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Abstract

Estimating the Generalization Error (GE) of Deep Neural Networks (DNNs) is an important
task that often relies on availability of held-out data. The ability to better predict GE based
on a single training set may yield overarching DNN design principles to reduce a reliance on
trial-and-error, along with other performance assessment advantages. In search of a quantity
relevant to GE, we investigate the Mutual Information (MI) between the input and final
layer representations, using the infinite-width DNN limit to bound MI. An existing input
compression-based GE bound is used to link MI and GE. To the best of our knowledge, this
represents the first empirical study of this bound. In our attempt to empirically stress test
the theoretical bound, we find that it is often tight for best-performing models. Furthermore,
it detects randomization of training labels in many cases, reflects test-time perturbation
robustness, and works well given only few training samples. These results are promising given
that input compression is broadly applicable where MI can be estimated with confidence.

1 Introduction

Generalization Error (GE) is the central quantity for the performance assessment of Deep Neural Networks
(DNNs), which we operationalize as the difference between the train-set accuracy and the test-set accuracy1.
Bounding a DNN’s GE based on a training set is a longstanding goal (Jiang et al., 2021) for various reasons:
i) Labeled data is often scarce, making it at times impractical to set aside a representative test set. ii) The
ability to predict generalization is expected to yield overarching design principles that may be used for Neural
Architecture Search (NAS), reducing a reliance on trial-and-error. iii) Bounding the error rate is helpful for
model comparison and essential for establishing performance guarantees for safety-critical applications. In

1GE is also referred to as generalization gap. Note that some use “generalization error” as a synonym for “test error”.
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contrast, the test accuracy is merely a single performance estimate based on an arbitrary and finite set of
examples. Furthermore, the adversarial examples phenomenon has revealed the striking inability of DNNs to
generalize in the presence of human-imperceptible perturbations (Szegedy et al., 2014; Biggio & Roli, 2018),
highlighting the need for a more specific measure of robust generalization.

Various proxies for DNN complexity which are assumed to be relevant to GE—such as network depth, width,
`p-norm bounds (Neyshabur et al., 2015), or number of parameters—do not consistently predict generalization
in practice (Zhang et al., 2021). In search of an effective measure to capture the GE across a range of tasks,
we investigate the Mutual Information (MI) between the input and final layer representations, evaluated
solely on the training set. In particular, we empirically study the Input Compression Bound (ICB) introduced
by (Tishby, 2017; Shwartz-Ziv et al., 2019), linking MI and several GE metrics. An emphasis on input is an
important distinction from many previously proposed GE bounds (e.g., Zhou et al. (2019)), which tend to be
model-centric rather than data-centric.

We use infinite ensembles of infinite-width networks (Lee et al., 2019), as in deterministic DNNs the MI quantity
we examine is ill-defined (Goldfeld et al., 2019). Infinite-width networks correspond to kernel regression and
are simpler to analyze than finite-width DNNs, yet they exhibit double-descent and overfitting phenomena
observed in Deep Learning (DL) (Belkin et al., 2019). For these reasons, Belkin et al. (2018) suggested that
understanding kernel learning should be the first step taken towards understanding generalization in DL. To
this end, we evaluate the ICB with respect to three criteria:

(1) First, we asess the extent to which the bound holds in practice. To do so, we evaluate the GE of a
variety of models, composed by many different metaparameters of the neural architecture and training
procedure. We then compare the GE to the theoretical GE bound given by ICB. We show that ICB
contains the GE at the expected frequency for four of five datasets. We identify several factors that
influence ICB success, including a training-label randomization test inspired by Zhang et al. (2017).

(2) Next, we analyze whether the ICB is sufficiently small for useful model comparisons. If a theoretical GE
bound exceeds 100% in practice, it is said to be vacuous. As we study binary classification tasks,
we additionally require that the bound be less than 50% for models with non-trivial GE. We show
that ICB is often sufficiently close to the empirical GE, and thus presents a non-vacuous bound. These
results are obtained with 2000 or fewer training samples.

(3) Last, we assess the ability of ICB to predict changes in GE under different metaparameter interventions.
The ICB accurately predicts changes in GE as the training time, number of training samples, and
explicit parameter regularization vary; ICB was less consistent when the activation function, input
data, and depth vary, depending on the dataset.

Beyond these three main desiderata for generalization bounds, we show advantages in reducing ICB even
when the GE is small. Reducing ICB on natural training labels prevents models from fitting random labels,
and conversely, ICB increases when models are trained on random versus natural training labels (Zhang
et al., 2017; 2021). Finally, we show that ICB is predictive of test-time perturbation robustness (Goodfellow
et al., 2015; Gilmer et al., 2019), without assuming access to a differentiable model.

2 Background

We make use of an information-theoretically motivated generalization bound, the ICB, to establish an
overlooked link between MI and GE. The bound seems to have first appeared in a lecture series (see, e.g., Tishby
(2017)), later in a pre-print (Shwartz-Ziv et al., 2019)[Thm. 1] and more recently in a thesis (Shwartz-Ziv,
2021)[Ch. 3]. To the best of our knowledge the bound has not yet been studied empirically.

2.1 Mutual information in infinite-width networks

The MI between two random variables X and Z is defined as

I(X;Z) ≡
∑
x,z

p(x, z) log p(x, z)
p(x)p(z) = Ep(x,z)

[
log p(z|x)

p(z)

]
, (1)
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where we used Bayes’ rule to obtain the expression on the right and introduced Ep(x,z)[·] to denote the
average over p(x, z). In our case, X denotes the input, and Z the input representation which is taken as
the Neural Network (NN) output. Since the marginal p(z) is unknown, we use an unnormalized multi-sample
“noise contrastive estimation” (InfoNCE) variational bound. The InfoNCE procedure was originally proposed
for unsupervised representation learning (van den Oord et al., 2018), which also serves as a lower bound
on MI (Poole et al., 2019). In van den Oord et al. (2018), the density ratio p(z|x)/p(z) was learned by
a NN. Instead, following Shwartz-Ziv & Alemi (2020), we use infinite ensembles of infinitely-wide NNs,
which have a conditional Gaussian predictive distribution: p(z|x) ∼ N (µ(x, τ),Σ(x, τ)) with µ,Σ given by
the Neural Tangent Kernel (NTK) and Neural Network Gaussian Process (NNGP) kernel (Jacot et al.,
2018). The predictive distribution also remains Gaussian following τ steps of Gradient Descent (GD) on
the Mean-Squared Error (MSE) loss. The conditional Gaussian structure given by NTK may be supplied in
the InfoNCE procedure, yielding MI bounds free from variational parameters. Specifically, we use the “leave
one out” upper bound (Poole et al., 2019) on MI to conservatively bound MI:

I(X;Z) ≤ E

[
1
N

N∑
i=1

log p(zi|xi)
1

N−1
∑

j 6=i p(zi|xj)

]
= IUB. (2)

A lower bound on MI, ILB, of a similar form as Eq. (2) is also available (Eq. 6, Appendix A.2). We verified
that both bounds yield similar results for the training regime in which we apply them (Fig. A5). See van den
Oord et al. (2018) and Poole et al. (2019) for formal derivations of Eq. (2) and (6). These MI bounds must
be computed on the training set only to evaluate a generalization bound.

2.2 Input compression bound

Here, we provide an intuitive explanation of the ICB building on existing results and using information theory
fundamentals (Cover & Thomas, 1991). A more formal derivation including a proof can be found in Shwartz-
Ziv et al. (2019)[Appendix A]. We begin with the conventional Probably Approximately Correct (PAC) GE
bound, which plays a central role in early mathematical descriptions of machine learning (Shalev-Shwartz
& Ben-David, 2014). It is assumed that a model receives a sequence of examples x, each labeled with the
value f(x) of a particular target function, and has to select a hypothesis that approximates f well from a
certain class of possible functions. By relating the hypothesis-class cardinality |H| and the number of training
examples Ntrn, one obtains the following bound on the GE:

GE <

√
log(|H|) + log(1/δ)

2Ntrn
(3)

where the confidence parameter δ ∈ (0, 1) indicates the probability with which the bound holds w.r.t. the
random training sample. The key term in this bound is the hypothesis-class cardinality, the expressive power
of the chosen ansatz. For a finite H, it is simply the number of possible functions in this class; when H is
infinite, a discretization procedure is applied in order to obtain a finite set of functions. For NNs, |H| is usually
assumed to increase with the number of trainable parameters. The bound (3) states that generalization is
only possible when the expressivity is outweighed by the size of the training set, in line with the well-known
bias-variance trade-off of statistical learning theory. Empirical evidence, however, demonstrates that this
trade-off is qualitatively different in deep learning, where generalization tends to improve as the NN size
increases even when the size of the training set is held constant. The key idea behind the ICB is to shift
the focus from the hypothesis to the input space. For instance, consider binary classification where each of
the |X | inputs belongs to one of two classes. The approach that leads to bound (3) reasons that there are
2|X | possible label assignments, only one of which is true, and hence a hypothesis space with 2|X | Boolean
functions is required to guarantee that the correct labeling can be learned. The implicit assumptions made
here are that all inputs are fully distinct and that all possible label assignments are equiprobable. These
assumptions do not hold true in general, since classification fundamentally relies on similarity between inputs.
However, the notion of similarity is data-specific and a priori unknown; thus, the uniformity assumption is
required when deriving a general statement.

