
Online Variational Sequential Monte Carlo

Alessandro Mastrototaro 1 Jimmy Olsson 1

Abstract
Being the most classical generative model for se-
rial data, state-space models (SSM) are funda-
mental in AI and statistical machine learning. In
SSM, any form of parameter learning or latent
state inference typically involves the computation
of complex latent-state posteriors. In this work,
we build upon the variational sequential Monte
Carlo (VSMC) method, which provides computa-
tionally efficient and accurate model parameter
estimation and Bayesian latent-state inference by
combining particle methods and variational infer-
ence. While standard VSMC operates in the offline
mode, by re-processing repeatedly a given batch
of data, we distribute the approximation of the
gradient of the VSMC surrogate ELBO in time us-
ing stochastic approximation, allowing for online
learning in the presence of streams of data. This
results in an algorithm, online VSMC, that is capa-
ble of performing efficiently, entirely on-the-fly,
both parameter estimation and particle proposal
adaptation. In addition, we provide rigorous theo-
retical results describing the algorithm’s conver-
gence properties as the number of data tends to
infinity as well as numerical illustrations of its
excellent convergence properties and usefulness
also in batch-processing settings.

1. Introduction
Being the most classical structured probabilistic genera-
tive model for serial data, state-space models (SSM), also
known as general state-space hidden Markov models, are
fundamental and ubiquitous in AI and statistical machine
learning (Cappé et al., 2005; Bishop, 2016). In SSM, any
form of parameter learning or state inference typically in-
volves the computation of complex joint posterior distribu-
tions of latent-state variables—the so-called joint-smoothing

1Department of Mathematics, KTH Royal Institute of Tech-
nology , Stockholm, Sweden. Correspondence to: Alessandro
Mastrototaro <alemas@kth.se>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

distributions—given records of observations, which is a deli-
cate problem whose analytical solution is intractable outside
the limited cases of linear Gaussian models or models with
finite state space. In a recent line of research (Le et al.,
2018; Maddison et al., 2017; Naesseth et al., 2018), this
problem is addressed by combining variational inference
(Blei et al., 2017; Kingma & Welling, 2014) and sequential
Monte Carlo (SMC) methods (Gordon et al., 1993; Doucet
et al., 2001; Chopin & Papaspiliopoulos, 2020) in order to
design flexible families of variational joint-state distribu-
tions in the form of particle-trajectory laws. By optimizing
the Kullback–Leibler divergence from (KLD) the law of
the particle trajectories to the joint-smoothing distribution,
this variational SMC (VSMC) approach is killing two birds
with one stone by learning not only the unknown model
parameters but also, in parallel, an optimal particle proposal
kernel, the latter being a problem that has received a lot of
attention in the literature (Doucet et al., 2000; Cornebise
et al., 2008; Gu et al., 2015). The procedure can be viewed
as a non-trivial extension of the importance-weighted auto-
encoder (IWAE) proposed by Burda et al. (2016), where
standard self-normalized importance sampling has been re-
placed by sequential importance sampling with systematic
resampling in order to obtain a tighter evidence lower bound
(ELBO). The objective of VSMC is a similar ELBO whose
gradient is approximated by the expectation, under the law
of the random numbers generated by the SMC algorithm, of
the gradient of the logarithm of the standard particle-based
likelihood estimator, the latter being unbiased (Del Moral,
2004; Chopin & Papaspiliopoulos, 2020), is obtained as a
by-product of the particle approximation of the marginal-
state posterior—or filter distribution—flow; thus, whereas
traditional particle-based inference in SSM typically relies
on particle approximation of the joint-smoothing distribu-
tions (with aim of approximating, e.g., the intermediate
quantity of the expectation–maximization, EM, algorithm
or the score function directly via the Fisher identity), which
is cumbersome due to the so-called particle-path degen-
eracy phenomenon (Kitagawa, 1996; Cappé et al., 2005,
Section 8.3), VSMC allows, using the reparameterization
trick, the model parameters as well as an optimal particle
proposal kernel to be simultaneously learned by processing
repeatedly the given data batch using a standard particle
filter.

1

Online Variational Sequential Monte Carlo

In its basic form, VSMC is an offline inference technique, in
the sense that it requires the full data batch to be processed
between every update of the model and variational parame-
ters. Still, in a wide range of AI and machine-learning con-
texts, observed data become available sequentially through
a data stream, requiring learning to be performed in an
online fashion. The increasing interest in online machine-
learning technology also stems from the need of processing
data batches of ever-increasing sizes. Thus, in this work
we propose an online, stochastic approximation-based ver-
sion of VSMC, online variational SMC (OVSMC), which
can be used for simultaneous online model learning and
proposal adaptation. On the contrary to traditional ap-
proaches to particle-based online parameter learning in SSM
such as particle-based recursive maximum-likelihood (RML,
Le Gland & Mevel, 1997; Del Moral et al., 2015) or online
EM (Mongillo & Denève, 2008; Cappé, 2011), which rely
on particle-based online approximation of the tangent filter
(filter derivative) and the EM-intermediate quantity, respec-
tively, our approach does not involve any particle smoothing,
which, in order to avoid the problem of collapsing particle
ancestral genealogies, typically calls for backward-sampling
techniques which can be computationally very costly. In
a recent work, Campbell et al. (2021) used variational ap-
proximations of the backward kernels for online state and
parameter learning. Although this, interestingly, provides a
non-particle-based methodology, it is very computationally
intensive (see Section 5). In addition, our method allows for
effective online adaptation of the particle proposal kernel in
a way that differs from typical approaches in the literature;
indeed, whereas traditional approaches aim to optimize the
proposal time step by time step on the basis of local cri-
teria (see, e.g., Cornebise et al., 2008; 2014; Zhao et al.,
2022), our approach is based on a global KLD-based cri-
terion (described in detail in Section 3) which allows the
particle cloud to be effectively guided toward state-space
regions of high local likelihood, without running the risk of
over-adapting locally the proposal to current (or temporarily
neighboring) observations.

Although our proposed method has similarities with the
streaming variational Monte Carlo methodology proposed
by Zhao et al. (2022), it is essentially different from the same.
An important difference is that the aforementioned work fo-
cuses on local optimization of model and variational param-
eters, such that these are assumed to vary with time and are
therefore optimized time step by time step, while OVSMC
estimate global, amortized parameters using stochastic ap-
proximation. In addition, in order to show that our approach
is statistically well founded, we provide rigorous theoretical
results describing its convergence (Theorem 4.7). Under
certain strong mixing assumptions, the time-normalized
gradient guiding the learning of batch VSMC can, using
Birkhoff’s ergodic theorem, be shown to converge as the

observation batch size increases towards infinity to a deter-
ministic function depending on the parameter as well as the
particle sample size; we show that as the number of observa-
tions tends to infinity, OVSMC is solving the same problem
as this ideal, ‘asymptotic’ VSMC, in the sense that the mean
field targeted by OVSMC coincides with the time-normalized
asymptotic gradient of VSMC.

Finally, we illustrate OVSMC numerically on a number of
classical SSM and more complex generative models, for
which the method exhibits fast parameter learning and ef-
ficient adaptation of the particle proposal kernel. In the
same numerical study, we also show that OVSMC is a strong
challenger of VSMC on batch problems.

The paper is structured as follows. In Section 2, we review
particle filtering in the context of SSM, and their relation
with variational inference in some recent works. In Sec-
tion 3, we present our methodology for online learning of
proposal distributions and parameters and Section 4 and
Section 5 provide our theoretical results and numerical ex-
periments, respectively.

2. Background
An SSM is a bivariate, time-homogeneous Markov chain
(Xt, Yt)t∈N evolving on some general measurable product
space (X × Y,X � Y). In most applications, (X,X) and
(Y,Y) are Euclidean and furnished with the correspond-
ing Borel σ-fields. More specifically, the marginal process
(Xt)t∈N, referred to as the state process, is itself assumed
to be a time-homogeneous Markov with transition density
mθ(xt+1 | xt) and initial-state density m0(x0) (with re-
spect to the same dominating measure dx, typically the
Lebesgue measure) on X. The state process is latent but
partially observed through the observation process (Yt)t∈N,
whose values are assumed conditionally independent given
the state process such that the conditional distribution of
each Yt depends on the corresponding Xt only, and we
denote by gθ(yt | xt) the density (with respect to some dom-
inating measure) on Y of the latter. Using this notation, the
joint density of a given vector X0:t = (X0, . . . , Xt) (this is
our generic notation for vectors) of states and corresponding
observations Y0:t is given by

pθ(x0:t, y0:t) = m0(x0)gθ(y0 | x0)

×
t−1∏
s=0

mθ(xs+1 | xs)gθ(ys+1 | xs+1). (1)

The model dynamics is governed by some parameter vector
θ belonging to some parameter space Θ. In using these
models, the focus is generally on inferring the hidden states
given data, typically by determining the joint-smoothing dis-
tributions pθ(x0:t | y0:t) = pθ(x0:t, y0:t)/pθ(y0:t) or their

2

Online Variational Sequential Monte Carlo

marginals, such as the filter distributions pθ(xt | y0:t). Here
the joint density pθ(x0:t, y0:t) is given by (1), whereas the
likelihood pθ(y0:t) of the observations is the marginal of
(1) with respect to y0:t. As the calculation of the likelihood
requires the computation of complex integrals in high di-
mensions, the joint-smoothing and filter distributions are
generally—except in the cases where the model is linear
Gaussian or the state space X is a finite set—intractable. The
calculation of the joint-smoothing distributions is of criti-
cal importance also when the parameter θ is unknown and
must be estimated using maximum-likelihood or Bayesian
methods (see Cappé et al., 2005; Kantas et al., 2015, and
the references therein). In the framework of SSMs we may
distinguish between batch methods, where parameter and
state inference is carried through given a fixed record of ob-
servations, and online methods, where inference is carried
through in real time as new data becomes available through
a data stream. In the online mode, SMC algorithms are par-
ticularly well suited for state inference; furthermore, these
methods also provide a basis for online parameter estima-
tion (Poyiadjis et al., 2011; Del Moral et al., 2015; Olsson
& Westerborn Alenlöv, 2020). We next review briefly SMC
and the principles of variational inference.

2.1. Sequential Monte Carlo Methods

In the context of SSM, SMC methods approximate the
smoothing distribution flow (pθ(x0:t | y0:t))t∈N by form-
ing iteratively a sequence (ξi0:t, ω

i
t)
N
i=1, t ∈ N, of random

samples of particles (the ξi0:t’s) with associated weights (the
ωit’s). For t ∈ N, let Xt := X × · · · × X (t times); then
for any real-valued measurable function ht on Xt+1 that is
integrable with respect to pθ(x0:t | y0:t), it holds, letting
Ωt :=

∑N
i=1 ω

i
t,

N∑
i=1

ωit
Ωt
ht(ξ

i
0:t) w

∫
ht(x0:t)pθ(x0:t | y0:t) dx0:t.

See Del Moral (2004) for a comprehensive treatment of the
theory of SMC. The SMC procedure consists of two core
operations performed alternately: a selection step, which
resamples the particles with replacement according to their
weights, and a mutation step, which propagates randomly
the selected particles to new locations. After importance
sampling-based initialization of (ξi0, ω

i
0)Ni=1, the random

sample is updated according to Algorithm 1, in which mu-
tation (Line 4) is executed using some generic proposal
Markov transition kernel, possibly depending on yt+1, with
density rλ(xt+1 | xt, yt+1) parameterized by some vector
λ belonging to some parameter space Λ. Line 3 corresponds
to the selection step, where indices (Iit+1)Ni=1 guiding the
resampling are drawn from the categorical distribution on
{1, . . . , N} induced by the particle weights.

Determining a good proposal distribution rλ is crucial for

Algorithm 1 Particle filter

1: Input: (ξi0:t, ω
i
t)
N
i=1, yt+1.

2: for i = 1, . . . , N do
3: draw Iit+1 ∼ cat((ω`t)

N
`=1);

4: draw ξit+1 ∼ rλ(· | ξI
i
t+1

t , yt+1);

5: set ξi0:t+1 ← (ξ
Iit+1

0:t , ξit+1);

6: set ωit+1 ←
mθ(ξ

i
t+1 | ξ

Iit+1

t)gθ(yt+1 | ξit+1)

rλ(ξit+1 | ξ
Iit+1

t , yt+1)
;

7: end for
8: return (ξi0:t+1, ω

i
t+1)Ni=1.

the performance of the particle filter (see, e.g., Cornebise
et al., 2008; 2014; Gu et al., 2015; Zhao et al., 2022),
and the particles should be guided towards state-space re-
gions of non-vanishing likelihood in order to avoid com-
putational waste. For instance, if the latent process is dif-
fuse while the observations are highly informative, letting
naively, as in the so-called bootstrap particle filter (Gor-
don et al., 1993), rλ ≡ mθ may result in many parti-
cles being assigned a negligible weight and thus signif-
icant sample depletion. A more appealing, data-driven
option is to use the locally optimal proposal satisfying
rλ(xt+1 | xt, yt+1) ∝ mθ(xt+1 | xt)gθ(yt+1 | xt+1)
(and minimizing, e.g., the Kullback–Leibler divergence
(Cornebise et al., 2008)); however, this proposal is available
in a closed form only in a few cases (Doucet et al., 2000;
Cappé et al., 2005, Section 7.2.2.2). In Section 3 we will
present a technique that allows to learn simultaneously, in an
online fashion, both unknown model parameters and an effi-
cient proposal. The proposed method is based on variational
inference, which is briefly reviewed in the next section.

