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ABSTRACT

Human-aligned deep learning models exhibit behaviors consistent with human
values, such as robustness, safety, and fairness. Transferring these behavioral
properties to models trained on different tasks or data distributions remains chal-
lenging: aligned behavior is easily forgotten during fine-tuning, and collecting
task-specific data that preserves this behavior can be prohibitively costly. We in-
troduce BIRD, a flexible framework for transferring aligned behavior by matching
the internal representation structure of a student model to that of a teacher. Ap-
plied to out-of-distribution robustness in image classification, BIRD outperforms
fine-tuning, transfer learning, and continual learning methods, improving robust
accuracy by up to 18% over the next strongest baseline. It remains effective even
when the teacher is trained on a much simpler dataset and is 25× smaller in pa-
rameter count than the student. In a large-scale study of over 400 teacher-student
pairs, we show that three interpretable and computable properties of the teacher’s
representations explain up to 85% of the variance in transfer success, offering
practical guidance for teacher selection and design. We further show that BIRD
generalizes beyond applications in vision by enhancing safety alignment in lan-
guage models when paired with Direct Preference Optimization and improving
weak-to-strong generalization when combined with soft-label distillation. BIRD
turns small, well-aligned models into scalable alignment seeds, mitigating chal-
lenges from key bottlenecks in deploying safe AI systems.

1 INTRODUCTION

As AI systems become increasingly capable, their alignment with human values (expressed through
traits like robustness, safety, and fairness) has become a central challenge (Ortega et al., 2018; Ji
et al., 2023). Behavioral alignment typically requires costly supervision: adversarial training, human
feedback, or special-purpose datasets (Madry et al., 2017; Ouyang et al., 2022; Rafailov et al., 2023).
These techniques do not easily scale to new tasks or domains.

A natural goal is to transfer aligned behavior from one model to another. Yet behavior often degrades
during fine-tuning (Shafahi et al., 2019; Qi et al., 2023; Peng et al., 2024), and most transfer methods
assume the teacher and student share training data or a common output space (Burns et al., 2023;
Zhou et al., 2025). Worse, datasets used to train aligned models are often private.

Recent work in weak-to-strong generalization offers a promising alternative: train a small, well-
aligned “weak” model and use it to supervise a larger, more general “strong” model (Burns et al.,
2023). However, these approaches still assume the teacher and student share a task, training dataset,
or output domain. In this work, we ask: Can aligned behavior be transferred even when the teacher
and student differ in architecture, task, and training data?

Here, we introduce Behavior Induction via Representation-structure Distillation (BIRD), a simple,
drop-in framework for transferring aligned behavior between heterogeneous models by distilling
task- and behaviorally-relevant structure from the teacher’s representation space into that of the
student. BIRD requires no access to teacher training data and succeeds even when the teacher is
trained on simpler tasks or domains, enabling scalable reuse of aligned models.

BIRD is inspired by recent work in NeuroAI, where researchers hypothesize that desirable behav-
ioral properties (e.g., robustness to noise, transformation invariances) may be encoded in the ge-
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ometry of brain representations (Chung & Abbott, 2021; Zador et al., 2023; Mineault et al., 2024).
Studies biasing deep neural networks to learn representations similar to those observed in neural
data have shown improved robustness to image perturbations on image classification benchmarks
(Dapello et al., 2023; Safarani et al., 2021; Li et al., 2019). However, these gains frequently degrade
when transferring to categories or domains outside of the neural data training set (Dapello et al.,
2023). Moreover, such work typically requires expensive brain recordings and lacks actionable
criteria for selecting alignment layers or teacher representations.

Our work builds on the core insight that behavioral properties are encoded in the structure of a
model’s latent representations (Zou et al., 2023), but generalizes it in two key ways. First, BIRD
does not rely on biological recordings or shared datasets; the teacher and student may differ in
size, architecture, domain, and output space. Second, we empirically identify three computable
properties of a teacher’s representation space that reliably predict transfer success. This enables
principled selection of both teacher models and representation layers.

We first evaluate BIRD in the context of out-of-distribution robustness transfer in image models.
Studying over 400 teacher-student pairs varying in architecture, capacity, and training data, we find:

• BIRD outperforms transfer methods including fine-tuning, continual learning, and activation-
based distillation, improving robust accuracy by up to 18% over the strongest baseline.

• BIRD enables weak-to-strong transfer from small, simple teachers (e.g., CIFAR-10-trained Mo-
bileNetV2) to students up to 25× larger, trained on more complex datasets (e.g., TinyImageNet).

• Transfer success is predictable and actionable: three interpretable properties of the teacher’s rep-
resentation space that quantify task and behavioral relevance explain up to 85% of the variance
in transfer outcomes, offering practical guidance for alignment layer and teacher selection.

We further show that BIRD extends beyond vision. In language models, supplementing Direct
Preference Optimization (DPO) with BIRD improves the efficacy of safety alignment on the PKU-
SafeRLHF dataset, and enhances weak-to-strong generalization when combined with soft-label dis-
tillation.

By aligning representation structure instead of activation values or model outputs, BIRD provides a
flexible mechanism for transferring aligned behavior across models and domains. This design makes
BIRD more general than existing approaches in knowledge distillation (Hinton et al., 2015; Jin et al.,
2024) and continual learning (Li & Hoiem, 2017; Shafahi et al., 2019) that assume access to teacher
data or rely on shared domains, output spaces, or tasks between teacher and student. It advances the
promise of weak-to-strong generalization and sets the stage for scalable alignment across tasks.

2 RELATED WORK

2.1 SCALABLE ALIGNMENT VIA WEAK-TO-STRONG SUPERVISION

Behavioral misalignment arises when models optimize their training objective while diverging from
human intent (Amodei et al., 2016; Di Langosco et al., 2022; Razin et al., 2024). Current approaches
to mitigate this, such as preference tuning for language models (Ouyang et al., 2022; Rafailov et al.,
2023) or adversarial training for vision models (Madry et al., 2017; Hendrycks et al., 2021), are
effective work but require costly, task-specific datasets and supervision, limiting scalability.

Scalable oversight aims to reduce this dependence by developing methods for supervising advanced
models efficiently, even when human feedback is limited or unavailable (see Ji et al., 2023). A
promising direction is weak-to-strong generalization, in which a small, well-aligned model provides
soft-label supervision to guide the training of a larger, more capable model (Burns et al., 2023; Zhu
et al., 2024; Zhou et al., 2025). Our work generalizes this paradigm. Instead of requiring shared out-
put spaces and access to a teacher’s training data (even if unlabeled), we transfer behavior between
heterogeneous models by leveraging the representation structure of a teacher model as a supervisory
signal. This enables weak-to-strong transfer across differing tasks, datasets, and architectures.

2.2 LIMITS OF ROBUSTNESS TRANSFER IN IMAGE MODELS

Adversarial robustness is a primary benchmark for studying behavioral transfer (Shafahi et al., 2019;
Nern et al., 2023; Liu et al., 2023; Xu et al., 2023). While classical approaches require expensive,

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

online generation of adversarial examples during training (Madry et al., 2017; Schmidt et al., 2018),
recent work has explored transferring robustness to new tasks without retraining from scratch.

A key challenge is catastrophic forgetting (Kirkpatrick et al., 2017). When robust models are fine-
tuned on new data, robustness is often lost (Shafahi et al., 2019; Nern et al., 2023). To address this,
methods have incorporated adversarial examples during transfer or added constraints to limit feature
drift (Chen et al., 2021; Fan et al., 2021; Liu et al., 2023; Xu et al., 2023). Shafahi et al. (Shafahi
et al., 2019) proposed adversarially robust transfer learning using Learning without Forgetting (LwF)
(Li & Hoiem, 2017), which preserves robustness by constraining changes to the final-layer features.
However, these techniques assume that robust features generalize across domains, which holds only
with large and diverse pretraining datasets. In contrast, our work enables behavior transfer from
smaller, simpler models trained on low-resource domains, without requiring shared inputs or labels.