The approach behind ICB circumvents these difficulties altogether by applying information theory to the
process of NN learning. First, note that solving a classification task involves finding a suitable partition of the
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input space by class membership. DNNs perform classification by creating a representation Z for each input
X and progressively coarsening it towards the class label, which is commonly represented as an indicator
vector. The coarsening procedure is an inherent property of the NN function, which is implicitly contained in
Z. By construction, the NN implements a partitioning of the input space, which is adjusted in the course of
training to reflect the true class membership. In this sense, the cardinality of the hypothesis space reduces to
|H| ≈ 2|T |, where |T | is the number of class-homogeneous clusters that the NN distinguishes. To estimate
|T |, the notion of typicality is employed: Typical inputs have a Shannon entropy H(X) that is roughly equal
to the average entropy of the source distribution and consequently a probability close to 2−H(X). Since the
typical set has a probability of nearly 1, we can estimate the size of the input space to be approximately
equal to the size of the typical set, namely 2H(X). Similarly, the average size of each partition is given by
2H(X|Z). An estimate for the number of clusters can then be obtained by |T | ≈ 2H(X)/2H(X|Z) = 2I(X;Z),
yielding a hypothesis class cardinality |H| ≈ 22I(X;Z) . With this, the final expression for the ICB is:

GEICB <

√
2I(X;Z) + log(1/δ)

2Ntrn
, (4)

where it is assumed that X is a d-dimensional random variable that obeys an ergodic Markov Random Field
(MRF) probability distribution, asymptotically in d (common for signal and image data, see e.g., Murphy
(2012)[Ch. 19]). Unfortunately, it is impossible to check this assumption directly because it involves the
data-generating process, which we can not access based on finitely many samples (i.e., the training set). We
therefore treat ICB as a tool, and empirically test how useful this tool is in practice. We comment on the
ergodic MRF assumption in Appendix A.1. We only evaluate ICB when we can obtain a confident estimate of
I(X;Z). For this we require a tight sandwich bound on I(X;Z) with IUB ≈ ILB. We discard samples where
IUB(X;Z) > log(Ntrn), since ILB(X;Z) cannot exceed log(Ntrn). See Fig. A5 for typical IUB, ILB values
during training and samples to discard. Note that the units for I(X;Z) in ICB are bits.

3 Experiments

Our experiments are structured around three main questions: 1) To what extent does ICB bound GE in
practice (§4.1), including for random labels (§4.2)? 2) Is the ICB close enough to the empirical GE to be
useful for model comparisons (§4.3)? 3) To what extent does ICB predict GE with respect to different
metaparameter interventions (§4.4)?

We focus on binary classification like much of the generalization literature, which also enables us to more
efficiently evaluate MI bounds by processing kernel matrices that scale by N2

trn rather than (k ×Ntrn)2 for k
classes. Aside from this computational advantage, our methodology extends to the multi-class setting. We
conduct experiments with five standard datasets: MNIST (LeCun & Cortes, 1998), FashionMNIST (Xiao et al.,
2017), SVHN (Netzer et al., 2011), CIFAR-10 (Krizhevsky, 2009), and EuroSAT (Helber et al., 2018; 2019).
These datasets are intended to be representative of low to moderate complexity tasks and make it tractable
to train thousands of models (Jiang* et al., 2019). Experiments with EuroSAT further demonstrate how the
method scales to 64-by-64 pixel images. For each of the image datasets, we devise nine binary classification
“tasks” corresponding to labels “i versus i+ 1” for i ∈ {0, . . . , 8}. This sequential class ordering ensures each
label is used once, and is otherwise an arbitrary choice.

We use metaparameters that are common to deep learning, with the exception of “diagonal regularization”,
which is specific to the NTK, denoted by K. The regularized NTK is defined as: Kreg = K + λTr(K)

Ntrn
I,

where λ is a coefficient that controls the amount of regularization. This is analogous to `2 regularization of
finite-width DNNs, only we penalize the parameters’ distance w.r.t. their initial values instead of w.r.t. the
origin (Lee et al., 2020). We train a population of models by selecting metaparameters as follows: the total
number of layers D ∈ {1, 2, 3, 4, 5}, diagonal regularization coefficients λ ∈ {100, 10−1, 10−2, 10−3, 10−4}, and
activation functions φ(·) ∈ {ReLU(·), Erf(·)}. For fully-connected Multi-Layer Perceptron (MLP) models
we select the number of training samples, Ntrn ∈ {1000, 1250, 1500, 1750, 2000}, whereas for Convolutional
Neural Networks (CNNs) we use Ntrn ∈ {1000, 1500} for computational reasons. Test sets have constant
Ntst = 2000. We do not vary the learning rate or mini-batch size, as the infinite-width networks are trained
by full-batch GD, for which the training dynamics do not depend on the learning rate once below a critical
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Figure 1: The ICB may reflect robust GE when it is loose w.r.t. standard GE. The ICB is plotted
as a grey shaded band underneath the training accuracy indicating the range of test accuracy compatible
with the theoretical bound. Performance metrics are evaluated for a EuroSAT Pasture versus Sea-Lake
binary classification task using 500 training samples and 2000 test samples and different regularization levels
in (a)–(c). At low regularization λ = 0.1 (a), the ICB is vacuous with respect to standard generalization
beyond 104 training steps, but reflects the poor robust generalization for the “Noisy” test set with AWGN.
Increasing the regularization to λ = 0.5 (b) and λ = 1.0 (c) reduces ICB and the AWGN GE. Arrows indicate
the steady-state AWGN GE (black), and ICB (grey) along with their respective values. See Fig. A5 for the
corresponding upper and lower I(X;Z) bounds for this experiment.

stable value (Lee et al., 2019). A nominal learning rate of 1.0 was used in all cases and found to be sufficient.2
Models were evaluated at five different training times, t ∈ {102, 103, 104, 105, 106}, which contained most of
the variation in GE. Training for less than t = 102 steps typically resulted in a small GE, as both training and
test accuracy were near random chance or increasing in lockstep. In terms of steady-state behaviour, GE was
often stable beyond t = 106. Furthermore, t = 106 was found to be a critical time beyond which IUB(X;Z)
sometimes exceeded its upper confidence limit of log(Ntrn), particularly for small λ values where memorization
(lack of compression) is possible. In total, there are 1250 unique metaparameter combinations for MLPs:
5 (D)× 5 (λ)× 2 (φ)× 5 (Ntrn)× 5 (t) = 1250, and 500 for CNNs.

We measure correlations between ICB and standard GE, as well as robust GE. The latter is defined as
the accuracy difference on the standard train set and the test set with Additive White Gaussian Noise
(AWGN) (Gilmer et al., 2019). It can be shown that a classifier’s error rate for a test set corrupted by AWGN
determines the mean distance to the decision boundary for linear models (Fawzi et al., 2016) and serves
as a useful guide for DNNs (Gilmer et al., 2019). For the AWGN we use a Gaussian variance σ2 = 1/16
for EuroSAT and σ2 = 1/4 for the other datasets.

4 Results

Illustrative example Before presenting the main results, we examine ICB for a EuroSAT classification task
using only 500 training samples (Fig. 1). This is a challenging task, as tight MI and GE bounds are difficult
to obtain for high-dimensional DNNs, particularly with few samples. For example, in (Dziugaite & Roy,
2017) 55000 samples were used to obtain a ≈ 20% GE bound for finite-width DNNs evaluated on MNIST.

We evaluate ICB throughout training from the first training step (t = 100) until steady state when all
accuracies stabilize (t = 108). Shortly after model initialization (t = 100 to t = 101) the ICB is < 7%
(indicated by the height of the shaded region in Fig. 1) and the training and test accuracy are both at 50%
(GE= 0). Here, ICB is non-vacuous, but also not necessarily interesting for this random-guessing phase. ICB
increases as training is prolonged.3 At low regularization (Fig. 1 a), the ICB ultimately becomes vacuous
(ICB ≈ 50%) around 104 steps. However, although ICB is vacuous with respect to standard generalization in

2This was the default setting for the neural_tangents software library (Novak et al., 2020).
3It may not be obvious that ICB increases monotonically with training steps as the training accuracy also increases.
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Figure 2: The ICB often bounds GE for most datasets. The ICB (“Theoretical generalization error
bound”) is plotted versus GE (MSE) for four datasets. The ICB satisfaction rate is annotated in the top
left corner of each plot with format “Sat. % (N)”, where N denotes the number of valid experiments. Each
binary classification task is assigned a unique colour. See Fig. A6 for equivalent plot using the 0–1 loss.

Table 1: Overall ICB satisfaction rate for two different loss functions, with the number of valid experiments
(N) in brackets. The MNIST and FashionMNIST datasets were both at 100% and omitted for brevity.

