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Abstract
Learned denoisers play a fundamental role in vari-
ous signal generation (e.g., diffusion models) and
reconstruction (e.g., compressed sensing) archi-
tectures, whose success derives from their ability
to leverage low-dimensional structure in data. Ex-
isting denoising methods, however, either rely on
local approximations that require a linear scan
of the entire dataset or treat denoising as generic
function approximation problems, sacrificing effi-
ciency and interpretability. We consider the prob-
lem of efficiently denoising a new noisy data point
sampled from an unknown d-dimensional mani-
foldM ∈ RD, using only noisy samples. This
work proposes a framework for test-time efficient
manifold denoising, by framing the concept of
“learning-to-denoise” as “learning-to-optimize”.
We have two technical innovations: (i) online
learning methods which learn to optimize over the
manifold of clean signals using only noisy data,
effectively “growing” an optimizer one sample at
a time. (ii) mixed-order methods which guarantee
that the learned optimizers achieve global opti-
mality, ensuring both efficiency and near-optimal
denoising performance. We corroborate these
claims with theoretical analyses of both the com-
plexity and denoising performance of mixed-order
traversal. Our experiments on scientific manifolds
demonstrate significantly improved complexity-
performance tradeoffs compared to nearest neigh-
bor search, which underpins existing provable
denoising approaches based on exhaustive search.
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1. Introduction
Denoising is a core task in signal and image processing.
Denoisers also play a fundamental role in state-of-the-art
approaches to signal generation and reconstruction. Dif-
fusion models generate intricate images from pure noise,
via a sequence of denoising steps; learned compressed sens-
ing methods reconstruct accurate medical and scientific im-
ages from incomplete, indirect measurements, again via a
sequence of denoising steps. While these iterative proce-
dures produce high-quality results, they are computationally
costly: a sophisticated learned denoiser needs to be applied
repeatedly to produce a single output. The test-time cost
of denoising is a major bottleneck for both high-resolution
image generation and real-time image reconstruction.

Accurate denoising is critical, because the denoiser encodes
prior knowledge about the set of images of interest (natural,
medical, scientific, etc.). These images reside near low-
dimensional subsets of the image space, which are often
conceptualized as low-dimensional manifolds; learning to
denoise is tantamount to learning these manifolds.

In this paper, we study a model manifold denoising problem,
in which the goal is to learn to denoise data lying near a
d-dimenisonal submanifoldM of a high-dimensional space
RD. As we will review below, there are extensive literatures
on learning to denoise, and learning manifold models from
data. However, there is relatively little work on provably
learning test-time efficient denoisers. Existing methods with
provable good manifold denoising performance involve lin-
early scanning large datasets. As a baseline, nearest neigh-
bor search across a minimal covering set has worst case
complexity at least O(Decd), where ecd is the size of the
dataset required to cover the d-dimensional manifold, and D
is the cost of computing distance in the ambient dimension.
On the other hand, more practical neural network models
currently lack guarantees of performance and efficiency.

We bridge this gap, developing and analyzing a family of
manifold denoisers that are (i) test-time efficient, (ii) accu-
rate, and (iii) trainable. Our main idea is to cast the problem
of denoising a new, noisy test sample x as an optimization
problem over the a-priori unknown Riemannian manifold
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M. This enables us to draw on tools from Riemannian
optimization, to develop methods which converge to a small
neighborhood of the ground truth – a significant efficiency
gain vis-a-vis exhaustive scan. The code for our framework
and experiments is available at https://github.com/
shiyu-w/Manifold_Traversal_Paper.

One challenge stems from the unknown nature of the mani-
fold and observation of only noisy samples. To apply ideas
from Riemmanian Optimization, we need an accurate ap-
proximation of the manifold. Our framework addresses
this by learning the optimizer directly from noisy data via
an online algorithm. The method uses the manifold’s low
dimensional structure and learns local linear models to facil-
itate movement in the tangent direction. Another challenge
is that optimization methods converge to critical points, in-
cluding suboptimal local minimizers. To address this, we
build tunnels (Figure 4) to allow escape from each local
minimizer. When stuck at a suboptimal local minimizer, we
select the tunnel which would bring us closer to the target
point, an idea reminiscent of graph-based nearest neighbor
search (Malkov & Yashunin, 2018).

Our method, with high probability, achieves near optimal
denoising error ∥x̂− x♮∥ ≲ κσ

√
d with test-time computa-

tional cost O
(
C(M, ϵ1, δ)(Dd+ ecdd) +D × $ηc′τM(M)

)
,

where $ηr(M) is a novel complexity measure which quan-
tifies the cost of escaping local minimizers, C(M, ϵ1, δ)
depends on the diameter and curvature ofM, the step size δ
and stopping tolerance ϵ1, and c, c′ are numerical constants.

2. Relationship to the Literature
Denoising has a long history in signal processing and ma-
chine learning, evolving from early statistical techniques to
modern deep learning methods. Traditional denoising tech-
niques leverage structural assumptions about the clean sig-
nal x♮. For smooth signals, Fourier-based methods suppress
high-frequency noise (Wiener, 1949). Sparsity assumptions
have given rise to wavelet shrinkage and dictionary learning
techniques (Donoho, 1995; Elad & Aharon, 2006). In im-
ages with self-similarity, methods such as nonlocal means
and BM3D leverage repetitive patterns to enhance denoising
performance (Buades et al., 2005; Dabov et al., 2007). Low-
dimensional subspace methods, e.g.,principal component
analysis and the Karhunen–Loève transform, approximate
signals using fewer basis components to filter out noise
(Does et al., 2019; Aysin et al., 1998).

Recent developments in signal reconstruction and genera-
tion have placed denoisers in a more central role: an accurate
denoiser serves as an implicit model for clean signals. The
plug-and-play framework leverages denoisers as implicit
priors within iterative optimization, enabling flexible and
efficient reconstruction across tasks like deblurring, super-

resolution, and inpainting (Venkatakrishnan et al., 2013;
Zhang et al., 2021). A high-quality denoiser not only re-
moves noise but also encodes structural information about
the data, making it a powerful tool for complex inverse
problems. Recently, diffusion models have demonstrated
that iterative denoising can effectively model complex data
distributions, emerging as a powerful generative modeling
technique (Ho et al., 2020; Song & Ermon, 2019).

With the advance of deep learning, generic ML architectures
such as FCNNs, CNNs (Ilesanmi & Ilesanmi, 2021), trans-
formers (Yao et al., 2022), or the U-Net (Fan et al., 2022)
have demonstrated strong denoising capabilities by learning
to approximate denoising functions, a concept known as
learning-to-denoise. Their effectiveness largely stems from
their ability to capture underlying low-dimensional struc-
tures in data—an idea explicitly leveraged in autoencoder-
based methods (Vincent et al., 2008). However, these mod-
els do not directly incorporate the low-dimensional structure
of the data, leading to considerable inefficiency in com-
putation and scalability. Furthermore, as neural networks
function are black-box models, they often lack theoretical
guarantees or clear interpretations.

Given that high-dimensional data often reside on or near a
lower-dimensional submanifold (Tenenbaum et al., 2000;
Fefferman et al., 2016), incorporating manifold structure
into denoising tasks — so-called manifold denoising (Hein
& Maier, 2006) — has emerged as a rapidly growing area
of interest. In the theoretical literature on manifold estima-
tion and denoising (Genovese et al., 2012), the predominant
methods are based on local approximation (Fefferman et al.,
2020; Yao et al., 2023), and while they offer near-optimal
theoretical estimation and denoising guarantees, their test-
time efficiency suffers — each new test sample requires a
linear scan of the entire dataset. Likewise, many empiri-
cally effective methods (e.g., (Hein & Maier, 2006; Gong
et al., 2010)) for manifold denoising rely on nearest neigh-
bor searches, resulting in high test-time cost.

In this work, we develop test-time efficient denoisers using
ideas from Riemannian optimization (Absil et al., 2008;
Sato, 2021). Standard approaches in this area requireM to
be known a-priori. Several recent works (Sober et al., 2020;
Sober & Levin, 2020; Shustin et al., 2022) develop manifold
optimizers for unknownM, using local affine approxima-
tion (via moving least squares). While this approach is
inspiring, it encounters the same test-time efficiency issues
as the above manifold denoisers, since these approximations
are formed on-the-fly by linearly scanning a large dataset.

