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Abstract

Modern large language models (LLMs) achieve001
impressive performance on some tasks, while002
exhibiting distinctly non-human-like behaviors003
on others. This raises the question of how well004
the LLM’s learned representations align with005
human representations. In this work, we intro-006
duce a novel approach to study representation007
alignment: we adopt a method from research on008
activation steering to identify neurons responsi-009
ble for specific concepts (e.g., “cat”) and then010
analyze the corresponding activation patterns.011
We find that LLM representations captured this012
way closely align with human representations013
inferred from behavioral data, matching inter-014
human alignment levels. Our approach signifi-015
cantly outperforms the alignment captured by016
word embeddings, which have been the focus017
of prior work on human-LLM alignment. Addi-018
tionally, our approach enables a more granular019
view of how LLMs represent concepts – we020
show that LLMs organize concepts in a way021
that mirrors human concept organization.022

1 Introduction023

Large language models (LLMs) exhibit impressive024

performance on a variety of tasks from text sum-025

marization (Basyal and Sanghvi, 2023; Jin et al.,026

2024) to zero-shot common-sense reasoning (Park027

et al., 2024; Shwartz et al., 2020), and are increas-028

ingly deployed as a human proxy (Just et al., 2024;029

Klissarov et al., 2023; Cui et al., 2024; Peng et al.,030

2024). At the same time, there is a growing body031

of evidence suggesting that LLMs exhibit patterns032

of behavior distinctly different from humans such033

as hallucinating information (Bubeck et al., 2023;034

Lin et al., 2022) or memorizing complex patterns035

to solve reasoning tasks (Ullman, 2023). Such036

behaviors raise the question of how closely the con-037

ceptual representations learned by these models038

align with human conceptual representations, as039

safe and trustworthy deployment of LLMs requires040

such alignment. Unveiling aspects of representa- 041

tion alignment and understanding how to foster it 042

can help us identify and mitigate misaligned LLM 043

behaviors, increasing model trust and safety (Ope- 044

nAI et al., 2024; Shen et al., 2024). 045

Prior work has examined the relationship be- 046

tween human-perceived similarity among concepts 047

(i.e., word/image meaning) and various model- 048

based measures of similarity, such as confidence 049

(Shaki et al., 2023) or the embedding distance 050

(Bruni et al., 2012; Digutsch and Kosinski, 2023; 051

Muttenthaler et al., 2023). While there is a large 052

body of work on alignment in traditional NLP 053

models (Auguste et al., 2017; Ettinger and Linzen, 054

2016; Ruan et al., 2016; Søgaard, 2016) such as 055

GloVE (Pennington et al., 2014) or Word2Vec 056

(Mikolov et al., 2013), alignment in LLMs has 057

proved hard to capture. Prompting approaches pro- 058

vide inconsistent results (Shaki et al., 2023); con- 059

text can have unintuitive influences on alignment 060

(Misra et al., 2020) and single-word embeddings do 061

not fully capture LLM representations. Addition- 062

ally, approaches relying on embedding similarity 063

or model responses suffer from a major limitation: 064

they do not reveal where in the model the concepts 065

are stored and make it difficult to draw conclusions 066

beyond coarse alignment. For example, the cosine 067

distance between embeddings might indicate that 068

“animal” and “dog” are more similar than “animal” 069

and “daffodil”, but it can not tell us if “dog” and 070

“animal” share the same neurons, limiting our abil- 071

ity to understand the model’s concept organization. 072

Here, we propose a novel way to study human – 073

LLM alignment in concept representation. We bor- 074

row a method from activation steering (Suau et al., 075

2023, 2024; Rodriguez et al., 2025), to identify 076

which neurons are most responsible for processing 077

and understanding a particular concept, so-called 078

expert neurons. This approach was originally in- 079

troduced with the goal of directing LLM outputs 080

towards a desired direction (e.g., reducing toxicity). 081
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Specifically, it has been shown that expert neu-082