2.2. Variational Inference

Let T ∈ N be a fixed time horizon. To approximate
pθ(x0:T | y0:T) by a variational-inference procedure, a fam-
ily {qλ(x0:T | y0:T) : λ ∈ Λ} of variational distributions is
designed, whereby the ELBO

LVI(λ, θ) := Eqλ
[
log

(
pθ(X0:T , y0:T)

qλ(X0:T | y0:T)

)]
≤ logEqλ

[
pθ(X0:T , y0:T)

qλ(X0:T | y0:T)

]
= log pθ(y0:T)

is maximized with respect to (λ, θ). Here the bound follows
from Jensen’s inequality. We note that the equality is sat-
isfied in the ideal case qλ(x0:T | y0:T) = pθ(x0:T | y0:T).
The optimization is performed by a combination of Monte
Carlo sampling and stochastic gradient ascent.

The importance weighted autoencoder (IWAE, Burda et al.,
2016) extends this idea further by optimizing a similar but

3

Online Variational Sequential Monte Carlo

improved ELBO, where the expectation is taken with respect
to the law of N independent and qλ-distributed random
variables, denoted by q�N

λ :

LIWAE(λ, θ) := Eq�N
λ

[
log

(
1

N

N∑
i=1

pθ(X
i
0:T , y0:T)

qλ(Xi
0:T | y0:T)

)]

≤ logEq�N
λ

[
1

N

N∑
i=1

pθ(X
i
0:T , y0:T)

qλ(Xi
0:T | y0:T)

]

= logEqλ
[
pθ(X0:T , y0:T)

qλ(X0:T | y0:T)

]
= log pθ(y0:T). (2)

Again, the bound follows from Jensen’s inequality and the
fact that the average that is logarithmised is an unbiased
estimator of the likelihood. The IWAE provides an improve-
ment on standard VI asLIWAE provides a tighter lower bound
on the likelihood log p(y0:T) and gets, assuming bounded
weights, arbitrarily close to the same as N tends to infinity
(Burda et al., 2016, Theorem 1). Still, once T is reason-
ably large and qλ(x0:T | y0:T) is not sufficiently close to
pθ(x0:T | y0:T), approximating LIWAE by standard Monte
Carlo implies generally high variance; indeed, in the ex-
treme case, the highly skewed distribution of the terms of
the likelihood estimator will effectively reduce IWAE to
standard VI. This degeneracy problem can be counteracted
by replacing standard Monte Carlo approximation with
resampling-based SMC. For this reason, Le et al. (2018),
Maddison et al. (2017) and Naesseth et al. (2018) all define
an ELBO similar to (2), but where the expectation is taken
with respect to the lawQNλ,θ of the random variables (ξi0)Ni=1

and (ξit, I
i
t)
N
i=1, t ∈ {1, . . . , T}, generated by the particle

filter:

LSMC(λ, θ) := EQNλ,θ

[
log

(
T∏
t=0

1

N
Ωt

)]
,

which is again a lower bound on log pθ(x0:T) as the argu-
ment of the logarithm is an unbiased estimator of the likeli-
hood (see, e.g., Chopin & Papaspiliopoulos, 2020, Proposi-
tion 16.3).

Like in standard VI, the maximization of LSMC is carried out
by alternately (1) processing the given data batch y0:t with
the particle filter and (2) taking a stochastic gradient ascent
step. The latter involves the differentiation of LSMC with
respect to (λ, θ), which can be carried through using the
reparameterization trick (Kingma & Welling, 2014). More
specifically, it is assumed that rλ(· | x, y) is reparameteri-
zable in the sense that there exists some auxiliary random
variable ε, taking on values in some measurable space (E, E)
and having distribution ν on (E, E) (the latter not depending
on λ), and some function fλ on X× Y × E, parameterized
by λ, such that for every (x, y) ∈ X× Y, the pushforward
distribution ν ◦ f−1λ (x, y, ·) coincides with that governed

by rλ(· | x, y). In addition, importantly, for any given ar-
gument (x, y, ε), fλ(x, y, ε) is assumed to be differentiable
with respect to λ. A similar reparameterization assumption
is made for some initial proposal distribution denoted by
r0,λ. The previous assumptions allow us to reparameterize
Algorithm 1 by splitting the procedure on Line 4 into two
suboperations: first sampling εit+1 ∼ ν and then letting

ξit+1 ← fλ(ξ
Iit+1

t , yt+1, ε
i
t+1). After this, the importance

weights can be calculated as explicit functions of (λ, θ) ac-
cording to

ωit+1(λ, θ) := mθ(fλ(ξ
Iit+1

t , yt+1, ε
i
t+1) | ξI

i
t+1

t)

×
gθ(yt+1 | fλ(ξ

Iit+1

t , yt+1, ε
i
t+1))

rλ(fλ(ξ
Iit+1

t , yt+1, εit+1) | ξI
i
t+1

t , yn+1)
(3)

and, at initialization, ξi0 ← fλ(y0, ε
i
0) and ωi0(λ, θ) :=

m0(fλ(y0, ε
i
0))gθ(y0 | fλ(y0, ε

i
0))/r0,λ(fλ(y0, ε

i
0) | y0).

Le et al. (2018), Maddison et al. (2017) and Naesseth et al.
(2018) have shown that the Monte Carlo approximation
of ∇λ,θLSMC(λ, θ) can, in order to avoid unmanageable
variance, be advantageously carried through by targeting
the “surrogate” gradient

GT (λ, θ) := EQNλ,θ

[
∇(λ,θ) log

(
T∏
t=0

1

N
Ωt(λ, θ)

)]
, (4)

where QNλ,θ now corresponds to the law of the random
variables (εi0)Ni=1 and (εit, I

i
t)
N
i=1, t ∈ {1, . . . , T}, gener-

ated by the particle filter using the reparameterization trick.
The approximate gradient GT (λ, θ) is indeed different from
∇(λ,θ)LSMC(λ, θ) in that the latter contains one additional
term corresponding to the expectation of the product of
∇(λ,θ) logQNλ,θ and the logarithm of the unbiased likeli-
hood estimator (see Le et al., 2018, Appendix A, for details).
Nonetheless, since, as demonstrated by Le et al. (2018),
Maddison et al. (2017) and Naesseth et al. (2018), this term
generally does not make a significant contribution to the
gradient and is also very difficult to estimate with reason-
able accuracy, we proceed as in the mentioned works and
simply discard the same. Roeder et al. (2017), Tucker et al.
(2018) and Finke & Thiery (2019) discussed biased gradient
approximation in the framework of the IWAE, but we are
not aware of any in-depth analyses in the context of VSMC.

As mentioned earlier, the variational SMC (VSMC) approach
described above is an offline method in the sense that each
parameter update requires GT (λ, θ) to be estimated by pro-
cessing the entire data batch y0:T with the particle filter.
However, in many applications it is of utmost importance
to be able to update both parameter estimates and proposal
distributions in real time, and in the next section we will
therefore provide an online extension of VSMC to the setting
where the data become available sequentially.

4

Online Variational Sequential Monte Carlo

3. Online Implementation of VSMC
In this section our primary goal is to learn, for a given stream
(yt)t≥0 of observations, the amortized proposal and model
parameters as the particles evolve and new observations
become available. By rewriting (4) as

GT (λ, θ) = EQNλ,θ

[
T∑
t=0

∇(λ,θ) log Ωt(λ, θ)

]
we notice that the computation of the gradient is distributed
over time, making it possible to adapt the method to the
online setting. More precisely, in our scheme, the given
parameters (θt, λt) are updated as

λt+1 ← λt + γλt+1∇λ log Ωt+1(λt, θt), (5)

θt+1 ← θt + γθt+1∇θ log Ωt+1(λt+1, θt), (6)

where (γλt)t∈N>0
and (γθt)t∈N>0

are given step sizes (learn-
ing rates).

A pseudocode for our algorithm, which we refer to as on-
line variational SMC (OVSMC), is displayed in Algorithm 2,
from which it can be seen that the updates of λ and θ on
Line 7 and Line 14 are based on two distinct sampling steps
with different sample sizes L and N , respectively. Indeed,
as pointed out by Le et al. (2018) and Zhao et al. (2022),
the quantity log Ωt+1(λ, θ) is a biased but consistent estima-
tor of the log-predictive likelihood log pθ(yt+1 | y0:t) and
will therefore, regardless of the proposal used, be arbitrarily
close to this quantity as the number of particles increases.
In contrast to the estimation of∇θ log Ωt(λ, θ), this is gen-
erally problematic in the estimation of∇λ log Ωt(λ, θ). In
fact, a large number of particles reduces the signal-to-noise
ratio of the estimator of the latter gradient, up to a point
where it reduces to pure noise. For this reason, we take,
in the spirit of the alternating ELBOs strategy of Le et al.
(2018, Section 4.1, in which the authors consider IWAE and
VSMC ELBOs with alternating sample sizes) an approach
where λ and θ are updated through two distinct optimization
steps, the one for λ with a small number L of particles, typi-
cally less than ten, and the one for θ with a possibly large
sample size N .

Appealingly, as clear from Algorithm 2, the method is based
only on particle approximation of the filter distribution flow
and therefore does not require saving the trajectories of the
particles. This results in an online algorithm with memory
requirements that remain uniformly limited in time and are,
just like the computational complexity of the algorithm,
linear in the number N of particles. In Section 4 we provide
a rigorous theoretical justification of (a slightly modified
version of) Algorithm 2. In particular, we show that (5)–
(6) form a classical Robbins–Monro scheme (Robbins &
Monro, 1951) with state-dependent Markov noise targeting a
mean field corresponding to an ‘asymptotic’ (as the number
t of data tends to infinity) VSMC.

Algorithm 2 Online Variational SMC (OVSMC)

1: Input: (ξit, ω
i
t)
N
i=1, yt+1, θt, λt.

2: for i← 1, . . . , L do
3: draw Iit+1 ∼ cat((ω`t)

N
`=1);

4: draw εit+1 ∼ ν;
5: compute ωit+1(λt, θt) according to (3);
6: end for
7: set λt+1 ← λt + γλt+1∇λ log Ωt+1(λt, θt);
8: for i← 1, . . . , N do
9: draw Iit+1 ∼ cat((ω`t)

N
`=1);

10: draw εit+1 ∼ ν;

11: set ξit+1 ← fλt+1
(ξ
Iit+1

t , yt+1, ε
i
t+1);

12: compute ωit+1(λt+1, θt) according to (3);
13: end for
14: set θt+1 ← θt + γθt+1∇θ log Ωt+1(λt+1, θt);
15: return (ξit+1, ω

i
t+1)Ni=1, θt+1, λt+1.

4. Theoretical Results
In this section we study the limiting behavior of OVSMC and
discuss its connection with batch VSMC. As explained in
Section 3, the purpose of the double optimization steps in
Algorithm 2 is to improve the performance of the algorithm
in practical use; however, here, for simplicity, we move the
parameters λ into θ, resulting in the latter also containing
algorithmic parameters. Therefore, the algorithm that we
theoretically analyze corresponds to Lines 8–14, with repa-
rameterization function fθt and ωit+1 depending only on θt.
Furthermore, for technical reasons related to the ergodic-
ity of an extended Markov chain that we will define below
and the Lipschitz continuity (in θ) of its transition kernel,
the analyzed algorithm repeats twice the generation of the
auxiliary variable on Line 10, where one variable is used to
estimate the gradient and the other to particle propagation.
All details are provided in Appendix A, where the modified
procedure is displayed in Algorithm 3 and we also provide
all proofs.

Let, for t ∈ N, Zt := (Xt, Yt, (ξ
Iit
t−1)Ni=1, (ε

i
t)
N
i=1), where

(ξ
Iit
t−1)Ni=1 and (εit)

N
i=1 are generated according to the modi-

fied version of Algorithm 2. Then (Zt)t∈N is a state depen-
dent Markov chain with transition kernel Tθ (described in
the supplement), in the sense that given Z0:t, Zt+1 is dis-
tributed according to Tθt(Zt, ·) (note that θt is deterministic
function of Z0:t). Let P denote the law of (Zt)t∈N when
initialized as described previously.

Assumption 4.1. The data (yt)t∈N is the output of an SSM
(Xt, Yt)t∈N on (X× Y,X � Y) with state and observation
transition densities m̄(xt+1 | xt) and ḡ(yt | xt), respec-
tively.

