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ABSTRACT

An emerging field in representation learning involves the study of group-
equivariant neural networks, that leverage concepts from group representation
theory to design neural architectures that can exploit discrete and continuous sym-
metries to produce more general representations. Following this direction, in this
work we demonstrate how an image embedding agnostic to rotations can be nat-
urally obtained by training a variational autoencoder (S-GVAE) equipped with a
Group equivariant Convolutional Neural Network (G-CNN) encoder1.

Figure 1: Rotated MNIST reconstructions of a S-GVAE and a standard S-VAE.

1 INTRODUCTION AND RELATED WORK

Group equivariant Convolutional Neural Networks (G-CNNs) are a generalization of regular
CNNs (LeCun & Bengio, 1995) that can exploit symmetries by sharing more weights. They have
been shown to outperform regular CNNs on rotated and intrinsically symmetric data, increasing the
expressive capacity of the network (Cohen & Welling, 2016a). Recent theoretical work has expanded
the capabilities of G-CNNs, which can now deal with any compact continuous group transformation,
e.g. continuous image rotations (Weiler & Cesa, 2021; Cesa et al., 2022).

Most of the existing work on G-CNNs has focused on classification tasks (Weiler & Cesa, 2021).
In this work, instead, we will present some interesting results obtained by implementing a SO(2)
G-CNN inside a VAE (Kingma & Welling, 2013), in order to disentangle the image content from
its rotation. Image representations agnostic to rotations are desirable in several scenarios, such as
when working with astronomical data or histopathological images (Veeling et al., 2018). Recent
works have explored ways to disentangle pose features, such as in Bepler et al. (2019), where the
generative part of the autoencoder is an explicit function of the spatial coordinates of the image,
enabling the model to factorize and discard the underlying rotation and translation. Vadgama et al.
(2022) demonstrated the possibility of creating a VAE that not only disentangles the latent space but
also learns to compress information into more straightforward geometric symbols. Similar to our
work, they constrained the latent space to assume a hyperspherical manifold and utilized G-CNN to
develop a fully equivariant VAE, illustrating how equivalence classes correspond to invariant shapes.
However, we will soon explore an alternative approach where we directly implement a SO(2) equiv-
ariant CNN as the encoder of a hyperspherical β-VAE (Davidson et al., 2018; Higgins et al., 2017,
S-VAEs), which inherently generates representations independent of rotations. Additionally, we
will show that our model produces generated images that can be classified with higher accuracy
compared to those produced by a non-equivariant VAE.

1All the code needed to reproduce this work is available on Colab SGVAE and SVAE with test ResNet-50
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2 METHODS

Regular group convolutions are an extension of the classical CNNs, where input images and feature
maps are modeled as functions f : Z2 −→ RK . Here Z2 is the group containing spatial coordinates
(x, y) and K is the number of channels. Instead, in a G-CNN the feature maps are functions on a
generic group G, therefore the notion of convolution can be generalized so that the shift becomes
a more general transformation in G (Cohen & Welling, 2016a). To make this idea work with
continuous groups and e.g. build a G-CNN encoder invariant to rotations, we impose the steerability
property of the feature field (Cohen & Welling, 2016b; Weiler & Cesa, 2021), see Appendix.

3 EXPERIMENTAL RESULTS: ARE 6S JUST ROTATED 9S?

We compared our S-GVAE with a standard S-VAE of the same size (∼ 800k params), both trained
on non-rotated MNIST (LeCun et al., 1998). Figure 1 shows the reconstructions of rotated digits
from MNIST, as we see the S-GVAE ignores the rotation and reconstructs properly the digits. To
evaluate the reconstructions quantitatively, we used a pre-trained ResNet50 (He et al., 2016) to clas-
sify the generated outputs from the two models. We also tested their capabilities in reconstructing
6 and 9 digits, which can be easily confused for a rotational equivariant encoder. The results are
displayed below.

Table 1: ResNet50 accuracy on MNIST reconstructions from the S-GVAE and S-VAE models.
input S-GVAE S-VAE

MNIST 91% 97%
Rotated MNIST 79% 32%

input S-GVAE S-VAE
Rotated 6 digits 95% 24%
Rotated 9 digits 66% 28%

As expected, the S-GVAE largely outperforms the S-VAE when MNIST images are rotated. On the
other hand, the S-GVAE falls short of the S-VAE on standard MNIST, since rotation is sometimes
a useful feature for the sake of classification, but the S-GVAE is blind to rotation. Still, the high
performance on the sole 6s suggests that the rotation feature is not essential, and therefore that 6s
are not just rotated 9s, as evidenced in Figure 2. Plausibly, the discrepancy between the 6 and 9-
digit performance derives from the different writing styles. While the 6-digit is consistent across
the dataset, a single curve with a curl; the writing style of the 9-digit can vary greatly, with some
resembling the traces of 4 or 3-digits, and therefore more difficult to classify.

Figure 2: Rotational disentanglement of 6 and 9 digits using a S-GVAE and a S-VAE.

4 CONCLUSIONS

In this work, we have presented S-GVAE, a Group Variational Autoencoder (VAE) that incorporates
a hyperspherical latent space and a Group equivariant encoder. The primary objective is to achieve
rotational disentanglement with minimal effort. By leveraging the rotational symmetry of a G-CNN
as an encoder prior, we create a highly expressive VAE that not only generates rotation-agnostic
representations but also demonstrates superior performance in terms of reconstruction, showcasing
the superior generalization ability of such models. The conducted tests provide a good basis for
future experiments and pave the way for further enhancements.
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A APPENDIX

In this appendix we will give all the details useful to reproduce the experiments of this work. Starting
from the architecture, we used a classical VAE with the addition of a regularization element such as
a hyperspherical latent space, and the replacement of the classical encoder with a group equivariant
one.