Loss SVHN (CNN) CIFAR (CNN) EuroSAT (MLP)
Square 95.2% (3914) 80.5% (4148) 93.0% (9637)
0–1 67.6% (3914) 84.9% (4148) 95.7% (9637)

a), it reflects well the poor robust generalization when tested with AWGN (Gilmer et al., 2019). Increasing
the regularization coefficient λ reduces ICB from 50% (a) to 23% (b) and 15% (c), and the robust GE from
38% (a) to 19% (b) and 10% (c). Both standard and robust GE are bounded at all times by ICB. The latter
is, however, a coincidence, as the robust GE is subject to the arbitrary AWGN noise variance (σ2 = 1/16).
The additive noise variance could be increased to increase the robust GE beyond the range bounded by ICB.
More important than bounding the robust GE absolute percentage is that ICB captures the trend of robust
generalization. Evaluating robustness effectively is error-prone and often assumes access to test data and a
differentiable model (Athalye et al., 2018; Carlini et al., 2019). We make no such assumptions here. The
lack of robustness in Fig. 1 a) would have likely gone unnoticed. Next, we assess the extent to which ICB
contains GEs evaluated on a variety of models and datasets.

4.1 Bounding generalization error

We refer to the percentage of cases where GE < ICB as the “ICB satisfaction rate”, or “Sat.” in plots. We
expect ≈ 95% of samples to satisfy this property as ICB is evaluated at 95% confidence (δ = 0.05). We
consider other δ values in §A.4. Overall ICB satisfaction rates are listed in Table 1 for two loss functions,
and the ICB is plotted versus GE in Fig. 2 for the square loss. In general, ICB was satisfied at a high rate
depending on the dataset. Next, we identify factors affecting the ICB satisfaction rate.

Best-performing models with test accuracy ≥ 70% attain an ICB satisfaction rate of 94.7% (N = 792)
for SVHN and 0–1 loss. An 80% threshold for CIFAR led 94.0% (N = 1438) of samples to satisfy ICB.

Architecture type has a significant effect on ICB satisfaction rate: CNNs had an 11–14% greater ICB
satisfaction rate than MLPs for CIFAR, and 10–18% greater rate for SVHN, where the range depended on
the loss function. Intriguingly, the superior ICB satisfaction rate of CNNs was not due to greater test-set
accuracy. CNNs had lower GE as a result of their lower train-set accuracy (Table A5).

6



Published in Transactions on Machine Learning Research (12/2022)

10 20

60

80

100

T
ra

in
in

g
ac

cu
ra

cy
(%

)

τ = 0.96

MNIST (MLP)

Natural

Random

25 50

τ = 0.97

Fashion (CNN)

25 50
ICB evaluated on natural training labels

τ = 1.00

SVHN (CNN)

25 50

τ = 0.97

CIFAR-10 (CNN)

25 50

τ = 0.97

EuroSAT (MLP)

Figure 3: The ICB often distinguishes between natural and randomized training sets. Training
accuracy for “Natural” and “Random” labels is plotted versus the theoretical GE bound (ICB), which is
evaluated on the natural labels. Each data point corresponds to a unique regularization value λ, which
influences the ICB value. We show the “0 vs. 1” task for all datasets, except CIFAR, for which the “7
vs. 8” task performed best (Table 2). Considerable separation between natural and randomly labeled sets
is observed for all datasets. ICB is highly correlated with ability to fit random labels in all cases as shown
by τ values. The broken vertical line for EuroSAT indicates the ICB value for which there is at least a 10%
accuracy difference between natural versus random sets.

Table 2: Ability of ICB to separate natural versus random training labels is a good predictor
of ICB satisfaction rate by task. The row “ICBrand@X%” indicates the minimum ICB value for which
a X% accuracy difference between natural and random labels is observed. The “Sat. (%)” column showing
the ICB satisfaction rate is taken from §4.1, Exp. A. The column τ indicates the rank correlation between
ICBrand@X% and Sat. (%) over the nine tasks. Columns sorted by ascending order of ICBrand@X%.

Task 2/3 6/7 3/4 7/8 4/5 5/6 0/1 1/2 8/9
EuroSAT Sat. % 82 84 98 100 100 100 100 100 100

τ = 0.76ICBrand@10% 7.5 10.0 11.1 13.2 18.5 21.6 41.6 47.9 51.2
Task 2/3 3/4 5/6 4/5 6/7 0/1 1/2 8/9 7/8

CIFAR-10 Sat. % 54 54 62 56 84 85 92 89 100
τ = 0.87ICBrand@5% 7.4 9.4 11.8 12.1 12.5 12.6 14.8 15.2 17.8

Training time GE generally increases with training, therefore the overall ICB satisfaction rate may be
biased upward by the inclusion of models trained for a short time (e.g. t = 102). Selecting models trained
for at least t = 104 steps, resulted in an ICB satisfaction rate decrease for CIFAR-10 trained CNNs from
84.9% overall to 76.3% (N = 2351), and a slight increase for SVHN from 67.6% overall to 70.5% (N = 2114).
Expressing GE in terms of MSE, ICB saturation rate fell from 95.2% overall to 91.3% (N = 2114).

The number of training samples impacted the ICB satisfaction rate for the 0–1 loss on SVHN (Fig. A7).

Inter-task differences in ICB satisfaction rate were observed (Table A6). For EuroSAT, six of nine
tasks always satisfied ICB, and three tasks reduced the overall average. The satisfaction rate was 82.2% (N =
1123) for the “2 vs. 3” task and 83.5% (N = 1154) for the “6 vs. 7” task. For CIFAR-10, tasks “2 vs. 3”
through “5 vs. 6” had ICB satisfaction rates considerably worse than the rest by a margin of 15 − 20%,
and for SVHN, tasks “2 vs. 3”, “5 vs. 6”, and “8 vs. 9” were poor performing. These inter-task trends were
consistent for the CNN and MLP architectures.

4.2 The randomization test

Zhang et al. (2017; 2021) proposed the “randomization test” after observing that DNNs easily fit random
labels. They argued that generalization bounds ought to be able to distinguish models trained on natural
versus random training labels, since generalization is by construction made impossible in the latter case.
Motivated by the work of Zhang et al., we first hold all metaparameters constant and report ICB values

7



Published in Transactions on Machine Learning Research (12/2022)

before and after randomizing the training labels (Table 3). We then regularized models until they could no
longer fit random training labels, while still permitting them to fit the natural training labels (Table 2, Fig. 3).
We consider only two-layer ReLU networks here, and consistent with §4.1, we use the CNN architecture for
FashionMNIST, SVHN & CIFAR and an MLP for MNIST & EuroSAT. We train these models to t =∞ on the
natural training set (Ntrn = 1000). Surprisingly, ICBUB approximates the GE well even when the model
is trained on random labels (Table 3). For λ = 0.1, ICBUB = 15.5% compared to a GE of 21.3%. Next,
for λ = 0.01, ICBUB = 38.5% and GE is 39.7%. Last, for λ = 0.001, IUB = 8.96, which is greater than
log(Ntrain) = 6.91 nats, therefore the corresponding ICBUB of 197.6% should be discarded. In this case,
substituting the “optimistic” lower estimate ICBLB = 54.1% ≈ GE = 50%.

Table 3: ICB increases after training on random labels.
Randomization test results for EuroSAT. The lower and up-
per MI bounds, ILB and IUB, are included for comparison
against log(Ntrn) ≈ 6.91 nats. Columns ICBLB and ICBUB
refer to whether ILB or IUB is taken as I(X;Z) estimate, re-
spectively. Columns “Train” and “Test” show the respective
accuracy in %. ICB values are larger for random labels when
comparing rows with “Train”= 100.0.

Natural training labels
λ ILB IUB ICBLB ICBUB Train Test GE

10−1 4.87 5.37 26.0 33.1 97.9 98.7 -0.8
10−2 5.40 6.58 33.7 60.2 99.5 98.6 0.9
10−3 5.78 7.40 40.5 90.4 100.0 97.5 2.5

Random training labels
10−1 3.68 3.75 15.0 15.5 71.3 50.0 21.3
10−2 5.28 5.67 31.7 38.5 89.7 50.0 39.7
10−3 6.37 8.96 54.1 197.6 100.0 50.0 50.0

We expect I(X;Z) to be smaller after train-
ing on natural labels, since training on ran-
dom labels requires memorization of random
data, i.e., the opposite of compression. Im-
portantly, to isolate the effect of the training
label type, the training accuracy must be
controlled, as higher accuracy generally re-
quires greater complexity and thus larger
I(X;Z). This intuition is consistent with
the results of Table 3, as both ILB and IUB in-
crease monotonically with the training accu-
racy for both training label types. Training
with λ = 0.001 allows models to perfectly
fit both natural and randomized training
sets (Table 3 rows with “Train” = 100%)
and presents a suitable setting for evaluat-
ing the sensitivity of ICB to the training
label type. Indeed, ILB is greater for ran-
dom labels (6.37 vs. 5.78 nats), resulting in
an increase of the optimistic theoretical GE
bound, ICBLB, from 40.5% to 54.1%. The
more pessimistic ICBUB increases even more
dramatically from 90.4% to 197.6%, which
is beyond the valid range of GE (0− 100%).

