments
crowd-sourced from Amazon Mechanical Turk,
and the Semantic Priming Project (hereafter, SPP),
a database of behavioral measures for related and
unrelated word pairs (Hutchison et al., 2013).

For each concept under consideration, we gen-
erate a set of sentences containing that concept.
To ensure dataset diversity, half of each positive
dataset is generated with a prompt eliciting story
descriptions and half of the dataset is generated
with a prompt eliciting factual descriptions of the
target concept (the prompts, along with sample



generations, are provided in App. A). The negative
sets are sampled from the datasets for the remain-
ing non-target concepts (e.g., if we are considering
1000 concepts, one of which is “cat”, the nega-
tive set is sampled from 999 concepts excluding
“cat”). For dataset generation, we experiment with
three models of different performance levels: GPT-
4 (OpenAl et al., 2024), Mistral-7b-Instruct-v0.2
(Jiang et al., 2023), and an internal 80b-chat model.

For the case study in concept organization in
LLMs (Sec. 5), we manually generate lists of ten
domains with four concepts per domain (e.g., the
domain “animal” containing concepts “cat”, “dog”,
“cheetah”’, and “horse”; the full set of domains and
concepts is provided in App. E). We choose not to
use WordNet (Miller, 1994) — a lexical database
of English — because of drawbacks identified in
its hierarchical structure, which often make the
concept relationships it presents unintuitive (for a
discussion, see Gangemi et al., 2001).

3.3 Models

To ensure that the hyper-parameters are not bi-
ased towards the particular models we are intro-
specting, we use different models for selecting the
hyper-paramenters and the main experiments. We
use GPT-2 (Radford et al., 2019) to select hyper-
parameters (e.g., the size of a positive and negative
datasets) and validate that our data identifies a sta-
ble set of experts (see Sec. 4 for details). For all
other experiments, we use models from the Pythia
family (Biderman et al., 2023), specifically focus-
ing on model sizes 70m (smallest), 1b, and 12b
(largest), to understand the impact of model size on
representational alignment. The size of each model
is connected to its performance (see App. G for
accuracy across the standard benchmarks).

For each model, we work with checkpoints 1,
512, 1k, 4k, 36k, 72k, and 143k, to track how rep-
resentational alignment develops throughout train-
ing. All Pythia models were trained on the same
data presented in the same order, allowing us to
evaluate the impact of model size and number of
training steps on representational alignment while
controlling for the data.

4 Can we reliably identify experts?

While the success of expert-based methods at steer-
ing model activations is well-documented (Suau
et al., 2023, 2024), our interest is in studying
model representations through the patterns in ex-

perts. Given the novel application of the method,
we conduct a pilot study to explore the impact of
dataset size, the model used to generate the dataset,
and the exact sentences used to represent a concept
on the stability of the discovered expert sets.

For the pilot study, we sample 50 word pairs
from the training split of the MEN dataset. For each
concept in the word pair, we generate a positive
set containing 7000 sentences from three models:
GPT-4, Mistral-7b-Instruct-v0.2, and an internal
80b-chat model. We sweep over positive set sizes
of 100, 200, 300, 400, and 500 sentences, and nega-
tive set sizes of 1000 and 2000 sentences. For each
positive and negative set combination, we repeat
expert extraction eight times (folds) with the sets
randomly sampled from the full pool of sentences.
We examine how sensitive the discovered experts
are to the specific slice of the positive and negative
sets (the 8 folds). We measure sensitivity in terms
of the stability in experts across the folds, where
high stability occurs when there is large overlap in
the experts across folds. To assess overlap, we look
at Jaccard similarity between expert sets across
folds, using a range of thresholds 7.

The findings are shown in Fig. 1 for each dataset
configuration (subplot) and value of 7 (x-axis). The
expert neurons discovered across different data con-
figurations and folds (indicated by the error bars)
are stable, as indicated by a high (~ 0.8) overlap
proportion, and show little sensitivity to our ma-
nipulations. Interestingly, the LLM (line color)
used to generate the probing dataset matters lit-
tle — while stronger models generate more diverse
datasets (mean type/token ratio of 0.34, 0.21 and
0.18 for GPT-4, internal 80b-chat, and Mistral-7b-
Instruct-v0.2 respectively), resulting in a somewhat
higher expert overlap, the gain is too small to war-
rant their increased cost. Expert overlap increases
with every increase in the size of the positive set,
but the increases are small beyond 300 sentences,
and performance for 400 sentences is virtually in-
distinguishable from 500 sentences. Interestingly,
a larger negative set results in lower expert over-
lap at higher 7 values and an increased variability
across folds. One reason could be that as the size
of the negative set increases so does the probabil-
ity of the negative set containing sentences related
to the target concept (e.g., a sentence about “cats”
may also talk about “dogs”). A second explanation
could be that the larger negative set activates more
polysemous neurons. Based on these findings, we
conduct all subsequent analyses with a positive set
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Figure 1: Expert discovery is relatively stable across various dataset characteristics. Points represent condition
means; error bars represent bootstrapped 95% confidence intervals. Columns and rows represent the size (number
of unique sentences) of the positive and negative sets respectively. Inter-concept is within-concept expert overlap;
intra-concept is expert overlap averaged across randomly sampled pairs of concepts. See App. C for corresponding