rons play a causal role in the generation of outputs083

semantically related to the concept they encode.084

For instance, activating the expert neurons for the085

concept “dog” steers the model to generate text086

consistent with it (Suau et al., 2023); conversely,087

suppressing the experts for toxicity generates less088

toxic text (Suau et al., 2024).089

We investigate a novel application of this ap-090

proach as a technique to achieve model inter-091

pretability. Specifically, we show that the neurons092

discovered with this method provide information093

about how models represent concepts and capture094

the dimensions meaningful to humans, providing095

a reliable method to test model alignment. In ad-096

dition, this approach enables us not only to mea-097

sure alignment between human and model repre-098

sentations, but also to explore additional questions,099

such as whether LLMs organize concepts in a way100

that mirrors human conceptual organization (e.g.,101

if “dog”, “cat”, “cheetah” , and “animal” share a102

consistent set of neurons). We also track how align-103

ment evolves during training for different model104

sizes, shedding light on the impact of model ca-105

pacity on the development of aligned representa-106

tions — an aspect largely overlooked in previous107

work on text-based models (Shen et al., 2024; Wei108

et al., 2022). Ultimately, understanding the factors109

that lead to mis-alignment can provide valuable110

insight for designing interventions targeted at guid-111

ing model behaviors towards human-like solutions112

and enhancing their transparency (Fel et al., 2022;113

Peterson et al., 2018; Toneva, 2022).114

In our experiments, we focus on causal LLMs us-115

ing the Pythia models (70m, 1b and 12b) for which116

multiple training checkpoints are publicly available117

(Biderman et al., 2023). Given a diverse set of con-118

cepts across multiple domains (see Sec. 3.2), we119

identify each LLM’s corresponding expert neurons.120

We measure their similarity at the LLM level as121

the amount of overlap between the expert neurons.122

We measure alignment in two tasks. First, we look123

at whether expert overlap is predictive of human-124

perceived concept similarity. Second, we ask if the125

alignment goes beyond simple pairwise similarities126

— specifically, whether LLMs organize concepts127

in a way that mirrors human conceptual structures128

(Rosch, 1978). Finally, we study how the model’s129

concept representations develop through training.130

Our results show that human-LLM represen-131

tation alignment matches inter-human alignment,132

which is not detectable with prior approaches re-133

lying on embedding distance. Our contributions 134

are: 135

1. We show that a method used to identify expert 136

neurons reliably captures concept representa- 137

tions in LLMs and is stable across models and 138

datasets. 139

2. We show that the representations captured 140

with this approach align closely with human 141

representations matching inter-human align- 142

ment, both at the level of concept similarity 143

and in terms of concept organization. 144

3. We provide an analysis of how human-model 145

alignment evolves with model training and 146

depends on model capacity. Such alignment 147

emerges early in training, with model size 148

playing only a small role. 149

2 Related work 150

Representation alignment Studies on the kinds 151

of representations used by humans and machines 152

have been of interest to many fields (e.g., cogni- 153

tive science, neuroscience, and machine learning; 154

Hebart et al., 2020; Khosla and Wehbe, 2022; Mut- 155

tenthaler et al., 2023; Tian et al., 2022; Søgaard, 156

2016). Studies on representation alignment (Su- 157

cholutsky et al., 2024) look specifically at the ex- 158

tent to which the internal representations of hu- 159

mans and neural networks converge on a similar 160

structure. Across vision and text domains, mod- 161

els show notable alignment with human similar- 162

ity judgments — typically used as a window into 163

human representational structures. Peterson et al. 164

(2018) report significant alignment between human 165

similarity judgments and representations of object 166

classification networks. In the vision domain, Mut- 167

tenthaler et al. (2023) find that while the training 168

dataset and objective function impact alignment, 169

model scale and architecture have no significant 170

effect. To our knowledge, there are no investiga- 171

tions of the influences of model size on alignment 172

specifically in LLMs. Additionally, reliably captur- 173

ing human-LLM alignment has proven hard. Shaki 174

et al. (2023) prompt GPT-3 (Brown et al., 2020) and 175

use response confidence as a measure of LLM rep- 176

resentation, which they relate to human behavioral 177

measures. However, they find the approach highly 178

unreliable — small variations in the prompt lead 179

to large changes in alignment. Misra et al. (2020) 180

show that BERT (Devlin et al., 2019) can get dis- 181

tracted by context, assigning lower probability to 182
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related concepts. Digutsch and Kosinski (2023)183

operationalize LLM concept similarity as the co-184

sine similarity between single word representations185

extracted from the embeddings matrix. While they186

find that this measure predicts human-perceived187

similarity of the concept pair, it is unclear how this188

method can be scaled to study human-LLM align-189

ment between more complex concepts like toxicity190

that cannot be represented as single words. Thus,191

despite the increasing interest in human-LLM align-192

ment, reliable methods to study alignment are still193

lacking.194

Activation steering refers to a class of methods195

that intervene on a generative model’s activations196

to perform targeted updates for controllable genera-197

tion (Rodriguez et al., 2025; Li et al., 2024; Rimsky198

et al., 2024). Suau et al. (2023) propose a method to199

identify sets of neurons in pre-trained transformer200

models that are responsible for detecting inputs201

in a specific style (Suau et al., 2024, e.g., toxic202

language) or about a specific concept (Suau et al.,203

2023, e.g., “dog”). Intervening on the expert neu-204

ron activations successfully guides text generation205

into the desired direction. In a similar spirit, Turner206

et al. (2024) use a contrastive prompt to induce sen-207

timent shift and detoxification, while Kojima et al.208

(2024) steer multilingual models to produce more209

target language tokens in open-ended generation.210

Finally, Rodriguez et al. (2025) introduce a unified211

approach to steer activations in LLMs and diffusion212

models based on optimal transport theory. Overall,213

work on activation steering demonstrates that it is214

possible to find expert neurons and use them to215

steer model activations towards a desired direction,216

thus demonstrating the causal role of these neurons.217

What we do not know is whether the set of identi-218

fied expert neurons is stable across inputs (see Sec.219

4 ) and, if so, whether these representations mirror220

human knowledge structure.221

3 Methods222

3.1 Finding expert neurons223

We adopt the finding experts approach introduced224

by Suau et al. (2023) for activation steering, to225

study representational alignment. Our motivation226

is two-fold: a) this approach has been successfully227

applied to detect neurons responsible for everyday228

concepts like “dog”, which is the focus of this work;229

and b) it is able to distinguish the different senses of230

a homophone (e.g., “apple” as a fruit or company),231

suggesting that this method is able to pick up fine- 232

grained semantic distinctions. 233

In this approach, a concept c is defined through 234

a set of example sentences N = N+
c +N−

c , where 235

N+
c is a set of sentences that contain c (henceforth 236

positive set) and N−
c is a set of sentences that do 237

not contain c (henceforth negative set). Next, we 238

obtain the activations zcm =
{
zcm,i

}N

i=1
for every 239

neuron m in the model in response to the inputs 240

from both sets of sentences. zcm is then treated 241

as a prediction score for the presence of c, since 242

we know the ground truth label. The performance 243

of each neuron as a classifier for the concept (i.e., 244

its expertise) is measured as the area under the 245

precision-recall curve (AP) on this task. We calcu- 246

late the AP score for all units. To be agnostic with 247

respect to the sequence length, the output of each 248

layer is max-pooled across the temporal dimension. 249

Formulated this way, the experts approach has sev- 250

eral advantages: as discussed above, it is sensitive 251

to context and can distinguish different senses of a 252

homophone; it can also capture concepts that can- 253

not be represented in one word such as toxicity 254

(Suau et al., 2024). 255

We consider neurons with an AP score above a 256

given threshold, τ , for a concept to be expert neu- 257

rons for that concept. τ can be thought of as quality 258

of an expert neuron — the larger the value of τ , 259

the more expert a neuron is for a given concept. In 260

our experiments, we consider a range of values for 261

τ ∈ [0.5, 0.9] from a low (classification accuracy 262

above chance) to a high level of expertise. 263

3.2 Data 264

To understand the alignment between human and 265

model representations, we examine how patterns 266

in expert neurons relate to perceived concept simi- 267

larity in humans. We obtain human similarity judg- 268

ments from two datasets: the MEN dataset (Bruni 269

et al., 2014), which contains 3, 000 word pairs an- 270

notated with human-assigned similarity judgments 271

crowd-sourced from Amazon Mechanical Turk, 272

and the Semantic Priming Project (hereafter, SPP), 273

a database of behavioral measures for related and 274

unrelated word pairs (Hutchison et al., 2013). 275

For each concept under consideration, we gen- 276

erate a set of sentences containing that concept. 277

To ensure dataset diversity, half of each positive 278

dataset is generated with a prompt eliciting story 279

descriptions and half of the dataset is generated 280

with a prompt eliciting factual descriptions of the 281

target concept (the prompts, along with sample 282
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generations, are provided in App. A). The negative283