Assumption 4.2. The transition densities m̄, mθ, gθ and rθ
are uniformly bounded from above and below (in all their

5

Online Variational Sequential Monte Carlo

arguments as well as in θ).

The strong mixing assumptions of Assumption 4.2 are stan-
dard in the literature and point to applications where the
state space X is a compact set.

Proposition 4.3. Let Assumptions 4.1–4.2 hold. Then for ev-
ery θ ∈ Θ, the canonical Markov chain (Zθt)t∈N induced by
Tθ is uniformly ergodic and admits a stationary distribution
τθ.

Now, letting Hθ(Zt) := ∇θ log Ωt(θ), we may define
the mean field h(θ) :=

∫
Hθ(z) τθ(dz) (depending im-

plicitly on the sample size N). Note that by the law of
large numbers for ergodic Markov chains it holds, a.s.,
that limt→∞

∑t
s=0Hθ(Z

θ
s)/t = h(θ). Thus, since VSMC

estimates the gradient Gt(θ) by
∑t
s=0Hθ(Z

θ
s), finding a

zero of the mean field h(θ) can be considered equivalent
to applying VSMC to an infinitely large batch of observa-
tions from the model. From this perspective, it is inter-
esting to note that our proposed OVSMC algorithm is a
Robbins–Monro scheme targeting h(θ), with updates given
by θt+1 ← θt + γθt+1Hθt(Zt+1) and Zt+1 ∼ Tθt(Zt, ·),
t ∈ N. Moreover, as established by our main result, Theo-
rem 4.7, the scheme produces a parameter sequence (θt)t∈N
making the gradient arbitrarily close to zero (in the L2

sense). We preface this result by some further assumptions.

Assumption 4.4. The gradients ∇θmθ, ∇θgθ and ∇θrθ,
and their compositions with the reparameterization function
fθ, are all uniformly bounded and Lipschitz.

Assumption 4.5. There exists a bounded function V on Θ
(the Lyapunov function) such that h = ∇θV .

Assumption 4.6. For every t ∈ N>0, γθt+1 ≤ γθt . In addi-
tion, there exist constants a > 0, a′ > 0 and c ∈ (0, 1) such
that for every t, γθt ≤ aγθt+1, γθt − γθt+1 ≤ a′(γθt+1)2 and
γ1 ≤ c.
Theorem 4.7. Let Assumptions 4.1, 4.2, 4.4, 4.5 and 4.6
hold. Then there exist constants b > 0 and b′ > 0, possibly
depending on V , such that for every t ∈ N,

E[‖h(θτ)‖2] ≤
b+ b′

∑t
s=0(γθs+1)2∑t

s=0 γ
θ
s+1

,

where τ ∼ cat((γθs+1)ts=0) is a random variable on
{0, . . . , t}.
Corollary 4.8. Let the assumptions of Theorem 4.7 hold and
let, for every t ∈ N>0, γθt = c/

√
t, where c > 0 is given in

Assumption 4.6. Then E[‖h(θτ)‖2] = O(log t/
√
t).

5. Experiments
In this section we illustrate numerically the performance
of OVSMC. We illustrate the method’s capability of learn-
ing online good amortized proposals and model parameters

and more complex generative models, but also show that it
can serve as a strong competitor to VSMC in batch scenar-
ios. Stochastic gradients are passed to the ADAM optimizer
(Kingma & Ba, 2015) in Tensorflow 21. All the experiments
are run on an Apple MacBook Pro M1 2020, memory 8GB.

5.1. Linear Gaussian SSM

Our first example is a standard linear Gaussian SSM with
X = Rdx and Y = Rdy for some (dx, dy) ∈ N2

>0. More
precisely, we let mθ(· | x) and gθ(· | x) be Ndx(Ax, Sᵀ

uSu)
and Ndy (Bx, Sᵀ

vSv), respectively, where A and Su are
dx × dx matrices, B ∈ Rdy×dx and Sv ∈ Rdy×dy . We
start with the simplest case dx = dy = 1 and generate
data under A = 0.8, B = 1 and Su = 0.5. We consider
two cases for Sv ∈ {0.2, 1.2} corresponding to informa-
tive and more non-informative observations, respectively.
The state process is initialized with its stationary distribution
N(0, S2

u/(1−A2)). Our aim is to estimateA and Su and, in
parallel, optimizing the particle proposal. For this purpose,
we let rλ(· | xt, yt+1) be N(µλ(xt, yt+1), σ2

λ(xt, yt+1)),
where µλ and σ2

λ are two distinct neural networks with one
dense hidden layer having three and two nodes, respectively,
and relu activation functions. In Figure 1 we observe the
convergence of the unknown parameters for a set of distinct
starting values, noticing that more informative observations
yields, as expected, faster convergence. Even though values
close to the true parameters are obtained already after about
10000 to 20000 iterations, the algorithm is kept running
until t = 50000 for the purpose of learning the proposal.
We observe an improvement of the effective sample size
(ESS) of the particle cloud as rλ is converging towards the
optimal proposal, as shown in Figure 8 in Appendix B. Fig-
ure 2 displays conditional proposal densities for some given
(xt, yt+1) in a single run; we see that for both choices of
Sv, the learned proposal is generally close to the locally
optimal one, except in the presence of unlikely outliers in
the data, in which case the learned proposal tend to move,
as is desirable, its mode towards that of the prior (bootstrap)
kernel.

Next, we show that our method can also be usefully applied
in the batch-data mode. Following Naesseth et al. (2018)
and Zhao et al. (2022), let dx = dy = 10 and let the ma-
trix A have elements Aij = 0.42|i−j|+1. Furthermore, let
Su = I and Sv = 0.5I . We consider two parameterizations
of B, one sparse, B = I , and one dense where its elements
are random, independent and standard normally distributed.
With these parameterizations, a data record y0:T , T = 100,
was generated starting from an N(0, I)-distributed initial
state. In this part, we view the model parameters θ as be-
ing known and focus on learning of the proposal. Instead

1The Python code may be found at https://bitbucket.
org/amastrot/ovsmc.

6

https://bitbucket.org/amastrot/ovsmc
https://bitbucket.org/amastrot/ovsmc

Online Variational Sequential Monte Carlo

0 10000 20000 30000 40000 50000
Time iterations t

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Pa
ra

m
et

er
 v

al
ue

s

Estimated A
(mean and 5%-95% quantiles)
Estimated Su
(mean and 5%-95% quantiles)
True value A
True value Su

0 10000 20000 30000 40000 50000
Time iterations t

1.0

0.5

0.0

0.5

1.0

1.5

2.0

Pa
ra

m
et

er
 v

al
ue

s

Estimated A
(mean and 5%-95% quantiles)
Estimated Su
(mean and 5%-95% quantiles)
True value A
True value Su

Figure 1: Parameter learning curves for the one-dimensional
linear Gaussian SSM in Section 5.1, obtained using algo-
rithm 2 with L = 5 and N = 10000 for Sv = 0.2 (left)
and Sv = 1.2 (right). The means and the quantiles are cal-
culated on the basis of 100 learning curves, each starting
with a different initial value and based on independently
generated observation data.

of learning, as done by Naesseth et al. (2018) and Zhao
et al. (2022), different local proposals for each time step, we
learn, in both batch and online mode, an amortized Gaussian
proposal where the mean vector and diagonal covariance
matrix are functions of xt and yt+1, modeled by neural
networks. These neural networks, which are time invari-
ant, have each a single hidden layer with 16 nodes each
and the relu activation function. In this setting, we (1) pro-
cessed the given observation batch M times using standard
VSMC, with gradient-based parameter updates between ev-
ery sweep of the data, and (2) compared the result with
the output of OVSMC when executed on a data sequence of
length (T + 1)M formed by repeating the given data record
M times. The number of particles was equal to L = 5
for both methods. Figure 3 displays the resulting ELBO
evolutions for the two methods and some different ADAM
learning rates, and it is clear from this plot that OVSMC, with
its appealing convergence properties and reduced noise, is
indeed a challenger of VSMC in this batch context.

COMPARISON TO CAMPBELL ET AL. (2021)

As anticipated in Section 1, the online variational filter-
ing (OVF) approach of Campbell et al. (2021) performs
online parameter learning, although considering a varia-
tional family that is not particle-based and thus not directly
comparable to the VSMC one. Even if it is algorithmically
and computationally complex and includes a large number
of hyperparameters to be tuned, OVF is a relevant recent
work in the context of online variational learning. Thus,
we used it as a benchmark for OVSMC, and let the latter
solve the same problem as in Figure 1b in Campbell et al.

5 0 5
xt + 1

0

1

2

(xt, yt + 1) = (0, 0)

5 0 5
xt + 1

0.0

0.5

1.0

1.5

2.0

(xt, yt + 1) = (-1.5, 1.5)

5 0 5
xt + 1

0

1

2

(xt, yt + 1) = (3, -3)

5 0 5
xt + 1

0.0

0.5

1.0

1.5

2.0

(xt, yt + 1) = (-4, 4)

5 0 5
xt + 1

0.0

0.2

0.4

0.6

0.8

(xt, yt + 1) = (0, 0)

Locally optimal
proposal
Learned proposal
Bootstrap proposal

5 0 5
xt + 1

0.0

0.2

0.4

0.6

0.8

(xt, yt + 1) = (-1.5, 1.5)

5 0 5
xt + 1

0.0

0.2

0.4

0.6

0.8

(xt, yt + 1) = (3, -3)

5 0 5
xt + 1

0.0

0.2

0.4

0.6

0.8

(xt, yt + 1) = (-3, 12)

Figure 2: Comparisons of the bootstrap, locally optimal and
learned proposals for different (xt, yt+1). Here OVSMC was
run for 50000 iterations with L = 5 and N = 10000 for
Sv = 0.2 (top) and Sv = 1.2 (bottom).

(2021, Section 5.1). The result is displayed in Figure 4,
where we demonstrate the comparability between the two
methods for learning A and B; however, we note a signifi-
cant difference in the computational time, since using the
code provided by Campbell et al. (2021) OVF takes about 17
hours while OVSMC uses less than one hour for a single run.
Even though we are aware that part of this difference may be
due to the particular implementation used, the complexity
gap between the two methods is definitely non-negligible.

5.2. Stochastic Volatility and RML

In this example we focus on parameter estimation and com-
pare OVSMC with PaRIS-based RML (Olsson & Wester-
born Alenlöv, 2020). We consider a univariate stochas-
tic volatility model (Hull & White, 1987), where for x ∈
X = R, mθ(· | x) and gθ(· | x) are N(αx, σ2) and
N(0, β2 exp(x)), respectively, with α ∈ (0, 1), σ > 0
and β > 0. The state process is initialized according to
its N(0, σ2/(1− α2)) stationary distribution. Figure 5 re-
ports the learning curves of the estimated parameters θ =
(α, σ, β) obtained with OVSMC and particle-based RML,
starting from different parameter vectors, for 27 independent
data sequences generated under θ = (0.975, 0.165, 0.641).
In both algorithms, the learning rate was 10−3. The learn-
ing curves show similar behavior, with OVSMC converging
faster than RML in several cases when estimating β, but
fluctuating somewhat more when learning α and σ. This
is to be expected, since the RML procedure is based on
particle smoothing. However, we should remember that
OVSMC does not use any backward sampling and in addi-
tion to learning θ also has the ability to optimize online
the proposal kernel over the same family of deep Gaussian
proposals as in Section 5.1. As the number of particles
grows, the computational speed is also in favor of OVSMC,
since the PaRIS-based RML has a computational bottle-

7

Online Variational Sequential Monte Carlo

0 500 1000 1500
Iterations M
of all data

-2000

-1900

-1800

-1700

-1600

EL
BO

Batch VSMC
l.r. = 0.001

log p (y0 : T)

0 500 1000 1500
Iterations M
of all data

Batch VSMC
l.r. = 0.005

0 500 1000 1500
Iterations M
of all data

Batch VSMC
l.r. = 0.01

0 500 1000 1500
Iterations M
of all data

Batch VSMC
l.r. = 0.05

0 500 1000 1500
Iterations M
of all data

OVSMC
l.r. = 0.0005

0 500 1000 1500
Iterations M
of all data

OVSMC
l.r. = 0.001

0 500 1000 1500
Iterations M
of all data

-9000

-8000

-7000

-6000

-5000

-4000

-3000

-2000

EL
BO

Batch VSMC
l.r. = 0.001

log p (y0 : T)

0 500 1000 1500
Iterations M
of all data

Batch VSMC
l.r. = 0.005

0 500 1000 1500
Iterations M
of all data

Batch VSMC
l.r. = 0.01

0 500 1000 1500
Iterations M
of all data

Batch VSMC
l.r. = 0.05

0 500 1000 1500
Iterations M
of all data

OVSMC
l.r. = 0.0005

0 500 1000 1500
Iterations M
of all data

OVSMC
l.r. = 0.001

Figure 3: ELBO evolutions of VSMC and OVSMC (each
running with L = 5) for the multivariate linear Gaussian
SSM in Section 5.1 (top: B sparse; bottom: B dense). In
each plot, which corrsponds to a particular learning rate, five
independent runs och each algorithm are displayed on top
of each other and compared with the target log-likelihood.

neck stemming from its inherent backward-sampling mech-
anism; with our implementation, OVSMC was three times
faster than PaRIS-based RML in this specific case, and this
ratio grows even more in favor of OVSMC as N increases.