We develop test-time efficient denoisers by learning Rieman-
nian optimizers over a particular geometric graph, which
approximatesM. We draw inspiration from graph-based
nearest neighbor search (Malkov & Yashunin, 2018), while
leveraging the low dimensionality of M to avoid costly
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Unknown ManifoldM

x♮

Noisy Training Data x1, . . . ,xN

x

Noisy Test Sample

Figure 1: Problem Setup. x1 = x1,♮ + z1, . . . ,xN =
xN,♮ + zN are noisy traning samples from an unknown
manifoldM⊂ RD. x = x♮ + z is the noisy test sample.

ambient-space distance calculations.

3. Problem Formulation
Our goal is to learn to denoise data sampled from a d-
dimensional submanifoldM of RD. We observe iid training
samples x1, . . . ,xN ∈ RD generated as

xi
training sample

= xi,♮
clean signal

+ zi,
noise

(3.1)

with signal xi,♮ ∼ µ♮, a distribution supported onM, and
noise zi ∼iid N (0, σ2), independent of the signal. Figure 1
illustrates this setup. Our goal is to produce f : RD → RD

such that for new samples x = x♮ + z from the same
distribution, f(x♮ + z) ≈ x♮, i.e., f denoises x. We seek f
satisfying the following properties:

[D1] Provably Accurate Denoising: near-optimal denois-
ing performance E∥f(x)−x♮∥22 ≲ dσ2, with d the intrinsic
dimension ofM and σ the noise standard deviation.

[D2] Fast Evaluation at Test Time: f can be applied to
new samples with computational cost C(M) · (D + ecd)d,
where Dd is the cost of projecting from RD to Rd, and ecdd
is the cost of searching a d-dimensional manifold.

[D3] Data-Driven Learning: f can be learned using only
noisy training samples.

Below, we introduce a trainable denoising method based on
manifold optimization, which achieves [D1]-[D3].

4. Denoising and Manifold Optimization
Since the observed signal x is a noisy version of some signal
x♮ on the manifoldM, one natural approach to denoising
is to project x ontoM, by solving

min
q∈M

φx(q) ≡ 1
2∥q − x∥22. (4.1)

the solution x̂ to this problem can be interpreted proba-
bilistically as a maximum likelihood estimate of x♮ when
the underlying manifold has a uniform distribution; it also
accurately approximates the minimum mean squared error

(MMSE) denoiser when σ is small.1 The projection problem
(4.1) can be interpreted as a manifold optimization problem
– we seek to minimize the function φx over a smooth Rie-
mannian submanifoldM of RD.

x

x♮

Exhaustive Covering
(C/ε)d points for an ε-accurate solution

Optimization Trajectory
C log(1/ε) steps for an ε-accurate solution

Figure 2: Dimension scaling advantage of optimization for
searching Riemannian manifolds. Brute force search (the
core of SOTA provable methods) requires test-time compu-
tation exponential in intrinsic dimension d = dim(M).

Dimension Scaling Advantage of Iterative Optimiza-
tion. The optimization problem (4.1) could, in principle,
be solved in a variety of ways. One simple approach is to
compute φx on a dense grid of samples q1, . . . , qM ∈M,
and select the sample qi with the smallest objective value.
As illustrated in Figure 2, such exhaustive search becomes
increasingly inefficient as the manifold dimension d in-
creases. While exhaustive search is not a method of choice
for solving smooth optimization problems, it plays a crit-
ical role in state-of-the-art theoretical manifold denoisers
(Yao et al., 2023). At their core is a local approximation of
M, formed by selecting near neighbors of x by linearly
scanning a dataset x1, . . . ,xN which is large enough to
densely coverM – a form of exhaustive search.

A more scalable alternative is to produce x̂ by iterative
optimization – e.g., by gradient descent. The objective
function φx is differentiable, with gradient∇qφx = q − x.
The Riemannian gradient of φx at point q ∈ M is the
projection of ∇φx onto the tangent space TqM ofM at q:

grad[φx](q) = PTqM∇φx(q). (4.2)

This is the component of the gradient along the manifold
M, and a direction of steepest ascent onM. A Riemannian
gradient method (Absil et al., 2008) steps alongM in the
direction of −grad[φx], setting

q+ = expq
(
−t grad[φx](q)

)
(4.3)

1Indeed, letting fMMSE(x) = argminf Ex♮,z∥f(x♮ + z)−
x♮∥22 denote the MMSE denoiser, we have that ∥fMMSE(x) −
PM[x]∥2 = O(σ), on a set of x of measure 1 − O(σ). Other
statistical criteria, such as maximum a-posteriori (MAP) also lead
to manifold optimization problems: in the Bayesian setting in
which we have a prior density ρ♮ :M→ R on clean signals, the
MAP estimate minimizes 1

2
∥q − x∥22 − λ log ρ♮(q) overM.
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where t > 0 is a step size, and expq : TqM →M is the
exponential map, which takes a direction (tangent vector)
v ∈ TqM to a new point expq(v) inM.

As shown in Figure 2, with appropriate t, this method con-
verges linearly to the global minimizer x̂, provided it is
initialized close enough to x̂ – this means that the method
requires C log(1/ε) steps to reach an ε-approximation of
x̂. Inspired by this observation, we seek test-time efficient
denoisers that emulate the gradient iteration (4.3). There
are two main challenges in realizing this idea: first, we do
not know M – we only have noisy samples x1, . . . ,xN .
Second, the optimization problem (4.1) can exhibit subopti-
mal local minimizes; to guarantee the performance of our
denoiser, we need to ensure convergence to the global opti-
mizer. Below, we sketch our approach to these challenges,
deferring a full construction to Section 6.

Challenge I:M is a-priori unknown. Our approach is
to learn an approximate Riemannian optimizer from data.
We will approximate the manifold with a collection of land-
marks q1, . . . , qM 2, which are linked by a geometric graph
G. As illustrated in Figure 3, we will equip this graph with
all of the necessary structure to enable optimization – in par-
ticular, an approximation to the tangent space toM at each
landmark, which enables us to approximate the Riemannian
gradient, and edge embeddings which enable us to traverse
the graph in the negative gradient direction.

Challenge II: Suboptimal Minimizers. The distance
function φx(q) may exhibit suboptimal local minimizers.
For example, Figure 4 (left): the point q is a local minimizer
of the function φx(q) =

1
2∥q − x∥22.

In Section 6 below, we will show how to eliminate subop-
timal minimizers by appropriately modifying the graph G –
informally, by adding “tunnels” that allow local descent to
escape local minimizers and obtain the global optimum.

5. Mixed-Order Optimization overM
As described in the previous section, we build an approxi-
mate Riemannian optimizer forM. Our optimizer operates
over a collection of landmarks q1, . . . , qM . To traverse this
set of landmarks, we need to be able to (i) approximate the
Riemannian gradient of our objective function φx at a given
landmark q, and (ii) to choose which landmark q+ to move
to next, based on the gradient. The following definition
contains the required infrastructure:

2The points shown in Figure 3 represent the landmarks, which
serve as a discrete approximation of the unknown manifold. To-
gether with connecting edges, they form a structured domain for
optimization. All components – landmarks, edges, and related
quantities – are learned directly from noisy data via our online
learning algorithm described in Section 6.

Definition 5.1. [Tangent Bundle Graph] A tangent bundle
graph G on vertices V = (1, . . . ,M) consists of set of
undirected first-order edges E1 ⊆ V × V , where each
element is denoted as u 1↔ v and
Landmarks Q: qi ∈ RD for each vertex i = 1, . . . ,M ,
Tangent spaces T : Ti = span(Ui)

3, with orthonormal
basis Ui ∈ RD×d, at each vertex i = 1, . . . ,M ,
Edge embeddings Ξ: ξu→v = PTu(qv − qu) ∈ Tu

4, for
each first-order edge u

1→ v ∈ E1, where PTu(qv − qu)
·
=

UT
u (qv − qu).

Based on these objects, we can approximate the Riemannian
gradient of φx as ĝrad[φx](qi) = PTi

(qi − x).

First-order (Gradient) Steps over the Tangent Bundle
Graph. The edge embedding ξu→v represents a direc-
tion in the tangent space Tu which points from u to v, and
negative Riemannian gradient −ĝrad[φx](qu) at qu is our
desired direction for movement. A very intuitive update rule
is simply to move from u to the vertex u+ which satisfies

u+ = arg max
v:u

1→v

〈
−ĝrad[φx](qu), ξu→v

〉
. (5.1)

The test-time cost of computing a gradient step is O(Dd+
d · deg1(u)). Here, deg1(u) is the degree of the vertex u,
i.e., its number of first-order neighbors. The O(Dd) term
is the cost of computing the Riemannian gradient, while
the d · deg1(u) is the cost of searching for a neighbor of u
which maximizes the correlation in (5.1).