sets are sampled from the datasets for the remain-284

ing non-target concepts (e.g., if we are considering285

1000 concepts, one of which is “cat”, the nega-286

tive set is sampled from 999 concepts excluding287

“cat”). For dataset generation, we experiment with288

three models of different performance levels: GPT-289

4 (OpenAI et al., 2024), Mistral-7b-Instruct-v0.2290

(Jiang et al., 2023), and an internal 80b-chat model.291

For the case study in concept organization in292

LLMs (Sec. 5), we manually generate lists of ten293

domains with four concepts per domain (e.g., the294

domain “animal” containing concepts “cat”, “dog”,295

“cheetah”’, and “horse”; the full set of domains and296

concepts is provided in App. E). We choose not to297

use WordNet (Miller, 1994) — a lexical database298

of English — because of drawbacks identified in299

its hierarchical structure, which often make the300

concept relationships it presents unintuitive (for a301

discussion, see Gangemi et al., 2001).302

3.3 Models303

To ensure that the hyper-parameters are not bi-304

ased towards the particular models we are intro-305

specting, we use different models for selecting the306

hyper-paramenters and the main experiments. We307

use GPT-2 (Radford et al., 2019) to select hyper-308

parameters (e.g., the size of a positive and negative309

datasets) and validate that our data identifies a sta-310

ble set of experts (see Sec. 4 for details). For all311

other experiments, we use models from the Pythia312

family (Biderman et al., 2023), specifically focus-313

ing on model sizes 70m (smallest), 1b, and 12b314

(largest), to understand the impact of model size on315

representational alignment. The size of each model316

is connected to its performance (see App. G for317

accuracy across the standard benchmarks).318

For each model, we work with checkpoints 1,319

512, 1k, 4k, 36k, 72k, and 143k, to track how rep-320

resentational alignment develops throughout train-321

ing. All Pythia models were trained on the same322

data presented in the same order, allowing us to323

evaluate the impact of model size and number of324

training steps on representational alignment while325

controlling for the data.326

4 Can we reliably identify experts?327

While the success of expert-based methods at steer-328

ing model activations is well-documented (Suau329

et al., 2023, 2024), our interest is in studying330

model representations through the patterns in ex-331

perts. Given the novel application of the method, 332

we conduct a pilot study to explore the impact of 333

dataset size, the model used to generate the dataset, 334

and the exact sentences used to represent a concept 335

on the stability of the discovered expert sets. 336

For the pilot study, we sample 50 word pairs 337

from the training split of the MEN dataset. For each 338

concept in the word pair, we generate a positive 339

set containing 7000 sentences from three models: 340

GPT-4, Mistral-7b-Instruct-v0.2, and an internal 341

80b-chat model. We sweep over positive set sizes 342

of 100, 200, 300, 400, and 500 sentences, and nega- 343

tive set sizes of 1000 and 2000 sentences. For each 344

positive and negative set combination, we repeat 345

expert extraction eight times (folds) with the sets 346

randomly sampled from the full pool of sentences. 347

We examine how sensitive the discovered experts 348

are to the specific slice of the positive and negative 349

sets (the 8 folds). We measure sensitivity in terms 350

of the stability in experts across the folds, where 351

high stability occurs when there is large overlap in 352

the experts across folds. To assess overlap, we look 353

at Jaccard similarity between expert sets across 354

folds, using a range of thresholds τ . 355

The findings are shown in Fig. 1 for each dataset 356

configuration (subplot) and value of τ (x-axis). The 357

expert neurons discovered across different data con- 358

figurations and folds (indicated by the error bars) 359

are stable, as indicated by a high (∼ 0.8) overlap 360

proportion, and show little sensitivity to our ma- 361

nipulations. Interestingly, the LLM (line color) 362

used to generate the probing dataset matters lit- 363

tle — while stronger models generate more diverse 364

datasets (mean type/token ratio of 0.34, 0.21 and 365

0.18 for GPT-4, internal 80b-chat, and Mistral-7b- 366

Instruct-v0.2 respectively), resulting in a somewhat 367

higher expert overlap, the gain is too small to war- 368

rant their increased cost. Expert overlap increases 369

with every increase in the size of the positive set, 370

but the increases are small beyond 300 sentences, 371

and performance for 400 sentences is virtually in- 372

distinguishable from 500 sentences. Interestingly, 373

a larger negative set results in lower expert over- 374

lap at higher τ values and an increased variability 375

across folds. One reason could be that as the size 376

of the negative set increases so does the probabil- 377

ity of the negative set containing sentences related 378

to the target concept (e.g., a sentence about “cats” 379

may also talk about “dogs”). A second explanation 380

could be that the larger negative set activates more 381

polysemous neurons. Based on these findings, we 382

conduct all subsequent analyses with a positive set 383
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Figure 1: Expert discovery is relatively stable across various dataset characteristics. Points represent condition
means; error bars represent bootstrapped 95% confidence intervals. Columns and rows represent the size (number
of unique sentences) of the positive and negative sets respectively. Inter-concept is within-concept expert overlap;
intra-concept is expert overlap averaged across randomly sampled pairs of concepts. See App. C for corresponding
expert set sizes.