5.3. Deep Generative Model of Moving Agent

In this section we study the applicability of OVSMC to more
complex and high-dimensional models. Inspired by Le
et al. (2018, Section 5.3), we produced a long and par-
tially observable video sequence, with frames represented
by 32× 32 arrays, showing a moving agent. The motion is
similar as the one described in the referenced paper, with
the difference that the agent exhibits a stationary behavior
by bouncing against the edges of the image. The agent is
occluded from the image whenever it moves into the cen-
tral region of the frame, covered by a 16 × 30 horizontal
rectangle. The data generation is described in more detail in
Appendix C.1. Following Le et al. (2018, Section C.1), we
model the generative process and the proposal through the
framework of variational recurrent neural networks (Chung
et al., 2015), with a similar architecture described in more
detail in Appendix C.2.

0 25000 50000
Time iterations t (A)

0.00

0.05

0.10

0.15

0.20

0.25

M
ea

n
Ab

so
lu

te
 E

rro
r

OVSMC (mean)
OVSMC (5%-95% quantiles)
OVF (5 realizations)

0 25000 50000
Time iterations t (B)

Figure 4: Mean absolute errors estimating A (left) and B
(right) of five independent runs of OVF, along with the
distribution of 40 independent runs of OVSMC, with L = 5
and N = 104, proposal kernel as described in Section 5.1,
with 64 nodes in the hidden layer of each neural network,
and ADAM learning rates 10−3. Here dx = dy = 10, Su =
0.1I , and Sv = 0.25I and matrices A and B are diagonal
with i.i.d. Unif(0.5, 1)-distributed elements.

0.0

0.5

1.0

1.5

2.0

Pa
ra

m
et

er
 v

al
ue

s O
VS

M
C Learning curves OVSMC

Learning curves OVSMC
Learning curves OVSMC
True values

0 10000 20000 30000 40000 50000
Time iterations t

0.0

0.5

1.0

1.5

2.0

Pa
ra

m
et

er
 v

al
ue

s R
M

L

Learning curves RML
Learning curves RML
Learning curves RML
True values

Figure 5: Parameter learning curves obtained with OVSMC
(with L = 5 and N = 1000) and PaRIS-based RML
(Olsson & Westerborn Alenlöv, 2020) (withN = 1000), for
the stochastic volatility SSM in Section 5.2, with learning
rate 10−3.

In this setting, we generated a single video sequence with
T = 105 frames, and processed the same by iterating Al-
gorithm 2, with N = 20 and L = 5, T times. We remark
that since we have to run the algorithm for a large num-
ber of iterations, it is clearly infeasible—and possibly not
even useful—to input the whole history of frames and latent
states to the recurrent neural network of the model; instead,
we include only a fixed window (of length 40) of recent
frames and states and discard all the previous information.
This allows the average time and memory requirement per
iteration to be kept at a constant value.

Figures 6–7 show a visual illustration of the method’s ability
to generate probable videos. The goal is to analyze the
quality of the learned generative model by visualizing some

8

Online Variational Sequential Monte Carlo

independently sampled videos and comparing them to a
reference video generated from a different seed than the one
used for training. We consider a 150 frames long reference
video. For each sample we use the proposal distribution
to generate the latent states for the first 60 iterations, i.e.,
we access the true frame to sample and then decode the
states, and after t = 60 we continue with the generative
model only. The images show every third frame for the true
video and five independent sample videos. We note that
the first 60 frames of the sample videos look similar to the
true video, as expected since the model has access to the
true observations. After that, the sample videos continue
similarly in an initial phase, but start to move at different
speeds when the agent disappears behind the rectangle after
t = 75. As the generated frame sequences show, the model
predicts a smooth movement pattern of the agent, with some
random perturbations, as in the second sample, where the
agent leaves the rectangle after t = 96 from the top instead
of below.

Tr
ue

 v
id

eo

t = 3 t = 6 t = 9 t = 12 t = 15 t = 18 t = 21 t = 24 t = 27 t = 30 t = 33 t = 36

Sa
m

pl
e

1
Sa

m
pl

e
2

Sa
m

pl
e

3
Sa

m
pl

e
4

Sa
m

pl
e

5
Tr

ue
 v

id
eo

t = 39 t = 42 t = 45 t = 48 t = 51 t = 54 t = 57 t = 60 t = 63 t = 66 t = 69 t = 72

Sa
m

pl
e

1
Sa

m
pl

e
2

Sa
m

pl
e

3
Sa

m
pl

e
4

Sa
m

pl
e

5

Figure 6: See caption in Figure 7.

6. Conclusions
We have presented the OVSMC algorithm, a procedure that
extends the batch VSMC to the context of streaming data.
The proposed methodology allows us to learn, on-the-fly,
unknown model parameters and optimal particle proposals
in both standard SSM as well as and more complex gen-
erative models. Under strong mixing assumptions, which
are standard in the literature, we provide theoretical sup-
port showing that the stochastic approximation scheme of

Tr
ue

 v
id

eo

t = 75 t = 78 t = 81 t = 84 t = 87 t = 90 t = 93 t = 96 t = 99 t = 102 t = 105 t = 108

Sa
m

pl
e

1
Sa

m
pl

e
2

Sa
m

pl
e

3
Sa

m
pl

e
4

Sa
m

pl
e

5
Tr

ue
 v

id
eo

t = 111 t = 114 t = 117 t = 120 t = 123 t = 126 t = 129 t = 132 t = 135 t = 138 t = 141 t = 144

Sa
m

pl
e

1
Sa

m
pl

e
2

Sa
m

pl
e

3
Sa

m
pl

e
4

Sa
m

pl
e

5

Figure 7: Comparison between original video and five sam-
ples under the learned model. Until t = 60, frames are
generated using the learned proposal and the given data to
encode the latent states; after this, the frames are produced
using the generative model.

OVSMC solves the same problem as VSMC for an infinite
batch size. The interesting question of whether the esti-
mates produced by OVSMC are still consistent for the true
parameter in the case of correctly specified SSM despite the
biased approximation of the ELBO gradient remains open
for future work. Moreover, from an application point of
view, it would be appealing to explore, empirically and the-
oretically, the case where the parameters vary through time
(i.e. when dealing with non-stationary data), with the aim of
identifying the conditions under which OVSMC would still
work.

Acknowledgments
This work is supported by the Swedish Research Council,
Grant 2018-05230.

Impact Statement
This paper presents work whose goal is to advance the field
of Machine Learning. There are many potential societal
consequences of our work, none which we feel must be
specifically highlighted here.

9

Online Variational Sequential Monte Carlo

References
Bishop, C. M. Pattern Recognition and Machine Learning.

Springer, 2016.

Blei, D. M., Kucukelbir, A., and McAuliffe, J. D. Varia-
tional inference: A review for statisticians. Journal of
the American statistical Association, 112(518):859–877,
2017.

Burda, Y., Grosse, R., and Salakhutdinov, R. Importance
weighted autoencoders. In International Conference on
Learning Representations, 2016.

Campbell, A., Shi, Y., Rainforth, T., and Doucet, A. On-
line variational filtering and parameter learning. In Ran-
zato, M., Beygelzimer, A., Dauphin, Y., Liang, P., and
Vaughan, J. W. (eds.), Advances in Neural Information
Processing Systems, volume 34, pp. 18633–18645. Cur-
ran Associates, Inc., 2021.

Cappé, O. Online EM algorithm for hidden Markov models.
J. Comput. Graph. Statist., 20(3):728–749, 2011.

Cappé, O., Moulines, E., and Rydén, T. Inference in Hidden
Markov Models. Springer, New York, 2005.

Chopin, N. and Papaspiliopoulos, O. An introduction to
sequential Monte Carlo methods. Springer, New York,
2020.

Chung, J., Kastner, K., Dinh, L., Goel, K.and Courville,
A. C., and Bengio, Y. A recurrent latent variable model
for sequential data. In Advances in Neural Information
Processing Systems, volume 28, pp. 2980 – 2988. Curran
Associates, Inc., 2015.

Cornebise, J., Moulines, E., and Olsson, J. Adaptive meth-
ods for sequential importance sampling with application
to state space models. Stat. Comput., 18(4):461–480,
2008.

Cornebise, J., Moulines, E., and Olsson, J. Adaptive sequen-
tial Monte Carlo by means of mixture of experts. Stat.
Comput., 24(3):317–337, 2014.

Del Moral, P. Feynman–Kac Formulae. Genealogical and
Interacting Particle Systems with Applications. Springer,
New York, 2004.

Del Moral, P., Doucet, A., and Singh, S. S. Uniform stability
of a particle approximation of the optimal filter derivative.
SIAM Journal on Control and Optimization, 53(3):1278–
1304, 2015.

Douc, R., Moulines, E., Priouret, P., and Soulier, P. Markov
Chains. Spinger, 2018.

Doucet, A., Godsill, S., and Andrieu, C. On sequential
Monte-Carlo sampling methods for Bayesian filtering.
Stat. Comput., 10:197–208, 2000.

Doucet, A., De Freitas, N., and Gordon, N. (eds.). Sequen-
tial Monte Carlo Methods in Practice. Springer, New
York, 2001.

Finke, A. and Thiery, A. H. On importance-weighted au-
toencoders. arXiv preprint arXiv:1907.10477, 2019.

Gordon, N., Salmond, D., and Smith, A. F. Novel approach
to nonlinear/non-Gaussian Bayesian state estimation. IEE
Proc. F, Radar Signal Process., 140:107–113, 1993.

Gu, S. S., Ghahramani, Z., and Turner, R. E. Neural adaptive
sequential Monte Carlo. Advances in neural information
processing systems, 28, 2015.

Hull, J. and White, A. The pricing of options on assets with
stochastic volatilities. J. Finance, 42:281–300, 1987.

Kantas, N., Doucet, A., Singh, S. S., Maciejowski, J.,
Chopin, N., et al. On particle methods for parameter
estimation in state-space models. Statistical science, 30
(3):328–351, 2015.

Karimi, B., Miasojedow, B., Moulines, E., and Wai, H.-T.
Non-asymptotic analysis of biased stochastic approxi-
mation scheme. In Conference on Learning Theory, pp.
1944–1974. PMLR, 2019.

Kingma, D. P. and Ba, J. Adam: A method for stochastic
optimization. In International Conference on Learning
Representations, 2015.

Kingma, D. P. and Welling, M. Auto-encoding variational
Bayes. In International Conference on Learning Repre-
sentations, 2014.

Kitagawa, G. Monte-Carlo filter and smoother for non-
Gaussian nonlinear state space models. J. Comput. Graph.
Statist., 1:1–25, 1996.

Le, T. A., Igl, M., Rainforth, T., Jin, T., and Wood, F. Auto-
encoding sequential Monte Carlo. In International Con-
ference on Learning Representations, 2018.

Le Gland, F. and Mevel, L. Recursive estimation in HMMs.
In Proc. IEEE Conf. Decis. Control, pp. 3468–3473,
1997.

Liu, J. S. Metropolized independent sampling with com-
parisons to rejection sampling and importance sampling.
Stat. Comput., 6:113–119, 1996.

Maddison, C. J., Lawson, J., Tucker, G., Heess, N., Norouzi,
M., Mnih, A., Doucet, A., and Teh, Y. Filtering varia-
tional objectives. Advances in Neural Information Pro-
cessing Systems, 30, 2017.

10

Online Variational Sequential Monte Carlo

Meyn, S. P. and Tweedie, R. L. Markov Chains and Stochas-
tic Stability. Cambridge University Press, London, 2009.

Mongillo, G. and Denève, S. Online learning with hidden
Markov models. Neural Computation, 20(7):1706–1716,
2008. doi: 10.1162/neco.2008.10-06-351.

Naesseth, C., Linderman, S., Ranganath, R., and Blei, D.
Variational sequential Monte Carlo. In International con-
ference on artificial intelligence and statistics, pp. 968–
977. PMLR, 2018.

Olsson, J. and Westerborn Alenlöv, J. Particle-based online
estimation of tangent filters with application to parameter
estimation in nonlinear state-space models. Annals of the
Institute of Statistical Mathematics, 72:545–576, 2020.

Poyiadjis, G., Doucet, A., and Singh, S. S. Particle approxi-
mations of the score and observed information matrix in
state space models with application to parameter estima-
tion. Biometrika, 98(1):65–80, 2011.

Robbins, H. and Monro, S. A stochastic approximation
method. Ann. Math. Statist., 22:400–407, 1951.