The randomization test identifies tasks with low ICB satisfaction Recall from §4.1 that three binary
classification tasks reduced the ICB satisfaction rate below 100% for EuroSAT: “2 vs. 3” (Sat. 82%), “6 vs. 7”
(Sat. 84%), and “3 vs. 4” (Sat. 98%). We observed that these were the same tasks for which ICB performed
poorly on the randomization test. Specifically, we measured the minimum ICB value for which an at least
10% accuracy difference was recorded between the natural and random training sets (vertical broken line in
Fig. 3) when training with 20 different regularization values λ in the range 10−4 to 101. The “2 vs. 3” task
required the smallest ICB value (7.5%) before this accuracy difference was reached between the two label
types. The “6 vs. 7” task had the next highest ICB value of 10.0%, followed by “3 vs. 4” with 11.1%. The
other six tasks—with 100% ICB satisfaction—had strictly greater ICB values (Table 2). Similar results are
observed for CIFAR-10 using a smaller 5% threshold as accuracies for natural and random labels were closer
than for EuroSAT. The tasks with minimum (“2 vs. 3”) and maximum (“7 vs. 8”) satisfaction rate are the
same tasks with the minimum and maximum ICBrand@5%. Therefore, the training-set based randomization
test—which only required training a single model here—may be used to help identify when ICB performs
well as a GE bound for a variety of models.

4.3 Vacuous or non-vacuous?

To evaluate whether ICB is close enough to GE to aid model comparison, we examined the model with the
greatest accuracy on the test set with AWGN for each SVHN and CIFAR task. We used AWGN accuracy rather
than standard test accuracy to select these models given the observation from Figure 1 that ICB may be more
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Table 4: The ICB is close enough to the GE for model comparison. For five SVHN and CIFAR
classification tasks (beginning with even numbers), we select the model with maximum accuracy on the
test set with AWGN, shown in the “Robust” column. ICB is compared to the standard GE as well as the
Robust GE (“RGE” column). High train-set accuracy (“Train” ≥ 99%) tends to coincide with large RGE
and ICB values, making ICB loose w.r.t. GE. Otherwise, ICB is consistently close to GE (compare values
in bold).

CIFAR SVHN

Task Train Test Robust GE RGE ICB Train Test Robust GE RGE ICB
0/1 96 86 83 10 12 13 87 79 68 8 19 15
2/3 93 74 71 18 21 25 100 85 67 15 32 46
4/5 99 77 73 22 26 52 100 88 70 12 29 67
6/7 93 85 83 8 10 12 90 78 70 12 20 15
8/9 85 80 80 5 5 7 99 77 66 23 33 62
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Figure 4: The ability of ICB to predict GE varies for different metaparameters. Plots show
prediction Sign-Errors (SEs) (where lower is better) for robust GE with AWGN for six different metaparameter
interventions on nine binary classification tasks {0 vs. 1, 1 vs. 2, . . . , 8 vs. 9} for a) FashionMNIST and b)
CIFAR-10. Numbers above the SE for even-numbered tasks indicate the number of samples N comprising
the respective SE measurement. The train samples category had insufficient N for FashionMNIST and
was therefore replaced with a dataset category in a), which examines the effect of switching the dataset
from FashionMNIST to CIFAR-10. The dataset category is omitted in b) as SE is symmetric. Note that
mean SE is equal to max SE for the activation metaparameter which had only one combination (ReLU
versus Erf). See Table A7 for a detailed example showing how a column is computed in these plots.

aligned with robust GE (also see Fig. A8). The most accurate models on the standard test set often recorded
zero error on the training set and thus incurred large ICB values. Here, ICB values were considerably less
than 50% in all cases except where training accuracy was 99% or greater (Table 4). Furthermore, ICB values
were often close to the empirical GE, e.g., an ICB of 7% was obtained for GE = 5% for the CIFAR task 8/9
using only 1500 training samples (Table 4).
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4.4 Effect of metaparameters on theoretical bound

The goal of this section is to assess the ability of ICB to robustly rank GEs for a variety of models trained by
different metaparameters. We perform coupled-network experiments as per Dziugaite et al. (2020) to assess
the ability of ICB to predict whether GE increases or decreases for all metaparameter combinations when
manipulating one held-out metaparameter at a time. Ranking is assessed in terms of Sign-Error (SE):

SE(P e, ICB) = 1
2E(w,w′)∼P e [1− sgn (GE (w′)−GE (w)) · sgn (ICB (w′)− ICB (w))] . (5)

The SE (Eq. 5) is evaluated with respect to different assignments of the metaparameters, w and w′, which
are said to be drawn from a distribution P e induced by environment e, and differ in only one metaparameter
value at a time. Note that in Dziugaite et al. the expectation in Eq. (5) is taken over randomly initialized
finite DNN parameters and SGD mini-batch ordering. Conversely, infinite-ensembles trained by GD are
deterministic. Therefore, the expectation in Eq. (5) is with respect to the choice of metaparameters and
random training sample only.

We include three metaparameters that were not present in the work of Dziugaite et al.: the diagonal
regularization, training time, and activation function. We omit width, learning rate, and batch size,
as they do not apply to our setting. We report the mean SE over all possible interventions to each
metaparameter in Fig. 4. The maximum or “max” sign-error advocated by Dziugaite et al. is discussed in text,
as it was subject to greater noise than mean SE due to the smaller sample size.4 To calculate the mean SE
for the “depth” metaparameter, for example, which has a range of 1 to 5, we evaluate the SE arising from
changing the depth from 1 to 2, again for 1 to 3, and so on for all ten combinations. The SE is then averaged
across the ten “before” and “after” configurations, whereas the max SE refers to the one combination with
the greatest SE, e.g., changing the depth from 4 to 5. We discard samples with a Hoeffding weight less than
0.5 as per Dziugaite et al., indicating that a GE difference is too small relative to the number of train-set and
test-set samples to reliably measure changes in the true error rate (i.e., on the underlying data-generating
process).5 We discard cases with N < 10 for the max SE, whereas we compute a sample-weighted average for
the mean SE based on all cases. Few measurements of the standard GE satisfied the Hoeffding threshold
for FashionMNIST, therefore we added AWGN to the test set to increase the typical GE and number of valid
cases to analyze. We repeat our analysis for standard GE for CIFAR-10 in Fig. A9 and contrast it with
the AWGN case.

The diagonal regularization was the most consistent metaparameter, with zero max SE for all tasks and
datasets. Intervening on the training time consistently led to small mean and max SE, as well as for the
number of train samples for the majority of tasks (Fig. 4). The time metaparameter had a max SE
of 0.45 for the 6/7 FashionMNIST task—consistent with the peak mean SE for task 6/7 in Fig. 4a—and
five tasks had a max SE of zero. For CIFAR-10, max SE w.r.t. time was 0.27, with five tasks having
max SE < 0.02. The max SE for train samples was 0.89 (N = 19) for task 5/6, which was followed by
0.14 (N = 44) for task 4/5. Other tasks either had zero max SE or insufficient data. Note that these CIFAR-10
tasks 4/5 and 5/6 also had adverse performance for the randomization test (Table 2). In summary, the three
metaparameters: diagonal, time, and train samples strongly influence overall correlation between ICB
and GE.

Manipulating the activation function and depth resulted in a greater discrepancy between FashionMNIST
and CIFAR-10. For these metaparameters ICB was considerably more predictive for the former dataset
resulting in a lower SE. For example, for the depth metaparameter the max SE for FashionMNIST was
0.23 followed by 0.06, compared to 1.0 for CIFAR-10. Results for EuroSAT were closer to FashionMNIST
than CIFAR-10 and may be found in Fig. A10.

4We use the term “max SE” rather than “robust SE” from Dziugaite et al. to avoid confusion with the “robust GE”. The
latter is evaluated on a test set with AWGN and is a different concept from the former.

5Recall from the Introduction that we merely operationalized GE as the difference between train-set accuracy and the test-set
accuracy. In contrast, the GE is formally defined as the difference between train-set accuracy and the true accuracy (or error);
test-set accuracy is an approximation for the latter, which we account for with this step.
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5 Discussion

Our results show that the ICB serves as a non-vacuous generalization bound, which we verified in the case of
infinite-width networks. Furthermore, we performed a broader evaluation than is typically considered for
theoretical GE bounds: i) We searched for ICB violations by evaluating ICB throughout training, rather
than at a specific number of epochs or training loss value. ii) We varied the number of training samples
and classification labels, compared to a static train/test split. iii) We considered robust GE in addition to
standard GE. iv) Experiments were performed on five datasets.