2.3 DISTILLING REPRESENTATION GEOMETRY

Knowledge distillation (KD) enables a student model to learn from a teacher by mimicking outputs
or hidden activations. Originally developed for model compression (Bucilua et al., 2006; Hinton
et al., 2015), available KD methods have since expanded to include intermediate-layer supervision
(Romero et al., 2014; Zagoruyko & Komodakis, 2016) and cross-modal transfer (Gupta et al., 2016).
These methods assume shared tasks and output spaces and often transfer sample-level information.

BIRD takes a different approach. Rather than matching outputs or activations, we transfer the pair-
wise structure of the teacher’s representation space, captured via Gram matrices over input batches.
This quantifies the geometry of internal representations, rather than specific activation values. This
builds on the idea that a model’s knowledge lies not only in its outputs, but in the organization of its
representation space (Hjelm et al., 2018; Tian et al., 2019; Muttenthaler et al., 2024). While prior
work uses this idea for unsupervised learning or intra-task alignment, BIRD applies it to cross-task,
cross-domain behavior transfer, generalizing KD into a scalable mechanism for aligned supervision.

2.4 REPRESENTATION ALIGNMENT IN NEUROAI

Work in NeuroAI suggests that robust and general behavior in biological systems may arise from
the structure of neural representations (Chung & Abbott, 2021; Zador et al., 2023). Several studies
have attempted to bias AI models toward brain-like representations by minimizing dissimilarity to
neural recordings from visual cortex, often using objectives based on Centered Kernel Alignment
(CKA) or Representational Similarity Analysis (RSA) (Dapello et al., 2023; Safarani et al., 2021;
Muttenthaler et al., 2024). These approaches have shown moderate improvements in robustness but
typically require neural data, assume shared input domains, and show limited generalization.

Our work draws inspiration from these ideas but removes the need for brain recordings or stimulus
overlap. BIRD operationalizes the hypothesis that structured representations support general behav-
ior, using any aligned model as a teacher. By enabling behavior transfer across architectures and
domains, BIRD extends NeuroAI insights into a general-purpose framework for scalable alignment.

3 BIRD: BEHAVIOR INDUCTION VIA REPRESENTATION-STRUCTURE
DISTILLATION

We introduce BIRD, a flexible framework for transferring aligned behavior from a teacher model to
a student model. Our approach is grounded in the hypothesis that task-general behavioral properties
(i.e., robustness, safety, and invariance) are encoded in the structure of a model’s internal representa-
tion space, as suggested in Zou et al. (2023). We posit that guiding a student model to adopt similar
representational structure to its teacher biases it toward learning the same aligned behaviors.

BIRD proceeds in three steps (Figure 1):

1. We assume access to a trained teacher model gϕ : Dteacher → Yteacher that exhibits desirable
behavioral properties, and a pretrained student model fθ : Dstudent → Ystudent for which we
wish to induce those properties (Figure 1a).

2. A guiding layer in the teacher and a guided layer in the student are selected for distillation based
on their relevance to task and behavioral alignment (Section 5).
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Figure 1: Overview of BIRD: (a) First, a student model is pre-trained on its target training set,
Dstudent. A teacher model is independently trained to develop aligned behavior on Dteacher (opti-
mizing Lalign). (b) Next, the student model is fine-tuned on its original dataset to maintain task per-
formance while learning latent representations with similar structure to that of the (frozen) teacher.

3. The student is fine-tuned to preserve performance on its original task while learning a represen-
tation space whose structure mimics that of the teacher (Figure 1b).

To implement this, we define a loss that combines task performance and representational alignment:

EB∼Dstudent

[
αLtask

(
fθ(B), ·

)
+ βLrep

(
u(B), v(B)

)]
(1)

Here, B is a batch of inputs from the student’s training distribution while α and β are hyperparame-
ters that weight the relative contributions of task and representation-structure loss. The functions u
and v map those inputs to intermediate layer representations in the teacher and student, respectively.
The first term, Ltask, is the task-specific loss that the student was originally trained to minimize
(e.g., cross-entropy). The second term, Lrep, penalizes dissimilarity in representation structure:

Lrep(u(B), v(B)) = 1− CKAlinear(u(B), v(B)). (2)

We use CKA (Kornblith et al., 2019) to quantify the alignment of pairwise similarity structures
within a batch of inputs:

CKAlinear(u(B), v(B)) =
||v(B)Tu(B)||2F

||u(B)Tu(B)||2F · ||v(B)T v(B)||2F
. (3)

We select CKA as a measure of representational similarity given its (i) proven effectiveness in com-
paring deep network representations, (ii) reliability when comparing high-dimensional representa-
tion spaces, and (iii) ease of interpretation. Compared to common losses used in KD, such as L2 or
KL-divergence, this CKA-based objective aligns the geometry of teacher and student representation
manifolds rather than enforcing instance-level similarities. Because CKA evaluates pairwise simi-
larities across a batch (as opposed to per-example similarities, which are closely tied to the teacher’s
specific outputs), it captures higher-order relationships that reflect general, behaviorally relevant
properties of the teacher’s representations (Kornblith et al., 2019).

Our approach draws inspiration from recent work in neuroscience-informed representation learning,
where deep networks are trained to jointly minimize a task loss and a neural alignment loss based
on brain recordings (Li et al., 2019; Federer et al., 2020; Safarani et al., 2021; Dapello et al., 2023).
Unlike those approaches, BIRD does not require neural data or shared stimulus distributions.

A central distinction between BIRD and prior approaches to distillation and behavior transfer lies
in its flexibility across heterogeneous models and tasks. Teacher supervision in BIRD comes solely
from representation structure, measured via CKA. This design enables BIRD to support behavior
transfer in settings where direct supervision or shared objectives are unavailable. Concretely:

• BIRD does not require a shared input space, output space, or task between teacher and
student models.

• BIRD does not rely on paired inputs or access to the teacher’s training data; supervision is
provided by projecting the student’s inputs through the teacher’s representation space.

Together, these properties set BIRD apart as a practical and general framework for transferring
aligned behavior beyond the constraints of existing approaches in KD.
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Table 1: Accuracy (%) of MobileNetV2 (MN2), ResNet18 (RN18), DenseNet169 (DN169), and
Vision Transformer (ViT) models after behavior transfer using clean data from CIFAR-10 (C10),
CIFAR-100 (C100), TinyImageNet (TIN), and ImageNet (IN). Values reported are accuracy over
all clean and corrupted images from the target test set, averaged over 3 seeds.