Zero-order Edges and Steps. The gradient method de-
scribed above efficiently converges to the near-critical point.
However, it may get trapped at local minimizers. To ensure
global optimality, we propose a mixed-order method which
takes both first-order steps, based on gradient information,
and zero-order steps, based on function values.

We add an additional set of edges E0, which we term zero-
order edges to the graph G. We use the notation5 u

0→ v
if u and v are connected by a zero-order edge. As outlined
in Algorithm 1, at each step, our mixed order method first
attempts a gradient step, by selecting the first-order neighbor
whose edge embedding is best aligned with the negative
gradient. If this step does not decrease the objective value,
the algorithm then performs a zero-order step, by choosing

3We use Ti, Tqi interchangeably to denote the tangent space at
landmark qi or vertex i. We also use TqiM when qi ∈M.

4In the language of Riemannian geometry, the ξu→v are in-
tended to represent the logarithmic map logqu

(qv).
5In the paper, we use u

0→ v and qu
0→ qv interchangeably

to denote the zero-order edge from landmark qu (vertex u) to
landmark qv (vertex v).
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x

x̂ x♮

Data
x1, . . . ,xN

Tangent Bundle Graph
Landmarks qi, subspaces span(Ui)

Optimization

⇒ ⇒

Figure 3: Learning a Manifold Optimizer from Samples. Given raw data samples x1, . . . ,xN (left), we construct an
approximation (center) toM which consists of landmarks q1, . . . , qM , approximate tangent spaces, and a geometric graph
G whose vertices are the landmarks. Right. We approximately optimize overM by optimizing over the graph G.

M

x
Test Point

q

Local Minimizer

Local Descent

Added Tunnel

M′ M′

Global
Minimizer

Local Descent

⇒ ⇒

Suboptimal
Minimizers

Domain
Augmentation

Local is
Global

Figure 4: Eliminating Suboptimal Minimizers by Adding
Tunnels. Consider a test point x, with corresponding ob-
jective function φx(q) = ∥q − x∥22. Left: point q is a
local minimizer of φx(q) overM. Center: We modify the
domainM to connect q and x – adding a “tunnel” connect-
ing these points. Right: local descent over the augmented
domainM′ converges to the global minimizer x.

the zero-order neighbor with smallest objective value:

u+ = arg min
v:u

0→v

φx(v). (5.2)

This operation requires us to compute the objective function
φx at each of the zero-order neighbors v of u. Thus, the
computational cost is O(D deg0(u)). When D and deg0(u)
are large, the cost of a zero-order step is significantly larger
than that of a first-order step – this is why our method
prioritizes first-order steps. However, zero-order steps are
essential to guarantee global optimality. In the next section,
we will show how to construct G to ensure that the mixed-
order method converges to a global optimum.

6. Learning to Optimize overM
The proposed mixed-order method can efficiently navigate
the manifold M. However, M is a-priori unknown and
only noisy samples are available. We next propose an online
learning method (Algorithm 2), that learns a mixed-order
optimizer directly from noisy data.

Our online learning algorithm produces a set of landmarks
Q = {qi}, tangent space Ti and edge embeddings Ξi at

each landmark qi, first-order edges E1 and zero-order edges
E0, which have been previously described in Section 5.1.
The algorithm processes incoming data sequentially. For
each new noisy data point x, we perform mixed-order man-
ifold traversal (Algorithm 1) using the existing traversal
network (Q,T,Ξ, E0, E1). Manifold traversal outputs a
vertex i, which corresponds to a landmark qi which locally
minimizes the squared distance φx(q) =

1
2∥q − x∥22. The

resulting vertex i is taken as an input to Algorithm 2.

Depending on φx(qi), we encounter one of three scenarios:

• Inlier: Landmark qi is sufficiently close to x (i.e., ∥qi −
x∥ ≤ R(i)). The noisy point x is denoised using the
local model at qi by setting x̂ = qi + PTqi

(x− qi). The
point x is used to update the local model, by updating
the landmark qi (as a running average), tangent space
Tqi (using incremental PCA – see Appendix D), and edge
embeddings, setting ξij = PTqi

(qj − qi) ∀i 1→ j ∈ E1.

• If ∥qi − x∥ > R(i), we perform exhaustive search,
scanning all landmarks to find qi⋆ , the global minimizer.
Based on ∥qi⋆ − x∥, we distinguish between two cases:

– qi is a suboptimal local minimizer: If ∥qi⋆ − x∥ ≤
R(i⋆), i.e., qi⋆ is close enough to x, we build a tunnel
i

0→ i⋆ from qi to qi⋆ , use qi⋆ to denoise x, and use x
to update the local model at qi⋆ .

– x is an outlier: No existing landmark is close to x.
We make x a new landmark qM , and build first-order
edges M 1↔ j when ∥qM−qj∥ ≤ Rnbrs, and initialize
a local model at qM .

As more samples are grouped into this landmark, the cumu-
lative effect of noise diminishes, gradually reducing both
the landmark’s deviation from the true manifold and the
error in its tangent space estimation. The threshold R(i) for
accepting inlying data points x is allowed to vary with the
number of data points assigned to a given landmark qi (see
Section 8 and Appendix F).

By processing one sample at a time, the online learning
approach distributes the computational cost of training over

5
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Algorithm 1 ManifoldTraversal

Input: Network G, x ∈ RD, initial vertex i← 1
while not converged do
g ← U∗

i (x− qi)
i♯ ← argmax

j:i
1→j
⟨g, ξij⟩.

if ∥qi♯ − x∥ < ∥qi − x∥ then
i← i♯

else
i← argmin

j:i
0→j
∥qj − x∥

end if
end while
Output: i

time and ensures memory efficiency, enabling it to adapt to
large and high-dimensional datasets.

After seeing enough samples, Algorithm 2 creates a set of
landmarks Q, which forms a discrete approximation of the
manifoldM, along with a geometric graph that captures
both the local geometry of the manifold and its global con-
nectivity (Figure 6). This structure enables efficient and
accurate navigation for a new noisy sample at test time.

Figure 5: Growing Traversal Networks for Synthetic
Manifolds. Growing manifold traversal networks on the
Swiss roll and Möbius strip at three different times during
early training. First-order edges (blue) allow navigation
alongM; zero-order edges (red) ensure global optimality.

7. Theoretical Analysis
Our main theoretical result shows that the proposed mixed-
order traversal method rapidly converges to a near-optimal
denoised signal. We study the behavior of this method on
a noisy input x = x♮ + z, with x♮ an arbitrary element
ofM, and z ∼iid N (0, σ2). Here, the goal is to produce
an output x̂ ≈ x♮ – in particular, we would like to achieve
∥x̂− x♮∥ ≲ σ

√
d, which is optimal for small σ.

Our analysis assumes access to an accurate collection of
landmarks Q = {q1, . . . , qM} ⊂ M and their tangent
spaces Tqi

, as well as appropriately structured first-order
and zero-order edge sets E1 and E0 – in a nutshell, we prove
that given an appropriately structured traversal network,

Figure 6: Growing Traversal Networks from Scientific
Data. Visualization of 2048-dimensional gravitational
waves. We show clean samples (orange), landmarks (blue
dots), first-order edges (blue), and zero-order edges (green).
As the online algorithm sees more points, it learns an in-
creasingly good approximation toM. Number of training
points: Left: 1,000. Middle: 10,000. Right: 100,000.

Algorithm 2 OnlineLearningForManifoldTraversal

Input: Current network G, x ∈ RD.
i← ManifoldTraversal(G,x)
if ∥qi − x∥2 ≤ R(i) then

Denoise via x̂← Pqi+Ti
x

Update local parameters qi, Ti,Ξi

else
i⋆ ← argmini ∥qi − x∥2
if ∥qi⋆ − x∥2 ≤ R(i⋆) then
qi is a local min, add a zero-order edge i

0→ i⋆
Denoise x, update qi⋆ , Ti⋆ ,Ξi⋆

else
Create a new landmark qM ← x
Connect it to neighboring landmarks within Rnbrs
Initialize local parameters TM ,ΞM

end if
end if
Output: G = (V,E)

mixed-order traversal is both accurate and highly efficient,
corroborating the conceptual picture in Figure 2.

We analyze a version (Algorithm 3) of the mixed-order
method, which consists of three phases: a first-order Phase I,
which, starting from an arbitrary initialization, produces an
approximate critical point qiI , a zero-order Phase II, which
jumps to a point qiII in a cτM neighborhood of the ground
truth x♮, followed by a first-order Phase III, produces a point
qiIII within distance Cκσ

√
d of x♮.