Roeder, G., Wu, Y., and Duvenaud, D. K. Sticking the land-
ing: Simple, lower-variance gradient estimators for varia-
tional inference. In Guyon, I., Luxburg, U. V., Bengio, S.,
Wallach, H., Fergus, R., Vishwanathan, S., and Garnett,
R. (eds.), Advances in Neural Information Processing
Systems, volume 30. Curran Associates, Inc., 2017.

Tadic, V. Z. B. and Doucet, A. Asymptotic properties of
recursive maximum likelihood estimation in non-linear
state-space models. arXiv preprint arXiv:1806.09571,
2018.

Tucker, G., Lawson, D., Gu, S., and Maddison, C. J. Dou-
bly reparameterized gradient estimators for monte carlo
objectives. In International Conference on Learning Rep-
resentations, 2018.

Zhao, Y., Nassar, J., Jordan, I., Bugallo, M., and Park, I. M.
Streaming variational monte carlo. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 45(1):1150–
1161, 2022.

11

Online Variational Sequential Monte Carlo

A. Proof of Theorem 4.7
In the first part of this supplement we provide a detailed proof of Theorem 4.7, proceeding as follows.

• Preliminaries (Section A.1). For technical reasons, the proof of Theorem 4.7 to be presented calls for some more
sophisticated notation, introduced in Section A.1.1. In addition, in Section A.1.2 we present the slight modification
of Algorithm 2 that is the subject of our theoretical analysis and in which we optimize a unique parameter vector θ
containing both model and proposal parameters.

• Intermediate results (Section A.2). In this part, we redefine the extended state-dependent Markov chain (Zt)t∈N
(discussed in Section 4), including the original SSM as well as the random variables generated by Algorithm 3. Under
strong mixing assumptions, we establish, in Proposition A.4 (corresponding to Proposition 4.3) uniform ergodicity of
the Markov transition kernel Tθ governing (Zt)t∈N and the existence of a stationary distribution.

After this, we consider the Robbins–Monroe scheme with state-dependent Markov noise targeting the mean field h(θ)
defined (as in Section 4) as the expectation of the noisy measurement function Hθ under the stationary distribution of
Tθ, and prove that it is bounded. Under the assumption that the state-process and emission transition densities as well
as their gradients (with respect to θ) are bounded and Lipschitz continuous in θ, Proposition A.6 then establishes the
existence of a solution to the Poisson equation associated with the Markov kernel Tθ.

• Main proofs (Section A.3). Next, we introduce further assumptions regarding the Lyapunov function associated with
the mean field and the step-size sequence of the stochastic update, under which we restate and prove Theorem 4.7 and
Corollary 4.8.

• Auxiliary results (Section A.4). Finally, we prove Proposition A.6 using Lemmas A.11 and A.12. The approach to
these proofs is partially inspired by the work of Tadic & Doucet (2018).

We remark that our analysis is carried through for a fixed particle sample size N ∈ N>0 in the SMC algorithm, and it is
beyond the scope of our paper to optimize the derived theoretical bounds with respect to N .

A.1. Preliminaries

A.1.1. NOTATION

We let R+ and R∗+ be the sets of nonnegative and positive real numbers, respectively, and denote vectors by xm:n :=
(xm, xm+1, . . . , xn−1, xn) or, alternatively, by xm:n := (xm, xm+1, . . . , xn−1, xn), depending on the situation. For some
general state space (S,S), we let M(S) be the set of measures on S, and M1(S) ⊂ M(S) the probability measures. For a
signed measure σ(ds) on (S,S), we denote by |σ| (ds) its total variation.

We now reintroduce the SSM (Xt, Yt)t∈N, specified in Section 2, in a somewhat more rigorous way. More specifically,
(Xt, Yt)t∈N is defined as a bivariate Markov chain evolving on (X× Y,X � Y) according to the Markov transition kernel

Kθ : (X× Y)× (X � Y) 3 ((x, y), A) 7→
∫∫

1A(x′, y′)Mθ(x, dx
′)Gθ(x

′, dy′),

where

Mθ : X×X 3 (x,A) 7→
∫
1A(x′)mθ(x, x

′)µ(dx′),

Gθ : X× Y 3 (x,B) 7→
∫
1B(y) gθ(x, y) η(dy),

with mθ : X × X → R+ and gθ : X × Y → R+ being the state and emission transition densities and µ ∈ M(X) and
η ∈ M(Y) reference measures. (Here we have slightly modified the notation in Section 2, by using the short-hand notation
mθ(x, x

′) = mθ(x
′ | x) and gθ(x, y) = gθ(y | x).) The chain is initialized according to χ � Gθ : X � Y 3 A 7→∫

A
χ(dx)Gθ(x, dy), where χ is some probability measure on (X,X) having density m0(x) with respect to µ. As specified

in Section 2, only the process (Yt)t∈N is observed, whereas the state process (Xt)t∈N is unobserved and hence referred to as
latent or hidden. Moreover, θ is a parameter belonging to some vector space Θ and governing the dynamics of the model.

12

Online Variational Sequential Monte Carlo

A.1.2. ALGORITHM

We let Rθ : X×Y×X → [0, 1] be some Markov kernel, the so-called proposal kernel, parameterized by θ ∈ Θ as well and
having transition density rθ : X× X× Y → R+ with respect to µ, such that for every (x, y,A) ∈ X× Y ×X ,

Rθ((x, y), A) = 0⇒
∫
1A(x′)gθ(x

′, y)Mθ(x, dx
′) = 0.

On the basis of the proposal kernel, define the weight function wθ(x, x
′, y) := mθ(x, x

′)gθ(x
′, y)/rθ(x, x

′, y) for
(x, x′, y) ∈ X × X × Y such that rθ(x, x′, y) > 0. In order to express the particles as explicit differentiable func-
tions of θ, the proposal is assumed to be reparameterizable. More precisely, we assume that there exist some state-space
(E, E), an easily sampleable probability measure ν ∈ M1(E) not depending on θ, and a function fθ : X × Y × E → X
such that for all (x, y) ∈ X× Y and θ ∈ Θ, it holds that

∫
h(fθ(x, y, v)) ν(dv) =

∫
h(x′)Rθ((x, y), dx′) for all bounded

real-valued measurable functions h on X; in other words, the pushforward distribution ν ◦ f−1θ (x, y, ·) coincides with
Rθ((x, y), ·).

Algorithm 3 displays the procedure studied in our analysis. In this slightly modified version of Algorithm 2, the particle
system will be represented by the resampled particles, denoted here as (ξ̃it)

N
i=1, t ≥ 0. In order to avoid introducing

further notation, the resampled particles are conventionally all initialized at time −1 by some arbitrary value u ∈ X such
that {fθ(u, y0, εi0)}Ni=1, corresponding to (ξi0)Ni=1, are i.i.d. according to some initial proposal distribution Rθ((u, y0), ·)
depending on u, where (εi0)Ni=1 ∼ ν�N . As we will see, the cloud of resampled particles will be included in the state-
dependent Markov chain (Zt)t∈N governing the perturbations of the stochastic-approximation scheme under consideration;
the initialization according to the constant u is described in (7).

In Algorithm 3, we operate with two samples of mutated particles, one used for the propagation of the particle cloud and one
used for approximation of the gradient, in the sense that the noise variables (εit+1)Ni=1 generated on Line 9 are not used
to propagate the particles. Consequently, fθt(ξ̃

i
t, yt+1, ε

i
t+1) is generally different from ξit+1. Importantly, this decoupling

makes the Markov transition kernel Tθ non-collapsed (free from Dirac components), which, as we will see, facilitates
significantly the theoretical analysis of the algorithm.

Algorithm 3 OVSMC (modified version)

1: Input: (ξ̃it−1)Ni=1, yt:t+1, θt
2: for i = 1, . . . , N do
3: draw ξit ∼ Rθt((ξ̃it−1, yt), ·);
4: set ωit ← wθt(ξ̃

i
t−1, ξ

i
t, yt);

5: end for
6: for i = 1, . . . , N do
7: draw Iit+1 ∼ cat((ω`t)

N
`=1);

8: set ξ̃it ← ξ
Iit+1

t ;
9: draw εit+1 ∼ ν;

10: end for
11: set θt+1 ← θt + γt+1∇ log

(∑N
i=1 wθt(ξ̃

i
t, fθt(ξ̃

i
t, yt+1, ε

i
t+1), yt+1)

)
;

12: return (ξ̃it)
N
i=1, θt+1.

A.2. Intermediate results

A.2.1. CONSTRUCTION OF (Zt)t∈N

We first provide a more detailed statement of Assumption 4.1, which assumes that the law of the data is governed by an
unspecified SSM.

Assumption A.1. The observed data stream (Yt)t∈N is the output of an SSM (Xt, Yt)t∈N on (X×Y,X �Y) with some state
and observation transition kernels M̄(x, dx′) and Ḡ(x, dy), respectively. These kernels have transition densities m̄(x, x′)
and ḡ(x, y) with respect to µ and η, respectively.

13

Online Variational Sequential Monte Carlo

As explained in Section 4, the stochastic process (Zt)t∈N, evolving on the product space (Z,Z) := (X×Y×XN ×EN ,X �
Y�X�N �E�N), includes the data-generating SSM well as the random variables generated by Algorithm 3, i.e., for t ∈ N,
Zt := (Xt, Yt, ξ̃

1:N
t−1 , ε

1:N
t). Let P and (Ft)t∈N be the law and natural filtration of (Zt)t∈N; then, as described in Section 4,

(Zt)t∈N is a state-dependent Markov chain with transition kernel Tθ, in the sense that for any bounded measurable function
h on Z, P-a.s., E[h(Zt+1) | Ft] = Tθth(Zt). The kernel Tθ is given by, with zt = (xt, yt, x̃

1:N
t−1, v

1:N
t),

Tθ(zt, dzt+1) := M̄(xt, dxt+1) Ḡ(xt+1, dyt+1)

∫
x1:N
t

N∏
k=1

rθ(x̃
k
t−1, x

k
t , yt)

×
N∏
j=1

(
N∑
i=1

wθ(x̃
i
t−1, x

i
t, yt)∑N

`=1 wθ(x̃
`
t−1, x

`
t, yt)

δxit(dx̃
j
t)

)
ν�N (dv1:Nt+1)µ�N (dx1:Nt),

where we have written
∫
x1:N
t

to indicate that the integral is with respect to (xit)
N
i=1. The initial state Zθ0 is initialized

according to the probability measure

τ0(dz0) := χ(dx0) Ḡ(x0, dy0) δ�N
u (dx̃1:N−1) ν�N (dv1:N0), (7)

where the dummy particles x̃1:N−1 we are initialized at an arbitrary point u ∈ X. Under the following assumption, we will
establish that the kernel Tθ is uniformly ergodic and has an invariant distribution.

Assumption A.2. There exists ε ∈ (0, 1) such that for every θ ∈ Θ, (x, x′) ∈ X2 and y ∈ Y,

ε ≤ m̄(x, x′) ≤ 1

ε
, ε ≤ mθ(x, x

′) ≤ 1

ε
, ε ≤ gθ(x, y) ≤ 1

ε
, ε ≤ rθ(x, x′, y) ≤ 1

ε
.

The strong mixing assumptions of Assumption A.2 (as well as Assumption A.5 introduced later) are standard in the literature
and point to applications where the state and parameter space are compact sets. Note that from Assumption A.2 it follows
directly that ε3 ≤ wθ(x, x

′, y) ≤ ε−3 for all θ ∈ Θ, (x, x′) ∈ X2 and y ∈ Y. Let (Zθt)t∈N and Pθ denote the canonical
Markov chain and its law induced by the Markov transition kernel Tθ.
Remark A.3. Note that by Assumption A.2 it follows that the reference measure µ is a finite measure on (X,X). Thus,
without loss of generality we assume in the following that µ is a probability measure.

We now rewrite and prove Proposition 4.3.

Proposition A.4 (Proposition 4.3). Let Assumptions A.1 and A.2 hold. Then for every θ ∈ Θ, (Zθt)t∈N is geometrically
uniformly ergodic and admits a unique stationary distribution τθ ∈ M1(Z).

Proof. In order to establish uniform ergodicity we show that Tθ allows the state space Z as a ν1-small set for some
ν1 ∈ M(Z). Indeed for any zt = (xt, yt, x̃

1:N
t−1, v

1:N
t) ∈ Z and A ∈ Z ,

Tθ(zt, A) =

∫
· · ·
∫
1A(xt+1, yt+1, x̃

1:N
t , v1:Nt+1)m̄(xt, xt+1)ḡ(xt+1, yt+1)µ(dxt+1) η(dyt+1)

×
∫
x1:N
t

N∏
k=1

rθ(x̃
k
t−1, x

k
t , yt)

N∏
j=1

(
N∑
i=1

wθ(x̃
i
t−1, x

i
t, yt)∑N

`=1 wθ(x̃
`
t−1, x

`
t, yt)

δxit(dx̃
j
t)

)
× µ�N (dx1:Nt) ν�N (dv1:Nt+1)

≥ ε7N+1

∫
· · ·
∫
1A(xt+1, yt+1, x̃

1:N
t , v1:Nt+1)ḡ(xt+1, yt+1)µ(dxt+1) η(dyt+1)

×
∫
x1:N
t

N∏
j=1

(
1

N

N∑
i=1

δxit(dx̃
j
t)

)
µ�N (dx1:Nt) ν�N (dv1:Nt+1).