ICB was satisfied at around the 95% rate for four of five datasets when GE was expressed in terms of MSE,
or three of five when GE was expressed in terms of accuracy. Best-performing models with at least 70− 80%
test accuracy consistently satisfied ICB for all datasets, which is encouraging, since accurate models are more
likely to be deployed. The SVHN dataset had the lowest ICB satisfaction rate among all cases for the 0–1
loss, however, this may have been impacted by too few training examples. Furthermore, we identified that
the training label randomization test may detect specific tasks with low ICB satisfaction rate; ensuring ICB
yields different results for natural and randomized training labels may greatly improve results. CNNs had
superior performance compared to MLPs. Although the MRF assumption does not appear to be necessary to
derive ICB, the success of CNNs in comparison to MLPs may be related to the MRF assumption and 2D
images having only local correlations, compared to their flattened counterparts used with MLPs (see §A.1).

The ICB was able to successfully predict changes in robust GE when the digonal regularization, training
time, and number of training samples varied. ICB was less successful when the depth and activation function
varied for CIFAR-10, yet performed well for FashionMNIST as well as for EuroSAT. The precise NTK limit we
consider is generally assumed to only hold for shallow models, which may explain some of the failure cases
for the depth metaparameter (Li et al., 2021). It is also worth considering to what extent a generalization
bound ought to be able to rank GEs, given that it is by definition merely an upper bound on the error. For
example, GEs of 1% and 29% are both compatible with a bound of 30%, which would contribute to poor GE
prediction on an absolute scale.

Relevance to deep learning One should use caution before extrapolating our conclusions based on infinite-
width networks to finite-width DNNs. The ability of infinite-width networks to approximate their finite-width
counterparts is reduced with increasing training samples (Lee et al., 2019), regularization (Lee et al., 2020),
and depth (Li et al., 2021). Nevertheless, the infinite-width framework has allowed us to demonstrate the
practical relevance of the ICB for an exciting family of models as a first step. It has been argued that
understanding generalization for shallow kernel learning models is essential to understand generalization
behaviour of deep networks. Kernel learning and DL share the ability to exactly fit their training sets yet
still generalize well, a phenomenon that other bounds fail to explain (Belkin et al., 2018). We leave the study
of ICB for finite-width DNNs to future work, which may require alternative MI estimation techniques.

6 Related Work

Kernel-regression generalization error Canatar et al. (2021b) derived an analytical expression for the
generalization MSE of kernel regression models using a replica method from statistical mechanics. Their
predictions show excellent agreement with the empirical GE of NTK models on MNIST and CIFAR datasets
as a function of the training sample size. Furthermore, their method is sensitive to differences in difficulty
between similar classification tasks, e.g., showing that MNIST “0 vs. 1” digit classification is easier to learn
than “8 vs. 9”. Canatar et al. (2021a) extend the method to predict out-of-distribution GE. An alternative
method is the Leave-One-Out (LOO) error estimator (Lachenbruch, 1967). LOO is generally impractical
for DL due to the computational requirement of training N DNNs on N different training sets. However,
Bachmann et al. (2022) proposed a closed-form LOO estimator based on a kernel regression model trained
on the complete training set once. Their estimator shows excellent agreement with test MSE and accuracy
for a five-layer ReLU NTK model trained on MNIST and CIFAR. While Bachmann et al. averaged results
over five training sets of size 500− 20000, we only draw a single training set of 250− 2000 samples for each
set of metaparameters. Our choice was made to reflect a practical “small data” scenario, where GE has
to be bounded using a modest set of labeled data. As a result, however, our GE and ICB estimates have
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greater variance than those of Bachmann et al. We used the infinite-width DNN limit for convenience and as
a first step to assess the efficacy of ICB; we did not set out to find optimal generalization bounds for kernel
regression. An advantage of ICB is that it only requires access to I(X;Z)—a black-box statistic applicable to
a wide variety of models beyond kernel regression. Therefore, ICB may become increasingly relevant for DLs
using MI estimators with different strengths and assumptions, e.g., with distributional constraints on weight
matrices (Gabrié et al., 2018) or infinite-depth corrections (Li et al., 2021).

Generalization bounds for deep learning Dziugaite & Roy (2017) develop a PAC-Bayes GE bound
and evaluated it on a MNIST binary classification task using the complete training set (Ntrain = 55 k) and a
fully-connected NN with 2-3 layers and ReLU activations. Although their bound was non-vacuous (≈ 20%),
it was several times larger than the error estimated on held-out data (< 1%). A comparison with our work is
difficult, as we did not use finite-width DNNs. We showed that the ICB yields a smaller (≈ 10%) bound from
less than 2000 samples for several classification tasks. Zhou et al. (2019) proposed a PAC-Bayes generalization
bound based on the compressed size of a DNN after pruning and quantization. They obtain a GE bound
of 46% for MNIST and 96− 98% for ImageNet. The measure of compression used by Zhou et al. (2019) is
distinct from input compression in terms of MI here. The bounds of Dziugaite & Roy and Zhou et al. concern
model complexity, whereas ICB is based on data compression by the hidden layers. Both Dziugaite & Roy
and Zhou et al. optimized their bounds for best results, whereas we used standard training procedures.

Generalization bounds from unlabeled data GE bounds or estimates may be obtained without directly
estimating model complexity. Garg et al. (2021) leverage the so-called “early learning” phenomenon,
whereby DNNs fit true labels before noisy labels, to develop a post-hoc GE bound. They validate their bound
on NTK-based wide DNNs, CNNs, and LSTMs. In contrast to our work, the Garg et al. bound requires
additional unlabeled data, that in practice, can be carved out from the training set. They assign random
labels to the carved-out set, and augment the training set with this random data. Their bound is based on
the empirical error computed on both the clean and random set. Empirically, Garg et al. (2021) show that it
may be possible to maintain model accuracy when training on partially randomized labels in some settings
by using weight decay or early stopping. Unfortunately, random labels reduce the task signal-to-noise ratio,
I(X;Y ), and may be challenging to apply with unregularized models that nonetheless generalize well (Zhang
et al., 2017). Jiang et al. (2022) observed that the disagreement of separately trained DNNs on unlabeled
held-out datasets is similar to the disagreement of those models on a labeled held-out set. Their claim follows
an empirical observation that deep ensembles are often well-calibrated, however, this calibration property
may not always hold in important settings (Kirsch & Gal, 2022).

Information compression and generalization The MI I(S;w) between the training data S = (x, y)
supplied as input to a stochastic learning algorithm and the weights w it outputs can also serve to bound GE (Xu
& Raginsky, 2017; Achille & Soatto, 2018). Decomposing I(S;w) into I(w;x) + I(w; y|x), Harutyunyan et al.
(2020) show that reducing the second term—the information w contain about the labels y beyond what can
be inferred from x—is key to avoid unintended memorization. As a result, these works optimize MI bounds,
whereas we seek to measure MI to evaluate a GE bound. Furthermore, Shwartz-Ziv & Alemi (2020)[Appendix
C.7] evaluated I(S;w) for infinite-width networks and found that it tends to infinity as the training time goes
to infinity. Thus, a GE bound based on I(S;w) is vacuous for these networks which nevertheless generalize
well. Saxe et al. (2018) observed a lack of compression in ReLU networks and argued that compression must
be unrelated to generalization in DNNs, since it is known that ReLU networks generalize well. However,
their binning procedure based on Paninski (2003) involves metaparameters that influence entropy and MI
estimation. Other works have studied input compression in linear regression (Chechik et al., 2005) and
finite-width ReLU DNNs using adaptive binning estimators (Chelombiev et al., 2019). We use MI bounds
free from such metaparameters and observe input compression regardless of the nonlinearity type, consistent
with Shwartz-Ziv & Alemi (2020). We are excited about future work on input compression phenomena and
the challenging case of finite-width DNNs.
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7 Conclusion

We assessed the ICB along three performance axes: tightness, percentage of trials satisfying the bound,
and correlation with GE. Empirical results show that input compression serves as a simple and effective
generalization bound, complementing previous theory. Additionally, ICB can help pinpoint interesting failures
of robust generalization that go undetected by standard generalization metrics. An important consequence
of the ICB with respect to NAS is that bigger is not necessarily better, at least in terms of the information
complexity of infinite-width networks. Equally important as the architecture are the metaparameters and
training duration, all of which affect input compression. Consistent with Occam’s razor, less information
complexity—or more input compression—yields more performant models, reducing the upper bound on
generalization error. We conclude that input compression, which is data-centric, is a more effective complexity
metric than model-centric proxies like the number of parameters or depth.

Author Contributions

Angus Galloway devised the study and wrote the first draft in consultation with all co-authors. Anna
Golubeva critically revised the entire manuscript and made considerable contributions to the theoretical
background. Mahmoud Salem provided experiment support with adversarial attacks in the JAX framework,
and characterizing the finite to infinite-width NN correspondence. These experiments informed the final scope
of the study and addressed alternate hypotheses. Mihai Nica, Yani Ioannou, and Graham W. Taylor provided
technical advice and revised the manuscript. All authors consented to submission of this work to TMLR.

