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Abstract

Understanding how the human brain represents visual objects is a fundamental
challenge that can be addressed by aligning brain activity recordings in the form
of electroencephalography (EEG) recordings with features from computer vision
models. However, prior work has predominantly relied on custom EEG encoders
trained on limited, task-specific data, which restricts their ability to learn generaliz-
able, brain-like representations. In this work, we propose an alternative approach,
moving from task-specific encoders to a representation-first approach. We lever-
age a large-scale pretrained EEG foundation model, CBraMod, to provide a rich
and robust foundation for learning brain-aligned representations. We introduce
BrainAlign, a contrastive learning framework that uses a brain-inspired projection
network to align EEG representations with those from various image encoders
(ResNet50, CORNet-S, and CLIP). To evaluate the quality of these aligned rep-
resentations, we test our framework on the challenging 200-way zero-shot visual
object classification task. Using a CORNet-S image encoder, BrainAlign achieves
a top-1 accuracy of 14.2%, exceeding the NICE framework’s baseline and perform-
ing comparably to state-of-the-art methods that use only vision and EEG modalities.
Furthermore, our framework demonstrates significant computational efficiency,
reducing the required training epochs by 70% compared to training from scratch.
Moreover, analysis of the learned representational geometry reveals a structure
consistent with established phenomena of the human visual system. Collectively,
these results in performance, computational efficiency, and biological plausibility
validate our representation-first approach, highlighting the potential of foundation
models to bridge the gap between neural and artificial representations.

1 Introduction

Aligning neural activity with representations from computational models is a fundamental approach
to understanding the principles of brain function. This endeavor not only advances our basic scientific
knowledge but also holds immense potential for transformative applications, particularly in developing
next-generation Brain-Computer Interfaces (BCls) for clinical and consumer use[24, [15]. Among
non-invasive neuroimaging methods, electroencephalography (EEG) is a promising modality due to
several key advantages. Its high temporal resolution captures neural dynamics at the millisecond scale,
aligning with the rapid nature of visual processing, while its portability and low cost make it ideal
for practical, real-world applications outside of laboratory settings[24} 25]. In contrast, modalities
such as fMRI, despite offering superior spatial resolution, are limited by poor temporal dynamics and
expensive, cumbersome hardware[22]].
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Historically, the utility of EEG for decoding was hindered by low signal-to-noise ratios and flawed
paradigms like block-design experiments, which introduced temporal confounds|24, 27]]. The field
has since shifted toward more robust methodologies, with the Rapid Serial Visual Presentation
(RSVP) paradigm and large-scale datasets like THINGS-EEG2 enabling the study of neural responses
to thousands of natural images[6]]. This evolution led to self-supervised contrastive learning emerging
as the dominant approach for aligning the high-dimensional space of EEG signals with rich visual
representations[24]. However, a critical limitation pervades these modern methods: they almost
exclusively rely on custom EEG encoders trained from scratch on a single alignment task. This
methodology is fundamentally constrained, as an encoder optimized solely for one task is unlikely
to learn the generalizable, brain-like neural codes that capture the full richness of brain activity. To
overcome this, we propose an alternative "representation-first" approach that leverages the power
of EEG foundation models[2]. These models, pre-trained on massive and diverse neural datasets,
learn universal and robust representations that serve as a superior starting point. By fine-tuning from
this rich representational base, we can learn alignments that are more data-efficient, performant, and,
crucially, more likely to be biologically plausible[8), 126].

To rigorously evaluate the quality of the learned representations, we utilize the 200-way zero-shot
visual object classification task. This task serves as a challenging benchmark for two reasons: First,
its zero-shot nature directly tests the model’s ability to generalize to unseen semantic concepts, a key
indicator of a robustly learned representation space. Second, it is an established evaluation paradigm
within the BCI and neuro-Al communities[3, [23| 24]], allowing for direct comparison with prior
state-of-the-art methods. Success on this task, therefore, is not an end in itself, but a strong proxy for
the quality and generalizability of the underlying brain-visual alignment.

To implement this representation-first approach, we introduce BrainAlign, a framework designed for
the symmetric and interpretable alignment of EEG and visual representations. While leveraging a
foundation model addresses the primary challenge of learning robust neural codes, our framework is
also designed to investigate several other critical gaps in existing research. First, unlike architecturally
asymmetric models, BrainAlign is designed to be bi-directional, capturing the reciprocal nature
of information processing in the brain[28, [18]. Second, we move beyond "black box" models by
incorporating methods that enhance mechanistic interpretability, allowing us to use the model as
a scientific instrument. Finally, we address the open question of which visual feature space best
aligns with EEG signals. By systematically comparing a purely hierarchical model (ResNet[7]), a
brain-inspired recurrent model (CORNet-S[13]]), and a vision-language model (CLIP[16]), we can
probe the nature of the optimal visual-neural alignment.