Complexity of Escaping Suboptimal Minimizers. A key
element of Algorithm 3 (and more generally Algorithm
1) is the use of zero-order edges (or tunnels) to escape
suboptimal critical points. The complexity of this step of
the algorithm is dictated by the number of zero-order edges
emanating from the point qiI . There is a clear geometric
interpretation to this number, which is illustrated in Figure
7: a point q ∈M is a critical point of the distance function
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q

x1

x2

Normal Space q +NqM

q is a critical point of φx1
= 1

2∥q − x1∥2
and φx2

= 1
2∥q − x2∥2 overM

Figure 7: Critical Points of the Distance Function. The
point q is a critical point of the distance φx(q) =

1
2∥q−x∥

2
2

for any point x satisfying x−q ∈ NqM. The vista number
$(M) bounds the number of x for which this is true – i.e.,
the number of x for which q is a local minimizer. This in
turn bounds the number of tunnels which must be added to
ensure that local descent converges to a global optimizer. In
the example illustrated here, $(M) = 3.

φx(q) =
1
2∥x− q∥22 if and only if x− q ∈ NqM. Hence,

the number of (clean) target points x♮ ∈M for which q is
a critical point is given by the number of intersections ofM
with the normal space q +NqM. Inspired by the geometry
of this picture, we denote this quantity $(M):

$(M) = max
q∈M

# [M∩ (q +NqM)] . (7.1)

Because Phase I of our algorithm produces approximate
critical points, we work with a stable counterpart to this
quantity: let Nη

qM = NqM+B(0, η) denote an η dilation
of the normal space at q. We set

$ηr(M) = max
q∈M

N
(
(q +Nη

qM) ∩M, dM(·, ·), r
)

(7.2)

where N(S, ρ, r) denotes the covering number of set S in
metric ρ with covering radius r. Intuitively, this counts
the “number of times” the manifold intersects the dilated
normal space Nη . As we will establish in Theorem 7.1, this
quantity upper bounds the number of zero-order edges at
each landmark (i.e. deg0(q)) required for global optimality.

Main Result. Our main result is as follows:

Theorem 7.1. Let M ⊂ RD be a complete and con-
nected d-dimensional manifold whose extrinsic geodesic
curvature is bounded by κ. Assume κdiam(M) ≥ 1 and
σ
√
D ≤ c1τM.

Assumptions on Q: The landmarks Q = {q1, . . . , qM} ⊂
M are δ-separated, and form a δ-net for M, under the
metric dM(·, ·). Assume δ ≤ diamM.
Assumptions on E1: First-order graph E1 is defined such
that u 1↔ v ∈ E1 when ∥qu − qv∥2 ≤ Rnbrs. Assume

aδ = Rnbrs ≤ c2σ
√
d for some a ≥ 40.

Assumptions on E0: E0 is a minimal collection of edges
satisfying the following covering property: for distinct
q, q′ ∈ Q, if q′ ∈ q +Nη

qM with

η ≥ ϵ1 + c4σ
√
d
√
κdiam(M) + log(δ−1 diam(M)),

there exists a zero-order edge q
0→ q′′ with q′′ ∈

BM(q′, c5τM).

With high probability in the noise z, Algorithm 3 with pa-
rameters

Ra = Rnbrs − δ,

ϵ1 > Rnbrs

(
c6κdiam(M)+

c7κσd
1/2
√
κdiam(M) + log(δ−1adiam(M))

)
,

ϵ2 > c8 max{κ, 1}σ
√
d,

produces an output q⋆ satisfying dM(q⋆,x♮) ≤ 2ϵ2 with
an overall number of arithmetic operations bounded by

O

(
(D + ec

′ log(a)d)
(diam2(M)

ϵ1δ
+

1

κδ

)
d+D × $ηc6τM(M)

)
.

Here, τM is the reach ofM, i.e., the radius of the largest
tubular neighborhood ofM where the projection PMx is
unique (Federer, 1959). The assumption σ

√
D ≤ c1τM en-

sures that, with high probability ∥z∥ ≤ τM, the projection
PM(x) is close to x♮ in the geodesic distance dM.

The extrinsic geodesic curvature κ is the supremum of ∥γ̈∥
over all unit speed geodesics γ(t) on M. This quantity
measures how “curvy” geodesics inM are. diam(M) is
the diameter ofM in the intrinsic distance dM. $ηc6τM(M)
upper bounds the number of zero-order edges per landmark.

Interpretation. This result shows that given accurate land-
marks, tangent spaces, and first-order and zero-order graphs,
the algorithm converges to a max{κ, 1}σ

√
d neighborhood

of x♮, which is best achievable up to constant when κ is
bounded. The algorithm admits an upper bound on the re-
quired number of arithmetic operations. (Dd+ ec

′ log(a)dd)
is the computational cost of taking one first-order step, as
Dd comes from projection of the D-dimensional gradient
into the d-dimensional tangent space, and dec

′ log(a)d repre-
sents the cost of comparing the d-dimensional dot product
between the negative Riemannian gradient with all first-
order edge embeddings, with number of neighbors bounded
by ec

′ log(a)d.
(diam

2(M)
ϵ1δ

+ 1
κδ ) represent the total number of first order

steps taken. diam2(M)
ϵ1δ

represents the number of steps on the
path from qi0 (initialization) to qiI . Since the initialization
could be arbitrarily bad, in this phase we can only guaran-
tee decrease in the value of φx(q), so naturally diam2(M)

7
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Algorithm 3 101Traversal

Input: Network G, x ∈ RD, Ra, ϵ1, ϵ2
Initialization i {Phase I}
while ∥PTi

(x− qi)∥2 > ϵ1 do
i← argmin

j:i
1→j

∥∥PB(0,Ra)PTi(x− qi)− PTi(qj − qi)
∥∥
2

end while
iI ← i
iII ← argmin

j:iI
0→j
∥qj − x∥2 {Phase II}

i← iII {Phase III}
while ∥PTi

(x− qi)∥2 > ϵ2 do
i← argmin

j:i
1→j

∥∥PB(0,Ra)PTi(x− qi)− PTi(qj − qi)
∥∥
2

end while
iIII ← i
Output: qiIII

captures the worst case initialization. The ϵ1δ represents the
minimal decrease in each step: since the landmarks Q forms
a δ-net of the manifold, each gradient direction is approxi-
mately covered, and each first order step have gradient norm
at least ϵ1, by definition of the stopping criterion. On the
other hand, 1

κδ represents the number of operations from qiII
to qiIII . By construction qiII ∈ BM(x♮, c5τM), so when
we consider dM(x♮, ·) as the new objective function, the
worst case initialization is 1

κ and on this scale each gradient
step is guaranteed to walk along the manifold, giving us a
δ-decrease in the intrinsic distance to x♮.

Finally, the D × $ηc6τM(M) represents the cost of the zero
order step from qiI , the ϵ1-approximate critical point for φx,
to qiII , the point that lies intrinsically close to x♮. $

η
τM(M)

is a new geometric quantity that we’ve defined, and it cap-
tures how muchM intersects its own dilated normal space.
Intuitively larger $ητM(M) means one would expect more
local minimizes while performing first order descent. No-
tably $ητM(M) can be exponential in d in the worst case
manifold, in which case our algorithm behaves similarly
to nearest neighbor search. Intuitively, the parameter ϵ1
(and corresponding requirement η on the zero order edges)
cuts out a tradeoff between the complexity of the first order
phases and the complexity of the zero order phase.

8. Simulations and Experiments
In this section, we visualize the traversal networks con-
structed using Algorithm 2 across synthetic manifolds and
high-dimensional scientific data. Our experiments show
that denoising performance of Algorithm 2 improves with
increased number of training data, indicating that the algo-
rithm effectively learns to denoise. Based on experiments
with gravitational wave signals, we further demonstrate that
Algorithm 2 achieves a better test-time complexity and accu-

racy tradeoff compared to Nearest Neighbor over the same
set of landmarks. Additional experiments on image datasets
and comparisons with autoencoders for gravitational wave
denoising are detailed in Appendix G.

Traversal Network Construction for Various Manifolds.
Algorithm 2 grows the manifold traversal network, process-
ing one sample at a time and learning tangent spaces and
landmarks in the process. Figure 5 reveals the graph con-
struction process during early training for the Swiss roll and
Mobius strip (intrinsic d = 2, ambient D = 3). The fig-
ure provides visual confirmation of the fact that first-order
edges (blue) capture local information (clearly visible in the
Möbius strip), and zero-order edges (red) create tunnels that
help escape local minimizers (clearly visible in the Swiss
roll).