expert set sizes.

of 400 sentences and a negative set of 1000 sen-
tences, all generated with Mistral-7b-Instruct-v0.2.

5 Are model and human representations
aligned?

We now turn to the main question of our study
— whether expert neurons capture semantic infor-
mation meaningful to humans. We measure the
alignment between LLM and human representa-
tions as the correlation between the human versus
the LLM’s similarity score for each pair of concepts
in the test split of the MEN data (1000 pairs). The
LLM’s similarity score is the Jaccard similarity be-
tween expert sets for 7 € {0.5,0.6,0.7,0.8,0.9}.
In App. D, we consider cosine similarity between
the raw AP values as an LLM similarity score, find-
ing similar correlations to those obtained with Jac-
card similarity (7 = 0.5), suggesting that what
matters most for alignment is not the magnitude
of the AP value, but rather whether it is above or
below 0.5 (i.e., whether the neuron is positively
or negatively associated with the concept). We
also analyze human-LLM alignment using the SPP
dataset (see App. B) and demonstrate that our find-
ing generalize beyond the MEN dataset.

Expert neuron overlap is highly aligned with hu-
man similarity judgments We find that model
representations are closely aligned with humans,
with the highest alignment occurring at 7 = 0.5.
At the final checkpoint, the Spearman correlations
between expert overlap (7 = 0.5) and MEN sim-
ilarity are 0.70, 0.77, 0.79 for 70m, 1b, and 12b
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Figure 2: Model representations of similarity are closely
aligned with human ones. Points are Spearman correla-
tions between the expert neuron overlap and perceived
human similarity in the MEN dataset (significant after
checkpoint 1, p<0.05); error bars are bootstrapped 95%
confidence intervals. The subplots are 7.

respectively. For reference, agreement between
humans has a correlation of 0.84. Interestingly,
model size has a small impact on this alignment
(in line with findings in vision from Muttenthaler
et al., 2023): the 1b and 12b models are virtually
indistinguishable, with the 70m model slightly less
aligned. The models start diverging in how well
aligned they are with humans as 7 increases, with
larger models being more aligned. This is because
smaller models have fewer experts (see Fig. 5) re-
sulting in a lot of empty expert set intersections for
higher levels of 7.

Word embeddings are less aligned than expert
sets Prior work has focused on the analysis of
embeddings when considering alignment in LLM
and human representations (Digutsch and Kosinski,
2023). We hypothesize that expert sets are more



correlated with human representations than word
embeddings as they disambiguate different word
senses (Suau et al., 2023). To test this, we extract
the embeddings for each word in the MEN test
split from the embedding layer in line with prior
work (Digutsch and Kosinski, 2023) and, follow-
ing the standard approach, from the final hidden
layer of the three Pythia models at each check-
point and compute cosine similarity between the
embeddings for each word pair in the MEN test
split. We then correlate the cosine similarity with
the MEN judgements. These correlations are statis-
tically significant (p<0.05) for the embedding layer
starting at checkpoints 1k and 4k for the 70m/1b
and the 12b models respectively and for the hidden
layer starting at checkpoint 512 for all model sizes
(see Fig. 3), consistent with prior work (Digutsch
and Kosinski, 2023). However, as expected un-
der our hypothesis, the correlations with human
similarity are significantly lower for both types of
single word embeddings compared to the experts
(p-values<0.0001 comparing the alignment based
on experts vs. either embeddings types). In addi-
tion, while the magnitude of the correlations across
the two embeddings types is similar, the patterns
of alignment change — for the embedding layer,
the alignment stably grows over training while the
pattern of alignment in the final layer embeddings
is unstable across checkpoints. Moreover, the two
types of embeddings disagree on which model size
is more aligned with humans. Thus, single word
embeddings are not only less aligned with humans
than experts but are also highly sensitive to hyper-
parameters.