This paper introduces a framework for visual object classification from EEG that directly addresses
the aforementioned gaps. Our contributions can be summarized as follows:

* We introduce BrainAlign, a framework that operationalizes a representation-first approach
by leveraging a state-of-the-art EEG foundation model (CBraMod[26]) to learn robust and
generalizable neural representations for alignment with visual features.

* We systematically investigate the nature of visual-neural alignment by contrastively aligning
these powerful EEG representations with three distinct and neuroscientifically motivated
visual backbones: a purely visual hierarchical model (ResNet50)[7]], a brain-inspired recur-
rent model (CORNet-S)[[13]], and a vision-language model (CLIP)[[19]]. This comparative
analysis allows for an examination of the resulting representational geometry.

* We demonstrate the bi-directional symmetry of the shared representation space learned
via contrastive alignment. This provides the basis for future work on encoding stimuli
into brain-like representations, thus allowing the investigation of various neuro-scientific
hypotheses.

* We assess the framework’s interpretability by visualizing learned importance weights corre-
sponding to distinct brain regions within the ventral visual pathway.

* We analyze the quality of the shared representation space through its intrinsic information
content and its performance on downstream tasks.



2 Related work

Aligning neural and computational models. The effort to map visual representations in the brain
has progressed from early fMRI studies, which established that object categories could be decoded
from cortical activity[24], to modern electrophysiological methods like EEG. The high temporal
resolution of EEG is better suited to capture the rapid dynamics of visual perception[2]. A significant
methodological advance was the adoption of the Rapid Serial Visual Presentation (RSVP) paradigm,
which, combined with large-scale datasets, enabled the field to move beyond simple classification
to ambitious zero-shot decoding tasks using deep learning[6} |9]. This research now largely falls
under the broader goal of integrative benchmarking, where computational models are quantitatively
evaluated on their ability to predict neural and behavioral data, a practice formalized by platforms
like Brain-Score[21]].

Contrastive learning for EEG-vision alignment. The current state-of-the-art for aligning EEG
signals with visual features is self-supervised contrastive learning[14f]. The pioneering NICE frame-
work demonstrated that a contrastive loss could effectively map EEG and image embeddings (e.g.,
from CLIP) into a shared space for zero-shot recognition[23]. While language-guided extensions like
NICE++ have shown performance gains by using textual descriptions to refine the alignment[24],
they do so by introducing a third modality (language). As our work is focused on the fundamental
principles of direct EEG-vision alignment, we compare against uni-modal visual encoders. Subse-
quent work has introduced sophisticated refinements to address challenges such as the “modality gap”.
For instance, BraVL uses a multimodal VAE to learn a unified latent space[S]], VE-SDN introduces a
semantic decoupling module to align only the shared information[3l], and others leverage guidance
from large language models to refine the alignment[24]. A common thread, however, unites these
advanced methods: they all train their EEG encoders from scratch for a specific alignment task. This
approach is fundamentally limited, as the encoders must simultaneously learn basic neural feature
extraction and high-level semantic alignment, a challenge that our work directly addresses.

EEG foundation models. These models are pre-trained on massive and diverse EEG corpora, such
as the TUH-EEG dataset[17]], to learn universal, robust, and generalizable representations of brain
activity. Architectures like BENDR[10] and LaBraM[8]] established the viability of this approach. We
employ CBraMod[26]], a state-of-the-art foundation model whose criss-cross transformer architecture
is uniquely suited to capturing the spatio-temporal dynamics of EEG. By starting with these rich,
pre-trained representations, we reframe the problem from one of end-to-end training to one of targeted
fine-tuning. This aligns with a broader movement in computational neuroscience away from purely
predictive “black box” models and toward models that are mechanistically interpretable[11]]. The
goal is to build transparent, falsifiable models of neural computation, where the internal workings can
be causally linked to behavior and brain activity. Our representation-first approach, grounded in a
powerful foundation model, is a critical step in this direction.