In addition to synthetic manifolds in R3, we also grow traver-
sal networks on high-dimensional real-world data. We learn
a denoiser on a dataset of 100,000 noisy gravitational waves
(Abramovici et al., 1992; Aasi et al., 2015) using the online
method as described in Algorithm 2. Data are D = 2048-
dimensional, with intrinsic dimension d = 2, depicted in
Figure: 6. We refer the reader to the Appendix B.1 for data
generation details.

Improvement of Denoising Performance with Stream-
ing Data. We measure the performance of our learned
denoiser on a dataset of 100,000 noisy gravitational waves.
Figure 8 shows the training error of the learned denoiser.
The training error across the first n data points is given by

MSE =
1

n

n∑
i=1

∥x̂i − xi,♮∥22 (8.1)

where x̂i is the denoised point, and xi,♮ is the ground truth.
We plot the theoretical lower bound as σ2d and see that the
denoiser error decreases, showing potential to converge to
the optimal theoretical lower bound.

Tradeoff: Test-time efficiency vs. Denoising Performance.
We investigate the tradeoffs between performance and com-
plexity for our mixed order method, and baselines such as
nearest neighbor (NN) search. After obtaining a traversal
network (Q,T,Ξ, E0, E1), we compare using the follow-
ing experimental setup. For NN and our method, we search
over the same set of landmarks Q. We measure accuracy in
mean squared error (same metric as in (8.1)) and complexity
in number of multiplications. An important parameter in
Algorithm 2 is the denoising radius R(i) which controls
the complexity by determining the number of landmarks
created.

Conceptually, R(i) measures distance between a noisy point
x and the the landmark that best describes it. Throughout
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Figure 8: Training Error: Training error decreases with the
number of training points. We train a denoiser with 100,000
noisy samples with parameters R(i), Rnbrs. The error curve
shows the potential to approach the theoretical optimal σ2d.

Algorithm 2, the landmark error decreases, and R(i) should
be reduced accordingly. Hence, we define a general formula
for R(i) as follows:

R(i) =
√
σ2D + σ2D/Ni + σ2d (8.2)

where the first error term σ2D comes from noisy points
xi, and the second term σ2D/Ni comes from the fact that
there is distance between landmarks and the true manifold.
Initially, a landmark qi is created using one noisy point x.
As more and more points are used to update landmark qi
and other local parameters at vertex i, local approximation
gets more and more accurate, and the distance between the
landmark and true manifold should decrease. This is why
we divide the error σ2D by Ni, the number of points used to
update landmark qi and other local parameters, making R(i)
smaller. Lastly, σ2d term comes from the error ∥PMx −
x♮∥22 across the manifoldM – see Appendix F.

Figure 9 summarizes test-time accuracy versus complexity
of the proposed mixed-order method, comparing it to nearest
neighbor search. We do this comparison based on a test
set of 20, 000 noisy points. By varying R(i) and Rnbrs

(see Table 1 in the Appendix for details), we obtain twelve
different networks {(Qj , Tj ,Ξj , E

0
j , E

1
j )}12j=1. We compare

our method of network j with nearest neighbor search over
the same set of landmarks Qj . The details can be found
in Appendix G. As shown in Figure 9, manifold traversal
achieves significantly better complexity-accuracy trade-offs
compared to nearest neighbor search. Figure 9 illustrates
that decreasing R(i), as the number of samples Ni assigned
to landmark qi increases, leads to better accuracy compared
to maintaining a constant radius.

9. Conclusions
We introduced a novel framework for test-time efficient
and accurate manifold denoising when the manifold is un-
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Figure 9: Test-Time Complexity-Accuracy Tradeoff of
Mixed-order Method versus Nearest Neighbor. Over a
test set of 20, 000 noisy points, our proposed mixed-order
method achieves better tradeoffs compared to nearest neigh-
bor search over the same set of landmarks.

known and only noisy samples are given. The framework
incorporates an online learning method to construct an aug-
mented graph for optimizing on the approximated mani-
fold, and a mixed-order method that ensures both efficiency
and global optimality. Our experiments on scientific man-
ifolds demonstrate that the proposed methods achieve a
superior complexity-accuracy tradeoff vis. nearest neighbor
search, which is the core of many existing provable denois-
ing approaches. Furthermore, our analyses show that the
mixed-order method attains near-optimal denoising perfor-
mance, assuming the online learning method produces an
ideal graph, and we provide complexity analyses for the
mixed-order method under this assumption.

A promising future direction is to establish theoretical guar-
antees for the accuracy of the landmarks generated by the
online learning method, as they play a crucial role in denois-
ing performance. The current learning method dynamically
builds edges in the graph as needed. Another potential av-
enue for future research is to develop a sparser network
using pruning techniques while maintaining global optimal-
ity, which could further improve test-time efficiency. More
broadly, we aim to leverage this designed method to study
the traversal properties of natural datasets across a wide
and diverse range of datasets. Additionally, integrating this
method as a denoiser block within signal generation and
reconstruction architectures could be a valuable direction,
potentially accelerating the entire process.
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Appendix

A. Main Claims
Theorem A.1. LetM⊂ RD be a complete and connected d-dimensional manifold whose extrinsic geodesic curvature is
bounded by κ.

• Assumptions onM Assume κdiam(M) ≥ 1 and σ
√
D ≤ 1

640τM.

• Assumptions on Q Suppose that the landmarks Q = {q1, . . . , qM} ⊂ M are δ-separated, and form a δ-net forM,
under the metric dM(·, ·). Assume δ ≤ diam(M).

• Assumptions on E1 First-order graph E1 is defined such that u 1→ v ∈ E1 when ∥qu − qv∥2 ≤ Rnbrs. Assume
aδ = Rnbrs ≤

√
2

64 σ
√
d for some a ≥ 40.

• Assumptions on E0 E0 is a minimal collection of edges satisfying the following covering property: for distinct
q, q′ ∈ Q, if q′ ∈ q +Nη

qM with

η ≥ ϵ1 + δ + 14σ
√
d
√

κdiam(M) + log(diam(M))− log(δ) + log(7), (A.1)

there exists a ZOE q
0→ q′′ with q′′ ∈ BM(q′, 1

80τM).

With probability at least 1− 4e−
d
16 −

(
e
2

)−D
2 in the noise z, the Algorithm 3 with parameters

Ra = Rnbrs − δ (A.2)

ϵ1 >
2Rnbrs

0.55

(
2

3
+

8

3
κdiam(M)+ (A.3)

+16κσ
√
d
√

κdiam(M) + log(a)− log(δ) + log(diam(M)) + log(100)
)

(A.4)

ϵ2 > Cmax{κ, 1}σ
√
d (A.5)

produces an output q⋆ satisfying
dM(q⋆,x♮) ≤ 2ϵ2 (A.6)

with an overall number of arithmetic operations bounded by(
Dd+ d

(
1 + 4

√
2ae
)d)(10diam2(M) + 20σ2D

ϵ1δ
+

8

κδ

)
+D × $η1

160 τM
(M) (A.7)

where $ηr(M) follows the definition in Equation (7.2).

Proof. With the above assumptions and the combination of Proposition A.3, Proposition A.4, and Proposition A.5, it’s easy

to show that with probability at least 1− 4e−
d
16 −

(
e
2

)−D
2 in the noise z, the output of the algorithm q⋆ satisfies

dM(q⋆,x♮) ≤ 2ϵ2, (A.8)

and phase I and phase III use at most diam2(M)+2σ2D
0.1375ϵ1δ

+ 8
κδ steps, and phase II takes at most D × $η1

160 τM
(M) operations.

Suppose Sq,η ⊂ M is the minimal set that 1
160τM-covers the (q + Nη

q ) ∩ M under the metric dM(·, ·), with η ≥
ϵ1 + δ+ σ

(
4
√
log |Q|+ 10

√
d
)

. From the definition that $ηr(M) = maxq∈M N
(
(q+Nη

qM)∩M, dM(·, ·), r
)

, where

N(S, ρ, r) denotes the covering number of set S in metric ρ with covering radius r, we have |Sq,η| = N
(
(q + Nη

q ) ∩

M), dM(·, ·), 1
160τM

)
≤ $η1

160 τM
.
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For any q ∈ Q, as the landmark Q δ-covers the manifold, it δ-covers Sq,η. We denote the minimal set of landmarks that
δ-cover Sq,η asQS . Then for any q′ ∈ Q, q′ ∈ q +Nη

q , there exists a point s ∈ Sq,η such that dM(s, q′) ≤ 1
160τM. Since

s ∈ Sq,η , there exists a landmark q′′ ∈ QS such that dM(s, q′′) ≤ δ.