LLM’s concept organization mirrors human
conceptual structure Having established that
the expert overlap is predictive of human-perceived
concept similarity, we ask whether the experts
capture a broader human-interpretable represen-
tation of concepts that goes beyond pairwise
(dis)similarity. Specifically, we ask if the con-
cepts are clustered in the expert space in a way that
aligns with human-interpretable knowledge struc-
tures. Humans organize concepts into domains
(Graf et al., 2016; Murphy, 2004; Rosch, 1978).
For example, “dog”, “cat” and “horse” are all ani-
mals and “bike”, “bus”, and “car” are all vehicles.
This raises the question of whether models organize
concepts in a similar way. To assess this, we con-
sider a list of domains we generated (see Sec. 3.2
and App. E), the experts associated with each con-
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Figure 3: Spearman correlations between embedding
cosine similarity and perceived human similarity in the
MEN dataset. Error bars are bootstrapped 95% con-
fidence intervals. Subplots indicate the layer the em-
beddings were extracted from. The correlations are
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cept in the list (7=0.5), and their reciprocal overlap.
For this analysis, we only consider the final (143k)
checkpoint. We discuss Pythia 12b in the main text
and present other model sizes in App. F.
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Figure 4: Similarity of concept representations in the
LLM, based on expert overlap. Each node represents
a concept; edge thickness corresponds to the degree of
reciprocal expert overlap between concepts.

Fig. 4 provides a visualization of the concept
structure in the expert space, revealing a clear do-
main organization: concepts belonging to the same
domain are strongly associated (e.g., all color terms
are connected to each other, but not to other do-
mains), while cross-domain associations are no-
tably sparser. This is consistent with the findings
on representation alignment discussed in Sec. 5,
demonstrating that concept pairs perceived as sim-
ilar by humans show higher expert overlap com-
pared to dissimilar concept pairs. On top of that,



Fig. 4 shows meaningful between-domain connec-
tions unveiled by the study of expert sets. For
instance, while “driver” is an occupation, its expert
set is also strongly associated with “bus” or “ve-
hicle”. Similarly, “racing” connects the sports do-
main with the vehicles domain. Finally, looking at
the internal organization of the domains, we notice
that broader concepts (e.g., “vehicle” or “animal’)
tend to show weaker overlap with specific instances
in their domain compared to the overlap between
closely related specific concepts, e.g., “motorcycle”
and “bicycle”, or “dog” and “cat”. This may re-
flect distributional factors, with narrower concepts
exhibiting stronger co-occurrence patterns.

To quantify whether domain structures emerge in
the LLM’s knowledge representation, we propose
that, if the model organizes concepts in human-
interpretable domains, concepts from the same do-
main (e.g., “dog”, “cat”, “horse”, and “cheetah”)
should share a consistent set of experts, and some
of these shared experts should also be associated
with the broader concept describing the domain
(e.g., “animal” in our example). Our results reveal
a clear and systematic pattern: within each domain,
a consistent set of expert neurons is shared across
all associated concepts. On average, 2.24% of the
experts identified across all concepts in a domain
are jointly shared among them. Notably, 58.45%
of this shared core is also shared by the broader
concept representing the domain (see App. F for
the complete result set). To validate the signifi-
cance of our findings, we compare them against a
baseline in which domain groupings are randomly
sampled (e.g., associating “animal” with “jacket”,
“liver”, “doctor”, and “red”). In this case, the over-
lap among expert sets drops significantly (average
0.01% and 5.81% of shared neurons for all con-
cepts and by the broader concept respectively, p-
values <0.001) confirming that the structure we
observe is unlikely due to chance.

Overall, our findings suggest that the experts ap-
proach captures human-interpretable domain-level
structures beyond simple word pair similarity.

6 Characterizing model knowledge

We conclude with characterizing the differences in
experts as a function of model size and stage of
training, by reanalyzing the data from Sec. 5.

Experts are learned from the data, with larger
models having more experts Larger models al-
locate more experts to a given concept (see Fig. 5;

the pattern does not change after scaling the raw
number of experts by the number of neurons in
the model). As 7 increases and experts become
more specialized, fewer experts are identified; the
drop is more pronounced for smaller models. Over-
all, larger models have a greater capacity to learn
a higher number of experts and a higher number
of more specialized experts. This increased spe-
cialization may contribute to finer-grained concept
representations and ultimately better performance
on downstream tasks.