3 Method

The methodology of this study is designed to validate our central thesis: that leveraging a pre-
trained EEG foundation model provides a more robust and biologically plausible pathway to learning
brain-aligned representations than training task-specific encoders from scratch. To this end, we
introduce BrainAlign, a framework designed for the symmetric and interpretable alignment of
EEG and visual features. Our experimental design adheres to a subject-dependent paradigm. This
choice is rooted in the principle of biological plausibility; as each human brain possesses unique
functional characteristics, developing subject-specific models is essential for capturing genuine neural
representations, rather than learning a non-representative ‘average’ brain model. In this section, we
will detail the architecture of the BrainAlign framework (refer Figure[I)), the rationale behind its
components, and the contrastive learning procedure used for training.

3.1 BrainAlign architecture

The BrainAlign framework consists of two parallel processing streams—an EEG branch and an
image branch—that learn to project their respective outputs into a shared representation space. The
EEG branch is designed to address the fundamental limitations of conventional approaches that
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Figure 1: The BrainAlign framework for EEG foundation model-based object classification. The
framework relies on powerful pretrained EEG and image encoders, and while finetuning the EEG
encoder, trains the projection networks using contrastive learning to align the representation spaces
from both branches. Testing is done by matching EEG branch representations with pre-obtained
image branch templates for test images.

train encoders from scratch. Such methods are not only computationally expensive (e.g., up to 200
epochs|[23]]) but also risk learning brittle, task-specific representations, as they must learn low-level
features and high-level alignment simultaneously. Our framework circumvents this by utilizing
a pre-trained EEG foundation model, CBraMod[26], as the encoder. By starting with the rich,
general-purpose representations learned from diverse datasets[8, |10, [17], our model can achieve
high performance with substantially less fine-tuning. Following this encoder, we introduce a custom
projection network designed with strong neuroscientific priors of regional cortical processing. The
architecture adopts a multi-stream design that segregates channels into functionally distinct groups
(occipital, parietal, temporal, and global) and integrates them via a learnable gating mechanism,
yielding a functionally grounded and interpretable embedding. The detailed mathematical formulation
of this regional aggregation process is provided in Appendix [A]

A central scientific question of this study is what kind of computational visual feature space aligns
most effectively with neural representations. To investigate this, the image branch of our framework
is designed to be modular. We systematically compare three distinct, neuroscientifically motivated
image encoders, each representing a different hypothesis about visual processing: a hierarchical
feedforward model (ResNet50), a brain-inspired recurrent model (CORNet-S), and a multimodal
vision-language model (CLIP). This comparative experiment is therefore designed not simply to find
the best-performing model, but to use alignment performance as evidence to adjudicate between
these competing computational theories of visual representation. A detailed description of each of
these encoders is available in Appendix [A] Following the selected encoder, a simple 2-layer MLP
with GeLU activation serves as a projection network to map the image features into the shared
representation space.

3.2 Contrastive learning

The core of the training process is to align EEG and image features in a shared embedding space. This
is achieved using a symmetric contrastive loss function, similar to the one introduced in CLIP. The
symmetric nature of this loss is critical, as it encourages the learned latent space to be bi-directionally
informative. This ensures that an EEG representation can be used to identify its corresponding image
(decoding) and, equally, that an image representation can identify its EEG counterpart (encoding), a
property essential for building models that reflect the brain’s reciprocal processing pathways (refer
Appendix [A).

Given a mini-batch of N paired EEG and image samples, we first extract their respective feature
vectors, f. and f;, using the EEG and image encoders. These features are then projected into a shared
embedding space of dimension D by projection heads Pe.y and Py .

The projected features for the k-th sample are denoted as zék) = Peeg( fe(k)) and zi(k) = Pimg( fi(k)).
These features are L2-normalized:



The similarity between the j-th EEG feature vector and the k-th image feature vector in the batch
is calculated as the cosine similarity (dot product of normalized vectors), scaled by a learnable
temperature parameter 7:

Sjk =T <5§j),5¢(k)>

The objective is to maximize the similarity of corresponding pairs (where j = k) while minimizing
it for all other non-corresponding pairs within the batch. This is framed as a classification problem
using the cross-entropy loss (refer Appendix [A). The loss is calculated symmetrically for both
EEG-to-image and image-to-EEG directions.