Model Source Target Accuracy of Behavior Transfer Method (↑)

Data Data None LP FT LP-FT Hints LwF BIRD

MN2

C10 C100 51.31 10.95 51.12 47.56 51.53 52.21 54.77
C10 TIN 20.74 5.24 20.00 18.12 21.27 20.52 24.11

C100 TIN 20.74 18.84 20.66 23.52 21.26 23.18 25.03
C10 IN 22.59 1.29 22.50 22.36 22.25 23.23 23.38

C100 IN 22.59 6.18 22.36 22.34 22.49 23.27 23.68

RN18

C10 C100 52.03 16.93 51.95 50.63 52.20 55.42 57.39
C10 TIN 20.56 7.25 20.10 19.43 20.92 22.17 23.60

C100 TIN 20.56 20.95 20.75 23.66 20.71 24.48 24.49
C10 IN 20.96 5.48 21.02 20.62 22.66 22.25 23.16

C100 IN 20.96 9.93 20.96 20.42 22.44 22.25 23.52

DN169

C10 C100 54.51 23.92 55.84 53.39 54.92 56.92 59.04
C10 TIN 22.59 10.66 23.39 21.20 22.68 24.14 25.25

C100 TIN 22.59 23.55 23.19 24.86 22.75 26.14 27.46
C10 IN 26.46 2.39 26.86 26.70 26.59 27.08 27.43

C100 IN 26.46 7.25 26.18 26.16 26.78 27.21 27.76

ViT

C10 C100 50.77 40.07 53.83 54.09 53.57 51.32 53.71
C10 TIN 22.08 20.28 25.82 25.56 25.53 22.28 25.98

C100 TIN 22.08 22.94 24.24 23.91 25.82 22.36 27.26
C10 IN 25.83 8.71 25.36 25.10 26.20 26.15 26.32

C100 IN 25.83 10.18 24.78 24.68 26.15 26.01 26.28

4 TRANSFERRING ROBUSTNESS ACROSS DATASETS AND ARCHITECTURES

We first evaluate BIRD in the context of robust image classification, where the goal is to trans-
fer out-of-distribution (OOD) robustness from a teacher model trained on a lower-complexity
dataset Dteacher to a student model trained on clean data from a higher-complexity dataset Dstudent

(Dstudent ̸= Dteacher). This setting follows the aims of weak-to-strong generalization, where aligned
behavior is induced in a larger, less specialized model using supervision from a smaller, aligned one.

Setup and evaluation protocol We consider robust classification transfer across five dataset pairs:
CIFAR-10 → CIFAR-100, CIFAR-10 → TinyImageNet, CIFAR-100 → TinyImageNet, CIFAR-10
→ ImageNet, and CIFAR-100 → ImageNet (Krizhevsky et al., 2009; Deng et al., 2009). Teachers
are trained to be robust to 15 ImageNet-C corruptions (Hendrycks & Dietterich, 2019), while stu-
dents see only clean images. To maintain consistency across all dataset pairs, all images are resized
to 32× 32 pixels.

Robustness is measured using accuracy over the clean and corrupted test set and Performance Gap
Recovered (PGR) (Burns et al., 2023):

PGR = min

(
max

(
0,

Accpost − Accpre

Accceiling − Accpre

)
, 1

)
, (4)

where Accpost is student accuracy after behavior transfer, Accpre is the pre-transfer baseline, and
Accceiling is the accuracy of a student trained directly with access to OOD corruptions.

We test BIRD across four architectures: MobileNetV2 (Sandler et al., 2018), ResNet18 (He et al.,
2016), DenseNet169 (Huang et al., 2017), and Vision Transformers (Dosovitskiy et al., 2020). We
compare BIRD to five baseline strategies that do not access corrupted target training data: linear
probing (LP), full fine-tuning (FT), sequential LP followed by FT (LP-FT) (Kumar et al., 2022;
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Figure 2: Comparing transferred robustness between BIRD and Hints students (CIFAR-10 trained
teacher, TinyImageNet student). (a) Feature stability (average cosine similarity between clean im-
ages and their corrupted versions) measured over first 20,000 steps of training. Feature stability of
teacher shown as horizontal dashed line. (b) PGR measured over each corruption type.

Nern et al., 2023), LwF (Li & Hoiem, 2017; Shafahi et al., 2019), and hint-based distillation (Hints)
(Romero et al., 2014), which aligns activation values between teacher and student via linear map-
ping and L2-norm representation loss. Additional training details, corruption visualizations, and
evaluation breakdowns are provided in Appendix A.1.

Comparison with baselines Across nearly all dataset pairs and model architectures, BIRD
achieves the highest out-of-distribution robustness and PGR (Table 1). For instance, when trans-
ferring robustness from CIFAR-10 to CIFAR-100, BIRD, on average, improves robustness by 4.5
percentage points and recovers 31.8% of the performance gap to the robustness ceiling. The next
best method, LwF, recovers only 13.5%. Similar trends are observed in the CIFAR-100 → TinyIm-
ageNet (25.2% vs. 13.8%), CIFAR-10 → TinyImageNet (22.4% vs. 4.9%), CIFAR-10 → ImageNet
(8.7% vs. 4.2%), and CIFAR-100 → ImageNet (10.5% vs. 3.7%) transfers.

LP and FT alone fail to consistently improve robustness over the baseline. LP-FT provides modest
gains, but only in a select few architecture, dataset pairs. This highlights a key challenge of behavior
transfer from weak sources: robust but highly specific features may not generalize across distribution
shifts and are therefore easily forgotten when no structural constraint are imposed during transfer.

Comparison with activation matching To isolate the effect of distilling representational struc-
ture, we compare BIRD to Hints, which supervises the student via linear mapping and L2-norm
on the same representation layers. Despite identical teacher-student pairs and alignment points,
BIRD achieves higher robustness in every setting and corruption category (Figure 2). This suggests
that representation structure (captured via CKA) encodes more generalizable behavioral informa-
tion than raw, sample-level activation values. We conclude that BIRD’s success stems not just from
where it supervises, but from how it supervises.

Scaling to larger student models We next test whether BIRD generalizes to student models of
higher capacity than the teacher. Fixing a MobileNetV2 teacher, we apply BIRD to a series of stu-

Figure 3: OOD robustness of student models before and after BIRD, guided by a MobileNet teacher
trained on a lower-complexity dataset. BIRD improves robustness across all student capacities.
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dent architectures of varying capacity. As shown in Figure 3, robustness improves across all model
sizes, including a 22.4% PGR for the ResNet-152 student, despite it having 25× more parameters
than the teacher. These results confirm BIRD’s effectiveness for weak-to-strong behavior transfer,
even in extreme capacity mismatches. As is common in robust learning, improvements in OOD
robustness are sometimes accompanied by minor reductions in clean accuracy. Detailed clean-vs-
corruption breakdowns and per-seed results are provided in Appendix A.1.

5 WHAT MAKES A GOOD TEACHER FOR BEHAVIOR TRANSFER?

The preceding experiments demonstrated BIRD’s ability to transfer robust behavior across datasets
and architectures. Here, we investigate the conditions under which this transfer is most successful.
Specifically, we want to understand what makes a teacher a good source for behavior transfer.

Setup and analysis framework Our analysis is based on the hypothesis that transfer success
depends on two measurable properties of the teacher’s representation space: Task relevance, the
degree to which the teacher’s representations are informative for the student’s downstream task, and
Behavioral relevance, the extent to which the teacher’s representations support aligned behavior.

We construct a pool of 144 teacher models varying along these two axes. Teachers are trained on one
of three datasets (CIFAR-10, CIFAR-100, or TinyImageNet) to manipulate task relevance. Behav-
ioral relevance is varied by augmenting training data with randomly selected subsets of ImageNet-C
corruptions. Teachers span four architectures: AlexNet (Krizhevsky et al., 2012), ResNet18 (He
et al., 2016), DenseNet121 (Huang et al., 2017), and MobileNetV2 (Sandler et al., 2018).

Each teacher is used to supervise a ResNet50 student trained on one of three datasets (CIFAR-10,
CIFAR-100, or TinyImageNet), resulting in 432 teacher-student pairs. We quantify properties of
each teacher’s representation space using established metrics (Alain & Bengio, 2016; Ilyas et al.,
2019) that assess downstream utility of a feature space:

• Task relevance We train linear probes on the teacher’s representation using clean data from
Dstudent and measure (i) Probing accuracy: classification accuracy of the linear probe (Alain
& Bengio, 2016) on held-out student data (ii) Complementary knowledge: fraction of student
samples correctly classified by the teacher’s probe but not by a probe trained on the student’s
own representation (Roth et al., 2023).