of 400 sentences and a negative set of 1000 sen-384

tences, all generated with Mistral-7b-Instruct-v0.2.385

5 Are model and human representations386

aligned?387

We now turn to the main question of our study388

— whether expert neurons capture semantic infor-389

mation meaningful to humans. We measure the390

alignment between LLM and human representa-391

tions as the correlation between the human versus392

the LLM’s similarity score for each pair of concepts393

in the test split of the MEN data (1000 pairs). The394

LLM’s similarity score is the Jaccard similarity be-395

tween expert sets for τ ∈ {0.5, 0.6, 0.7, 0.8, 0.9}.396

In App. D, we consider cosine similarity between397

the raw AP values as an LLM similarity score, find-398

ing similar correlations to those obtained with Jac-399

card similarity (τ = 0.5), suggesting that what400

matters most for alignment is not the magnitude401

of the AP value, but rather whether it is above or402

below 0.5 (i.e., whether the neuron is positively403

or negatively associated with the concept). We404

also analyze human-LLM alignment using the SPP405

dataset (see App. B) and demonstrate that our find-406

ing generalize beyond the MEN dataset.407

Expert neuron overlap is highly aligned with hu-408

man similarity judgments We find that model409

representations are closely aligned with humans,410

with the highest alignment occurring at τ = 0.5.411

At the final checkpoint, the Spearman correlations412

between expert overlap (τ = 0.5) and MEN sim-413

ilarity are 0.70, 0.77, 0.79 for 70m, 1b, and 12b414
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Figure 2: Model representations of similarity are closely
aligned with human ones. Points are Spearman correla-
tions between the expert neuron overlap and perceived
human similarity in the MEN dataset (significant after
checkpoint 1, p<0.05); error bars are bootstrapped 95%
confidence intervals. The subplots are τ .

respectively. For reference, agreement between 415

humans has a correlation of 0.84. Interestingly, 416

model size has a small impact on this alignment 417

(in line with findings in vision from Muttenthaler 418

et al., 2023): the 1b and 12b models are virtually 419

indistinguishable, with the 70m model slightly less 420

aligned. The models start diverging in how well 421

aligned they are with humans as τ increases, with 422

larger models being more aligned. This is because 423

smaller models have fewer experts (see Fig. 5) re- 424

sulting in a lot of empty expert set intersections for 425

higher levels of τ . 426

Word embeddings are less aligned than expert 427

sets Prior work has focused on the analysis of 428

embeddings when considering alignment in LLM 429

and human representations (Digutsch and Kosinski, 430

2023). We hypothesize that expert sets are more 431
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correlated with human representations than word432

embeddings as they disambiguate different word433

senses (Suau et al., 2023). To test this, we extract434

the embeddings for each word in the MEN test435

split from the embedding layer in line with prior436

work (Digutsch and Kosinski, 2023) and, follow-437

ing the standard approach, from the final hidden438

layer of the three Pythia models at each check-439

point and compute cosine similarity between the440

embeddings for each word pair in the MEN test441

split. We then correlate the cosine similarity with442

the MEN judgements. These correlations are statis-443

tically significant (p<0.05) for the embedding layer444

starting at checkpoints 1k and 4k for the 70m/1b445

and the 12b models respectively and for the hidden446

layer starting at checkpoint 512 for all model sizes447

(see Fig. 3), consistent with prior work (Digutsch448

and Kosinski, 2023). However, as expected un-449

der our hypothesis, the correlations with human450

similarity are significantly lower for both types of451

single word embeddings compared to the experts452

(p-values<0.0001 comparing the alignment based453

on experts vs. either embeddings types). In addi-454

tion, while the magnitude of the correlations across455

the two embeddings types is similar, the patterns456

of alignment change — for the embedding layer,457

the alignment stably grows over training while the458

pattern of alignment in the final layer embeddings459

is unstable across checkpoints. Moreover, the two460

types of embeddings disagree on which model size461

is more aligned with humans. Thus, single word462

embeddings are not only less aligned with humans463

than experts but are also highly sensitive to hyper-464

parameters.465

LLM’s concept organization mirrors human466

conceptual structure Having established that467

the expert overlap is predictive of human-perceived468

concept similarity, we ask whether the experts469

capture a broader human-interpretable represen-470

tation of concepts that goes beyond pairwise471

(dis)similarity. Specifically, we ask if the con-472

cepts are clustered in the expert space in a way that473

aligns with human-interpretable knowledge struc-474

tures. Humans organize concepts into domains475

(Graf et al., 2016; Murphy, 2004; Rosch, 1978).476

For example, “dog”, “cat” and “horse” are all ani-477

mals and “bike”, “bus”, and “car” are all vehicles.478

This raises the question of whether models organize479

concepts in a similar way. To assess this, we con-480

sider a list of domains we generated (see Sec. 3.2481

and App. E), the experts associated with each con-482

embedding layer final layer
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Figure 3: Spearman correlations between embedding
cosine similarity and perceived human similarity in the
MEN dataset. Error bars are bootstrapped 95% con-
fidence intervals. Subplots indicate the layer the em-
beddings were extracted from. The correlations are
significant (p<0.05) starting at checkpoints 512 for the
last layer (all model sizes) and 1k (70m and 1b models)
and 4k (12b model) for the embeddings layer.

cept in the list (τ=0.5), and their reciprocal overlap. 483

For this analysis, we only consider the final (143k) 484

checkpoint. We discuss Pythia 12b in the main text 485

and present other model sizes in App. F. 486

cat

dog

cheetah

horse

organ

bicycle

jacket

jeans shirt

sock

couch

red

black

green

blue

chair

table

bookshelf

doctor

teacher
subject

driver

kidney

brain

biology

racing

vehiclebus

tank

motorcycle

mathematics

heart

lung

chemistry

golf

gymnastics
swimming

geography

carrot

potato

pumpkin

corn

animal

clothes

colour
furniture

occupation

sport

vegetable

Expert overlap

0.1

0.2

0.3

0.4

Figure 4: Similarity of concept representations in the
LLM, based on expert overlap. Each node represents
a concept; edge thickness corresponds to the degree of
reciprocal expert overlap between concepts.