Therefore, for any q′ ∈ q +Nη
q , there exists q′′ ∈ QS such that

dM(q′, q′′) ≤ dM(q′, s) + dM(s, q′′) ≤ 1

160
τM + δ ≤ 1

160
τM +

√
2

40 ∗ 64 ∗ 640
τM ≤

1

80
τM, (A.9)

where we used δ = Rnbrs

a , a ≥ 40, Rnbrs ≤
√
2

64 σ
√
d, d ≤ D, and σ

√
D ≤ 1

640τM assumed in Theorem A.1 from the
third-to-last step to the second-to-last step.

As a result, the set
{
q

0→ q′′ | ∀q′′ ∈ QS

}
satisfies the covering property in the assumption on E0. Since E0 is the

minimum collection that satisfies this covering property, the number of zero-order edges at q, i.e., deg0(q) satisfies

deg0(q) ≤
∣∣∣{q 0→ q′′ | ∀q′′ ∈ QS

}∣∣∣ ≤ |Sq,η| ≤ $η1
160 τM

. (A.10)

And we note that projection of the gradient onto the tangent space takes the cost of D ∗ d number of operations, and
choosing the first-order neighbor takes the cost of d ∗maxqu∈Q

∣∣E1
u

∣∣. The number of arithmetic operations of zero-order
step is D ∗maxq∈Q deg0(q), where D comes from the Euclidean distance calculation, and maxq∈Q deg0(q) is bounded by
the defined geometric quantity $η1

160 τM
(M). Combined all of terms above, we end up with the bound on the number of

operations performed by our algorithm.

Fact A.2. For a manifoldM with reach τM and extrinsic curvature bounded by κ, we have

τM ≤ 1/κ. (A.11)

See Proposition 2.3 in (Aamari et al., 2019). We used this fact directly in the following proofs.

Proposition A.3. LetM⊂ RD be a complete and connected d-dimensional manifold whose extrinsic geodesic curvature is
bounded by κ. Suppose the landmarks {qu} are δ-separated, and form a δ-net forM, and that the first order graph E1

satisfies u 1→ v ∈ E1 when ∥qu−qv∥2 ≤ Rnbrs, and that 40δ ≤ Rnbrs ≤ τM. Assume δ ≤ diam(M) and κdiam(M) ≥ 1.
Then with probability at least

1− e−
9d
2 −

(e
2

)−D
2

(A.12)

in the noise z, the first phase of first-order optimization in Algorithm 3 with parameters

Ra = Rnbrs − δ, (A.13)

ϵ1 >
2Rnbrs

0.55

(
2

3
+

8

3
κdiam(M)+ (A.14)

+16κσ
√
d
√
κdiam(M) + log(a)− log(δ) + log(diam(M)) + log(100)

)
, (A.15)

(A.16)

produces qiI satisfying
grad[φx](qiI) = ∥PTiI

(x− qiI)∥2 ≤ ϵ1 (A.17)

using at most
diam2(M) + 2σ2D

0.1375ϵ1δ
(A.18)

steps.

Proof.

We can bound the total number of steps by dividing maximum initial distance by the minimal distance decrease over each
first-order step.

13
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We note that

φx(qi0) =
1

2
∥qi0 − x∥22

≤ ∥qi0 − x♮∥22 + ∥z∥
2
2

≤ diam2(M) + ∥z∥22

(A.19)

We let z̄ be the standard unit variance Gaussian variable, for any 0 < t < 1/2, we have

P[∥z∥22 ≥ 2σ2D] = P[∥z̄∥22 ≥ 2D]

= P[et∥z̄∥
2
2 ≥ e2tD]

≤ E[et∥z̄∥2
2 ]

e2tD

=
e−2tD

(1− 2t)
D
2

,

(A.20)

where we used Markov’s inequality from the second line to the third line. In particular, we can pick t = 1
4 , so with

probability at least 1− ( e2 )
−D

2 in the noise z, we have

φx(qi0) ≤ diam2(M) + 2σ2D. (A.21)

Now we will analyze the decrease over each first-order step from u to u+. We have

φx(qu+)− φx(qu) =
1

2
(∥x− qu+∥22 − ∥x− qu∥22)

=
1

2
∥qu+ − qu∥22 − ⟨PTu(x− qu),PTu(qu+ − qu)⟩ − ⟨PNu(x− qu),PNu(qu+ − qu)⟩ .

(A.22)

We apply Lemma B.1 to bound the first term and Lemma B.8 to get a high probability bound on the last term, setting
t = 3σ

√
d.

Next, we apply Lemma B.3and Lemma B.4 to bound the second term, which dominates the decrease in the values of the
objective function after taking a first-order step. As a reminder, the step rule in Algorithm 3 is

u+ = argmin
u

1→v

∥∥PB(0,Ra)PTu
(x− qu)− PTu

(qv − qu)
∥∥
2
. (A.23)

We observe that before phase I in Algorithm 3 terminates, ∥PTu(x− qu)∥ ≥ ϵ1 > Ra holds. Then the step rule is equivalent
to

u+ = argmin
u

1→v

∥∥∥∥ PTu
(x− qu)

∥PTu
(x− qu) ∥2

Ra − PTu
(qv − qu)

∥∥∥∥
2

, (A.24)

in which we have
∥∥∥ PTu (x−qu)
∥PTu (x−qu)∥2

Ra

∥∥∥
2

= Ra. Applying Lemma B.3, there exists u
1→ v ∈ E1, such

that
∥∥∥ PTu (x−qu)
∥PTu (x−qu)∥2

Ra − PTu
(qv − qu)

∥∥∥
2
≤ δ + 1

2κR
2
a. From the construction of this step rule, we have∥∥∥ PTu (x−qu)

∥PTu (x−qu)∥2
Ra − PTu(qu+ − qu)

∥∥∥
2
≤
∥∥∥ PTu (x−qu)
∥PTu (x−qu)∥2

Ra − PTu(qv − qu)
∥∥∥
2
≤ δ + 1

2κR
2
a. Thus when x ̸= qu,

applying Lemma B.4, we have ⟨PTu (x− qu) ,PTu (qv − qu)⟩ ≥ 0.55∥PTu (x− qu) ∥2∥PTu (qv − qu) ∥2.

Combining all the above results, we conclude that with probability at least 1− e−
9d
2 in the noise z, we have

φx(qu+)− φx(qu) ≤
2

3
∥PTu

(qu+ − qu)∥22 − 0.55∥PTu
(x− qu)∥2∥PTu

(qu+ − qu)∥2

+
8

3
κ(diam(M) +

√
2σ
√

log |E1|+ 3σ
√
d)∥PTu

(qu+ − qu)∥22.
(A.25)

14



Fast, Accurate Manifold Denoising by Tunneling Riemannian Optimization

Given our assumption on ϵ1 and applying the bound of
∣∣E1
∣∣ in Lemma A.3, together with the assumption that δ ≤ diam(M)

and κdiam(M) > 1, it follows that before Phase I ends, we have

0.55∥PTu
(x− qu)∥2 > 0.55ϵ1

> 2Rnbrs

(
2

3
+

8

3
κdiam(M)+

+16κσ
√
d
√
κdiam(M) + log(a)− log(δ) + log(diam(M)) + log(100)

)
> 2Rnbrs

(
2

3
+

8

3
κdiam(M)

+8κσ
√
d+ 8κσ

√
d
√
κdiam(M) + log(a)− log(δ) + log(diam(M)) + log(100)

)
> 2Rnbrs

(
2

3
+

8

3
κdiam(M) + 8κσ

√
d+ 8κσ

√
log |E1|

)
> 2Rnbrs

(
2

3
+

8

3
κ
(
diam(M) + σ

√
2 log |E1|+ 3σ

√
d
))

,

(A.26)
together with ∥PTu

(qu+ − qu)∥2 ≤ ∥qu+ − qu∥2 ≤ Rnbrs, then we have

φx(qu+)− φx(qu) ≤ −
0.55

2
∥PTu

(qu+ − qu)∥2∥PTu
(x− qu)∥2. (A.27)

In the following, we develop a lower bound for ∥PTu
(qu+ − qu)∥2. Let γ : [0, 1] →M be a minimum length geodesic

joining qu and qu+ with constant speed dM(qu, qu+), where γ(0) = qu,γ(1) = qu+ . Then we have