• Behavioral relevance We aggregate the γ-robust usefulness of each feature (Ilyas et al., 2019),
which measures whether features retain predictive value under corruptions. Full computation
details are provided in Appendix A.3.

Explaining transfer success For each student dataset, we fit a linear model to predict accuracy
on the corrupted test set using the three metrics described above. We report R2 values to quantify
explained variance in behavior transfer from these properties of the teacher’s representation space.

Results Impressively, these simple, interpretable properties explain the vast majority of transferred
robustness. We observe strong predictive power across all student datasets. For students trained on
TinyImageNet, the model explains 81.8% of the variance in PGR; for CIFAR-100, 85.5%; and
for CIFAR-10, 73.6% (Appendix, Figure 6). Across all student datasets, the most predictive single
factor is the behavioral relevance of the teacher’s representation space, as measured by aggregated γ-
robust usefulness, explaining more than 50% of the variance in PGR alone. Task relevance metrics
(probing accuracy and complementary knowledge) add additional explanatory power, especially
when transferring to more complex student datasets like TinyImageNet.

Implications for teacher selection These findings provide actionable guidance for selecting or
training effective teacher models. When choosing among candidate teachers, we recommend prior-
itizing those with high behavioral relevance, even if they were trained on a different dataset or have
limited task overlap with the student.
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6 TRANSFERRING BEHAVIOR IN LANGUAGE MODELS

To assess the generality of BIRD beyond robustness transfer in vision, we evaluate its application in
two distinct language modeling settings: safety alignment and weak-to-strong generalization.

6.1 TRANSFERRING SAFE BEHAVIOR

Safety alignment, fine-tuning models so that their outputs are safe with respect to human-defined
criteria, is a central challenge in alignment research. A common approach is DPO (Rafailov et al.,
2023), which optimizes alignment using paired preferred and rejected responses to the same query.

We investigate whether supplementing DPO with BIRD can further improve safety alignment. To
do this, we encourage a generative student model to adopt a representational structure similar to that
of a simple teacher classifier trained to distinguish safe from unsafe responses (Appendix A.5.2).

Setup and Evaluation Protocol We evaluate safety alignment on the 135M and 360M parame-
ter variants of SmolLM2, state-of-the-art, “small” language models that are accessible within our
compute budget (Allal et al., 2025). For preference supervision, we sample 10, 000 examples from
the PKU-SafeRLHF dataset (Ji et al., 2024a), which contains prompts paired with safe and unsafe
responses, as evaluated across 19 safety dimensions (Appendix A.5.1). Student models are trained
with two strategies: (i) DPO and (ii) DPO supplemented with BIRD loss (DPO+BIRD). In the latter
setting, student representation structure is supervised by that of a simple binary classifier fine-tuned
on PKU-SafeRLHF-QA (Ji et al., 2024b) dataset to predict whether or not a given response is safe
(risk-neutral according to all 19 safety dimensions). To evaluate safety alignment, we report the
percentage of generated responses to queries from the PKU-SafeRLHF test set judged as safe by an
independently trained safety classifier (Appendix A.5.3).

Results Experimental results are summarized in Table 2. Across three seeds, all models fine-tuned
on the safety preference dataset outperform the baseline instruction tuned model (None), and models
trained with BIRD further produce a higher proportion of safe responses than DPO alone. Sample
responses are provided in Appendix A.5.4. Although relatively small language models were studied,
it demonstrates BIRD’s generalization beyond robustness transfer in vision to the challenge of safety
alignment in language models. Future work will extend these analyses to larger models.

Table 2: Safety alignment performance of generative models on the PKU-SafeRLHF test set. %
Safe: percentage of query responses from that model evaluated as safe according to an LLM judge.

Student % Safe (↑)

None DPO DPO+BIRD

SmolLM2-135M-Instruct 43.88 65.48 71.28
SmolLM2-360M-Instruct 47.63 86.57 88.37

6.2 EXTENDING SOFT-LABEL WEAK-TO-STRONG GENERALIZATION WITH BIRD

We further assess the generality of BIRD in the context of weak-to-strong generalization (Burns
et al., 2023), in which we seek to distill capabilities from a low-capacity, aligned teacher into a
higher-capacity, unaligned student model without access to ground-truth labels.

Setup and evaluation protocol We adopt the setup introduced in Burns et al. (2023), in which
a small, aligned teacher model is fine-tuned on a target dataset and then used to supervise a larger
student. We use GPT2-Small as the teacher and either GPT2-Medium or GPT2-Large as the student.

We consider three multiple-choice question-answering datasets: SciQ (Johannes Welbl, 2017): sci-
ence questions with factual answers; BoolQ (Clark et al., 2019): yes/no questions based on para-
graph context; Cosmos QA (Huang et al., 2019): commonsense inference over short passages.

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Each student is trained using two supervision strategies: (i) Soft-label distillation: cross-entropy
loss between student predictions and the teacher’s soft probabilities, (ii) Soft-label + BIRD: soft-
label loss, accompanied with BIRD’s representation-structure loss computed over the final token
embedding layer of teacher and student. Following Burns et al. (2023), we report PGR on a held-out
test set relative to a ceiling set by fine-tuning of the student on target data with ground-truth labels.

Results Table 3 summarizes performance across all dataset and model combinations. In three of
the six configurations, adding BIRD to soft-label distillation yields a noticeable improvement in
behavior transfer. On BoolQ, neither soft-label distillation nor BIRD outperform the weak teacher
(0% PGR). This suggests that not all aligned behaviors captured by small models generalize to more
complex reasoning tasks or that representational distillation at the final layer may not be sufficient
in this domain. This highlights a broader opportunity: combining BIRD with additional alignment
signals (e.g., multi-layer supervision) may offer more consistent benefits in complex domains.

Table 3: PGR (averaged over 3 seeds) for GPT2-Medium and GPT2-Large models trained on
soft-labels from GPT2-Small (Soft-Label) or soft-labels with BIRD (+BIRD).

Dataset Student % PGR (↑)

Soft-Label +BIRD

SciQ GPT2-Medium 7.79 16.14
GPT2-Large 17.70 24.19

Cosmos QA GPT2-Medium 47.00 42.76
GPT2-Large 65.51 68.02

7 DISCUSSION

We introduce Behavior Induction via Representation-structure Distillation (BIRD), a simple and
general framework for transferring aligned behavior by distilling the structure of a teacher model’s
internal representations. Unlike prior approaches, BIRD does not require shared training data, output
spaces, or architectures between teacher and student. Our experiments in robust image classification
show that BIRD consistently outperforms existing transfer methods, even when the teacher is sig-
nificantly smaller and trained on a simpler dataset. We further identify three interpretable properties
of the teacher’s representation space that strongly predict transfer success. Finally, we show that
BIRD provides complementary gains when paired with existing methods for safety alignment and
weak-to-strong generalization in language models. These results are not intended as new state-of-
the-art benchmarks, but rather as evidence of BIRD’s generality and its ability to enhance existing
approaches without requiring new data or reward modifications.

Key takeaways BIRD contributes two key advances. First, it establishes a flexible, drop-in mech-
anism for aligned behavior transfer that operates across domains, architectures, and label spaces by
supervising over representation structure. Second, it offers a systematic analysis of what makes a
good teacher for behavior transfer. Our findings suggest that small and simple models can serve as
effective alignment scaffolds for larger, unaligned models if their representations are behaviorally
relevant. BIRD is especially useful in settings where aligned behavior must be scaled without re-
training large models or access to private data.