Fig. 4 provides a visualization of the concept 487

structure in the expert space, revealing a clear do- 488

main organization: concepts belonging to the same 489

domain are strongly associated (e.g., all color terms 490

are connected to each other, but not to other do- 491

mains), while cross-domain associations are no- 492

tably sparser. This is consistent with the findings 493

on representation alignment discussed in Sec. 5, 494

demonstrating that concept pairs perceived as sim- 495

ilar by humans show higher expert overlap com- 496

pared to dissimilar concept pairs. On top of that, 497
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Fig. 4 shows meaningful between-domain connec-498

tions unveiled by the study of expert sets. For499

instance, while “driver” is an occupation, its expert500

set is also strongly associated with “bus” or “ve-501

hicle”. Similarly, “racing” connects the sports do-502

main with the vehicles domain. Finally, looking at503

the internal organization of the domains, we notice504

that broader concepts (e.g., “vehicle” or “animal”)505

tend to show weaker overlap with specific instances506

in their domain compared to the overlap between507

closely related specific concepts, e.g., “motorcycle”508

and “bicycle”, or “dog” and “cat”. This may re-509

flect distributional factors, with narrower concepts510

exhibiting stronger co-occurrence patterns.511

To quantify whether domain structures emerge in512

the LLM’s knowledge representation, we propose513

that, if the model organizes concepts in human-514

interpretable domains, concepts from the same do-515

main (e.g., “dog”, “cat”, “horse”, and “cheetah”)516

should share a consistent set of experts, and some517

of these shared experts should also be associated518

with the broader concept describing the domain519

(e.g., “animal” in our example). Our results reveal520

a clear and systematic pattern: within each domain,521

a consistent set of expert neurons is shared across522

all associated concepts. On average, 2.24% of the523

experts identified across all concepts in a domain524

are jointly shared among them. Notably, 58.45%525

of this shared core is also shared by the broader526

concept representing the domain (see App. F for527

the complete result set). To validate the signifi-528

cance of our findings, we compare them against a529

baseline in which domain groupings are randomly530

sampled (e.g., associating “animal” with “jacket”,531

“liver”, “doctor”, and “red”). In this case, the over-532

lap among expert sets drops significantly (average533

0.01% and 5.81% of shared neurons for all con-534

cepts and by the broader concept respectively, p-535

values <0.001) confirming that the structure we536

observe is unlikely due to chance.537

Overall, our findings suggest that the experts ap-538

proach captures human-interpretable domain-level539

structures beyond simple word pair similarity.540

6 Characterizing model knowledge541

We conclude with characterizing the differences in542

experts as a function of model size and stage of543

training, by reanalyzing the data from Sec. 5.544

Experts are learned from the data, with larger545

models having more experts Larger models al-546

locate more experts to a given concept (see Fig. 5;547

the pattern does not change after scaling the raw 548

number of experts by the number of neurons in 549

the model). As τ increases and experts become 550

more specialized, fewer experts are identified; the 551

drop is more pronounced for smaller models. Over- 552

all, larger models have a greater capacity to learn 553

a higher number of experts and a higher number 554

of more specialized experts. This increased spe- 555

cialization may contribute to finer-grained concept 556

representations and ultimately better performance 557

on downstream tasks. 558

Interestingly, we observe a large number of ex- 559

perts at checkpoint 1, followed by a drop and then 560

a steady gradual increase in the number of experts 561

as training continues. This is expected from the 562

perspective of language modeling as compression 563

(Shwartz-Ziv and Tishby, 2017; Delétang et al., 564

2024). Early in training, the model discovers a 565

large number of experts. While they are not yet 566

meaningful (indicated by non-significant correla- 567

tion with human similarity), they ensure the model 568

can efficiently allocate representational capacity 569

for later in training. As the model starts learning 570

the relevant relationships, the number of experts 571

drops (checkpoint 512) and then slowly recovers 572

as the model continues learning (checkpoint 1k on- 573

wards). As training continues, the experts become 574

more and more meaningful, as evidenced by the in- 575

creasing correlation between the expert overlap and 576

human similarity judgments. The idea that experts 577

are learned from training data is further supported 578

by the finding of a mode of 0 experts in all models 579

initialized with random weights. 580
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Figure 5: Expert set size (log) by model size and check-
point. Points are averages over all concepts; error bars
are bootstrapped 95% confidence intervals. Subplots
are different values of τ .

More specialized experts take longer to learn 581

We next look at the dynamics of learning experts 582

across checkpoints. We calculate expert overlap 583
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Figure 6: Proportion of expert overlap across subsequent
checkpoints (e.g., 1_to_512 is overlap between check-
points 1 and 512). Points are across concept averages;
error bars are bootstrapped 95% confidence intervals.
Subplots are different values of τ .

(Jaccard similarity) for each concept across subse-584

quent checkpoints in our data. The stability of the585

discovered expert set grows as training progresses586

(Fig. 6). Early in training (prior to step 36k), ex-587

pert overlap between subsequent checkpoints is low588

across model sizes, suggesting that semantic knowl-589

edge has not been acquired yet. As τ increases (cor-590

responding to higher expert specialization), it takes591

longer for the expert set to stabilize, suggesting that592

higher-quality experts take longer to learn.593

More experts are found in MLPs and deeper594

layers Pythia models consist of intertwined self-595

attention and MLP layers (Biderman et al., 2023)596

each serving different functions (Geva et al., 2021;597

Jawahar et al., 2019; Liu et al., 2019). We ana-598

lyze the distribution of experts within these layers.599

Fig. 7a shows the patterns for Pythia 12b (τ=0.5).600

More experts are located in the MLP layers com-601

pared with attention layers, with the relative allo-602

cations stabilizing at checkpoint 4k. We see the603

same trend in smaller models (App. H.1) after con-604

trolling for the number of neurons in the respective605

layers. The mean number of experts generally in-606

creases with layer depth in MLPs, with checkpoint607

4k again displaying the first recognizable structure608

(see Fig. 7b and App. H.2). For attention layers,609

high numbers of experts are located in deep layers610

and, interestingly, the first layer (see App. H.3).611

Of note, if we look only at highly specialized ex-612

perts (τ>=0.9), we find higher numbers of experts613

in earlier layers (see App. H.8 and H.9), reproduc-614

ing patterns identified in Suau et al. (2020). Our615

findings align with prior research on the role of616

layers at different depths, identifying deeper layers617

as responsible for processing higher-level semantic618

(a)

(b)

Figure 7: Pythia 12b. (a) Total number of experts in
MLP and attention layers across checkpoints; (b) Aver-
age number of experts in MLP layers at different depths,
for different checkpoints.