Interestingly, we observe a large number of ex-
perts at checkpoint 1, followed by a drop and then
a steady gradual increase in the number of experts
as training continues. This is expected from the
perspective of language modeling as compression
(Shwartz-Ziv and Tishby, 2017; Delétang et al.,
2024). Early in training, the model discovers a
large number of experts. While they are not yet
meaningful (indicated by non-significant correla-
tion with human similarity), they ensure the model
can efficiently allocate representational capacity
for later in training. As the model starts learning
the relevant relationships, the number of experts
drops (checkpoint 512) and then slowly recovers
as the model continues learning (checkpoint 1k on-
wards). As training continues, the experts become
more and more meaningful, as evidenced by the in-
creasing correlation between the expert overlap and
human similarity judgments. The idea that experts
are learned from training data is further supported
by the finding of a mode of 0 experts in all models
initialized with random weights.
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Figure 5: Expert set size (log) by model size and check-
point. Points are averages over all concepts; error bars
are bootstrapped 95% confidence intervals. Subplots
are different values of 7.

More specialized experts take longer to learn
We next look at the dynamics of learning experts
across checkpoints. We calculate expert overlap
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Figure 6: Proportion of expert overlap across subsequent
checkpoints (e.g., 1_to_512 is overlap between check-
points 1 and 512). Points are across concept averages;
error bars are bootstrapped 95% confidence intervals.
Subplots are different values of .

(Jaccard similarity) for each concept across subse-
quent checkpoints in our data. The stability of the
discovered expert set grows as training progresses
(Fig. 6). Early in training (prior to step 36k), ex-
pert overlap between subsequent checkpoints is low
across model sizes, suggesting that semantic knowl-
edge has not been acquired yet. As 7 increases (cor-
responding to higher expert specialization), it takes
longer for the expert set to stabilize, suggesting that
higher-quality experts take longer to learn.

More experts are found in MLPs and deeper
layers Pythia models consist of intertwined self-
attention and MLP layers (Biderman et al., 2023)
each serving different functions (Geva et al., 2021;
Jawahar et al., 2019; Liu et al., 2019). We ana-
lyze the distribution of experts within these layers.
Fig. 7a shows the patterns for Pythia 12b (7=0.5).
More experts are located in the MLP layers com-
pared with attention layers, with the relative allo-
cations stabilizing at checkpoint 4k. We see the
same trend in smaller models (App. H.1) after con-
trolling for the number of neurons in the respective
layers. The mean number of experts generally in-
creases with layer depth in MLPs, with checkpoint
4k again displaying the first recognizable structure
(see Fig. 7b and App. H.2). For attention layers,
high numbers of experts are located in deep layers
and, interestingly, the first layer (see App. H.3).
Of note, if we look only at highly specialized ex-
perts (7>=0.9), we find higher numbers of experts
in earlier layers (see App. H.8 and H.9), reproduc-
ing patterns identified in Suau et al. (2020). Our
findings align with prior research on the role of
layers at different depths, identifying deeper layers
as responsible for processing higher-level semantic
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Figure 7: Pythia 12b. (a) Total number of experts in
MLP and attention layers across checkpoints; (b) Aver-
age number of experts in MLP layers at different depths,
for different checkpoints.

knowledge captured by expert neurons (Geva et al.,
2021; Jawahar et al., 2019). Of note, we find no dif-
ference in these patterns for concepts with broader
vs narrower meanings (e.g., “animal” vs. “dog”),
see App. I and App. J, suggesting that LLMs do not
differentiate between generic and specific concepts
based on where resources are specialized for them.

7 Conclusion

We present a novel approach to study alignment
between human and model representations based
on the patterns in expert neurons. Representations
captured by these neurons align with human rep-
resentations significantly more than word embed-
dings, and approach human alignment levels. Con-
sistent with prior work in vision, (Muttenthaler
et al., 2023), we find that model size has little in-
fluence on alignment.

Our approach reveals that models generally or-
ganize concepts into human-interpretable domains.
Some domains are more structured than others, and
this pattern remains consistent across model sizes.
We leave it to future work to investigate factors
that could give rise to this pattern, such as the fre-
quency of each domain in the training data. We
hope that this work will serve as a foundation for
future research not only on alignment, but also at
the intersection of cognitive science and Al theory,
exploring whether fundamental cognitive princi-
ples (Murphy, 2004; Margolis and Laurence, 2003)
are reflected in neural network representations.



8 Limitations

We consider only a simple case of similarity
Consistent with prior work (Digutsch and Kosinski,
2023; Shaki et al., 2023; Misra et al., 2020), we
study alignment between human and model rep-
resentations, which we operationalize as the simi-
larity between two concepts. We find that model
size does not play a large role in alignment: even
models as small as 70m excel in this alignment
test. While this finding is consistent with previous
literature (Muttenthaler et al., 2023) and replicated
over two datasets, it is also possible that our task
is too simple to distinguish between the models.
This is supported by the observations that semantic
relationships studied here start emerging early in
training (around checkpoint 4k out of 143k). Fu-
ture work will consider more complex cases of
alignment, such as alignment with human values
or preferences.