∥PTu
(qu+ − qu)∥2 = ∥PTu

(γ(1)− γ(0))∥2

=

∥∥∥∥PTu

(∫ 1

a=0

γ̇(a)da

)∥∥∥∥
2

=

∥∥∥∥γ̇(0) + ∫ 1

a=0

∫ a

b=0

PTu γ̈(b)dbda

∥∥∥∥
2

≥ ∥γ̇(0)∥2 −
∥∥∥∥∫ 1

a=0

∫ a

b=0

PTu
γ̈(b)dbda

∥∥∥∥
2

≥ ∥γ̇(0)∥2 −
∫ 1

a=0

∫ a

b=0

∥PTu γ̈(b)∥2 dbda

≥ ∥γ̇(0)∥2 −
∫ 1

a=0

∫ a

b=0

κ ∥γ̇(0)∥22 dbda

= dM(qu+ , qu)−
1

2
κd2M(qu+ , qu)

≥ 1

2
dM(qu+ , qu)

≥ 1

2
δ,

(A.28)

where in the third line we’ve used the fact that γ̇(0) lies in the tangent space of qu, in the forth and fifth lines we applied
triangle inequality, and in the final lines we’ve used our assumption that dM(qu+ , qu) ≤ τM ≤ 1

κ and the landmarks are
δ-separated.
Plugging this back into Equation (A.27), we have

φx(qu+)− φx(qu) ≤
δ

2

(
−0.55

2
∥PTu

(x− qu)∥2
)
≤ −0.55

4
δϵ1. (A.29)

Lastly, combining this result with Equation (A.21) yields the desired upper bound on the number of iterations.
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In the following proposition, we let
Nη

qM (A.30)

denote the η-dilated normal space:
Nη

qM =
{
v ∈ RD | ∥PTqMv∥2 ≤ η

}
. (A.31)

Proposition A.4. Assume δ ≤ diam(M), κdiam(M) ≥ 1 and σ
√
D ≤ 1

640τM. Suppose for every q ∈ Q and every
distinct q′ ∈ q +Nη

qM with

η ≥ ϵ1 + δ + 14σ
√
d
√

κdiam(M) + log(diam(M))− log(δ) + log(7), (A.32)

there exists a ZOE q
0→ q′′ with q′′ ∈ BM(q′, 1

80τM) Then, with probability at least 1− 2e−
9d
2 in the noise z, whenever

qiI satisfies
∥PTqiI

M(x− qiI)∥ ≤ ϵ1, (A.33)

the second phase (zero-order step) produces qiII satisfying

dM(qiII ,x♮) ≤ 0.1/κ. (A.34)

Proof. From Lemma A.2, we have

|Q| ≤
(
1 + 4

√
2δ−1 diam(M)eκ diam(M)

)d
, (A.35)

which gives us that

log |Q| ≤ d log
(
1 + 4

√
2δ−1 diam(M)eκ diam(M)

)
≤ d log

((
1

e
+ 4
√
2

)
δ−1 diam(M)eκ diam(M)

)
≤ d

(
log
(
7δ−1 diam(M)

)
+ κdiam(M)

)
,

(A.36)

where we used the assumption that δ ≤ diam(M) and κdiam(M) ≥ 1 from the first line to the second line. Together with
the assumption on η, we have

η ≥ ϵ1 + δ + σ
(
4
√
log |Q|+ 10

√
d
)
. (A.37)

Under these conditions and the assumption that σ
√
D ≤ 1

640τM, applying Lemma C.3, we conclude that with probability at
least 1− 2e

−9d
2 in the noise, qiII = argmin

q′:qiI

0→q′ ∥q′ − x∥2 satisfies

dM(x♮, qiII) ≤
1

20
τM + 2δ ≤ 1

20
τM +

1

20
Rnbrs ≤

1

20
τM +

1

20
τM =

1

10
τM. (A.38)

Proposition A.5. Assume σ
√
D ≤ 1

640τM. Suppose the landmarks {qu} are δ-separated, and form a δ-net forM, and

that the first order graph E1 satisfies u 1→ v ∈ E1 when ∥qu − qv∥2 ≤ Rnbrs, and that

40δ ≤ Rnbrs ≤
√
2

64
σ
√
d. (A.39)

Initializing at qiII ∈ BM(x♮, 0.1/κ), with probability at least

1− e−
9
2d − e−

1
16d, (A.40)
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the third phase of first-order optimization in Algorithm 3 with parameters

Ra = Rnbrs − δ, (A.41)

ϵ2 > Cmax{κ, 1}σ
√
d, (A.42)

for some C > 0, produces qiIII which satisfies

dM(qiIII ,x♮) ≤ 2ϵ2, (A.43)

using at most
8

κδ
(A.44)

steps.

Proof. Let
qiII = q0, q1, q2, . . . (A.45)

denote the sequence of landmarks qj produced by first order optimization in Phase III. Let j⋆ ∈ Z∪{∞} denote the number
of iterations taken by this phase of optimization. If the algorithm terminates at some finite j⋆, we have

∥PTqj⋆
(x− qj⋆)∥ ≤ ϵ2. (A.46)

Below, we will prove that indeed the algorithm terminates, and bound the number of steps j⋆ required. To this end, we will
prove that on an event of probability at least

1− e−
9
2d − e−

1
16d, (A.47)

the iterates qj (j = 0, 1, . . . , j⋆) satisfy the following property:

dM(qj ,x♮) ≤ max

{
1

10κ
− c1jδ, C1 max{κ, 1}σ

√
d

}
. (A.48)

This immediately implies that there exists C2 such that for all

j ≥ C2

κδ
, (A.49)

the iterates qj satisfies
dM(qj ,x♮) ≤ C1 max{κ, 1}σ

√
d. (A.50)

Step Sizes. Our next task is to verify (A.48). We begin by noting some bounds on the step size dM(qj , qj−1). By
construction, for each j,

∥qj+1 − qj∥2 ≤ Rnbrs ≤
√
2

64
σ
√
d. (A.51)

Since we know 1
κ ≥ τM, D ≥ d, and we’ve assumed τM ≥ 640σ

√
D, we have

Rnbrs ≤ min

{√
2

64
σ
√
d, τM,

1

200κ

}
. (A.52)

Since qj , qj+1 ∈M and ∥qj+1 − qj∥2 ≤ τM, applying Lemma B.5, we have

dM(qj+1, qj) ≤ 2∥qj+1 − qj∥2 ≤ min

{√
2

32
σ
√
d,

1

100κ

}
. (A.53)

From Lemma A.5, take t =
√
2
4 σ
√
d, with probability at least 1− e−

d
16 , the random variable

Tmax = sup
y∈BM(x♮,1/κ),v∈TyM,∥v∥2=1

⟨v, z⟩ , (A.54)
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satisfies

Tmax ≥
√
2

4
σ
√
d, (A.55)

which gives us
√
2

32 σ
√
d ≤ 1

8Tmax. Hence on an event of probability at least 1− e−
d
16 , for every j,

dM(qj+1, qj) ≤ min

{√
2

32
σ
√
d,

1

100κ

}
≤ min

{
Tmax

8
,

1

100κ

}
. (A.56)

In particular, this implies that the condition on the step size in Lemma D.7 is satisfied.

Radius of Decrease. From Lemma A.4, with probability at least 1− e−
9
2d, Tmax satisfies

Tmax ≤ C4 max{κ, 1}σ
√
d, (A.57)

and hence the distance condition in Lemma D.7 is satisfied whenever

C5 max{κ, 1}σ
√
d ≤ dM(qj ,x♮) ≤

1

10κ
. (A.58)

Proof of Equation (A.48). We proceed by induction on j. For j = 0, q0 = qiII ∈ BM(x♮,
1

10κ ), and so (A.48) holds.
Now, suppose that (A.48) condition holds for iterates 0, 1, . . . , j − 1. By Lemma D.7, if

C5 max{κ, 1}σ
√
d ≤ dM(qj ,x♮) ≤

1

10κ
. (A.59)

then

dM(qj ,x♮) ≤ dM(qj−1,x♮)− c2dM(qj , qj−1) (A.60)
≤ dM(qj−1,x♮)− c2δ (A.61)

≤ 1

10κ
− c2(j − 1)δ − c2jδ (A.62)

≤ 1

10κ
− c2jδ. (A.63)

On the other hand, if dM(qj−1,x♮) < C5 max{κ, 1}σ
√
d, we have

dM(qj ,x♮) ≤ dM(qj−1,x♮) + dM(qj , qj−1) (A.64)

≤ C5 max{κ, 1}σ
√
d+

√
2

32
σ
√
d (A.65)