knowledge captured by expert neurons (Geva et al., 619

2021; Jawahar et al., 2019). Of note, we find no dif- 620

ference in these patterns for concepts with broader 621

vs narrower meanings (e.g., “animal” vs. “dog”), 622

see App. I and App. J, suggesting that LLMs do not 623

differentiate between generic and specific concepts 624

based on where resources are specialized for them. 625

7 Conclusion 626

We present a novel approach to study alignment 627

between human and model representations based 628

on the patterns in expert neurons. Representations 629

captured by these neurons align with human rep- 630

resentations significantly more than word embed- 631

dings, and approach human alignment levels. Con- 632

sistent with prior work in vision, (Muttenthaler 633

et al., 2023), we find that model size has little in- 634

fluence on alignment. 635

Our approach reveals that models generally or- 636

ganize concepts into human-interpretable domains. 637

Some domains are more structured than others, and 638

this pattern remains consistent across model sizes. 639

We leave it to future work to investigate factors 640

that could give rise to this pattern, such as the fre- 641

quency of each domain in the training data. We 642

hope that this work will serve as a foundation for 643

future research not only on alignment, but also at 644

the intersection of cognitive science and AI theory, 645

exploring whether fundamental cognitive princi- 646

ples (Murphy, 2004; Margolis and Laurence, 2003) 647

are reflected in neural network representations. 648
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8 Limitations649

We consider only a simple case of similarity650

Consistent with prior work (Digutsch and Kosinski,651

2023; Shaki et al., 2023; Misra et al., 2020), we652

study alignment between human and model rep-653

resentations, which we operationalize as the simi-654

larity between two concepts. We find that model655

size does not play a large role in alignment: even656

models as small as 70m excel in this alignment657

test. While this finding is consistent with previous658

literature (Muttenthaler et al., 2023) and replicated659

over two datasets, it is also possible that our task660

is too simple to distinguish between the models.661

This is supported by the observations that semantic662

relationships studied here start emerging early in663

training (around checkpoint 4k out of 143k). Fu-664

ture work will consider more complex cases of665

alignment, such as alignment with human values666

or preferences.667

We do not study patterns in expert neurons668

through activating these neurons Our interest669

is in exploring whether the discovered neurons cap-670

ture the dimensions meaningful to humans, and to671

this end we look at alignment. Note that, given our672

research question, simply activating a concept (i.e.,673

what the method is designed to do) is of limited674

interest. In contrast, activating the expert intersec-675

tion between two concepts—for which the method676

was not originally designed nor tested— may be a677

meaningful exploration to better understand con-678

cept representation. For instance, we could have679

activated the shared experts between “animal” and680

“dog” and examined model generations after the ac-681

tivation. We chose not to do this for the following682

reason: the approach we are using requires choos-683

ing the number of experts and the original work684

(Suau et al., 2023) has shown that this choice im-685

pacts the quality of generations and the degree to686

which a concept is expressed — an effect that we687

also observed in our preliminary investigations. We688

leave such hyper-parameter search to future work:689

a priori, we do not have a clear hypothesis about690

whether activating more specialized experts vs. less691

specialized ones within the intersection would lead692

to distinct generation patterns; or if any discernible693

pattern in those generations should be expected694

at all. Given these uncertainties, we did not feel695

confident that this analysis would yield reliable re-696

sults. Other approaches do not require choosing697

the number of experts (Rodriguez et al., 2025), but698

these approaches are designed to change the activa-699

tions of all neurons in the network and are thus not 700

applicable for our use case. 701

We do not have access to training data To fully 702

understand how knowledge develops in LLMs, we 703

need to know what the model has seen at different 704

points in training. Unfortunately, the Pile (Gao 705

et al., 2020) that Pythia models were trained on is 706

no longer available. 707

Model choice Given the nature of our research 708

question, it is crucial to be able to analyze multiple 709

checkpoints from models of varying sizes, prioritiz- 710

ing interpretability over direct evaluations of model 711

performance. For this reason, we rely on the Pythia 712

family of models, publicly released in the interest 713

of fostering interpretability research. We leave to 714

future work the exploration of alignment and its 715

emergence in alternative model families (e.g., the 716

recent OLMo 2 family; Walsh et al., 2025). 717

Mechanistic intepretability Our work relates 718

to the fast-growing field of mechanistic inter- 719

pretability that seeks to reverse-engineer LLMs 720

into human-interpretable components, revealing 721

the neural pathways and architectural components 722

by which models process information (Geiger et al., 723

2021; Feng and Steinhardt, 2024; Vasileiou and 724

Eberle, 2024). Unlike mechanistic interpretability 725

that focuses on the discovery of components in net- 726

work architectures, our goal is to assess whether the 727

knowledge representation in the model is aligned 728

with human representations. While not explicitly 729

looking for architecture-based interpretations, we 730

find that concepts from related domains like “dog”, 731

“cat”, and “animal” share a consistent set of experts, 732

suggesting that the same architectural components 733

(neurons) are implicated in the alignment. We leave 734

uncovering the neural pathways and causal compo- 735

nents underlying alignment to future work. 736

We study neurons individually In this work, 737

neurons are studied individually. That is, our anal- 738

ysis assumes that the representation of concepts 739

is aligned with the canonical basis induced by the 740

neurons. We have two reasons to assume that this 741

is the case. First, previous work suggests that in- 742

tervening on neurons identified in this method can 743

steer generations to favor or avoid a concept (Suau 744

et al., 2023, 2024). Second, in our analysis we 745

see that neurons identified in this manner capture 746

key properties of concepts: the correlation between 747

expert-based concept similarity measures and hu- 748

man concept similarity evaluations is comparable 749

9



to inter-human correlation. It is, however, possible750

that looking at neurons jointly would capture addi-751

tional aspects of concept representation. We leave752

this exploration to future work.753
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A Prompts used for probing dataset 1088