Thus, we may conclude that Tθ allows Z as a ν1-small set with

ν1(dz) = ε7N+1ḡ(x, y)µ(dx) η(dy)

∫
x1:N

N∏
j=1

(
1

N

N∑
i=1

δxi(dx̃
j)

)
µ�N (dx1:N) ν�N (dv1:N). (8)

14

Online Variational Sequential Monte Carlo

Then, by Meyn & Tweedie (2009, Theorem 16.0.2(v)) or Douc et al. (2018, Theorem 15.3.1(iii)) it follows that (Zθt)t≥0 is
geometrically uniformly ergodic. Then the Dobrushin coefficient of Tθ is strictly less than one for all θ ∈ Θ, which implies
that Tθ admits a unique stationary distribution τθ (see, e.g., Douc et al., 2018, Theorems 18.2.4–5).

A.2.2. STOCHASTIC APPROXIMATION UPDATE AND MEAN FIELD

Now, define, for z = (x, y, x̃1:N , v1:N) ∈ Z,

Hθ(z) := ∇ ln

(
N∑
i=1

wθ(x̃
i, fθ(x̃

i, y, vi), y)

)
=

∑N
i=1∇wθ(x̃i, fθ(x̃i, y, vi), y)∑N
i=1 wθ(x̃

i, fθ(x̃i, y, vi), y)
,

where, here and everywhere in the following, gradients are with respect to θ, i.e., ∇ = ∇θ. Then Algorithm 3 is equivalent
with the Robbins–Monro (Robbins & Monro, 1951) stochastic-approximation scheme

θt+1 ← θt + γt+1Hθt(Zt+1), t ∈ N,

where Zt+1 ∼ Tθt(Zt, ·), initialized by some starting guess θ0. This procedure aims to find a zero of the mean field

h(θ) :=

∫
Hθ(z) τθ(dz).

The next result, Proposition A.6, establishes the boundedness of the mean field h(θ), the convergence of the expectation of
Hθ(Z

θ
t) to the same and the existence of a solution to the Poisson equation associated with Tθ. This intermediate result will

be instrumental in the proofs of Section A.3. Proposition A.6 will be proven under the assumption that the gradients of the
model and proposal densities are bounded and Lipschitz in θ.

Assumption A.5. There exists κ ∈ [1,∞) such that for all (θ, θ′) ∈ Θ2, (x, x′) ∈ X2, y ∈ Y and v ∈ E,

max{‖∇mθ(x, fθ(x, y, v))‖, ‖∇gθ(fθ(x, y, v), y)‖, ‖∇rθ(x, fθ(x, y, v), y)‖} ≤ κ,
max{|mθ(x, x

′)−mθ′(x, x
′)| , |mθ(x, fθ(x, y, v))−mθ′(x, fθ′(x, y, v))| ,

‖∇mθ(x, fθ(x, y, v))−∇mθ′(x, fθ′(x, y, v))‖} ≤ κ‖θ − θ′‖,
max{|gθ(x, y)− gθ′(x, y)| , |gθ(fθ(x, y, v), y)− gθ′(fθ′(x, y, v), y)| ,

‖∇gθ(fθ(x, y, v), y)−∇gθ′(fθ′(x, y, v), y)‖} ≤ κ‖θ − θ′‖,
max{|rθ(x, x′, y)− rθ′(x, x′, y)| , |rθ(x, fθ(x, y, v), y)− rθ′(x, fθ′(x, y, v), y)| ,

‖∇rθ(x, fθ(x, y, v), y)−∇rθ′(x, fθ′(x, y, v), y)‖} ≤ κ‖θ − θ′‖.

Proposition A.6. Under Assumptions A.2 and A.5 the following holds true.

(i) h(θ) is well-defined and bounded on Θ.

(ii) For every θ ∈ Θ, h(θ) = limt→∞ Eθ[Hθ(Z
θ
t)].

(iii) There exists a measurable function H̃θ on Z that satisfies the Poisson equation

Hθ(z)− h(θ) = H̃θ(z)− TθH̃θ(z),

for every θ ∈ Θ and z ∈ Z.

(iv) There exists a real number α̃ ∈ [1,∞) such that for every (θ, θ′) ∈ Θ2 and z ∈ Z,

max{‖Hθ(z)‖, ‖H̃θ(z)‖, ‖TθH̃θ(z)‖} ≤ α̃,
max{‖Hθ(z)−Hθ′(z)‖, ‖TθH̃θ(z)− Tθ′H̃θ′(z)‖, ‖h(θ)− h(θ′)‖} ≤ α̃‖θ − θ′‖.

The proof of Proposition A.6 is found in Section A.4.

15

Online Variational Sequential Monte Carlo

A.3. Proof of the main results

We are now ready to prove Theorem 4.7 and Corollary 4.8, which are restated in some more detail below. Our proofs will be
based on theory developed by Karimi et al. (2019), where the minimization of a non-convex smooth objective function is
considered. Thus, we assume, in Assumption A.7, that the mean field h(θ) is indeed the gradient of some smooth function of
θ, the so-called Lyapunov function (depending on N), maximized by the algorithm. However, since the ‘surrogate’ gradient
considered in VSMC, whose time-normalized asymptotic limit is the target of OVSMC, is a biased approximation of the
gradient of the ELBO LSMC (see Section 2.2), the Lyapunov function does not have a straightforward interpretation in this
case.

Assumption A.7. There exists a bounded function V on Θ (the Lyapunov function) such that h = ∇V .

Assumption A.8. For every t ∈ N>0, γt+1 ≤ γt. In addition, there exist constants a > 0 and a′ > 0 such that for every t,

γt ≤ aγt+1, γt − γt+1 ≤ a′γ2t+1, γ1 ≤ 1/(2α̃+ 2ch),

where the constant α̃ ∈ [1,∞) is given in Proposition A.6 and ch := α̃(a+ 1)/2 + α̃2(2a+ 1) + α̃a′.

Theorem A.9 (Theorem 4.7). Let Assumptions A.1, A.2, A.5, A.7 and A.8 hold. Then for every t ∈ N,

E[‖h(θτ)‖2] ≤
2(d0,t + c0,t + (4α̃3 + cγ)

∑t
s=0 γ

2
s+1)∑t

s=0 γs+1

,

where τ ∼ cat((γs+1)ts=0), α̃ is defined in Proposition A.6 and

d0,t := E[V (θt+1)− V (θ0)], cγ := α̃2(2 + α̃), c0,t := α̃(γ1 − γt+1 + 2).

Proof. The proof follows directly from Karimi et al. (2019, Theorem 2), with V , Hθ and h being multiplied by −1 as
we deal with a maximization problem. We notice that (Karimi et al., 2019, Assumptions A1–A3) are satisfied by our
Assumption A.7, with c0 = d0 = 0 and c1 = d1 = 1, and by Proposition A.6, letting L = α̃. Moreover, (Karimi et al.,
2019, Assumptions A5–A7) are satisfied by Proposition A.6, letting L(0)

PH = L
(1)
PH = σ = α̃.

Corollary A.10 (Corollary 4.8). Let the assumptions of Theorem A.9 hold and let the step-size sequence (γt)t∈N be given
by γt = 1/(

√
t(2α̃+ 2ch)), where α̃ and ch are provided in Assumption A.8. Then for every t ∈ N>0,

E[‖h(θτ)‖2] = O
(

log t√
t

)
,

where τ ∼ cat((γs+1)ts=0).

Proof. Noticing that Assumption A.8 is satisfied with a = 2 and a′ = 2(α̃ + ch), the result is a direct implication of
Theorem A.9.

A.4. Auxiliary results

In this section we establish Proposition A.6. The proof is prefaced by two lemmas.

Lemma A.11. Let Assumptions A.2 and A.5 hold. Then there exists κ̃ ∈ [1,∞) such that for all (θ, θ′) ∈ Θ2, (x, x′) ∈ X2,
y ∈ Y and v ∈ E,

‖∇wθ(x, fθ(x, y, v), y)‖ ≤ κ̃

and

max{|wθ(x, x′, y)− wθ′(x, x′, y)| , |wθ(x, fθ(x, y, v), y)− wθ′(x, fθ′(x, y, v), y)| ,
‖∇wθ(x, fθ(x, y, v), y)−∇wθ′(x, fθ′(x, y, v), y)‖} ≤ κ̃‖θ − θ′‖.

16

Online Variational Sequential Monte Carlo

Proof. First, write

∇wθ(x, fθ(x, y, v), y) =
1

rθ(x, fθ(x, y, v), y)

(
gθ(fθ(x, y, v), y)∇mθ(x, fθ(x, y, v))

+mθ(x, fθ(x, y, v))∇gθ(fθ(x, y, v), y)

− wθ(x, fθ(x, y, v), y)∇rθ(x, fθ(x, y, v), y)
)
,

implying, from Assumptions A.2 and A.5,

‖∇wθ(x, fθ(x, y, v), y)‖ ≤ 1

ε2
(‖∇mθ(x, fθ(x, y, v))‖+ ‖∇gθ(fθ(x, y, v), y)‖) +

1

ε4
‖∇rθ(x, fθ(x, y, v), y)‖

=
κ(2ε2 + 1)

ε4
.

In order to show that wθ is Lipschitz, we apply Assumptions A.2 and A.5 according to

|wθ(x, x′, y)− wθ′(x, x′, y)| ≤ mθ(x, x
′) |gθ(x′, y)− gθ′(x′, y)|+ gθ′(x

′, y) |mθ(x, x
′)−mθ′(x, x

′)|
rθ(x, x′, y)

+mθ′(x, x
′)gθ′(x

′, y)
|rθ′(x, x′, y)− rθ(x, x′, y)|
rθ(x, x′, y)rθ′(x, x′, y)

≤ κ(2ε2 + 1)

ε4
‖θ − θ′‖.

Proceeding similarly, we obtain

|wθ(x, fθ(x, y, v), y)− wθ′(x, fθ′(x, y, v), y)| ≤ (2ε2 + 1)κ

ε4
‖θ − θ′‖. (9)

Moreover, in order to show that also the gradient∇wθ is Lipschitz, consider the decomposition

‖∇wθ(x, fθ(x, y, v), y)−∇wθ′(x, fθ′(x, y, v), y)‖

≤
∥∥∥∥gθ(fθ(x, y, v), y)∇mθ(x, fθ(x, y, v))

rθ(x, fθ(x, y, v), y)
− gθ′(fθ′(x, y, v), y)∇mθ′(x, fθ′(x, y, v))

rθ′(x, fθ′(x, y, v), y)

∥∥∥∥
+

∥∥∥∥mθ(x, fθ(x, y, v))∇gθ(fθ(x, y, v), y)

rθ(x, fθ(x, y, v), y)
− mθ′(x, fθ′(x, y, v))∇gθ′(fθ′(x, y, v), y)

rθ′(x, fθ′(x, y, v), y)

∥∥∥∥
+

∥∥∥∥wθ′(x, fθ′(x, y, v), y)∇rθ′(x, fθ′(x, y, v), y)

rθ′(x, fθ′(x, y, v), y)
− wθ(x, fθ(x, y, v), y)∇rθ(x, fθ(x, y, v), y)

rθ(x, fθ(x, y, v), y)

∥∥∥∥ , (10)

where, by Assumptions A.2 and A.5,∥∥∥∥gθ(fθ(x, y, v), y)∇mθ(x, fθ(x, y, v))

rθ(x, fθ(x, y, v), y)
− gθ′(fθ′(x, y, v), y)∇mθ′(x, fθ′(x, y, v))

rθ′(x, fθ′(x, y, v), y)

∥∥∥∥
≤gθ(fθ(x, y, v), y)‖∇mθ(x, fθ(x, y, v))−∇mθ′(x, fθ′(x, y, v))‖

rθ(x, fθ(x, y, v), y)

+
‖∇mθ′(x, fθ′(x, y, v))‖ |gθ(fθ(x, y, v), y)− gθ′(fθ′(x, y, v), y)|

rθ(x, fθ(x, y, v), y)

+ ‖∇mθ′(x, fθ′(x, y, v))‖gθ′(fθ′(x, y, v), y)
|rθ′(x, fθ′(x, y, v), y)− rθ(x, fθ(x, y, v), y)|
rθ(x, fθ(x, y, v), y)rθ′(x, fθ′(x, y, v), y)

≤ κ
ε3

(ε+ ε2κ+ κ)‖θ − θ′‖.