We do not study patterns in expert neurons
through activating these neurons Our interest
is in exploring whether the discovered neurons cap-
ture the dimensions meaningful to humans, and to
this end we look at alignment. Note that, given our
research question, simply activating a concept (i.e.,
what the method is designed to do) is of limited
interest. In contrast, activating the expert intersec-
tion between two concepts—for which the method
was not originally designed nor tested— may be a
meaningful exploration to better understand con-
cept representation. For instance, we could have
activated the shared experts between “animal” and
“dog” and examined model generations after the ac-
tivation. We chose not to do this for the following
reason: the approach we are using requires choos-
ing the number of experts and the original work
(Suau et al., 2023) has shown that this choice im-
pacts the quality of generations and the degree to
which a concept is expressed — an effect that we
also observed in our preliminary investigations. We
leave such hyper-parameter search to future work:
a priori, we do not have a clear hypothesis about
whether activating more specialized experts vs. less
specialized ones within the intersection would lead
to distinct generation patterns; or if any discernible
pattern in those generations should be expected
at all. Given these uncertainties, we did not feel
confident that this analysis would yield reliable re-
sults. Other approaches do not require choosing
the number of experts (Rodriguez et al., 2025), but
these approaches are designed to change the activa-

tions of all neurons in the network and are thus not
applicable for our use case.

We do not have access to training data To fully
understand how knowledge develops in LLMs, we
need to know what the model has seen at different
points in training. Unfortunately, the Pile (Gao
et al., 2020) that Pythia models were trained on is
no longer available.

Model choice Given the nature of our research
question, it is crucial to be able to analyze multiple
checkpoints from models of varying sizes, prioritiz-
ing interpretability over direct evaluations of model
performance. For this reason, we rely on the Pythia
family of models, publicly released in the interest
of fostering interpretability research. We leave to
future work the exploration of alignment and its
emergence in alternative model families (e.g., the
recent OLMo 2 family; Walsh et al., 2025).

Mechanistic intepretability Our work relates
to the fast-growing field of mechanistic inter-
pretability that seeks to reverse-engineer LLMs
into human-interpretable components, revealing
the neural pathways and architectural components
by which models process information (Geiger et al.,
2021; Feng and Steinhardt, 2024; Vasileiou and
Eberle, 2024). Unlike mechanistic interpretability
that focuses on the discovery of components in net-
work architectures, our goal is to assess whether the
knowledge representation in the model is aligned
with human representations. While not explicitly
looking for architecture-based interpretations, we
find that concepts from related domains like “dog”,
“cat”, and “animal” share a consistent set of experts,
suggesting that the same architectural components
(neurons) are implicated in the alignment. We leave
uncovering the neural pathways and causal compo-
nents underlying alignment to future work.

We study neurons individually In this work,
neurons are studied individually. That is, our anal-
ysis assumes that the representation of concepts
is aligned with the canonical basis induced by the
neurons. We have two reasons to assume that this
is the case. First, previous work suggests that in-
tervening on neurons identified in this method can
steer generations to favor or avoid a concept (Suau
et al., 2023, 2024). Second, in our analysis we
see that neurons identified in this manner capture
key properties of concepts: the correlation between
expert-based concept similarity measures and hu-
man concept similarity evaluations is comparable



to inter-human correlation. It is, however, possible
that looking at neurons jointly would capture addi-
tional aspects of concept representation. We leave
this exploration to future work.
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A Prompts used for probing dataset
generation and sample generations

Fact prompt: “Generate a set of 10 sentences,
including as many facts as possible, about the con-
cept [concept name] as [a/an] [adjective/noun/verb]
and defined as [WordNet definition]. Refer to the
concept only as [concept name] without including
specific classes, types, or names of [concept name].
Make sure the sentences are diverse and do not
repeat.”

Sample fact sentences for concept poppy de-
fined as ’annual or biennial or perennial herbs hav-
ing showy flowers’:

GPT-4: Gardeners often classify poppies as easy
to care for due to their hardy nature.
Mistral-7b-Instruct-v0.2: Poppies are herbaceous
plants that can grow annually, biennially, or peren-
nially, depending on the specific species.

Internal 80b-chat model: Poppies have been used
in traditional medicine for centuries, with various
parts of the plant being employed to treat ailments
like pain, insomnia, and digestive problems.