The loss for predicting the correct image pairing for a given EEG signal is:
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Similarly, the loss for predicting the correct EEG pairing for a given image is:

N
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The final training objective is the average of these two losses:
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4 Experimental setup and results

4.1 Dataset, preprocessing, and quality analysis
4.1.1 Dataset and preprocessing

For this study, we selected the THINGS-EEG2[6] dataset due to its neuroscientific validity and high
temporal resolution. This dataset contains EEG responses from 10 subjects viewing natural images
presented using a rapid serial visual presentation (RSVP) paradigm. The RSVP protocol is designed to
elicit stimulus-specific neural responses while minimizing contributions from higher-order cognitive
processes, making the data suitable for training models on object recognition. The dataset comprises
82,160 trials across 16,740 unique image conditions, which map to 1,854 object classes. We adhere to
the original study’s split, using 1,654 classes for training and 200 classes for the zero-shot evaluation
task. For the test set, one image per class was selected for the 200-way classification task. EEG data
was recorded from 64 channels using an EASYCAP system, out of which 63 were recording channels
and one was stimulus channel.

We followed standard EEG preprocessing steps, consistent with those applied by Song et al.. The raw
data was epoched into 1000 ms trials post-stimulus onset and baseline-corrected using the mean of
the 200 ms pre-stimulus period. A bandpass filter was applied to retain frequencies between 0.1 and
100 Hz. For all analyses, the data was down-sampled from 1000 Hz to 250 Hz, and multivariate noise
normalization was performed to reduce correlated noise across channels. This frequency was chosen
in accordance with the Nyquist-Shannon sampling theorem. All trial repetitions for each image
condition were averaged to increase the signal-to-noise ratio. During training, the EEG data was
further down-sampled to 200 Hz to match the input requirements of the CBraMod foundation model.
For the image branch, we utilized pre-computed image representations from ResNet50, CORNet-S,
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Figure 2: Topographical maps of EEG responses from one subject averaged over all training image
conditions across 10 time intervals.

Table 1: A comparison of different model performances (top-1 accuracies) across 10 subjects for the
EEG-to-Image 200-way zero-shot classification task

Method S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Ave Std
BraVL[5] 6.1 4.9 5.6 5.0 4.0 6.0 6.5 8.8 4.3 7.0 5.8 1.4
NICE[23] 12.3 10.4 13.1 16.4 8.0 14.1 152 20.0 13.3 149 13.8 33
NICE-GA[23] 152 139 14.7 17.6 9.0 16.4 14.9 20.3 14.1 19.6 15.6 32
CBraMod (finetuned) + CLIP 14.5 9.5 14.0 11.5 10.0 19.0 11.5 16.5 135 17.0 13.7 3.1

CBraMod (finetuned) + ResNet-50  12.0 12.0 12.0 9.5 9.0 21.5 12.0 16.0 10.0 18.5 13.2 4.1

CBraMod (finetuned) + CORNet-S  11.5 13.0 13.5 16.0 10.0 20.5 14.5 14.0 12.5 16.5 142 29
CBraMod (frozen) + CLIP 25 5.0 7.0 75 25 6.5 5.0 7.0 45 10.0 5.7 23
CBraMod (frozen) + ResNet-50 5.0 55 6.5 4.5 6.0 9.0 5.0 10.0 2.5 6.5 6.0 22
CBraMod (frozen) + CORNet-S 4.0 6.5 7.0 55 6.0 8.5 55 7.5 2.5 9.0 6.2 2.0

and CLIP, as provided by the original dataset creators and Song et al., to facilitate faster model
training and evaluation.

4.1.2 Quality analysis

We included all 63 channels to ensure our model captures the distributed activity of the ventral
stream, extending beyond just the occipital-parietal regions. As shown in Figure[2] the spatiotemporal
dynamics confirm a feedforward flow from V1 to anterior temporal areas, justifying the full-montage
approach. Please refer to Appendix [B]for a detailed discussion of these activation patterns.

4.2 Evaluation framework and results

Our experimental investigation centered on two key questions, evaluated on a subject-dependent
basis to account for inter-subject variability[20]. First, to test our central hypothesis, we compared
two training strategies for the CBraMod encoder: fine-tuning the pre-trained weights versus keeping
them frozen. Second, to investigate the nature of the optimal visual feature space, we paired each
EEG strategy with the three visual backbones (ResNet50, CORNet-S, and CLIP). This resulted in
six model configurations per subject, which were evaluated on the bi-directional 200-way zero-shot
classification task (chance-level accuracy: 0.5%). For a deeper, qualitative assessment of the learned
representations, we also designed a series of targeted representational analyses (e.g., RSA, time-
resolved encoding). A detailed description of each of these representational analysis methods is
provided in Appendix