Using (9), the other terms of (10) may be treated similarly, yielding

‖∇wθ(x, fθ(x, y, v), y)−∇wθ′(x, fθ′(x, y, v), y)‖

≤
(

2κ

ε3
(ε+ ε2κ+ κ) +

κ

ε5
(ε+ 2ε2κ+ 2κ)

)
‖θ − θ′‖

= (ε+ 2ε3 + 2κ+ 2ε4κ+ 4ε2κ)
κ

ε5
‖θ − θ′‖.

17

Online Variational Sequential Monte Carlo

The proof is the concluded by letting

κ̃ := max

{
(2ε2 + 1)κ

ε4
, (ε+ 2ε3 + 2κ+ 2ε4κ+ 4ε2κ)

κ

ε5

}
= (ε+ 2ε3 + 2κ+ 2ε4κ+ 4ε2κ)

κ

ε5
.

Our second prefatory lemma establishes Lipschitz continuity and exponential contraction of the Markov dynamics underlying
the state-dependent process (Zt)t∈N. Recall that under Assumptions A.1 and A.2, Proposition A.4 provides the existence of
a unique stationary distribution τθ of the canonical Markov chain (Zθt)t∈N induced by Tθ. We may then define, for t ∈ N>0,

T̃ tθ : Z×Z 3 (z,A) 7→ T tθ(z,A)− τθ(A),

where T tθ is the t-skeleton defined recursively as T 1
θ = Tθ and T s+1

θ (z,A) =
∫
T sθ (z, dz′)Tθ(z

′, A) for (z,A) ∈ Z× Z .
By convention, we let T 0

θ (z,A) := δz(A).
Lemma A.12. Let Assumptions A.2 and A.5 hold. Then there exists a constant ς ∈ [1,∞) (possibly depending on N) such
that for every (θ, θ′) ∈ Θ2, z ∈ Z, bounded measurable function h on Z and t ∈ N,

(i) |T̃ tθh(z)| ≤ %t‖h‖∞,

(ii) |T̃ tθh(z)− T̃ tθ′h(z)| ≤ ς%t/2‖h‖∞‖θ − θ′‖,

(iii) max{|τθh− τθ′h| , |Tθh(z)− Tθ′h(z)|} ≤ ς‖h‖∞‖θ − θ′‖,

where % = 1− ε7N+1.

Proof. The first bound (i) follows by Proposition A.4, establishing that Tθ allows Z as a ν1-small set, with ν1 being defined
in (8). Then by Meyn & Tweedie (2009, Theorem 16.2.4) it holds that for all z ∈ Z and bounded measurable functions h on
Z,

|T̃ tθh(z)| = |T tθh(z)− τθh| ≤ %t‖h‖∞,
where % := 1− ν1(Z) = 1− ε7N+1.

We turn to (ii) and (iii) and introduce the short-hand notations

akθ := rθ(x̃
k
t−1, x

k
t , yt),

βNθ :=

(
N∑
i=1

wθ(x̃
i
t−1, x

i
t, yt)∑N

`=1 wθ(x̃
`
t−1, x

`
t, yt)

δxit

)�N

,

which depend implicitly on x̃1:Nt−1 and x1:Nt . We may then write, for given zt ∈ Z and bounded measurable function h on Z,

|Tθh(zt)− Tθ′h(zt)| ≤
∫
· · ·
∫
h(xt+1, yt+1, x̃

1:N
t , v1:Nt+1)m̄(xt, xt+1)ḡ(xt+1, yt+1)µ(dxt+1) η(dyt+1)

×
∫
x1:N
t

∣∣∣∣∣βNθ
N∏
k=1

akθ − βNθ′
N∏
k=1

akθ′

∣∣∣∣∣ (dx̃1:Nt)µ�N (dx1:Nt) ν�N (dv1:Nt+1). (11)

Here the total variation measure inside the integral can be bounded according to∣∣∣∣∣βNθ
N∏
k=1

akθ − βNθ′
N∏
k=1

akθ′

∣∣∣∣∣ ≤ ∣∣βNθ − βNθ′ ∣∣
N∏
k=1

akθ +

∣∣∣∣∣
N∏
k=1

akθ −
N∏
k=1

akθ′

∣∣∣∣∣βNθ′
≤ 1

εN
∣∣βNθ − βNθ′ ∣∣+

 N∑
i′=1

∣∣ai′θ − ai′θ′ ∣∣ i′−1∏
k=1

akθ

N∏
k=i′+1

akθ′

βNθ′

≤ 1

εN
∣∣βNθ − βNθ′ ∣∣+

1

εN−1

N∑
k=1

∣∣akθ − akθ′ ∣∣βNθ′ , (12)

18

Online Variational Sequential Monte Carlo

where we have applied Assumption A.2. To bound the second term in (12), we first note that by Assumption A.5,

N∑
k=1

∣∣akθ − akθ′ ∣∣ ≤ Nκ‖θ − θ′‖. (13)

Moreover, by rewriting the measure βNθ as

βNθ =

(
N∑
i=1

wθ(x̃
i
t−1, x

i
t, yt)∑N

`=1 wθ(x̃
`
t−1, x

`
t, yt)

δxit

)�N

=
∑

i1:N∈{1,...,N}N
w̄i1:Nθ δ

x
i1:N
t

,

where we have defined w̄i1:Nθ :=
∏N
j=1(wθ(x̃

ij
t−1, x

ij
t , yt)/

∑N
`=1 wθ(x̃

`
t−1, x

`
t, yt)), we may bound the same as βNθ ≤

µ({x1t , . . . , xNt }N)/ε6N , where we have defined the occupation measure

µ({x1t , . . . , xNt }N) :=
1

NN

∑
i1:N∈{1,...,N}N

δ
x
i1:N
t

.

Consequently, by combining this with (13) we obtain the bound

1

εN−1

N∑
k=1

∣∣akθ − akθ′ ∣∣βNθ′ ≤ κN

ε7N−1
‖θ − θ′‖µ({x1t , . . . , xNt }N). (14)

on the second term in (12). We now bound the first term in (12). For this purpose, write∣∣βNθ − βNθ′ ∣∣ =
∑

i1:N∈{1,...,N}N

∣∣w̄i1:Nθ − w̄i1:Nθ′

∣∣ δ
x
i1:N
t

, (15)

where, by Lemma A.11,

∣∣w̄i1:Nθ − w̄i1:Nθ′

∣∣ =

∣∣∣∣∣∣
N∏
j=1

wθ(x̃
ij
t−1, x

ij
t , yt)∑N

`=1 wθ(x̃
`
t−1, x

`
t, yt)

−
N∏
j=1

wθ′(x̃
ij
t−1, x

ij
t , yt)∑N

`=1 wθ′(x̃
`
t−1, x

`
t, yt)

∣∣∣∣∣∣
≤

N∑
j=1

 j−1∏
j′=1

wθ(x̃
ij′
t−1, x

ij′
t , yt)∑N

`=1 wθ(x̃
`
t−1, x

`
t, yt)

N∏
j′=j+1

wθ′(x̃
ij′
t−1, x

ij′
t , yt)∑N

`=1 wθ′(x̃
`
t−1, x

`
t, yt)

×

∣∣∣∣∣ wθ(x̃
ij
t−1, x

ij
t , yt)∑N

`=1 wθ(x̃
`
t−1, x

`
t, yt)

−
wθ′(x̃

ij
t−1, x

ij
t , yt)∑N

`=1 wθ′(x̃
`
t−1, x

`
t, yt)

∣∣∣∣∣


≤ 1

(ε6N)N−1

N∑
j=1

(
|wθ(x̃

ij
t−1, x

ij
t , yt)− wθ′(x̃

ij
t−1, x

ij
t , yt)|∑N

`=1 wθ(x̃
`
t−1, x

`
t, yt)

+wθ′(x̃
ij
t−1, x

ij
t , yt)

∑N
`=1

∣∣wθ′(x̃`t−1, x`t, yt)− wθ(x̃`t−1, x`t, yt)∣∣∑N
`′=1 wθ(x̃

`′
t−1, x

`′
t , yt)

∑N
`′′=1 wθ′(x̃

`′′
t−1, x

`′′
t , yt)

)

≤ 1

(ε6N)N−1

N∑
j=1

(
κ̃

Nε3
‖θ − θ′‖+

κ̃

Nε9
‖θ − θ′‖

)

=
κ̃N

NN ε6N−3

(
1 +

1

ε6

)
‖θ − θ′‖,

implying, via, (15), that the first term in (12) can be bounded as

1

εN
∣∣βNθ − βNθ′ ∣∣ ≤ κ̃N

ε7N−3

(
1 +

1

ε6

)
‖θ − θ′‖µ({x1t , . . . , xNt }N). (16)

19

Online Variational Sequential Monte Carlo

Thus, combining (12), (14) and (16) yields∣∣∣∣∣βNθ
N∏
k=1

akθ − βNθ′
N∏
k=1

akθ′

∣∣∣∣∣ ≤ (ε6κ̃+ κ̃+ ε4κ)
N

ε7N+3
‖θ − θ′‖µ({x1t , . . . , xNt }N). (17)

Now, by plugging the bound (17) into (11) we obtain

|Tθh(zt)− Tθ′h(zt)| ≤ ‖h‖∞
∫
· · ·
∫
m̄(xt, xt+1)ḡ(xt+1, yt+1)µ(dxt+1) η(dyt+1)

× (ε6κ̃+ κ̃+ ε4κ)
N

ε7N+3
‖θ − θ′‖

∫
x1:N
t

µ({x1t , . . . , xNt }N)(dx̃1:Nt)µ�N (dx1:Nt) ν�N (dv1:Nt+1)

= (ε6κ̃+ κ̃+ ε4κ)
N

ε7N+3
‖h‖∞‖θ − θ′‖. (18)

Now, using the decomposition, for t ∈ N>0,

T t+1
θ − T t+1

θ′ =

t∑
s=0

(
T t−sθ′ T s+1

θ − T t−s+1
θ′ T sθ

)
=

t∑
s=0

(
T t−sθ′ TθT̃

s
θ − T t−sθ′ Tθ′ T̃

s
θ

)
=

t∑
s=0

T t−sθ′ (Tθ − Tθ′)T̃ sθ

we obtain, using (18) and (i), the bound

∣∣T t+1
θ h(z)− T t+1

θ′ h(z)
∣∣ ≤ t∑

s=0

∫
T t−sθ′ (z, dz′)|TθT̃ sθ h(z′)− Tθ′ T̃ sθ h(z′)|

≤ (ε6κ̃+ κ̃+ ε4κ)
N

ε7N+3
‖h‖∞‖θ − θ′‖

t∑
s=0

%s

≤ (ε6κ̃+ κ̃+ ε4κ)
N

ε7N+3(1− %)
‖h‖∞‖θ − θ′‖.

Similarly,

|T̃ t+1
θ h(z)− T̃ t+1

θ′ h(z)| =

∣∣∣∣∣
t∑

s=0

∫∫
T̃ sθ h(z′′)(Tθ − Tθ′)(z′, dz′′)T̃ t−sθ′ (z, dz′)

∣∣∣∣∣
≤

t∑
s=0

∣∣∣∣ ∫ T̃ t−sθ′ (z, dz′)(TθT̃
s
θ h(z′)− Tθ′ T̃ sθ h(z′))

∣∣∣∣
≤ (ε6κ̃+ κ̃+ ε4κ)

N

ε7N+3
‖θ − θ′‖

t∑
s=0

%t−s‖T̃ sθ′h(·)‖∞

≤ (ε6κ̃+ κ̃+ ε4κ)
N

ε7N+3
(t+ 1)%t‖h‖∞‖θ − θ′‖.

Finally, we can write, for arbitrary t ∈ N>0 and z ∈ Z,

|τθh− τθ′h| ≤ |T tθh(z)− T tθ′h(z)|+ |T̃ tθh(z)|+ |T̃ tθ′h(z)|

≤ (ε6κ̃+ κ̃+ ε4κ)
N

ε7N+3(1− %)
‖h‖∞‖θ − θ′‖+ 2%t‖h‖∞,

implying that

|τθh− τθ′h| ≤ (ε6κ̃+ κ̃+ ε4κ)
N

ε7N+3(1− %)
‖h‖∞‖θ − θ′‖.

The proof of (ii) and (iii) is now concluded by simply noting that

|T̃ tθh(z)− T̃ tθ′h(z)| ≤ (ε6κ̃+ κ̃+ ε4κ)
N

ε7N+3
t%t/2−1%t/2‖h‖∞‖θ − θ′‖,

20

Online Variational Sequential Monte Carlo

and letting

ς := (ε6κ̃+ κ̃+ ε4κ)
N

ε7N+3
max

{
sup
t∈N

t%t/2−1,
1

1− %

}
.

We are now ready to prove Proposition A.6.