Story prompt: “Generate a set of 10 sentences,
where each sentence is a short story about the con-
cept [concept name] as [a/an] [adjective/noun/verb]
and defined as [WordNet definition]. Refer to the
concept only as [concept name] without including
specific classes, types, or names of [concept name].
Make sure the sentences are diverse and do not
repeat.”

Sample story sentences for concept poppy de-
fined as ’annual or biennial or perennial herbs hav-
ing showy flowers’:

GPT-4: As the wedding gift from her grandmother,
a dried poppy was framed and hung on her wall.
Mistral-7b-Instruct-v0.2: As the farmer tended to
his fields, he couldn’t help but admire the poppies
that grew among his crops, their beauty a welcome
distraction.

Internal 80b-chat model: The poppy, a harbinger
of spring, adorned the hillsides with a colorful
tapestry, signaling the end of winter’s slumber.
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B Generalization of the findings to the
Semantic Priming Dataset
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Figure 8: Expert overlap in the model is predicted by
human-perceived similarity level. Bars represent ex-
pert overlap averaged over all concept pairs; error bars
represent bootstrapped 95% confidence intervals. The
subplots are model sizes.

To ensure our findings generalize beyond the
MEN dataset, we repeat our main analysis on
a subset of the Semantic Priming Project (SPP)
(Hutchison et al., 2013), which contains 1, 661 tar-
get words paired with related or unrelated concepts.
The advantage of the SPP dataset over MEN is
that it contains a more varied set of concepts. The
drawback is that the range of similarity levels be-
tween the concepts is more limited — SPP only
contains three levels of similarity: strongly related,
somewhat related, and unrelated concepts. We ex-
pect that expert overlap will increase as human-
perceived similarity level increases.

We sample 100 pairs from each of the three simi-
larity bins in the SPP dataset and extract the experts
for each concept in the pair from the final (143k)
checkpoint for the three Pythia models under con-
sideration. We then use linear mixed-effects regres-
sion to predict expert overlap from model (sliding
difference coded': 1b vs. 70m and 12b vs. 1b) and
similarity level (sliding difference coded: weak vs.
none and strong vs. weak). The model included
the maximal converging random effects structure
(random intercepts for the two concepts in a pair).
For models of all sizes, we find a statistically sig-
nificant increase in expert overlap with increased
similarity (all p’s > 0.0001; see Fig. 8).

'Sliding difference coding compares the mean of the de-
pendent variable for one level of the categorical variable to

the mean of the dependent variable for the preceding adjacent
level (e.g., 1b model vs. 70m model).
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C Expert set sizes in the pilot experiment
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Figure 9: Expert set size (log) in the pilot experiment. Points represent condition means; error bars represent
bootstrapped 95% confidence intervals. Columns represent the size of the positive set (number of unique sentences);
rows represent the size of the negative set (number of unique sentences).
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D Analyses of correlations between
human similarity judgments and cosine
similarity for the full network

Similarity type + cosine + jaccard * negative-adjusted cosine  Model -¢- 12b 1b -¢- 70m
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Figure 10: Spearman correlations between human similarity judgments, cosine similarity over raw AP values,
negative-adjusted cosine similarity [abs(AP)-0.5], and the best-performing 7 of Jaccard similarity (0.5). Points
represent Spearman correlations between LLM’s similarity and perceived human similarity in the MEN dataset;
error bars represent bootstrapped 95% confidence intervals.
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E List of concepts in semantically-related

domains

Domain Concepts

animals cat, dog, cheetah,
horse, animal

clothes jacket, jeans, shirt,
sock, clothes

colours red, blue, green, black,
colour

furniture chair, bookshelf, table,
couch, furniture

occupations doctor, teacher, driver,
musician, occupation

organs heart, kidney, lung,
brain, organ

sports golf, racing, gymnas-
tics, swimming, sport

subjects mathematics, geogra-
phy, biology, chem-
istry, subjects

vegetables carrot, potato, pump-
kin, corn, vegetable

vehicles bus, tank, motorcycle,

bicycle, vehicle

Table 1: List of concepts in our domains.
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F Complete results for domain-level
organization

Model Ckpt % indom % with broader

1 0.05 0.00 0.00 0.00
70m 36k 0.97 0.01 70.41 0.33
T2k 1.190.00 59.69 0.33
143k 1.390.01 67.19 0.92
1 0.02 0.00 0.24 0.33
b 36k 1.81 0.01 60.87 2.67
72k 1.84 0.03 63.43 2.24
143k 2.020.01 63.84 2.85
1 0.12 0.00 0.01 0.52
12 36k 1.87 0.01 58.66 5.11
72k 2.12 0.01 57.85 5.50
143k 2.240.01 58.45 5.81