The performance of our six model configurations was evaluated and compared against the NICE,
NICE-GA, and BraVL frameworks[23} |5]]. In this work, we focus our primary analysis on top-1
accuracy, as it serves as the most stringent metric for evaluating the quality and "brain-alikeness" of
the learned representations. Unlike top-5 accuracy, which allows for a wider margin of error, top-1
accuracy directly probes the model’s ability to select the single correct item from 200 distinct choices.
This provides a direct measure of the representation’s discriminative power—its ability to distinguish
between fine-grained concepts from neural data, which is a key characteristic of the brain’s own
highly specific and efficient visual processing system. The mean top-1 accuracies across all subjects
are presented in Table[I]and Table 2} for completeness, top-5 accuracies are provided in Appendix [F]

Our primary finding validates the central hypothesis of this work: leveraging a pre-trained foundation
model as an inductive bias via fine-tuning is superior to using it as a static feature extractor. As
shown in Tables[I]and 2] all fine-tuned models dramatically outperformed their frozen-backbone
counterparts. This large and statistically significant improvement in top-1 accuracy (p < 0.01,
Wilcoxon Signed-Rank test) demonstrates that the fine-tuning process is critical for adapting the



Table 2: A comparison of different model performances (top-1 accuracies) across 10 subjects for the
Image-to-EEG 200-way zero-shot classification task

Method S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Ave Std
CBraMod (finetuned) + CLIP 23.0 17.0 16.0 20.0 17.5 23.0 19.0 26.5 18.5 30.5 21.1 4.6
CBraMod (finetuned) + ResNet-50  17.0 26.5 19.5 22.5 21.0 29.0 15.5 24.5 13.5 29.0 21.8 55
CBraMod (finetuned) + CORNet-S  17.0 253 23 25.0 18.0 335 23.0 27.0 16.0 26.0 280 .3
CBraMod (frozen) + CLIP 4.5 75 9.5 115 8.5 10.5 55 13.5 2.5 11.0 8.4 3.4
CBraMod (frozen) + ResNet-50 6.0 10.5 6.5 12.0 10.5 12.0 55 13.0 5.5 8.0 8.9 3.0
CBraMod (frozen) + CORNet-S 35 10.0 9.5 7.0 9.0 12.0 4.5 12.5 4.0 13.0 8.5 3.6

foundation model’s general-purpose features into a highly discriminative semantic space, one that is
better suited for the specific task of visual object recognition from EEG. This result strongly supports
our representation-first approach.

Having established the importance of fine-tuning, we next investigated which visual feature space
aligns best with the adapted EEG representations. Among the fine-tuned models, the configuration
using the brain-inspired recurrent CORNet-S encoder achieved the highest average top-1 accuracy
in both EEG-to-Image (14.2%) and Image-to-EEG (23.2%) directions. This suggests that its repre-
sentations, shaped by recurrent connections designed to mimic the primate ventral stream, provide
a more suitable target space for alignment with neural data. While not statistically significant
(p > 0.05), the consistent top performance of CORNet-S provides compelling evidence in favor of
using brain-inspired architectures for such alignment tasks.

Our best-performing model (CBraMod fine-tuned + CORNet-S) is highly competitive with current
state-of-the-art methods, significantly outperforming BraVL (5.8%) and the base NICE (13.8%)
frameworks, and achieving an accuracy comparable to the more complex NICE-GA model (15.6%).
Crucially, this performance is achieved with marked computational efficiency. All fine-tuned models
converged within 60 epochs, a 70% reduction in training time (measured in terms of the number
of epochs). This efficiency is not a trivial improvement; it is a critical factor for the scalability and
practical viability of our subject-dependent paradigm. As a new model must be trained for each new
subject, a significant reduction in training time directly translates to lower computational costs and a
greater capacity to apply the framework to larger participant cohorts.

4.3 Model interpretability and representational plausibility

To assess model interpretability, we visualized the regional importance weights learned by the EEG
projection network as a topographical map (Figure [3). The visualization shows that the model
consistently assigned higher weights to occipital, parieto-occipital, and inferior temporal channels
compared to frontal channels. This learned weight distribution is consistent with the known functional
anatomy of the ventral visual pathway, providing evidence for the biological plausibility of the model.
Furthermore, the fine-tuned models learned a weight distribution that more closely resembled this
neuroscientific prior compared to the frozen-backbone models. This observation provides a potential
mechanistic explanation for the performance gap reported in Section 4.2} the fine-tuning process not
only adapts the feature space but also enables the model to learn a neuroanatomically correct attention
policy, focusing on the most informative brain regions for the task. The superior performance of
the fine-tuned models is therefore not just a numerical result, but a consequence of learning a more
biologically plausible processing strategy.