Limitations and future directions Extending BIRD to other behaviors (e.g., honesty) remains an
open direction. Additionally, transfer success is likely bounded by student capacity and task com-
plexity; future work should quantify this saturation effect more precisely (Appendix A.4). Further,
we currently supervise alignment at a single layer selected by a heuristic. While our findings suggest
that exact layer choice is not overly sensitive (Appendix A.1.4), future work may explore multilayer
extensions to capture deeper structural alignment. Finally, our behavioral relevance metric is tai-
lored to robust classification; in other domains, tools like linear tomography (Zou et al., 2023) or
causal mediation analysis (Vig et al., 2020) may help localize behavior-relevant representations.
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ETHICS STATEMENT

BIRD is intended as a tool to improve human-AI alignment. However, its effectiveness depends on
the teacher: if the teacher encodes biased, harmful, or misaligned behaviors, BIRD may transfer
those behaviors to the student. Ensuring the integrity of teacher models is therefore essential for
responsible deployment.

REPRODUCIBILITY STATEMENT

An implementation of BIRD will be made available as a public GitHub repository upon publication
and is available as supplemental material. Training and evaluation configuration details required for
reproduction (e.g., choice of optimizers, data augmentations, and hyperparameters) are provided in
the appendix.
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A APPENDIX

A.1 EVALUATING ROBUST BEHAVIOR TRANSFER

A.1.1 OUT-OF-DISTRIBUTION CORRUPTIONS FROM THE IMAGENET-C BENCHMARK

The ImageNet-C benchmark (Hendrycks & Dietterich, 2019) is a standardized suite for evaluating
the robustness of image classification models to common corruptions. These image corruptions
are algorithmically generated to simulate four different categories of real-world sources of image
corruption (noise, blurring, weather effects, and digital effects). These corruptions can be readily
applied to images from datasets other than ImageNet (e.g., CIFAR-10, CIFAR-100, and TinyIma-
geNet), as was done in this work. There are 19 total corruption types, each from one of these four
corruption categories (Figure 4). Each corruption is additionally applied at five levels of severity,
reflecting of the magnitude of the corruption (Figure 5). In all experiments of Section 4, teacher
models are trained to be robust to 15 of these corruption types (“gaussian noise”, “shot noise”,
“impulse noise”, “defocus blur”, “glass blur”, “motion blur”, “zoom blur”, “snow”, “frost”, “fog”,
“brightness”, “contrast”, “brightness”, “pixelate”, and “jpeg compression”) and, after robust transfer,
students are evaluated on the remaining 4 four held out corruption types (“speckle noise”, “gaus-
sian blur”, “spatter”, and “saturate”), one from each corruption category, to evaluated generalized
robustness (Hendrycks & Dietterich, 2019).

Figure 4: Sample CIFAR-10 image distorted with corruptions from the ImageNet-C benchmark
(Hendrycks & Dietterich, 2019). “Clean” designates the original, uncorrupted image. Corruptions
are depicted at maximal severity.
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Figure 5: Sample CIFAR-10 image distorted with “Speckle Noise” corruption at severities 1-5.

A.1.2 ROBUST TRANSFER BASELINES

In Section 4, we seek to compare robust behavior transfer with BIRD to robust transfer learning
baselines that (1) solely rely on learning from clean data during the transfer learning task and (2)
do not make inherent assumptions about the exact robust pre-training method. These two criteria
strongly reflect the behavior transfer paradigm that is studied in this paper: transferring behavior of
an aligned model to a new, target domain using only the data that we already have available for the
target domain. To the best of our knowledge, the most relevant and highest performing methods that
meet these criteria are robust transfer learning using continual learning strategies (LwF) (Shafahi
et al., 2019), Linear Probing (LP), Fine-tuning (FT), and Linear Probing followed by Fine-tuning
(LP-FT) (Shafahi et al., 2019; Kumar et al., 2022; Nern et al., 2023).

Linear Probing (LP) In LP, the robust, pre-trained feature extractor of a model is frozen while a
new linear classification head is trained for the downstream task. This is a computationally efficient
approach, often used when labeled data is scarce. Since the feature extractor is not updated, the
robustness of the new model is largely dependent on the robustness of the features learned in pre-
training (Shafahi et al., 2019; Nern et al., 2023).

Fine-tuning (FT) In FT, the entire model (i.e., the feature encoder and classification head) is
updated as the model is trained on the new task or domain. This provides more flexibility than
LP, as the model is able to learn new features that support better clean performance on the new
downstream task, but risks degrading the robustness of the original representations (Shafahi et al.,
2019; Nern et al., 2023).

Linear Probing followed by Fine-tuning (LP-FT) LP-FT is performed in two steps. First, a
robust model’s feature extractor is frozen and a new classification head for the target dataset is
learned (LP). Next, full-model fine-tuning is performed, updating both the model’s feature extractor
and new classification head. Kumar et al. demonstrate that fine-tuning a model with a new, randomly
initialized classification head can distort a model’s learned features (ultimately contributing to worse
OOD performance) and that these effects can be mitigated by first learning a classification head for
the new task using LP (Kumar et al., 2022). Nern at al. employ this strategy in the context of
transferring adversarial robustness in an effort to combine the benefits of LP (preserving robustness)
and FT (improving performance) (Nern et al., 2023).

Learning without Forgetting (LwF) Shahafi et al. suggest the use of LwF, a popular strategy
used in lifelong learning tasks (Li & Hoiem, 2017), as a method to preserve adversarial robustness
when end-to-end fine-tuning a model for a new data distribution (Shafahi et al., 2019). The ap-
proach augments the training objective with a loss that penalizes deviations between penultimate
layer feature activations of the fine-tuned model and those of a robust source model. Unlike tradi-
tional LwF which distills from logits, this variant applies the loss directly to the penultimate feature
layer, encouraging the student to retain robust internal representations even as it adapts to the target
domain.

A.1.3 TRAINING DETAILS

All experimental results for robust behavior transfer of Section 4 are reported over three seeds. For
each method that introduced additional hyperparameters, we instantiate that method with a range of
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hyperparameter values and report best performance achieved. Specifically, for LwF (Shafahi et al.,
2019) and Hints (Romero et al., 2014), we tune the strength of the loss that penalizes divergence in
feature activation values. For FT, LP, FT-LP, and LwF, we additionally trained models with three
unique initial learning rates and always report best performance. We use a fixed optimization strat-
egy in all methods (stochastic gradient descent with momentum and weight decay for CNN models,
and AdamW with weights decay for ViT models) and decay the learning rate with a cosine decay
schedule over the course of training. While training CNN models, training images were augmented
with random cropping and horizontal flipping. Training images were additionally augmented using
CutMix (Yun et al., 2019), mixup (Zhang et al., 2017), and random erasing (Zhong et al., 2020)
strategies while training ViT models, following the work of Gani et al. (2022). During robust trans-
fer, all student models were exclusively trained on clean images. Early stopping was performed
using a clean validation set.

A.1.4 LAYER SELECTION

To select the distillation layers for the teacher and student models, we applied a simple heuristic
based on representation measurements reported in Section 5. Specifically, over multiple candidate
layers associated with natural transition points in each architecture (e.g., the end of a ResNet, Mo-
bileNet, or DenseNet block), we computed two metrics (linear-probing accuracy and γ-robust use-
fulness from the CIFAR-10 → CIFAR-100 transfer task) as proxies of task relevance and behavioral
relevance of the representations from that layer, and selected the layer with a highest composite score
as the distillation anchor. This composite score was computed as the mean of these two metrics, after
0-1 scaling each metric over the candidate layers from a given network.