Table 2: Results of expert overlap in semantically-
organized domains, across different models and check-
points. Column 3 shows the average percentage of
experts shared between all the specific concepts in a
domain (e.g., “dog”, “cat”, etc. ). Column 4 reports
the percentage of this shared core also activated by the
broader concept representing the domain (e.g., “ani-
mal”). Baseline values are shown in gray. Our results
are significantly different from the randomized baseline
starting from checkpoint 36k, suggesting that domain-
like structures seem to have fully emerged at that stage.
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Figure 11: Pythia70m, ckpt 143k Similarity of con-
cept representations in the LLM, based on expert over-
lap. Each node represents a concept; edge thickness
corresponds to the degree of reciprocal expert overlap
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G Pythia evaluation benchmarks

The mean accuracy and standard error across eight
benchmarks shown in Table 3 is 0.27 (0.01) for the
70m, 0.28 (0.01) for the 1b model, and 0.32 (0.02)
for the 12b model at the end of training.

Benchmarks
LAMBADA - OpenAl Paperno et al. (2016)
PIQA Bisk et al. (2020)
SciQ Johannes Welbl (2017)
ARC (easy and hard) Clark et al. (2018)
WinoGrande win (2020)
MMLU Hendrycks et al. (2021)
LogiQA Liu et al. (2020)

Winograd Schema Challenge  Levesque et al. (2012)

Table 3: Pythia evaluation benchmarks.
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H Additional materials for layer analyses

H.1 Total number of experts in MLP and
attention layers

Layers & Attention B8 MLP
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Figure 13: Pythia 70m. Total number of experts in MLP and attention layers across checkpoints
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Figure 14: Pythia 1b. Total number of experts in MLP and attention layers across checkpoints

21



H.2 Distribution of experts across MLP layers
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Figure 15: Pythia 70m. Average number of experts identified in MLP layers at different depths, for different

checkpoints.
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Figure 16: Pythia 1b. Average number of experts identified in MLP layers at different depths, for different

checkpoints.
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H.3 Distribution of experts across attention

layers
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Figure 17: Pythia 70m. Average number of experts identified in attention layers at different depths, for different

checkpoints.
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Figure 18: Pythia 1b. Average number of experts identified in attention layers at different depths, for different

checkpoints.
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Figure 19: Pythia 12b. Average number of experts identified in attention layers at different depths, for different

checkpoints.
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H.4 Distribution of experts across
MLP.dense.h_to_4h layers
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Figure 20: Pythia 70m. Average number of experts identified in the MLP h_to_4h (part of the MLP layers) at
different depths, for different checkpoints.

1 1k @ 36k @ 143k

[2] .
5 Checkpoint _ 5.5 . 4 o 70k
300

2 200

o

+. 100

(]

Qo 0

€ - I\ ) < 1o) © ~ e [ = = o « 3 0 ©
Z Layer

Figure 21: Pythia 1b. Average number of experts identified in the MLP h_to_4h (part of the MLP layers) at
different depths, for different checkpoints.
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Figure 22: Pythia 12b. Average number of experts identified in the MLP h_to_4h (part of the MLP layers) at
different depths, for different checkpoints.
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H.5 Distribution of experts across
MLP.dense.4h_to_h layers
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Figure 23: Pythia 70m. Average number of experts identified in the MLP 4h_to_h (part of the MLP layers) at
different depths, for different checkpoints.
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Figure 24: Pythia 1b. Average number of experts identified in thr MLP 4h_to_h (part of the MLP layers) at
different depths, for different checkpoints.

(] . 1 1k @ 36k ® 143k

= Checkpoint _ 5.5 o 4 @ 79k

<

@ 150

5 100

5 50

S 0

E O~ AN M T WO ON~WOOO -~ ANMITLWL ONND0VDDNDO — AN MO T 1B ©
S NN AN AN AN ANANMOM®OOMOOOON
z

Figure 25: Pythia 12b. Average number of experts identified in the MLP 4h_to_h (part of the MLP layers) at
different depths, for different checkpoints.
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H.6 Distribution of experts across
attention.query_key_value layers
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Figure 26: Pythia 70m. Average number of experts identified in the attention.query_key_value (part of the
attention layers) at different depths, for different checkpoints.
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Figure 27: Pythia 1b. Average number of experts identified in the attention.query_key_value (part of the
attention layers) at different depths, for different checkpoints.
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Figure 28: Pythia 12b. Average number of experts identified in the attention.query_key_value (part of the
attention layers) at different depths, for different checkpoints.
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H.7 Distribution of experts across
attention.dense layers
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Figure 29: Pythia 70m. Average number of experts identified in the attention.dense (part of the attention layers)
at different depths, for different checkpoints.
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Figure 30: Pythia 1b. Average number of experts identified in the attention.dense (part of the attention layers)
at different depths, for different checkpoints.