To provide deeper evidence for the quality of the learned representations beyond classification
accuracy, we conducted a series of representational analyses (see Appendix [E] for full details).
These analyses confirmed three key points. First, time-resolved encoding showed that our aligned
representations captured significant, dynamically evolving neural information, mirroring the known
temporal progression of the visual (Figure ). Second, Representational Similarity Analysis (RSA)
revealed that the geometry of the space learned by the fine-tuned models had a significantly higher
correlation with the brain’s own representational geometry (EEG embeddings) compared to the frozen
models (Appendix Figure[5). Third, high accuracy on cross-modal retrieval tasks confirmed that the
space is robustly bi-directional. Taken together, these results provide converging evidence that the
performance gains from our foundation model framework are rooted in its ability to learn a shared
latent space that is more structurally and dynamically aligned with the brain’s internal representations.
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Figure 3: Topographical map of brain region importance weights learned by the EEG projection
network.
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Figure 4: Prediction accuracy of raw EEG signals from image representations using time-resolved
encoding models.

5 Conclusion and future work

In this work, we have demonstrated that leveraging pre-trained EEG foundation models via fine-tuning
constitutes a more powerful, efficient, and biologically plausible paradigm for aligning neural and
artificial visual representations. Our BrainAlign framework achieves competitive performance on
the challenging 200-way zero-shot classification benchmark while drastically reducing the required
training time by 70%. Crucially, this strong quantitative performance is underpinned by qualitative
evidence of greater neuroscientific validity: interpretability analyses reveal that our fine-tuned model
learns a neuroanatomically correct attentional policy, while representational similarity analyses
confirm that its learned geometry is more congruent with the brain’s own. These findings collectively
establish the "representation-first" approach as a robust and scientifically informative path forward,
paving the way for the development of more sophisticated BCIs and more transparent computational
models of brain function.

Limitations. All results are based on subject-dependent models, and therefore, cross-subject
generalization remains to be explored yet. The 200-way zero-shot classification task,while a good and
commonly-used proxy for measuring quality of alignment, leaves actual downstream task performance
on tasks like image reconstruction to future work. While we tried to establish interpretability in
various ways, large-scale user studies are required to demonstrate the biological plausibility of the
model, which is beyond the scope of this study.
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A Architectural and model details

A.1 EEG projection network formulation

The process for deriving the aggregated EEG vector from the output of the EEG encoder, F' =
{f1, f2,..., fc}, is as follows. The channels are grouped into four disjoint sets based on their
location: occipital (Cp), parietal (C'p), temporal (Cr), and other (Coyper). For each region R €
{0, P, T, Other}, the features are first averaged:

- 1
fR:m ch

ceCr

This mean-pooled feature vector is then passed through a region-specific projection network Pg:

fr = Pr(fr)

The model learns a set of importance weights, w = [wo, wp, Wr, Wother|, Which are derived from a
learnable parameter parameter vector v via the softmax function:

w = softmax(v)

Finally, the weighted features from each region are concatenated to form the final aggregated EEG
feature vector, zgg4:

Zagg = ['LUO . f(/) Dwp - f]lp @ wr - fqlv @D wother - f/Other]

where @ denotes the concatenation operation.

A.2 TImage encoder details

We systematically compare three distinct image encoders, each representing a different hypothesis
about visual processing.

ResNet50[7] This model represents the ‘hierarchical feedforward’ hypothesis, where visual in-
formation is processed through a series of increasingly complex, feedforward layers. Its alignment
performance serves as a baseline for a standard, highly-performant computer vision architecture.

CORNet-S[13] This model represents the ‘brain-inspired recurrence’ hypothesis. It was explicitly
designed to model the primate ventral visual stream and incorporates recurrent connections, which
are a key feature of the visual cortex. Its performance tests whether an architecturally more brain-like
model yields better alignment.

CLIP[19] This model represents the ‘semantic embedding’ hypothesis. Pre-trained on image-text
pairs, its representations are not purely visual but are deeply structured by language and semantics. Its
performance probes whether the brain’s representation of objects is more akin to a rich, multimodal
semantic space than a purely visual one.

A.3 Additional details on contrastive learning

The loss function has been deliberately chosen to be a symmetric contrastive loss, to reflect the brain’s
reciprocal processing pathways. This acknowledges the symmetric processes of imagining images by
decoding some latent representations and interpreting the visual information obtained through the
optic nerve by encoding it in some latent space, which continuously occur in the brain.