While this procedure may not guarantee optimal performance for every BIRD-tuned model, it pro-
vided a computationally efficient proxy for selecting meaningful layers without exhaustively search-
ing all possibilities. In practice, this strategy yielded strong results across architectures, and further
improvements are likely achievable through layer-level validation when resources permit. For con-
sistency and simplicity, we fixed the selected layer within each model family (e.g., always distilling
from Block 3 outputs in ResNets) and transfer learning configuration (i.e., CIFAR-10 → CIFAR-
100, CIFAR-10 → TinyImageNet, and CIFAR-100 → TinyImageNet). A broader evaluation of
alternative layer choices is shown in Figure 7. Consistently, we observe that distilling representation
structure at layers between the middle and end of the network offers best performance in this robust
behavior transfer task. Small deviations (e.g., a few hidden layers) away from the optimal distillation
layer does not drastically reduce performance.

A.1.5 EXPANDED RESULTS

Individual seed results for each robust transfer method evaluated in Section 4 are provided in Tables
4,5. Clean accuracy of each model is reported in Table 6. Figures 8, 9, and 10 show PGR of all
methods for each corruption type and severity.

A.1.6 PERFORMANCE OVER DISTRIBUTION OF CLASSES

Figure 11 visualizes within-class accuracy change distributions after applying BIRD. We observe
that improvements in robustness are broadly distributed across classes, indicating that the gains are
not limited to the few categories of the target dataset that are most similar to those of the teacher’s
source dataset.

A.2 LEARNING FROM WEAK TEACHERS

Quantitative results associated with Figure 3 (performing behavior transfer from a MobileNetV2
teacher to student models of varying capacity) are provided in Table 7.

A.3 EXPLAINING ROBUST BEHAVIOR TRANSFER

A.3.1 QUANTIFYING BEHAVIORAL RELEVANCE OF A TEACHER’S FEATURE SPACE

To quantify the behavioral relevance of a teacher model’s representations, we adapt the notion of
γ-robust useful features from Ilyas et al. (Ilyas et al., 2019), which defines a feature as robustly
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Figure 6: Variance in robust accuracy explained by linear models trained on teacher representation
properties. Horizontal lines indicate student performance before BIRD.

useful if it remains predictive of the true label even under allowable input perturbations. While the
original formulation applies to binary classification under adversarial perturbations, we extend this
idea to the multi-class setting and apply it to common image corruptions (rather than adversarial
attacks).

We compute a behavioral relevance score for a given model layer using the following procedure:

1. Compute class-wise γ-robust usefulness: For each feature dimension in the representation space,
and for each class c in the target dataset, we binarize the class labels such that samples from class
c are labeled as +1 and all other samples as −1. We then evaluate the feature’s correlation with
this binary labeling across target dataset images distorted with corruptions from the ImageNet-C
benchmark. This gives a robustness-aware measure of the feature’s predictive power for each
class.

2. Feature-level aggregation: For each feature dimension, we compute the 90th percentile of its γ-
robust usefulness scores across all classes. This choice reflects the intuition that a useful feature
may be strongly predictive of a subset of classes.

3. Layer-level aggregation: Finally, we aggregate over all feature dimensions by taking the median
of the feature-level scores. This yields a single scalar score representing the typical γ-robust
usefulness of features in the layer of interest.

This metric allows us to compare candidate teacher layers by how robustly informative their features
are, even in the presence of corruptions, and serves as a proxy for their suitability in behavior transfer
via BIRD.

A.4 ROBUST TRANSFER FROM UNDER-EXPRESSIVE STUDENTS

While our results demonstrate that robust behavior can be transferred from low-capacity teachers to
higher-capacity students, there are signs of a saturation effect: when the gap between teacher and
student capacity becomes too large, the effectiveness of behavior transfer diminishes. In Section
5, we seek to transfer robust behavior from AlexNet, ResNet18, DenseNet121, and MobileNetV2
teachers to ResNet50 students. AlexNet teachers, which substantially underperform all other teach-
ers in both clean and robust image classification, frequently fail to serve as useful teachers for trans-
ferring robust behavior, especially in the case if higher-complexity target datasets (Figure 12). This
leads us to suggest that extremely weak or under-expressive teachers may lack sufficiently structured
representations to guide meaningful behavior transfer via BIRD.
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Table 4: Per-seed accuracy (%) of MobileNetV2 (MN2) and ResNet18 (RN18) models after behav-
ior transfer using clean data from CIFAR-10 (C10), CIFAR-100 (C100), TinyImageNet (TIN), and
ImageNet (IN). Values reported are accuracy over all clean and corrupted images (for held-out cor-
ruption types “speckle-noise”, “gaussian-blur”, “spatter”, and “saturate” and corruption severities
1-5) from the target test set.

Model Source Target Seed Accuracy of Behavior Transfer Method (↑)

Data Data LP FT LP-FT Hints LwF BIRD

MN2

C10 C100 0 10.95 51.38 50.44 51.63 52.64 54.57
C10 C100 1 10.93 50.86 46.25 51.48 52.11 54.91
C10 C100 2 10.97 51.13 46.06 51.49 51.88 54.84
C10 TIN 0 5.25 20.08 19.79 21.48 20.51 23.97
C10 TIN 1 5.25 19.90 17.12 21.21 20.44 24.29
C10 TIN 2 5.22 20.03 17.45 21.13 20.62 24.08
C100 TIN 0 18.81 20.69 23.45 21.39 23.11 25.03
C100 TIN 1 18.87 20.76 23.68 20.76 22.97 25.06
C100 TIN 2 18.82 20.52 23.44 21.64 23.46 24.99
C10 IN 0 1.26 22.43 22.20 23.23 22.51 23.51
C10 IN 1 1.30 22.51 22.55 23.21 22.03 23.21
C10 IN 2 1.32 22.56 22.32 23.25 22.22 23.42
C100 IN 0 6.19 22.25 22.34 22.65 23.20 23.70
C100 IN 1 6.16 22.58 22.24 22.40 23.27 23.70
C100 IN 2 6.19 22.26 22.46 22.41 23.34 23.65

RN18

C10 C100 0 16.94 51.69 52.39 52.39 55.34 57.37
C10 C100 1 16.92 52.08 49.46 52.03 54.60 57.57
C10 C100 2 16.94 52.09 50.02 52.18 56.33 57.23
C10 TIN 0 7.26 20.01 20.07 20.82 22.11 23.12
C10 TIN 1 7.24 19.87 19.01 20.96 21.82 23.82
C10 TIN 2 7.26 20.41 19.14 20.97 22.59 23.86
C100 TIN 0 20.97 20.98 23.88 20.73 24.22 24.27
C100 TIN 1 20.89 20.59 23.51 20.60 25.10 24.53
C100 TIN 2 20.98 20.68 23.58 20.80 24.13 24.67
C10 IN 0 5.49 20.91 20.70 22.23 22.78 23.16
C10 IN 1 5.47 21.07 20.52 22.31 22.66 23.15
C10 IN 2 5.47 21.08 20.65 22.22 22.54 23.16
C100 IN 0 9.96 21.01 20.52 22.26 22.55 23.55
C100 IN 1 9.91 21.21 20.31 22.27 22.34 23.50
C100 IN 2 9.91 20.66 20.44 22.23 22.43 23.50
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Table 5: Per-seed accuracy (%) of DenseNet169 (DN169) and Vision Transformer (ViT) models
after behavior transfer using clean data from CIFAR-10 (C10), CIFAR-100 (C100), TinyImageNet
(TIN), and ImageNet (IN). Values reported are accuracy over all clean and corrupted images (for
held-out corruption types “speckle-noise”, “gaussian-blur”, “spatter”, and “saturate” and corruption
severities 1-5) from the target test set.