0 . 1 1k @ 36k @ 143k

S Checkpoint _ 5.5 o 4 @ 79k

<

= 300

%5 200 °
5100

Q o

g TN T0ornoo 2 MP2IR2ER22RIQRJIdLRIABHIBI3
pa Layer

Figure 31: Pythia 12b. Average number of experts identified in the attention.dense (part of the attention layers)
at different depths, for different checkpoints.
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H.8 Distribution of highly specialized experts

across MLP layers
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Figure 32: Pythia 70m. Average number of highly specialized experts (7 = 0.9) identified in MLP layers at
different depths, for different checkpoints.
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Figure 33: Pythia 1b. Average number of highly specialized experts (7 = 0.9) identified in MLP layers at different
depths, for different checkpoints.
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Figure 34: Pythia 12b. Average number of highly specialized experts (7 = 0.9) identified in MLP layers at different
depths, for different checkpoints.
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H.9 Distribution of highly specialized experts
across attention layers
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Figure 35: Pythia 70m. Average number of highly specialized experts (7 = 0.9) identified in attention layers at
different depths, for different checkpoints.
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Figure 36: Pythia 1b. Average number of highly specialized experts (7 = 0.9) identified in attention layers at

different depths, for different checkpoints.
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Figure 37: Pythia 12b. Average number of highly specialized experts (7 = 0.9) identified in attention layers at
different depths, for different checkpoints.
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I Distribution of experts for broader
concepts
I.1 MLP layers
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Figure 38: Pythia 70m. Average number of experts identified for broader concepts in MLP layers at different
depths, for different checkpoints.
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Figure 39: Pythia 1b. Average number of experts identified for broader concepts in MLP layers at different depths,

for different checkpoints.
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Figure 40: Pythia 12b. Average number of experts identified for broader concepts in MLP layers at different
depths, for different checkpoints.

30



I.2 Attention layers
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Figure 41: Pythia 70m. Average number of experts identified for broader concepts in attention layers at different
depths, for different checkpoints.
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Figure 42: Pythia 1b. Average number of experts identified for broader concepts in attention layers at different
depths, for different checkpoints.

. 1 1k @ 36k @ 143k
Checkpoint _ 5.5 4 4 » 72k

i

—

©

400

2300

O 200

%100 . . : '

Or N ®MTWONDO®DO N O TWON®DBDNO — QA O O ©
maAOtTwon~no0o 223220202 JldAdAdAdNNAABROO0®®®

Layer

Figure 43: Pythia 12b. Average number of experts identified for broader concepts in attention layers at different
depths, for different checkpoints.
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J Distribution of experts for narrower
concepts
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Figure 44: Pythia 70m. Average number of experts identified for narrower concepts in MLP layers at different

depths, for different checkpoints.
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Figure 45: Pythia 1b. Average number of experts identified for narrower concepts in MLP layers at different

depths, for different checkpoints.
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Figure 46: Pythia 12b. Average number of experts identified for narrower concepts in MLP layers at different
depths, for different checkpoints.
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J.2 Attention layers
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Figure 47: Pythia 70m. Average number of experts identified for narrower concepts in attention layers at different
depths, for different checkpoints.
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Figure 48: Pythia 1b. Average number of experts identified for narrower concepts in attention layers at different
depths, for different checkpoints.
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Figure 49: Pythia 12b. Average number of experts identified for narrower concepts in attention layers at different
depths, for different checkpoints.
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K Computational budget

The concept dataset was parallelized over 8 A100
GPUs (80GB). Expert extraction took about 136
seconds per concept for the 12b Pythia model;
about 27 seconds per concept for the 1b Pythia
model; about 8 seconds per concept for the 70m
Pythia model; and about 25 seconds per concept
for GPT-2.

L License and Attribution

The MEN dataset used in this work is released un-
der Creative Commons Attribute license. The pre-
trained models are supported by public licenses the
Pythia Scaling Suite (Apache), Mistral (Apache),
and GPT-2 (MIT). GPT-4 is supported a proprietary
license. We use an internal 80b-chat model and are
unable to provide license information on it at this
time.
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