Furthermore, we also clarify the framing of the self-supervised learning problem as a classification
problem. It is important to note that throughout the training process, no class labels have been utilized.
The classification is done based on similarity between EEG and vision encoder representations for
the concerned mini-batch. In the context of this architecture, classification implies finding an EEG
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Table 3: Hyperparameter settings used for model training.

Name Value
Batch size 1024
Learning rate 0.0002
Adam [ 0.5

Adam (5 0.999

Logit scale (1) log(1,/0.07)
Projection dimension (EEG and Image) 800

EEG encoder embedding dimension 800

Image encoder embedding dimension (CLIP) 784

Image encoder embedding dimension (CORNet-S and ResNet50) 3000
Dropout (all layers) 0.2
Validation split size 740 samples
Training split size 16540 samples
Test split size 200 samples

representation for the image, and symmetrically, finding an image for a given EEG representation.
Since all processing occurs strictly with the available data, without utilizing any labels, the objective
remains a valid self-supervised learning objective.

B Data quality and channel selection

While prior work has sometimes restricted analysis to 17 occipital and parietal channels, we retained
all 63 channels for model training, similar to Song et al[23]]. This decision is motivated by the fact
that the ventral visual pathway, which is critical for object recognition, extends beyond the occipital
and parietal lobes into the inferior temporal cortex[1]. Including all channels allows the model to
potentially capture a more complete representation of the distributed neural activity underlying visual
processing.

To confirm the data quality across these channels, we performed a temporal and spatial analysis of
the EEG responses. As shown in the main text (Figure [2), the activation patterns are consistent with
established neuroscientific findings: an initial increase in activity in the occipital lobe (0-100 ms),
followed by propagation to the temporal lobe. This characterizes feedforward processing along the
ventral visual stream, including V1, V2, V3, PIT, CIT and AIT areas, thus validating the suitability of
the full 63-channel dataset.

C Hyperparameter choices

The hyperparameters used for training all models are provided in Table [3]23]].

D Representational analysis methods

To gain deeper insight into the structure and biological plausibility of the shared latent space, we
conducted a series of targeted representational analyses, as described below.

Quality of neural information content To verify that the aligned image representations captured
meaningful neural information, we performed a time-resolved encoding analysis. Using a nested
cross-validated Ridge regression model, we predicted EEG signals at each time point from the static
image features of the aligned space. High prediction accuracy in this analysis would indicate that
the contrastive learning process successfully embedded neurally-relevant visual features into the
representations, validating the Image-to-EEG mapping.

Similarity to brain’s representational geometry To assess the biological plausibility of the learned
space, we compared its internal structure to that of the brain using time-resolved Representational
Similarity Analysis (RSA)[12]. We computed Representational Dissimilarity Matrices (RDMs) for
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the model and for the neural data at each time point. A high correlation between the model and
brain RDMs over time would demonstrate that our framework learns a representational geometry that
dynamically mirrors the brain’s own processing trajectory.

Bi-directional symmetry and alignment Finally, to evaluate the overall alignment and bi-
directional utility of the final shared space, we conducted two analyses. First, a static RSA measured
the global alignment between the final EEG and image representational geometries. Second, a cross-
modal retrieval task directly tested the framework’s symmetry by evaluating its ability to retrieve
the correct EEG vector from its image counterpart, and vice-versa. Success in these tasks is a direct
measure of how well the two modalities were fused into a coherent, symmetric representational space.

E Results of representational analyses
Figure [5]shows the results of various representational analyses.

E.1 Analysis of temporal dynamics in raw EEG data

The first set of analyses evaluated the extent to which the learned image representations in the shared
space captured the temporal dynamics of the raw neural signals. Figure {4 (time-resolved encoding)
and5JA (time-resolved RSA) show that the ability to predict or correlate with the raw EEG signal
peaks between 100-250 ms and remains significant until around 600 ms post-stimulus. This temporal
profile is highly consistent with the known hierarchical progression of feedforward processing along
the human ventral visual stream[4].

Notably, the performance between the fine-tuned and frozen model paradigms is largely comparable
in these analyses. This finding is significant: it suggests that the large-scale pre-training of the
CBraMod foundation model is sufficient to learn and preserve the core, low-level temporal dynamics
of visual neural processing. This validates the use of the foundation model as a strong starting point,
as it provides a robust neuro-temporal prior before any task-specific adaptation occurs.