generation and sample generations 1089

Fact prompt: “Generate a set of 10 sentences, 1090

including as many facts as possible, about the con- 1091

cept [concept name] as [a/an] [adjective/noun/verb] 1092

and defined as [WordNet definition]. Refer to the 1093

concept only as [concept name] without including 1094

specific classes, types, or names of [concept name]. 1095

Make sure the sentences are diverse and do not 1096

repeat.” 1097

Sample fact sentences for concept poppy de- 1098

fined as ’annual or biennial or perennial herbs hav- 1099

ing showy flowers’: 1100

GPT-4: Gardeners often classify poppies as easy 1101

to care for due to their hardy nature. 1102

Mistral-7b-Instruct-v0.2: Poppies are herbaceous 1103

plants that can grow annually, biennially, or peren- 1104

nially, depending on the specific species. 1105

Internal 80b-chat model: Poppies have been used 1106

in traditional medicine for centuries, with various 1107

parts of the plant being employed to treat ailments 1108

like pain, insomnia, and digestive problems. 1109

Story prompt: “Generate a set of 10 sentences, 1110

where each sentence is a short story about the con- 1111

cept [concept name] as [a/an] [adjective/noun/verb] 1112

and defined as [WordNet definition]. Refer to the 1113

concept only as [concept name] without including 1114

specific classes, types, or names of [concept name]. 1115

Make sure the sentences are diverse and do not 1116

repeat.” 1117

Sample story sentences for concept poppy de- 1118

fined as ’annual or biennial or perennial herbs hav- 1119

ing showy flowers’: 1120

GPT-4: As the wedding gift from her grandmother, 1121

a dried poppy was framed and hung on her wall. 1122

Mistral-7b-Instruct-v0.2: As the farmer tended to 1123

his fields, he couldn’t help but admire the poppies 1124

that grew among his crops, their beauty a welcome 1125

distraction. 1126

Internal 80b-chat model: The poppy, a harbinger 1127

of spring, adorned the hillsides with a colorful 1128

tapestry, signaling the end of winter’s slumber. 1129
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B Generalization of the findings to the1130

Semantic Priming Dataset1131
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Figure 8: Expert overlap in the model is predicted by
human-perceived similarity level. Bars represent ex-
pert overlap averaged over all concept pairs; error bars
represent bootstrapped 95% confidence intervals. The
subplots are model sizes.

To ensure our findings generalize beyond the1132

MEN dataset, we repeat our main analysis on1133

a subset of the Semantic Priming Project (SPP)1134

(Hutchison et al., 2013), which contains 1, 661 tar-1135

get words paired with related or unrelated concepts.1136

The advantage of the SPP dataset over MEN is1137

that it contains a more varied set of concepts. The1138

drawback is that the range of similarity levels be-1139

tween the concepts is more limited — SPP only1140

contains three levels of similarity: strongly related,1141

somewhat related, and unrelated concepts. We ex-1142

pect that expert overlap will increase as human-1143

perceived similarity level increases.1144

We sample 100 pairs from each of the three simi-1145

larity bins in the SPP dataset and extract the experts1146

for each concept in the pair from the final (143k)1147

checkpoint for the three Pythia models under con-1148

sideration. We then use linear mixed-effects regres-1149

sion to predict expert overlap from model (sliding1150

difference coded1: 1b vs. 70m and 12b vs. 1b) and1151

similarity level (sliding difference coded: weak vs.1152

none and strong vs. weak). The model included1153

the maximal converging random effects structure1154

(random intercepts for the two concepts in a pair).1155

For models of all sizes, we find a statistically sig-1156

nificant increase in expert overlap with increased1157

similarity (all p’s > 0.0001; see Fig. 8).1158

1Sliding difference coding compares the mean of the de-
pendent variable for one level of the categorical variable to
the mean of the dependent variable for the preceding adjacent
level (e.g., 1b model vs. 70m model).
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C Expert set sizes in the pilot experiment1159
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Figure 9: Expert set size (log) in the pilot experiment. Points represent condition means; error bars represent
bootstrapped 95% confidence intervals. Columns represent the size of the positive set (number of unique sentences);
rows represent the size of the negative set (number of unique sentences).
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D Analyses of correlations between1161

human similarity judgments and cosine1162

similarity for the full network1163
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Figure 10: Spearman correlations between human similarity judgments, cosine similarity over raw AP values,
negative-adjusted cosine similarity [abs(AP)-0.5], and the best-performing τ of Jaccard similarity (0.5). Points
represent Spearman correlations between LLM’s similarity and perceived human similarity in the MEN dataset;
error bars represent bootstrapped 95% confidence intervals.
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E List of concepts in semantically-related1165

domains1166

Domain Concepts
animals cat, dog, cheetah,

horse, animal
clothes jacket, jeans, shirt,

sock, clothes
colours red, blue, green, black,

colour
furniture chair, bookshelf, table,

couch, furniture
occupations doctor, teacher, driver,

musician, occupation
organs heart, kidney, lung,

brain, organ
sports golf, racing, gymnas-

tics, swimming, sport
subjects mathematics, geogra-

phy, biology, chem-
istry, subjects

vegetables carrot, potato, pump-
kin, corn, vegetable

vehicles bus, tank, motorcycle,
bicycle, vehicle

Table 1: List of concepts in our domains.
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F Complete results for domain-level1167

organization1168

Model Ckpt % in dom % with broader

70m

1 0.05 0.00 0.00 0.00

36k 0.97 0.01 70.41 0.33

72k 1.19 0.00 59.69 0.33

143k 1.39 0.01 67.19 0.92

1b

1 0.02 0.00 0.24 0.33

36k 1.81 0.01 60.87 2.67

72k 1.84 0.03 63.43 2.24

143k 2.02 0.01 63.84 2.85

12b

1 0.12 0.00 0.01 0.52

36k 1.87 0.01 58.66 5.11

72k 2.12 0.01 57.85 5.50

143k 2.24 0.01 58.45 5.81

Table 2: Results of expert overlap in semantically-
organized domains, across different models and check-
points. Column 3 shows the average percentage of
experts shared between all the specific concepts in a
domain (e.g., “dog”, “cat”, etc. ). Column 4 reports
the percentage of this shared core also activated by the
broader concept representing the domain (e.g., “ani-
mal”). Baseline values are shown in gray. Our results
are significantly different from the randomized baseline
starting from checkpoint 36k, suggesting that domain-
like structures seem to have fully emerged at that stage.
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G Pythia evaluation benchmarks1169

The mean accuracy and standard error across eight1170

benchmarks shown in Table 3 is 0.27 (0.01) for the1171

70m, 0.28 (0.01) for the 1b model, and 0.32 (0.02)1172

for the 12b model at the end of training.1173

Benchmarks

LAMBADA – OpenAI Paperno et al. (2016)

PIQA Bisk et al. (2020)

SciQ Johannes Welbl (2017)

ARC (easy and hard) Clark et al. (2018)

WinoGrande win (2020)

MMLU Hendrycks et al. (2021)

LogiQA Liu et al. (2020)

Winograd Schema Challenge Levesque et al. (2012)

Table 3: Pythia evaluation benchmarks.
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H Additional materials for layer analyses1174

H.1 Total number of experts in MLP and1175

attention layers1176

Figure 13: Pythia 70m. Total number of experts in MLP and attention layers across checkpoints

Figure 14: Pythia 1b. Total number of experts in MLP and attention layers across checkpoints

1177
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H.2 Distribution of experts across MLP layers1178

Figure 15: Pythia 70m. Average number of experts identified in MLP layers at different depths, for different
checkpoints.