Acknowledgments

This research was developed with funding from the Defense Advanced Research Projects Agency (DARPA).
The views, opinions and/or findings expressed are those of the author and should not be interpreted as
representing the official views or policies of the Department of Defense or the U.S. Government. Graham
W. Taylor and Angus Galloway also acknowledge support from CIFAR and the Canada Foundation for
Innovation. Angus Galloway also acknowledges supervision by Medhat Moussa. Resources used in preparing
this research were provided, in part, by the Province of Ontario, the Government of Canada through
CIFAR, and companies sponsoring the Vector Institute: http://www.vectorinstitute.ai/#partners.
Anna Golubeva is supported by the National Science Foundation under Cooperative Agreement PHY-2019786
(The NSF AI Institute for Artificial Intelligence and Fundamental Interactions, http://iaifi.org/). Mihai
Nica is supported by an NSERC Discovery Grant.

References
Alessandro Achille and Stefano Soatto. Emergence of Invariance and Disentanglement in Deep Representations.
Journal of Machine Learning Research, 19(50):1–34, 2018. 12

Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated Gradients Give a False Sense of Security: Circum-
venting Defenses to Adversarial Examples. In International Conference on Machine Learning, pp. 274–283, 2018.
6

Gregor Bachmann, Thomas Hofmann, and Aurelien Lucchi. Generalization Through the Lens of Leave-One-Out Error.
In International Conference on Learning Representations, 2022. 11, 12

Mikhail Belkin, Siyuan Ma, and Soumik Mandal. To Understand Deep Learning We Need to Understand Kernel
Learning. In Proceedings of the 35th International Conference on Machine Learning, pp. 541–549. PMLR, 2018. 2,
11

Mikhail Belkin, Daniel Hsu, Siyuan Ma, and Soumik Mandal. Reconciling modern machine-learning practice and the
classical bias–variance trade-off. Proceedings of the National Academy of Sciences, 116(32):15849–15854, 2019. doi:
10.1073/pnas.1903070116. 2

Battista Biggio and Fabio Roli. Wild patterns: Ten years after the rise of adversarial machine learning. In Proceedings of
the 2018 ACM SIGSAC Conference on Computer and Communications Security, CCS ’18, pp. 2154–2156, New York,
NY, USA, 2018. Association for Computing Machinery. ISBN 978-1-4503-5693-0. doi: 10.1145/3243734.3264418. 2

13

http://www.vectorinstitute.ai/#partners
http://iaifi.org/


Published in Transactions on Machine Learning Research (12/2022)

Abdulkadir Canatar, Blake Bordelon, and Cengiz Pehlevan. Out-of-distribution generalization in kernel regression. In
Advances in Neural Information Processing Systems, volume 34, pp. 12600–12612. Curran Associates, Inc., 2021a.
11

Abdulkadir Canatar, Blake Bordelon, and Cengiz Pehlevan. Spectral Bias and Task-Model Alignment Explain
Generalization in Kernel Regression and Infinitely Wide Neural Networks. Nature Communications, 12(1):2914,
2021b. ISSN 2041-1723. doi: 10.1038/s41467-021-23103-1. 11

Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel, Jonas Rauber, Dimitris Tsipras, Ian Goodfellow,
Aleksander Madry, and Alexey Kurakin. On evaluating adversarial robustness. arXiv preprint arXiv:1902.06705,
2019. 6

Gal Chechik, Amir Globerson, Naftali Tishby, and Yair Weiss. Information Bottleneck for Gaussian Variables. Journal
of Machine Learning Research, 6(Jan):165–188, 2005. 12

Ivan Chelombiev, Conor Houghton, and Cian O’Donnell. Adaptive Estimators Show Information Compression in
Deep Neural Networks. In International Conference on Learning Representations, 2019. 12

Thomas M Cover and Joy A Thomas. Elements of Information Theory. John Wiley & Sons, Inc., New York, 1991. 3

Gintare Karolina Dziugaite and Daniel M. Roy. Computing Nonvacuous Generalization Bounds for Deep (Stochastic)
Neural Networks with Many More Parameters than Training Data. In Uncertainty in Artificial Intelligence (UAI),
2017. 5, 12

Gintare Karolina Dziugaite, Alexandre Drouin, Brady Neal, Nitarshan Rajkumar, Ethan Caballero, Linbo Wang,
Ioannis Mitliagkas, and Daniel M Roy. In search of robust measures of generalization. In Advances in Neural
Information Processing Systems, volume 33, pp. 11723–11733. Curran Associates, Inc., 2020. 10

Alhussein Fawzi, Seyed-Mohsen Moosavi-Dezfooli, and Pascal Frossard. Robustness of classifiers: From adversarial to
random noise. In Advances in Neural Information Processing Systems, volume 29, pp. 1632–1640. Curran Associates,
Inc., 2016. 5

Marylou Gabrié, Andre Manoel, Clément Luneau, jean barbier, Nicolas Macris, Florent Krzakala, and Lenka Zdeborová.
Entropy and mutual information in models of deep neural networks. In Advances in Neural Information Processing
Systems, volume 31, pp. 1821–1831. Curran Associates, Inc., 2018. 12

Saurabh Garg, Sivaraman Balakrishnan, Zico Kolter, and Zachary Lipton. RATT: Leveraging unlabeled data to
guarantee generalization. In Proceedings of the 38th International Conference on Machine Learning, volume 139 of
Proceedings of Machine Learning Research, pp. 3598–3609. PMLR, 2021. 12

Justin Gilmer, Nicolas Ford, Nicholas Carlini, and Ekin Cubuk. Adversarial Examples Are a Natural Consequence
of Test Error in Noise. In Proceedings of the 36th International Conference on Machine Learning, pp. 2280–2289.
PMLR, 2019. 2, 5, 6

Ziv Goldfeld, Ewout Van Den Berg, Kristjan Greenewald, Igor Melnyk, Nam Nguyen, Brian Kingsbury, and Yury
Polyanskiy. Estimating Information Flow in Deep Neural Networks. In Proceedings of the 36th International
Conference on Machine Learning, volume 97 of Proceedings of Machine Learning Research, pp. 2299–2308. PMLR,
2019. 2

Ian. J. Goodfellow, Jonathon. Shlens, and Christian. Szegedy. Explaining and Harnessing Adversarial Examples. In
International Conference on Learning Representations, 2015. 2

Hrayr Harutyunyan, Kyle Reing, Greg Ver Steeg, and Aram Galstyan. Improving generalization by controlling
label-noise information in neural network weights. In Proceedings of the 37th International Conference on Machine
Learning, volume 119 of Proceedings of Machine Learning Research, pp. 4071–4081. PMLR, 2020. 12

Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Introducing EuroSAT: A novel dataset and
deep learning benchmark for land use and land cover classification. In IGARSS 2018-2018 IEEE International
Geoscience and Remote Sensing Symposium, pp. 204–207, 2018. 4

Patrick Helber, Benjamin Bischke, Andreas Dengel, and Damian Borth. Eurosat: A novel dataset and deep learning
benchmark for land use and land cover classification. IEEE Journal of Selected Topics in Applied Earth Observations
and Remote Sensing, 2019. 4

14



Published in Transactions on Machine Learning Research (12/2022)

Arthur Jacot, Franck Gabriel, and Clement Hongler. Neural tangent kernel: Convergence and generalization in neural
networks. In Advances in Neural Information Processing Systems, volume 31, pp. 8571–8580. Curran Associates,
Inc., 2018. 3

Yiding Jiang*, Behnam Neyshabur*, Hossein Mobahi, Dilip Krishnan, and Samy Bengio. Fantastic Generalization
Measures and Where to Find Them. In International Conference on Learning Representations, 2019. 4

Yiding Jiang, Parth Natekar, Manik Sharma, Sumukh K. Aithal, Dhruva Kashyap, Natarajan Subramanyam, Carlos
Lassance, Daniel M. Roy, Gintare Karolina Dziugaite, Suriya Gunasekar, Isabelle Guyon, Pierre Foret, Scott Yak,
Hossein Mobahi, Behnam Neyshabur, and Samy Bengio. Methods and Analysis of The First Competition in
Predicting Generalization of Deep Learning. In Proceedings of the NeurIPS 2020 Competition and Demonstration
Track, pp. 170–190. PMLR, 2021. 1

Yiding Jiang, Vaishnavh Nagarajan, Christina Baek, and J Zico Kolter. Assessing generalization of SGD via
disagreement. In International Conference on Learning Representations, 2022. 12

Andreas Kirsch and Yarin Gal. A Note on “Assessing Generalization of SGD via Disagreement”. Transactions on
Machine Learning Research, 2022. 12

Alex Krizhevsky. Learning multiple layers of features from tiny images. Technical report, University of Toronto, 2009.
4

P. A. Lachenbruch. An almost unbiased method of obtaining confidence intervals for the probability of misclassification
in discriminant analysis. Biometrics, 23(4):639–645, 1967. ISSN 0006-341X. 11

Yann LeCun and Corinna Cortes. The MNIST Database of Handwritten Digits. http://yann.lecun.com/exdb/mnist/,
1998. 4