E.2 Analysis of the aligned shared representation space

The second set of analyses assessed a different, more central question: the quality of the final, shared
representational space created by the contrastive learning process. Instead of comparing to raw EEG,
these analyses directly measure the geometric alignment between the final EEG representations and
the image representations.

The results, shown in Figures[5B, BIC, and[5D, provide unequivocal evidence for our central hypothesis.
The representational alignment, as measured by RSA correlation, is dramatically and statistically
significantly higher in the fine-tuned paradigm compared to the frozen paradigm (Figure5|C, p<0.001).
This demonstrates that while the frozen backbone provides a strong temporal prior, it is insufficient
for creating a high-fidelity shared semantic space. The process of fine-tuning is critical; it allows
the model to adapt the general-purpose neural features into representations that are specifically
and geometrically aligned with their visual counterparts. The high absolute correlation values and
cross-modal retrieval accuracies (Figure E]B) for the fine-tuned models further confirm the overall
effectiveness of the BrainAlign framework in learning a robust, bi-directionally useful shared space.

F Additional results

Tables [] and [5] present additional top-5 accuracy results for the EEG-to-Image and Image-to-EEG
200-way zero shot classification tasks respectively.
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Time-Resolved Rsa Results
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Figure 5: Results of representational analyses. (A) RSA correlation of raw EEG signals with
image representations using time-resolved RSA analysis. (B) Mean Pearson (p) and Spearman (r)
coefficients for RSA between EEG and image representations for all subjects, along with top-1 and
top-5 EEG-to-Image retrieval accuracies across model configurations. (C) Comparison of EEG-Image
representation alignment between fine-tuned and frozen paradigms using RSA between EEG and
Image representations averaged over all subjects (*** indicates statistical significance of p < 0.001).
(D) Heatmap of pairwise differences in RSA alignment across all model configurations.
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Table 4: A comparison of different model performances (top-5 accuracies) across 10 subjects for the
EEG-to-Image 200-way zero-shot classification task

Method S1 S2 S3 S4 S5 S6 S7 S8 S9 S10 Ave Std
BraVL[3] 17.9 14.9 17.4 15.1 13.4 18.2 20.4 23.7 14.0 19.7 17.5 32
NICE[23] 36.6 33.9 39.0 47.0 26.9 40.6 42.1 49.9 37.1 419 39.5 6.5
NICE-GA[23] 40.1 40.1 42.7 48.9 29.7 44.4 43.1 52.1 39.7 46.7 42.8 6.1
CBraMod (finetuned) + CLIP 37.0 30.5 37.0 31.0 29.5 49.5 36.0 44.0 39.0 46.5 38.0 6.9

CBraMod (finetuned) + ResNet-50  29.0 34.0 34.0 29.0 30.5 52.0 29.0 47.0 315 41.0 35.7 8.2
CBraMod (finetuned) + CORNet-S  31.0 39.0 36.0 40.5 24.5 50.5 375 41.5 32.0 47.0 37.9 7.7

CBraMod (frozen) + CLIP 12.5 16.5 19.0 24.5 13.0 22.5 14.5 22.0 12.5 27.0 18.4 54
CBraMod (frozen) + ResNet-50 18.0 17.0 185 20.0 18.5 29.5 17.0 26.0 15.0 23.0 20.2 45
CBraMod (frozen) + CORNet-S 17.0 22.0 245 25.0 21.0 25.0 18.5 23.0 12.0 22.0 21.0 4.1

Table 5: A comparison of different model performances (top-5 accuracies) across 10 subjects for the
Image-to-EEG 200-way zero-shot classification task

Method S1 S2 S3 S4 S§ S6 S7 S8 S9 S10 Ave Std

CBraMod (finetuned) + CLIP 54.0 455 50.5 55.5 45.0 58.0 51.0 58.5 515 60.5 53.0 53
CBraMod (finetuned) + ResNet-50  42.5 54.5 48.5 47.0 47.0 60.5 47.0 58.5 45.0 55.0 50.5 6.1
CBraMod (finetuned) + CORNet-S  49.0 575 475 53.0 43.0 67.0 52.5 64.5 49.5 63.5 54.7 8.1

CBraMod (frozen) + CLIP 15.0 255 25.5 335 24.5 28.5 17.5 31.0 18.5 30.5 25.0 6.2
CBraMod (frozen) + ResNet-50 17.5 25.0 21.0 27.5 27.5 375 20.5 37.5 185 32.0 26.4 74
CBraMod (frozen) + CORNet-S 20.0 30.5 27.5 325 27.0 28.5 245 345 155 36.0 27.6 6.4
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