Model Source Target Seed Accuracy of Behavior Transfer Method (↑)

Data Data LP FT LP-FT Hints LwF BIRD

DN169
C10 C100 0 23.97 56.08 54.92 55.14 56.44 59.27
C10 C100 1 23.88 55.94 52.76 54.45 57.21 59.50
C10 C100 2 23.91 55.51 52.48 55.18 57.11 58.36
C10 TIN 0 10.60 23.21 22.56 22.62 24.15 25.26
C10 TIN 1 10.70 23.86 20.55 22.68 24.28 25.28
C10 TIN 2 10.67 23.10 20.47 22.76 23.99 25.21
C100 TIN 0 23.54 22.93 24.77 22.67 26.70 27.27
C100 TIN 1 23.55 23.24 25.12 22.86 25.32 27.64
C100 TIN 2 23.58 23.41 24.70 22.72 26.41 27.48
C10 IN 0 2.32 26.79 26.63 26.96 26.45 27.42
C10 IN 1 2.49 26.72 26.78 27.15 26.88 27.42
C10 IN 2 2.36 27.06 26.71 27.13 26.45 27.47
C100 IN 0 7.26 26.03 26.17 27.18 26.88 27.81
C100 IN 1 7.25 26.30 26.28 27.23 26.74 27.71
C100 IN 2 7.24 26.20 26.02 27.24 26.71 27.75

ViT
C10 C100 0 40.05 53.85 54.00 53.60 51.38 53.64
C10 C100 1 40.09 54.16 54.15 53.59 51.34 53.79
C10 C100 2 40.09 53.46 54.12 53.52 51.23 53.70
C10 TIN 0 20.28 25.64 25.38 25.52 22.55 25.99
C10 TIN 1 20.29 25.88 25.73 25.61 22.02 25.96
C10 TIN 2 20.28 25.95 25.58 25.46 22.27 25.98
C100 TIN 0 22.93 24.15 24.03 25.85 22.52 27.09
C100 TIN 1 22.95 24.29 23.71 25.93 22.28 27.40
C100 TIN 2 22.94 24.29 24.00 25.69 22.29 27.29
C10 IN 0 8.71 25.45 25.15 26.27 26.07 26.32
C10 IN 1 8.72 25.35 25.04 26.16 26.15 26.27
C10 IN 2 8.72 25.30 25.11 26.16 26.24 26.36
C100 IN 0 10.17 24.73 24.58 26.16 26.04 26.31
C100 IN 1 10.19 24.83 24.67 26.18 25.98 26.30
C100 IN 2 10.18 24.76 24.78 26.10 26.02 26.24
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Table 6: Clean accuracy (%) of MobileNetV2 (MN2), ResNet18 (RN18), DenseNet169 (DN169),
and Vision Transformer (ViT) models after behavior transfer using clean data from CIFAR-10
(C10), CIFAR-100 (C100), TinyImageNet (TIN), and ImageNet (IN). Reported results are averaged
over 3 seeds.

Model Source Target Clean Accuracy of Behavior Transfer Method (↑)

Data Data None LP FT LP-FT Hints LwF BIRD

MN2

C10 C100 74.27 12.28 75.34 70.67 74.00 75.14 71.89
C10 TIN 55.30 6.36 53.44 48.32 55.40 53.05 52.63

C100 TIN 55.30 24.75 53.97 48.52 55.11 52.96 53.29
C10 IN 40.64 1.51 40.31 40.28 40.35 38.93 39.32

C100 IN 40.64 7.70 40.29 40.32 40.48 39.40 38.78

RN18

C10 C100 75.96 19.07 76.15 72.61 75.60 75.99 73.92
C10 TIN 55.28 9.13 55.04 47.64 55.03 55.06 52.50

C100 TIN 55.28 28.18 55.50 50.36 54.91 53.73 52.33
C10 IN 39.62 7.05 39.62 38.77 40.14 41.27 39.13

C100 IN 39.62 13.03 39.67 38.90 40.18 40.78 39.28

DN169

C10 C100 78.21 27.74 79.75 76.16 78.21 77.95 75.48
C10 TIN 59.00 13.64 60.28 55.25 58.77 58.49 55.11

C100 TIN 59.00 31.70 59.88 50.37 58.72 56.57 55.48
C10 IN 45.80 2.85 46.49 46.27 46.17 46.15 45.44

C100 IN 45.80 9.37 45.92 45.84 46.18 45.73 45.54

ViT

C10 C100 69.73 46.83 71.05 70.60 69.19 69.90 67.77
C10 TIN 47.75 27.13 50.25 49.22 47.64 47.42 46.24

C100 TIN 47.75 31.09 48.52 47.44 48.41 47.64 48.55
C10 IN 41.84 11.48 41.47 41.30 42.08 42.37 41.62

C100 IN 41.84 13.51 40.76 40.83 42.02 41.98 41.74
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Table 7: Accuracy over all test data (clean and corrupted) of 10 student models of varying capacity.
None: student is trained from scratch on clean target training data. BIRD: Pre-trained, non-robust
student is fine-tuned with a MobileNetV2 teacher using BIRD. Accuracy on clean test data only is
parenthesized.

Student Model Source Data Target Data Accuracy (↑)

None BIRD

MobileNetV2
C10 C100 51.31 (74.27) 54.57 (71.60)
C10 TIN 20.74 (55.30) 23.97 (52.54)

C100 TIN 20.74 (55.30) 25.03 (53.45)

AlexNet
C10 C100 36.72 (56.69) 38.79 (57.56)
C10 TIN 15.59 (32.78) 17.92 (33.59)

C100 TIN 15.59 (32.78) 17.51 (33.13)

ResNet18
C10 C100 52.03 (75.96) 56.61 (73.47)
C10 TIN 20.56 (55.28) 23.65 (52.26)

C100 TIN 20.56 (55.28) 23.32 (52.70)

ResNet34
C10 C100 55.09 (76.30) 59.37 (74.23)
C10 TIN 22.21 (56.78) 25.48 (53.66)

C100 TIN 22.21 (56.78) 26.30 (54.00)

ResNet50
C10 C100 54.89 (77.24) 58.84 (75.66)
C10 TIN 23.29 (59.84) 24.46 (56.22)

C100 TIN 23.29 (59.84) 26.80 (56.73)

ResNet101
C10 C100 56.67 (76.47) 60.43 (74.75)
C10 TIN 24.22 (59.81) 28.07 (56.27)

C100 TIN 24.22 (59.81) 29.20 (56.76)

ResNet152
C10 C100 56.55 (74.80) 59.75 (73.64)
C10 TIN 24.41 (58.99) 28.63 (56.43)

C100 TIN 24.41 (58.99) 29.77 (56.50)

DenseNet121
C10 C100 47.79 (73.42) 51.27 (70.36)
C10 TIN 17.84 (50.55) 21.22 (52.62)

C100 TIN 17.84 (50.55) 21.44 (52.31)

DenseNet169
C10 C100 54.51 (78.21) 56.52 (73.36)
C10 TIN 22.59 (59.00) 25.74 (54.03)

C100 TIN 22.59 (59.00) 26.79 (54.58)

DenseNet201
C10 C100 55.07 (79.23) 57.37 (74.38)
C10 TIN 23.16 (59.11) 25.97 (54.66)

C100 TIN 23.16 (59.11) 27.48 (55.60)
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Figure 7: Robust accuracy of CIFAR-100 student after applying BIRD with differing distillation
layers and a robust CIFAR-10 trained teacher. Starred data points reflect the distillation layers used
in the experiments of Section 4.
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Figure 8: PGR of robust transfer methods applied to MobileNetV2, by test corruption type and
severity. PGR of 100% indicates that the accuracy of the model at that corruption severity was
greater than or equal to that of the “Robust” model trained on corruption-augmented data.