Jaehoon Lee, Lechao Xiao, Samuel Schoenholz, Yasaman Bahri, Roman Novak, Jascha Sohl-Dickstein, and Jeffrey
Pennington. Wide neural networks of any depth evolve as linear models under gradient descent. In Advances in
Neural Information Processing Systems, volume 32, pp. 8570–8581. Curran Associates, Inc., 2019. 2, 5, 11

Jaehoon Lee, Samuel Schoenholz, Jeffrey Pennington, Ben Adlam, Lechao Xiao, Roman Novak, and Jascha Sohl-
Dickstein. Finite versus infinite neural networks: An empirical study. In Advances in Neural Information Processing
Systems, volume 33, pp. 15156–15172. Curran Associates, Inc., 2020. 4, 11

Mufan Li, Mihai Nica, and Dan Roy. The future is log-Gaussian: ResNets and their infinite-depth-and-width limit at
initialization. In Advances in Neural Information Processing Systems, volume 34, pp. 7852–7864. Curran Associates,
Inc., 2021. 11, 12

Kevin P. Murphy. Machine Learning: A Probabilistic Perspective. MIT Press, 2012. 4, 17

Preetum Nakkiran, Gal Kaplun, Yamini Bansal, Tristan Yang, Boaz Barak, and Ilya Sutskever. Deep Double Descent:
Where Bigger Models and More Data Hurt. arXiv preprint arXiv.1912.02292, 2019. 19

Yuval Netzer, Tao Wang, Adam Coates, Alessandro Bissacco, Bo Wu, and Andrew Y Ng. Reading Digits in Natural
Images with Unsupervised Feature Learning. In NIPS Workshop on Deep Learning and Unsupervised Feature
Learning, 2011. 4

Behnam Neyshabur, Ryota Tomioka, and Nathan Srebro. Norm-Based Capacity Control in Neural Networks. In
Proceedings of The 28th Conference on Learning Theory, 2015. 2

Roman Novak, Lechao Xiao, Jiri Hron, Jaehoon Lee, Alexander A. Alemi, Jascha Sohl-Dickstein, and Samuel S.
Schoenholz. Neural tangents: Fast and easy infinite neural networks in python. In International Conference on
Learning Representations, 2020. 5

Liam Paninski. Estimation of Entropy and Mutual Information. In Neural Computation, volume 15, pp. 1191–1253.
MIT Press, 2003. 12

Ben Poole, Sherjil Ozair, Aaron Van Den Oord, Alex Alemi, and George Tucker. On Variational Bounds of Mutual
Information. In Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceedings of
Machine Learning Research, pp. 5171–5180. PMLR, 2019. 3

15



Published in Transactions on Machine Learning Research (12/2022)

Andrew Michael Saxe, Yamini Bansal, Joel Dapello, Madhu Advani, Artemy Kolchinsky, Brendan Daniel Tracey,
and David Daniel Cox. On the Information Bottleneck Theory of Deep Learning. In International Conference on
Learning Representations, 2018. 12

Shai Shalev-Shwartz and Shai Ben-David. Understanding Machine Learning: From Theory to Algorithms. Cambridge
university press, 2014. 3, 19

Ravid Shwartz-Ziv. Information Flow in Deep Neural Networks. PhD thesis, The Hebrew University of Jerusalem,
2021. 2

Ravid Shwartz-Ziv and Alexander A Alemi. Information in infinite ensembles of infinitely-wide neural networks. In
Proceedings of the 2nd Symposium on Advances in Approximate Bayesian Inference, volume 118 of Proceedings of
Machine Learning Research, pp. 1–17. PMLR, 2020. 3, 12

Ravid Shwartz-Ziv, Amichai Painsky, and Naftali Tishby. Representation Compression and Generalization in Deep
Neural Networks. OpenReview, 2019. 2, 3

Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow, and Rob Fergus.
Intriguing properties of neural networks. In International Conference on Learning Representations, 2014. 2

Naftali Tishby. Information Theory of Deep Learning, 2017. URL https://youtu.be/bLqJHjXihK8?t=1051. 2

Dimitris Tsipras, Shibani Santurkar, Logan Engstrom, Alexander Turner, and Aleksander Madry. Robustness May Be
at Odds with Accuracy. In International Conference on Learning Representations, 2019. 20

Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation Learning with Contrastive Predictive Coding.
arXiv preprint arXiv.1807.03748, 2018. 3

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: A novel image dataset for benchmarking machine
learning algorithms, 2017. 4

Aolin Xu and Maxim Raginsky. Information-theoretic analysis of generalization capability of learning algorithms. In
Advances in Neural Information Processing Systems, volume 30. Curran Associates, Inc., 2017. 12

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep learning
requires rethinking generalization. In International Conference on Learning Representations, 2017. 2, 7, 12

Chiyuan Zhang, Samy Bengio, Moritz Hardt, Benjamin Recht, and Oriol Vinyals. Understanding deep learning
(still) requires rethinking generalization. Communications of the ACM, 64(3):107–115, 2021. ISSN 0001-0782. doi:
10.1145/3446776. 2, 7

Wenda Zhou, Victor Veitch, Morgane Austern, Ryan P. Adams, and Peter Orbanz. Non-vacuous Generalization
Bounds at the ImageNet Scale: A PAC-Bayesian Compression Approach. In International Conference on Learning
Representations, 2019. 2, 12

16

https://youtu.be/bLqJHjXihK8?t=1051


Published in Transactions on Machine Learning Research (12/2022)

Figure 5: We plot I(X;Z) upper (2) and lower (6) bounds corresponding to the illustrative EuroSAT example
(Figure 1). Increasing the regularization to λ = 0.5 in b) and λ = 1.0 in c) reduces MI below log(Ntrn).
Samples to the right of the vertical line in a) where IUB crosses log(Ntrn) are discarded for the main analyses.
NB: We use natural units (“Nats” or “Shannons”) for I(X;Z) here, but we convert to bits when evaluating
the ICB.

A Appendix

A.1 Assumptions of input compression bound

It is assumed in the construction of the ICB that X is a d-dimensional random variable that obeys an
ergodic MRF probability distribution, asymptotically in d. A MRF is an undirected graphical model, used
to model data distributions with a particular conditional independency structure, which is commonly used
for spatial data, including images (see (Murphy, 2012)[Ch. 19] for an introduction). Mathematically, this
means that p(x) factorizes into a product of terms which represent the potentials for each clique on the
underlying graph. In terms of correlations, this means that each pixel in a 2D image is strongly correlated
with its immediate neighbors, but not with pixels that are further away. The “ergodic” part is essential
for the derivation of the ICB: An ergodic MRF does not “get stuck” in any part of the state space; in
other words, there is a nonzero probability for every possible state to be reached. Ultimately, this is the
necessary assumption to invoke the Asymptotic Equipartition Property (AEP), which in turn allows us to
invoke typicality. Defining the typical set is the crux of the ICB derivation, because it enables us to quantify
the hypothesis space cardinality in terms of entropy. From here, the rest follows from information-theory
fundamentals.

A.2 Lower bound on MI

We may lower bound I(X;Z) using a bound of similar form as equation 2 based on a batch of N samples:

I(X;Z) ≥ E

[
1
N

N∑
i=1

log p(zi|xi)
1
N

∑
j p(zi|xj)

]
= ILB , (6)

where the expectation is taken over N independent samples from the joint distribution
∏

j p(xj , zj). The
main difference between this bound and equation 6 is the inclusion of p(zi|xi) in the denominator.

A.3 Illustrative example and filtering MI

We empirically verified that equation 6 and equation 2 yield similar results when IUB < log(Ntrn) (Fig. A5).
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Figure 6: ICB is plotted versus GE (0–1 loss) for FashionMNIST, SVHN, CIFAR-10, and EuroSAT datasets.
The ICB satisfaction rate is annotated in the top left corner of each plot with format “ICB % (N)”. Each
binary classification task is assigned a unique colour to highlight inter-task differences in ICB satisfaction
rate. See Figure 2 of §4.1 for the corresponding Figure with GE expressed using square loss. NB: Results
for MNIST omitted from Figure as they were similar to FashionMNIST.

Table 5: CNNs have consistently smaller average GE than MLPs for SVHN and CIFAR-10, as they do not fit
the training set to the same extent as MLPs. Note that these average accuracies include models trained for
both short and long periods of time, therefore a low test accuracy here does not imply failure of learning.

Dataset Arch. ICB Sat (Acc./MSE) (%) Train (%) Test (%) GE (%)

SVHN
CNN 67.6%/95.7% (3914) 74.78 64.18 10.60
MLP 49.5%/86.2% (3980) 79.82 67.07 12.74

CIFAR-10
CNN 84.9%/80.5% (4153) 85.84 76.12 9.72
MLP 73.8%/68.0% (4318) 88.13 76.70 11.43
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Figure 7: The ICB satisfaction rate is plotted versus the number of training samples for SVHN and CIFAR-10
datasets. The primary vertical axis bounds GE using the 0–1 loss (GE=Acc), whereas the secondary vertical
axis bounds GE using the square loss (GE=MSE). Here, we only consider the first three tasks for each dataset,
i.e., “0 vs 1”, “1 vs. 2”, and “2 vs. 3” as an approximation for all nine tasks. Other datasets FashionMNIST
and EuroSAT were excluded as they consistently satisfied ICB for all train-set sizes considered here.