Proof of Proposition A.6. Using Assumptions A.2 and A.5 and Lemma A.11 we conclude that for all (θ, θ′) ∈ Θ2 and
z ∈ Z,

‖Hθ(z)‖ ≤
∑N
i=1‖∇wθ(x̃i, fθ(x̃i, y, vi), y)‖∑N
`=1 wθ(x̃

`, fθ(x̃`, y, v`), y)
≤ κ̃

ε3
, (19)

from which (i) immediately follows.

We turn to (ii). Using Lemma A.12(i) and (19), for every t ∈ N and z ∈ Z,

‖Eθ[Hθ(Z
θ
t) | Zθ0 = z]− h(θ)‖ = ‖T tθHθ(z)− h(θ)‖ = ‖T̃ tθHθ(z)‖ ≤

κ̃

ε3
%t.

Thus, for every θ ∈ Θ,

0 ≤ lim inf
t→∞

‖Eθ[Hθ(Z
θ
t)]− h(θ)‖ ≤ lim sup

t→∞
‖Eθ[Hθ(Z

θ
t)]− h(θ)‖

= lim sup
t→∞

‖Eθ[Eθ[Hθ(Z
θ
t) | Zθ0]− h(θ)]‖ ≤ lim sup

t→∞

κ̃

ε3
%t = 0,

which proves (ii).

In order to establish (iii), let

H̃θ(z) :=

∞∑
s=0

(T sθHθ(z)− h(θ)), z ∈ Z.

Indeed, again by Lemma A.12(i), for every z ∈ Z,

‖H̃θ(z)‖ ≤
∞∑
s=0

‖T sθHθ(z)− h(θ)‖ ≤ κ̃

ε3

∞∑
s=0

%s =
κ̃

ε3(1− %)
.

which implies that H̃θ and TθH̃θ are well defined and bounded. Moreover, by the dominated convergence theorem, for
every z ∈ Z,

TθH̃θ(z) =

∞∑
s=1

(T sθHθ(z)− h(θ)),

implying (iii).

To prove (iv), write, using Lemma A.11,

‖Hθ(z)−Hθ′(z)‖ ≤
∑N
i=1‖∇wθ(x̃i, fθ(x̃i, y, vi), y)−∇wθ′(x̃i, fθ′(x̃i, y, vi), y)‖∑N

`=1 wθ(x̃
`, fθ(x̃`, y, v`), y)

+
‖Hθ′(z)‖

∑N
i=1

∣∣wθ(x̃i, fθ(x̃i, y, vi), y)− wθ′(x̃i, fθ′(x̃i, y, vi), y)
∣∣∑N

`=1 wθ(x̃
`, fθ(x̃`, y, v`), y)

≤
(
κ̃

ε3
+
κ̃2

ε6

)
‖θ − θ′‖, (20)

21

Online Variational Sequential Monte Carlo

and by (20) and Lemma A.12 it holds that for every z ∈ Z,

‖T̃ tθHθ(z)− T̃ tθ′Hθ′(z)‖ ≤ ‖T̃ tθHθ(z
′)− T̃ tθHθ′(z

′)‖ − ‖T̃ tθHθ′(z)− T̃ tθ′Hθ′(z)‖

≤
(
κ̃

ε3
+
κ̃2

ε6

)
%t‖θ − θ′‖+

κ̃

ε3
ς%t/2‖θ − θ′‖

≤ 2

(
κ̃

ε3
+
κ̃2

ε6

)
ς%t/2‖θ − θ′‖.

Thus, we may write

‖TθH̃θ(z)− Tθ′H̃θ′(z)‖ =

∥∥∥∥∥
∞∑
s=1

(T sθHθ(z)− h(θ))−
∞∑
s=1

(T sθ′Hθ′(z)− h(θ′))

∥∥∥∥∥
≤
∞∑
s=0

‖T̃ sθHθ(z)− T̃ sθ′Hθ′(z)‖

≤
(
κ̃

ε3
+
κ̃2

ε6

)
2ς

1−√%
‖θ − θ′‖.

Finally, by Lemma A.12 and (20) again, we have

‖h(θ)− h(θ′)‖ ≤
∫
‖Hθ(z)−Hθ′(z)‖ τθ(dz) + ‖τθHθ′ − τθ′Hθ′‖ ≤

(
κ̃

ε3
+
κ̃2

ε6

)
(1 + ς)‖θ − θ′‖,

which allows us, by letting

α̃ :=

(
κ̃

ε3
+
κ̃2

ε6

)
2ς

1−√%
,

to conclude the proof of (iv).

B. ESS improvement for the model in Section 5.1
Figure 8 shows how the effective sample size (ESS, Liu, 1996) of the particle cloud improves in a single run of OVSMC
while rλ is being learned in univariate linear Gaussian model of Section 5.1, to finally reach the performance of the optimal
proposal. This is evident for Sv = 0.2; on the other hand, when Sv = 1.2, the particles are well propagated into regions of
non-negligible likelihood even with the bootstrap proposal, resulting in the normalized ESS being close to one regardless.

0 20000 40000
Time iterations t

0.00

0.25

0.50

0.75

1.00

ES
S

0 20000 40000
Time iterations t

0.00

0.25

0.50

0.75

1.00

ES
S

Locally optimal proposal
Learned proposals
Bootstrap proposal

Figure 8: Evolution of (every 100th) normalized ESS for the one-dimensional linear Gaussian SSM in Section 5.1, for
Sv = 0.2 (left) and Sv = 1.2 (right).

22

Online Variational Sequential Monte Carlo

C. Details on the deep generative model of Section 5.3
In this section we provide more details on the model presented in Section 5.3.

C.1. Data generation

First, we describe how the frames of the video are generated. The movement can shortly be described as a partially observed
Gaussian random walk confined to a rectangle. More specifically, the agent moves on the rectangle [0, 1] × [0, 5] ⊂ R2,
starting from a uniformly sampled point on [0, 1] × {5}. It then moves according to a bivariate Gaussian random walk
with covariance matrix 0.004I and vertical drift being initially −0.15 and changing sign every time that either bottom or
top edges are hit. In practice, the agent bounces every time it hits any edge. Then each frame is created by projecting
the rectangle into a 32× 32 array and giving the agent an approximately round shape by overlapping, as a plus sign, two
3 × 5 rectangles, one vertical and one horizontal. In the created arrays, the background has value zero, while the pixels
representing the agent are equal to one. All the frames have an horizontal 16× 30 rectangle in the center, which (partially)
occludes the view of the agent every time it (partially) falls in that area. This area is represented by 0.5-valued pixels.

C.2. Model architecture

Inspired by Le et al. (2018, Section C.1), the model is constructed on the basis of the variational recurrent neural
networks (VRNN, Chung et al., 2015) framework. More precisely, the generative model is represented by the process
(Xt+1, Ht, Yt+1)t∈N>0

, with joint density

p(x1:T , h0:T , y1:T) = p0(h0)

T−1∏
t=0

mθ(xt+1 | ht)gθ(yt+1 | ht, xt+1)pλ,θ(ht+1 | ht, xt+1, yt+1),

where T is a fixed time horizon, y1:T represent the frames of the video, x1:T some lower-dimensional latent states and h0:T
are the so-called hidden states of the gated recurrent unit (GRU), which is the specific recurrent neural network (RNN) used
within the whole architecture. The initial and transition distributions of the generative model are

H0 ∼ N(0, I),

Xt+1 | Ht = ht ∼ N(µxθ (ht), σ
x
θ (ht)

2),

Yt+1 | Ht = ht, Xt+1 = xt+1 ∼ Bernoulli(µyθ(ϕxθ (xt+1), ht)),

Ht+1 | Ht = ht, Xt+1 = xt+1, Yt+1 = yt+1 ∼ δGRUλ(ht,ϕxθ (xt+1),ϕ
y
λ(yt+1)),

for t ∈ N, while the proposal rλ(xt+1 | yt+1, ht) is given by

Xt+1 | Yt+1 = yt+1, Ht = ht ∼ N(µpλ(ϕyλ(yt+1), ht), σ
p
λ(ϕyλ(yt+1), ht)

2).

More in detail, the model comprises the following neural networks.

• µxθ and σxθ have two dense layers, the second one being the output, with each 128 nodes, corresponding then to the
size of the latent states, whose first layer is shared. The activations of the first layers are ReLU functions, while the
activations of the output layer are linear and softplus, respectively.

• ϕxθ is a single dense output layer with 128 nodes and the ReLU activation function.

• ϕyλ is the encoder of the frames and is represented by a sequential architecture with four convolutional layers, all with
4× 4 filters, stride two and padding one, except the last one which has stride one and zero padding; the numbers of
filters are, in order, 32, 128, 64 and 32. The activation functions of the convolutions are leaky ReLUs with slope 0.2
and we add batch normalization layers after each of them (except the last one which simply has linear activation). In
the end the output is flattened to obtain a tensor in R32.

• µyθ is the decoder, which is modeled by a sequential architecture with transposed convolutions. In particular, the first
layer has 128 4 × 4 filters with stride one and zero padding. Then we have two layers with 64 and 32 4 × 4 filters,
respectively, while the last one has a single 4× 4 filter; all these have stride two and padding one. We use again leaky
ReLUs as activations with slope 0.2 and batch normalization layers. The activation function of the output layer is
instead a sigmoid, in order to obtain an output in (0, 1)32×32.

23

Online Variational Sequential Monte Carlo

• GRUλ is a gated recurrent unit RNN, which takes as input the concatenated outputs of ϕxθ and ϕyλ to produce
deterministically the next hidden state ht+1 of the RNN. Here GRUλ takes ht as an additional input to model the
recurrence, but in practice, during training we need to input a time series of (functions of) latent states and frames.
Since we deal with streaming data, it would be infeasible to input the whole history at every iteration, and we hence
include only the 40 most recent latent states and frames when learning the GRUλ.

• µpλ and σpλ have three dense layers of size 128 including the output and share the first two layers, with ReLUs activations
except the last layers, which has linear and softplus functions, respectively.

We note that the subscripts to the neural networks defined above indicate which optimizer—the one for the generative
model or the one for the proposal—that is used. Even if the GRU is supposed to be part of the generative model, we
noticed a learning improvement by considering it part of the proposal, motivated by the fact that it is the first (deterministic)
sampling operation in the propagation of the particles. In order to describe more clearly our procedure, we have displayed
its pseudocode in Algorithm 4. In our notation, (ξx,it−39:t)

N
i=1 are the particles representing the latent states of the process,

while (ξh,it−40:t−1)Ni=1 refer to the hidden states of the GRU. Note that for most of the variables involved, direct dependencies
on the parameters are omitted for a less cumbersome notation. We remark that for iterations t < 40, the starting time of the
vectors of particles must be considered one for x and zero for h.

Algorithm 4 OVSMC for deep generative model of moving agent of Section 5.3.

1: Input: (ξx,it−39:t, ξ
h,i
t−40:t−1, ω

i
t)
N
i=1, yt−39:t+1, θt, λt

2: for i← 1, . . . , L do
3: draw Iit+1 ∼ cat((ω`t)

N
`=1);

4: set ξh,it−39:t ← GRUλt(initial state = ξ
h,Iit+1

t−40 , ϕxθt(ξ
x,Iit+1

t−39:t), ϕ
y
λt

(yt−39:t));
5: draw εit+1 ∼ N(0, I128);
6: set ξx,it+1 ← µxλt(ϕ

y
λt

(yt+1), ξh,it) + σxλt(ϕ
y
λt

(yt+1), ξh,it)εit+1;

7: set ωit+1(λt, θt)←
mθt(ξ

x,i
t+1 | ξ

h,i
t)gθt(yt+1 | ξh,it , ξx,it+1)

rλt(ξ
x,i
t+1 | yt+1, ξ

h,i
t)

;

8: end for
9: set λt+1 ← λt + γλt+1∇λ log

(∑N
i=1 ω

i
t+1(λt, θt)

)
;

10: for i← 1, . . . , N do
11: draw Iit+1 ∼ cat((ω`t)

N
`=1);

12: set ξh,it−39:t ← GRUλt+1
(initial state = ξ

h,Iit+1

t−40 , ϕxθt(ξ
x,Iit+1

t−39:t), ϕ
y
λt+1

(yt−39:t));
13: draw εit+1 ∼ N(0, I128);
14: set ξx,it+1 ← µxλt+1

(ϕyλt+1
(yt+1), ξh,it) + σxλt+1

(ϕyλt+1
(yt+1), ξh,it)εit+1;

15: set ωit+1(λt+1, θt)←
mθt(ξ

x,i
t+1 | ξ

h,i
t)gθt(yt+1 | ξh,it , ξx,it+1)

rλt+1(ξx,it+1 | yt+1, ξ
h,i
t)

;

16: set ξx,it−38:t+1 ← (ξ
x,Iit+1

t−38:t, ξ
x,i
t+1);

17: end for
18: set θt+1 ← θt + γθt+1∇θ log

(∑N
i=1 ω

i
t+1(λt+1, θt)

)
;

19: return (ξx,it−38:t+1, ξ
h,i
t−39:t, ω

i
t+1)Ni=1, θt+1, λt+1.

24