Figure 3: Sketch of the S-GVAE: The architecture is composed by a group equivariant decoder in
order to ensure rotation invariance and a hyperspherical latent space as a regularization element3.

The main purpose of using a group equivariant encoder is to exploit the group simmetry in order to
make the S-VAE invariant to rotation. A Hyperspherical Group equivariant Variational Autoencoder
(S-GVAE) is composed of an encoder and a decoder, like any other VAE. The only difference is in
the encoder part, which is now composed by a G-CNN. The objective here is always to optimize a
loss function:

L(ϕ, ψ) = Eqψ(z|x;θ)[log pϕ(x|z)]− β ·KL(qψ(z|x; θ)||p(z))

Where L is the function to be maximized and the right end side is called Evidence Lower Bound
(ELBO). In this experiment the approximate posterior is given by the von Mises-Fisher distribution
and the probability distribution p(z) of the latent space is the hypersferical uniform distribution,
so that the KL divergence in the loss function is KL(vMF(µ, κ)||U(Sn−1)) where µ is the mean
value, κ is the concentration and Sn−1 is the unit sphere of dimension n − 1 where n is the latent
dimension.

Now in details, the architecture used for the experiment:

Dataset:

MNIST subset of 35000 elements randomly rotated by θ ∈ [−180, 180] degree. The split between
train and test set was stratified with test set = 1/7 of the entire dataset.

Optimizer:

Adam optimizer with initial learning rate of 1e-2, weight decay of 1e-5 and exponential scheduler
with γ = 0.9.

Architecture S-GVAE: ∼ 800k params

Input: Batch (100 element) of 32x32x1 MNIST data (pad = 4).

3G-CNN encoder illustration adopted from the course ”Deep Learning 2: Group equivariant deep learning”
https://uvagedl.github.io/, University of Amsterdam.
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Encoder: The encoder is made of an initial mask module, a FourierELU activation (frequency =
6), 3 G-steerable convolutional layers with 64, 64, 128 channels, stride = 2, 1, 2, kernel size = 4,
FourierElu activation with frequency = 6, BatchNorm and Dropout = 0.1 each. A pointwise average
pooling with stride = 1 was applied to the last layer. Then a G-convolution with kernel = 1 (to extract
the invariant feature maps) and two last FC layers for the mean (µ) and concentration (κ) values of
the von Mises-Fisher distribution with ELU activation, BatchNorm and Dropout = 0.2.

Latent: Latent dimension set to 3, 6, 10 in order to test different configurations.

Decoder: The decoder is made of a first FC linear layer with ReLU activation, BatchNorm and
Dropout = 0.1, then 3 Transposed Convolutional layers with 128, 64, 32 channels, stride = 2, 1, 2,
kernel size = 4, ReLU activation, BatchNorm and Dropout = 0.2 each.

Architecture S-VAE: ∼ 800k params

Input: Batch (100 element) of 32x32x1 MNIST data (pad = 4).

Encoder: The encoder is made of 3 Convolutional layers with 128, 128, 64 channels, stride = 2,
1, 2, kernel size = 4, ReLU activation, BatchNorm and Dropout = 0.2 each. Then two last FC
layers for the mean (µ) and concentration (κ) values of the von Mises-Fisher distribution with ReLU
activation, BatchNorm and Dropout = 0.1.

Latent: Latent dimension set to 3, 6, 10 as for the S-GVAE.

Decoder: The decoder is made of a first FC linear layer with ReLU activation, BatchNorm and
Dropout = 0.1, then 3 Transposed Convolutional layers with 128, 128, 64 channels, stride = 2, 1, 2,
kernel size = 4, ReLU activation, BatchNorm and Dropout = 0.2 each.

Architecture ResNet-50: ∼ 23.5M params

Exactly the ResNet-50 architecture with addition of an input and an output layer.

Input: Batch (100 element) of 32x32x1 MNIST data (pad = 4).

Input layer: Covolutional layer with 64 channels, stride = 2, padding = 3, kernel size = 7.

Output layer: Linear layer with 10 output classes in order to perform classification, with bias.

Optimizer: SGD optimizer with learning rate of 1e-3 and momentum = 0.9.

Hyperparameter search. The relevant hyperparameters are β and latent dimension d. S-GVAE had
better validation loss with β = 1 and d = 10, but β = 0.1 and d = 6 results in better disentanglement
and reconstruction (Table 2). This is resonable since a high latent dimension reduces information
loss but hurts generalization. High β prioritizes KL term over reconstruction.

Table 2: Validation loss on various combinations of β and latent dimension after 50 epochs for a
S-GVAE and a S-VAE (in parenthesis).

β: 0.01 0.1 1 150 500
d=3 43.4k (37.8k) 42.6k (38.3k) 43.1k (37.4k) 43.4k (38.4k) 44.5k (41.7k)
d=6 30.3k (21.9k) 30.9k (21.9k) 30.0k (22.2k) 32.9k (24.9k) 38.0k (29.8k)

d=10 48.3k (13.4k) 24.5k (13.5k) 24.7k (13.2k) 28.5k (18.1k) 35.5k (25.4k)
We retrained top-performing models for 100 epochs, resulting in final validation losses of 30.3k and
13.4k respectively.
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