A.4 Bounding generalization error

Loss function We measured GE using the 0–1 and square loss (see Fig. A6 for 0–1 loss). This change
results in no difference in the overall ICB satisfaction rate for FashionMNIST, a decrease for SVHN from 95.7%
to 67.6%, a small increase for CIFAR-10 from to 80.5% to 84.9% as well as for EuroSAT from 93.6% to 95.7%.

Train-set size The number of training samples may have affected the ICB satisfaction rate for some datasets
(Fig. A7). For this experiment, we included small training sets of size Ntrn ∈ {250, 500, 750} to observe
a broader relationship between Ntrn and the ICB satisfaction rate. For SVHN, the ICB satisfaction rate
appears to be still improving at N = 1500 despite a dip at N = 1000. We ran additional experiments with
Ntrn ∈ {950, 1050, 1150} to assess the width of this dip for SVHN. The dip at N = 1000 is not necessarily
alarming as other studies have observed that more training data can sometimes hurt model performance, e.g.,
see Nakkiran et al. (2019). The ICB satisfaction rate for SVHN may therefore benefit from additional training
data given the overall positive trend. Conversely, there is no discernible trend for CIFAR-10.

Task labels There were considerable inter-task differences in ICB satisfaction rate (Table A6). The “Overall”
row of Table A6 corresponds to the ICB satisfaction rates presented in Table 1, as well as in the top left
corners of Fig. 2 and Fig. A6 for the square and 0–1 loss respectively.

Confidence The confidence parameter δ in the PAC framework accounts for a small probability that the
training set received by a learning algorithm is misleading, i.e., the samples are not representative of the true
data-generating distribution, or they do not reflect all relevant details of the distribution (Shalev-Shwartz &
Ben-David, 2014). It is natural to wonder how the choice of δ affects the ICB satisfaction rate. Recall from
§4.1 that we refer to the percentage of tuples (ICB, GE) for which GE < ICB as the “ICB satisfaction rate”,
which should roughly equal 1− δ expressed as a percentage, e.g., δ = 0.05 equals 95% confidence. Decreasing
δ to 0.01 from its default value of 0.05 increased the ICB satisfaction rate by 6.2% for SVHN on the 0–1 loss,
compared to an expected ≈ 4% difference (99%− 95%). Increasing δ to 0.20 decreased the ICB satisfaction
rate by 11.2% compared to an anticipated difference of ≈ 19% (95%− 80%). Results were less sensitive to δ
for CIFAR-10 and EuroSAT (≈ 1% difference for 99%− 95%), and independent from δ for FashionMNIST as
the compression term alone (i.e. from the numerator of equation 4) sufficed to bound the small GEs for this
dataset.
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Table 6: ICB satisfaction rates broken down by task for three datasets. MNIST and FashionMNIST are excluded
for brevity as they were always at 100%. Columns “Acc.” and “MSE” indicate whether GE is quantified in
terms of classification accuracy (0–1 loss) or MSE (square loss) respectively. The “N” column indicates the
number of valid experiments.

SVHN CNN CIFAR CNN EuroSAT MLP
Task Acc. MSE N Acc. MSE N Acc. MSE N
0 vs 1 87.7% 99.3% 431 93.3% 86.6% 461 100.0% 100.0% 1012
1 vs 2 60.2% 93.6% 435 95.7% 88.7% 462 100.0% 100.0% 961
2 vs 3 51.8% 94.1% 440 69.9% 69.2% 468 82.2% 82.2% 1123
3 vs 4 78.7% 97.2% 431 74.5% 71.0% 459 97.9% 86.0% 1175
4 vs 5 94.2% 97.0% 434 71.3% 71.3% 460 100.0% 100.0% 1151
5 vs 6 30.0% 88.6% 440 74.8% 72.8% 460 100.0% 100.0% 1066
6 vs 7 85.7% 97.0% 433 91.6% 83.2% 463 83.5% 78.3% 1154
7 vs 8 84.4% 97.7% 430 100.0% 94.1% 461 100.0% 94.9% 1135
8 vs 9 37.1% 92.7% 440 93.5% 87.4% 459 100.0% 100.0% 860
Overall 67.8% 95.2% 3914 84.9% 80.5% 4153 96.0% 93.5% 9637

Figure 8: Train-set accuracy is plotted versus clean test accuracy (top) and robust test accuracy (bottom)
using AWGN. The marker size indicates the ICB value, and each binary classification task is assigned a
unique colour.

A.5 Vacuous or non-vacuous?

We plotted train-set accuracy versus test accuracy on the “clean” and “noisy” sets, indicating ICB values by
the marker size. Large ICB values tend to occur for very high training accuracy and coincide with poor robust
accuracy (Fig. A8). Since ICB increased considerably for the models with highest clean test accuracy, we
selected models with greatest robust accuracy in §4.3. These results are consistent with previously observed
accuracy versus robustness trade-offs (Tsipras et al., 2019).

B Effect of metaparameters on theoretical bound

We repeat the analysis from §4.4 for the CIFAR-10 dataset in Fig. A9, this time comparing SE results when GE
is measured using the standard test set versus a test set with AWGN. Evaluating GE with a noisy test set
yields greater a sample size after filtering out measurements where GE is too small to reliably measure a
change in a classifiers true error. The SE values for the activation and diagonal metaparameters are also
slightly larger for the standard GE, implying that ICB is better correlated with robust GE than standard GE
in our experiments for CIFAR-10. A detailed worked example showing how a column is computed in these
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(a) CIFAR-10, Standard GE
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(b) CIFAR-10, AWGN GE

Figure 9: Evaluating GE on a noisy test set yields greater sample size after accounting for Monte
Carlo variance in GE estimates, and slightly smaller sign-errors. Plots show GE prediction SEs
(where lower is better) for six different metaparameter interventions on nine binary classification tasks
{0 vs. 1, 1 vs. 2, . . . , 8 vs. 9} for CIFAR-10. Numbers above the SE for even-numbered tasks indicate the
number of samples N comprising the respective SE measurement. See Table A7 for a worked example showing
how a column is computed in these plots.
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Figure 10: Evaluating SE for EuroSAT with AWGN test set. Other details similar to those described
in captions for Fig 4 and Fig A9.

plots is provided in Table A7. Smaller SEs are observed on average for the EuroSAT dataset than for CIFAR-10,
but with greater inter-task variance (Fig. A10). The SE is consistently near zero for the time and diagonal
metaparameters across all datasets.
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Table 7: Detailed GE prediction SE for all combinations of the depth metaparameter for the CIFAR AWGN
8 versus 9 task. The first two columns (“Raw”) comprise all SEs with only basic filtering for IUB(X;Z) ≤
log(train samples). The next set of (“Filtered”) columns additionally accounts for Monte Carlo variance of
empirical averages and discards samples with a small difference in GE relative to the number of train and
test samples (see text for details). The final “filtered” weighted average SE of 61.5% (N = 278) appears in
Fig. A9b (series 8/9).

Raw Filtered Depth
N Sign-error N Sign-error Weighting Before After
94 46.8% 34 35.3% 12 1 2
93 49.5% 42 45.2% 19 1 3
91 51.6% 55 49.1% 27 1 4
87 54.0% 60 51.7% 31 1 5
93 49.5% 4 100.0% 4 2 3
91 62.6% 22 100.0% 22 2 4
87 83.9% 32 87.5% 28 2 5
91 73.6% 1 100.0% 1 3 4
87 90.8% 26 96.2% 25 3 5
84 95.2% 2 100.0% 2 4 5

278 61.5%
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Figure 11: ICB (bottom) ranks GEs better than I(X;Z) alone (top) for different training set
sizes. Shown are 750 fully-connected NTK ReLU models trained (t =∞) on a CIFAR-10 binary classification
task (classes 2 and 5) using three different training set sizes of N = {500, 1000, 2000} and a test set with
N = 2000. Model depth is indicated by the colour intensity for each series, where the darkest shade indicates
the maximum depth of five (5) layers. Three GE types are evaluated: Clean (standard), AWGN (adversarial),
and Fast Gradient-Sign Method (FGSM) (adversarial) are plotted with respect to I(X;Z) (top row) and ICB
(bottom row). Plotting GE versus the ICB better aligns results for different sized training sets (N) compared
to I(X;Z), and yields a better ranking in terms of Kendall-τ .

B.1 Advantage of ICB versus MI

To gain further insight into ICB, we examine GEs for a specific CIFAR-10 binary classification task (classes
2 and 5) using three different training set sizes. Plotting GEs with respect to I(X;Z) alone yields a poor
overall ranking, whereas ICB effectively aligns trials with different training set sizes (Figure 11).
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