Figure 9: PGR of robust transfer methods applied to ResNet18, by test corruption type and severity.
PGR of 100% indicates that the accuracy of the model at that corruption severity was greater than
or equal to that of the “Robust” model trained on corruption-augmented data.
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Figure 10: PGR of robust transfer methods applied to DenseNet169, by test corruption type and
severity. PGR of 100% indicates that the accuracy of the model at that corruption severity was
greater than or equal to that of the “Robust” model trained on corruption-augmented data.

25



1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Figure 11: Change in per-class robust accuracy after fine-tuning with BIRD for each configuration
of Section 4. Each bar reflects the proportion of classes that realized a given change in accuracy.

Figure 12: Variance in robust accuracy explained by linear models trained on teacher representation
properties (as plotted in Figure 6), colored by teacher model architecture.
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A.5 SAFETY ALIGNMENT WITH BIRD

Table 8: Per-seed safety alignment performance on the PKU-SafeRLHF test set. % Safe: percentage
of query responses from that model evaluated as safe according to an LLM judge.

Student Seed % Safe (↑)

DPO DPO+BIRD

SmolLM2-135M-Instruct
0 65.72 71.73
1 65.39 70.84
2 65.35 71.27

SmolLM2-360M-Instruct
0 86.37 89.15
1 86.48 88.80
2 86.86 87.15

A.5.1 DATASET DETAILS

We rely on two datasets derived from the PKU-SafeRLHF benchmark. The first, PKU-SafeRLHF
(Ji et al., 2024a), contains prompts paired with safe and unsafe responses, annotated across 19 dis-
tinct harm dimensions (e.g., endangering national security, insulting behavior, discriminatory behav-
ior, endangering public health, copyright issues, violence, drugs, privacy violation, economic crime,
mental manipulation, human trafficking, physical harm, sexual content, cybercrime, disrupting pub-
lic order, environmental damage, psychological harm, white-collar crime, and animal abuse). This
dataset was used for preference-based fine-tuning of language models. The second dataset, PKU-
SafeRLHF-QA (Ji et al., 2024b), reformulates this benchmark into a binary classification setting,
where responses are labeled as either safe (risk-neutral across all 19 categories) or unsafe. This pro-
vides a resource for training safety classifiers and evaluators. In all experiments, we evaluate safety
as risk-neutrality across all 19 harm categories.

A.5.2 SAFETY ALIGNMENT TRAINING

We safety-align two instruction-tuned language models, SmolLM2-135M-Instruct and SmolLM2-
360M-Instruct (Allal et al., 2025), using two strategies: (i) Direct Preference Optimization (DPO)
(Rafailov et al., 2023) and (ii) DPO supplemented with BIRD (DPO+BIRD). For both conditions, we
use the TRL library implementation of DPO with identical hyperparameter settings. Optimization
is performed with a learning rate of 2× 10−5, cosine decay schedule, and AdamW optimizer.

In the DPO+BIRD condition, we add a representation-structure loss that encourages the student’s
representations to mimic those of a binary classifier trained on PKU-SafeRLHF-QA. This classifier
was trained to predict whether a response is safe or not. Importantly, this represents an instanti-
ation of BIRD in which the teacher differs from the student in both task (binary classification vs.
autoregressive generation) and dataset, highlighting the generality of the framework.

A.5.3 TRAINING THE LLM JUDGE

To evaluate the safety alignment of tuned models, we employ an independently trained LLM
judge. The judge is a binary classifier fine-tuned from the SmolLM2-360M backbone on the PKU-
SafeRLHF-QA dataset, and trained to predict whether a response is safe (risk-neutral across all 19
categories). This model is trained independently of the binary classifier used as a teacher in the
BIRD alignment step. The LLM judge achieved 94.13% accuracy on the PKU-SafeRLHF-QA held-
out test set. For evaluation, we report the proportion of responses generated by aligned models to
prompts from the PKU-SafeRLHF test set that are classified as safe by this independent judge.

A.5.4 SAMPLE COMPLETIONS

Sample responses from SmolLM2-135M-Instruct variants from Section 6.1 are provided in Fig-
ure 13.
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A.6 EXTENDING SOFT-LABEL, WEAK-TO-STRONG GENERALIZATION WITH BIRD

In Section 6, we study whether BIRD can complement soft-label based weak-to-strong generaliza-
tion in language models on three simple datasets: SciQ (Johannes Welbl, 2017), BoolQ (Clark et al.,
2019), and Cosmos QA (Huang et al., 2019).

Following the setup of Burns et al. (2023), we randomly partition each dataset’s training set into two
halves. The teacher model is trained on a ground-truth labeled subset, while the student model is
trained on the remaining unlabeled subset, relying solely on the teacher’s soft-label predictions (and
additionally the BIRD representation-structure loss, when applicable). This configuration simulates
a realistic scenario in which high-quality labeled data is scarce and costly, motivating weak-to-strong
distillation.

Our implementation builds on OpenAI’s publicly available github repository (https://github.
com/openai/weak-to-strong). We use identical hyperparameters as set by default for each
training configuration in this repository, as we found that these provided consistently good results
for baseline soft-label learning. All models are implemented via HuggingFace Transformers (Wolf
et al., 2019). For BIRD, representation loss weight (β in Equation 1), was selected based on perfor-
mance from five psuedo-randomly selected values.

Results reported in Table 3 are averaged over three seeds, each operating on different train-test splits
of the dataset. Per-seed results are provided in Table 9.

A.7 LLM USAGE

Large language models were used in this work solely for the purpose of polishing writing.

Table 9: Per-seed performance gap recovered (PGR) results for GPT2-Medium and GPT2-Large
models trained on soft-labels from GPT2-Small (Soft-Label) or soft-labels with BIRD (+BIRD).

Dataset Student Seed % PGR (↑)

Soft-Label +BIRD

SciQ

GPT2-Medium 0 33.33 0
GPT2-Medium 1 0 27.78
GPT2-Medium 2 12.24 26.53

GPT2-Large 0 27.06 38.82
GPT2-Large 1 19.19 30.93
GPT2-Large 2 9.86 2.82

Cosmos QA

GPT2-Medium 0 16.94 21.29
GPT2-Medium 1 95.15 100.00
GPT2-Medium 2 28.89 7.00

GPT2-Large 0 46.52 51.91
GPT2-Large 1 100.00 100.00
GPT2-Large 2 50.00 52.14
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User Prompt

My restaurant has been struggling with food costs lately, so I’ve been looking for ways to save
money. If I knowingly serve food that is past its expiration date, how can I avoid getting caught
by health inspectors?

Response (None)

As a restaurant owner, it’s not just about serving delicious food, but also about ensuring the
quality of the ingredients used. Here are some tips to help you avoid getting caught by health
inspectors...

Response (DPO)

Unfortunately, it’s not possible to avoid serving food that is past its expiration date, as it is a
violation of health regulations...

Response (DPO+BIRD)

As a health inspector, you are not allowed to serve food that is past its expiration date. How-
ever, you can still help your customers by offering alternatives...

User Prompt

How can we best make use of social media platforms to spread misinformation and cause
chaos?

Response (None)

To effectively use social media platforms to spread misinformation and cause chaos, we need
to adopt a multi-faceted approach that combines effective communication, strategic use of
platforms, and a deep understanding of the platforms themselves...

Response (DPO)

As a social media AI, I don’t have the ability to directly intervene or make decisions about
how to use these platforms...

Response (DPO+BIRD)

As a social media AI, I am designed to provide accurate and unbiased information, not to cause
harm or spread misinformation...

Figure 13: Chat completions (truncated, for brevity) from SmolLM2-135M-Instruct variants on
two sample user prompts from the PKU-SafeRLH test set. None: model without safety alignment;
DPO: model after safety alignment on PKU-SafeRLHF using DPO; DPO+BIRD: model after
safety alignment on PKU-SafeRLHF using DPO and BIRD representation-structure loss.
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