Figure 16: Pythia 1b. Average number of experts identified in MLP layers at different depths, for different
checkpoints.
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H.3 Distribution of experts across attention1180

layers1181

Figure 17: Pythia 70m. Average number of experts identified in attention layers at different depths, for different
checkpoints.

Figure 18: Pythia 1b. Average number of experts identified in attention layers at different depths, for different
checkpoints.

Figure 19: Pythia 12b. Average number of experts identified in attention layers at different depths, for different
checkpoints.
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H.4 Distribution of experts across1183

MLP.dense.h_to_4h layers1184

Figure 20: Pythia 70m. Average number of experts identified in the MLP h_to_4h (part of the MLP layers) at
different depths, for different checkpoints.

Figure 21: Pythia 1b. Average number of experts identified in the MLP h_to_4h (part of the MLP layers) at
different depths, for different checkpoints.

Figure 22: Pythia 12b. Average number of experts identified in the MLP h_to_4h (part of the MLP layers) at
different depths, for different checkpoints.
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H.5 Distribution of experts across1186

MLP.dense.4h_to_h layers1187

Figure 23: Pythia 70m. Average number of experts identified in the MLP 4h_to_h (part of the MLP layers) at
different depths, for different checkpoints.

Figure 24: Pythia 1b. Average number of experts identified in thr MLP 4h_to_h (part of the MLP layers) at
different depths, for different checkpoints.

Figure 25: Pythia 12b. Average number of experts identified in the MLP 4h_to_h (part of the MLP layers) at
different depths, for different checkpoints.
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H.6 Distribution of experts across1189

attention.query_key_value layers1190

Figure 26: Pythia 70m. Average number of experts identified in the attention.query_key_value (part of the
attention layers) at different depths, for different checkpoints.

Figure 27: Pythia 1b. Average number of experts identified in the attention.query_key_value (part of the
attention layers) at different depths, for different checkpoints.

Figure 28: Pythia 12b. Average number of experts identified in the attention.query_key_value (part of the
attention layers) at different depths, for different checkpoints.
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H.7 Distribution of experts across1192

attention.dense layers1193

Figure 29: Pythia 70m. Average number of experts identified in the attention.dense (part of the attention layers)
at different depths, for different checkpoints.

Figure 30: Pythia 1b. Average number of experts identified in the attention.dense (part of the attention layers)
at different depths, for different checkpoints.

Figure 31: Pythia 12b. Average number of experts identified in the attention.dense (part of the attention layers)
at different depths, for different checkpoints.
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H.8 Distribution of highly specialized experts1195

across MLP layers1196

Figure 32: Pythia 70m. Average number of highly specialized experts (τ = 0.9) identified in MLP layers at
different depths, for different checkpoints.

Figure 33: Pythia 1b. Average number of highly specialized experts (τ = 0.9) identified in MLP layers at different
depths, for different checkpoints.

Figure 34: Pythia 12b. Average number of highly specialized experts (τ = 0.9) identified in MLP layers at different
depths, for different checkpoints.
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H.9 Distribution of highly specialized experts1198

across attention layers1199

Figure 35: Pythia 70m. Average number of highly specialized experts (τ = 0.9) identified in attention layers at
different depths, for different checkpoints.

Figure 36: Pythia 1b. Average number of highly specialized experts (τ = 0.9) identified in attention layers at
different depths, for different checkpoints.

Figure 37: Pythia 12b. Average number of highly specialized experts (τ = 0.9) identified in attention layers at
different depths, for different checkpoints.
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I Distribution of experts for broader1201

concepts1202

I.1 MLP layers1203

Figure 38: Pythia 70m. Average number of experts identified for broader concepts in MLP layers at different
depths, for different checkpoints.

Figure 39: Pythia 1b. Average number of experts identified for broader concepts in MLP layers at different depths,
for different checkpoints.

Figure 40: Pythia 12b. Average number of experts identified for broader concepts in MLP layers at different
depths, for different checkpoints.
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I.2 Attention layers1205

Figure 41: Pythia 70m. Average number of experts identified for broader concepts in attention layers at different
depths, for different checkpoints.

Figure 42: Pythia 1b. Average number of experts identified for broader concepts in attention layers at different
depths, for different checkpoints.

Figure 43: Pythia 12b. Average number of experts identified for broader concepts in attention layers at different
depths, for different checkpoints.
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J Distribution of experts for narrower1207

concepts1208

J.1 MLP layers1209

Figure 44: Pythia 70m. Average number of experts identified for narrower concepts in MLP layers at different
depths, for different checkpoints.

Figure 45: Pythia 1b. Average number of experts identified for narrower concepts in MLP layers at different
depths, for different checkpoints.

Figure 46: Pythia 12b. Average number of experts identified for narrower concepts in MLP layers at different
depths, for different checkpoints.
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J.2 Attention layers1211

Figure 47: Pythia 70m. Average number of experts identified for narrower concepts in attention layers at different
depths, for different checkpoints.

Figure 48: Pythia 1b. Average number of experts identified for narrower concepts in attention layers at different
depths, for different checkpoints.

Figure 49: Pythia 12b. Average number of experts identified for narrower concepts in attention layers at different
depths, for different checkpoints.
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K Computational budget1213

The concept dataset was parallelized over 8 A1001214

GPUs (80GB). Expert extraction took about 1361215

seconds per concept for the 12b Pythia model;1216

about 27 seconds per concept for the 1b Pythia1217

model; about 8 seconds per concept for the 70m1218

Pythia model; and about 25 seconds per concept1219

for GPT-2.1220

L License and Attribution1221

The MEN dataset used in this work is released un-1222

der Creative Commons Attribute license. The pre-1223

trained models are supported by public licenses the1224

Pythia Scaling Suite (Apache), Mistral (Apache),1225

and GPT-2 (MIT). GPT-4 is supported a proprietary1226

license. We use an internal 80b-chat model and are1227

unable to provide license information on it at this1228

time.1229
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