≤ C6 max{κ, 1}σ
√
d. (A.66)

Combining, we have

dM(qj ,x♮) ≤ max

{
1

10κ
− c2jδ, C6 max{κ, 1}σ

√
d

}
, (A.67)

and (A.48) is verified.
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Proof of Termination. We next verify that under our assumptions on ϵ2, the algorithm terminates. For an arbitrary point
q ∈ BM(x♮, 1/κ), let ϕ(t) denote a geodesic with ϕ(0) = x♮, ϕ(1) = q and constant speed dM(x♮, q). Then

∥∥PTqM(x♮ − q)
∥∥
2
=

∥∥∥∥PTqMϕ̇(0) +

∫ 1

a=0

∫ a

b=0

PTqMϕ̈(b)dbda

∥∥∥∥
2

=

∥∥∥∥ϕ̇(0) + ∫ 1

a=0

∫ a

b=0

PTqMϕ̈(b)dbda

∥∥∥∥
2

≤
∥∥∥ϕ̇(0)∥∥∥

2
+

∥∥∥∥∫ 1

a=0

∫ a

b=0

PTqMϕ̈(b)dbda

∥∥∥∥
2

≤ dM(x♮, q) +

∫ 1

a=0

∫ a

b=0

∥∥∥PTqMϕ̈(b)
∥∥∥
2
dbda

≤ dM(x♮, q) +

∫ 1

a=0

∫ a

b=0

κd2M(x♮, q)dbda

≤ dM(x♮, q) +
1

2
κd2M(x♮, q)

≤ 3

2
dM(x♮, q).

(A.68)

Comparing this lower bound to (A.48), we obtain that for any ϵ2 > 3
2C1 max{κ, 1}σ

√
d, after at most

ĵ >
1

10c2κδ
(A.69)

steps, the algorithm produces a point qj⋆ satisfying

∥PTqj⋆M(x− qj⋆)∥ ≤ ϵ2, (A.70)

and hence the algorithm terminates after at most 1
10c2κδ

steps. To be more specific, Lemma D.7 gives c2 = 1
80 , so the

algorithm stops after at most 8
κδ steps.

Quality of Terminal Point. Finally, we bound the distance of qiIII = qj⋆ to x♮. By reasoning analogous to (A.68), we
obtain that for q ∈ BM(x♮, 1/κ) ∥∥PTqM(x♮ − q)

∥∥
2
≥ 1

2
dM(x♮, q). (A.71)

This immediately implies that
dM(qj⋆ ,x♮) ≤ 2ϵ2, (A.72)

as claimed.

B. Phase I Analysis

Lemma B.1. With the assumption Rnbrs ≤ τM , for any qu, qv ∈M and u
1→ v ∈ E1, we have

∥qu − qv∥22 ≤
4

3
∥PTu

(qu − qv) ∥22, (B.1)

where Tu is the tangent space at qu ∈M, and PTu
is the orthogonal projection onto Tu.

Proof. For the self edge u
1→ u ∈ E1, it’s easy to show that ∥qu − qu∥22 = 4

3∥PTu (qu − qu) ∥22 = 0.

Now we consider the situation when u
1→ v ∈ E1(u ̸= v). By the theorem 2.2 in (Aamari et al., 2019) and theorem 4.18 in

(Federer, 1959), we know the reach τM of the manifoldM satisfies

τM = inf
qu ̸=qv∈M

∥qu − qv∥22
2∥PNu

(qu − qv) ∥2
, (B.2)
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where Nu is the normal space at qu ∈M, and PNu
is the orthogonal projection onto the Nu.

Thus, for any u
1→ v ∈ E1(u ̸= v), we have

τM ≤
∥qu − qv∥22

2∥PNu
(qu − qv) ∥2

. (B.3)

By the rule of connecting first-order edges, for any edge u
1→ v ∈ E1, we have ∥qu − qv∥2 ≤ Rnbrs.

By assumption, Rnbrs ≤ τM, thus for first-order edges u 1→ v(u ̸= v), we have:

∥qu − qv∥ ≤ Rnbrs

≤ τM

≤ ∥qu − qv∥22
2∥PNu

(qu − qv) ∥2
.

(B.4)

Square both sides, we obtain:
∥qu − qv∥22 ≥ 4∥PNu

(qu − qv) ∥22. (B.5)

Since the tangent and normal components are orthogonal, we have ∥qu − qv∥22 = ∥PTu
(qu − qv) ∥22 + ∥PNu

(qu − qv) ∥22.
Therefore, we have:

∥PTu (qu − qv) ∥22 ≥ 3∥PNu (qu − qv) ∥22. (B.6)

Consequently, we have
∥qu − qv∥22 = ∥PTu

(qu − qv) ∥22 + ∥PNu
(qu − qv) ∥22

≤ ∥PTu (qu − qv) ∥22 +
1

3
∥PTu (qu − qv) ∥22

=
4

3
∥PTu (qu − qv) ∥22.

(B.7)

This completes the proof.

Lemma B.2. For any w♮ ∈ B(qu, Ra) ∩M, there exists v : u
1→ v ∈ E1, such that

∥w♮ − qv∥2 ≤ δ. (B.8)

Proof. Since the landmarks form a δ- cover ofM, and Rnbrs = a · δ(a ≥ 40), there exists v ∈ V such that ∥qv −w♮∥2 ≤
δ = 1

aRnbrs.
From the triangle inequality, we have

∥qv − qu∥2 ≤ ∥qv −w♮∥2 + ∥w♮ − qu∥2

≤ 1

a
Rnbrs +Ra

=
1

a
Rnbrs +

a− 1

a
Rnbrs

= Rnbrs.

(B.9)

From the rule of connecting first-order edges, we know u
1→ v ∈ E1. This completes the proof.

Lemma B.3. For any w ∈ Tu, with ∥w∥2 ≤ Ra, there exists v : u
1→ v ∈ E1, such that

∥w − PTu
(qv − qu) ∥2 ≤ δ +

1

2
κR2

a. (B.10)

Proof. Consider a constant-speed geodesic γ : [0, 1] → M, γ(0) = qu, γ̇(0) = w with ∥w∥2 ≤ Ra. Let γ(1) = w♮.
From the fundemental theorem of calculus, we have

γ(1) = γ(0) +

∫ 1

t=0

γ̇(t)dt. (B.11)

20



Fast, Accurate Manifold Denoising by Tunneling Riemannian Optimization

Therefore,

∥w♮ − qu∥2 =

∥∥∥∥∫ 1

t=0

γ̇(t)dt

∥∥∥∥
2

≤
∫ 1

t=0

∥γ̇(t)∥ dt

= ∥w∥2
≤ Ra.

(B.12)

This means w♮ ∈ B(qu, Ra). By lemma B.2, there exists v : u
1→ v ∈ E1, such that ∥w♮ − qv∥2 ≤ δ.

By fundamental theorem of calculus, we also know

γ(1) = γ(0) +

∫ 1

t=0

γ̇(t)dt

= γ(0) +

∫ 1

t=0

(
γ̇(0) +

∫ t

s=0

γ̈(s)ds

)
dt

= γ(0) + γ̇(0) +

∫ 1

t=0

∫ t

s=0

γ̈(s)dsdt.

(B.13)

Then we have

w = w♮ − qu −
∫ 1

t=0

∫ t

s=0

γ̈(s)dsdt. (B.14)

Since w ∈ Tu, we have

w = PTu
(w) = PTu

(w♮ − qu)− PTu

(∫ 1

t=0

∫ t

s=0

γ̈(s)dsdt

)
. (B.15)

Hence we know

∥w − PTu (qv − qu)∥2 =

∥∥∥∥PTu (w♮ − qu)− PTu

(∫ 1

t=0

∫ t

s=0

γ̈(s)dsdt

)
− PTu (qv − qu)

∥∥∥∥
2

=

∥∥∥∥PTu
(w♮ − qv)− PTu

(∫ 1

t=0

∫ t

s=0

γ̈(s)dsdt

)∥∥∥∥
2

≤ ∥w♮ − qv∥2 +
∥∥∥∥∫ 1

t=0

∫ t

s=0

γ̈(s)dsdt

∥∥∥∥
2

≤ δ +

∫ 1

t=0

∫ t

s=0

∥γ̈(s)∥2dsdt

≤ δ +
1

2
κ∥w∥22

≤ δ +
1

2
κR2

a.

(B.16)

Lemma B.4. For any qu ∈M and x ̸= qu, let v : u
1→ v ∈ E1 satisfies:∥∥∥∥ PTu

(x− qu)

∥PTu (x− qu) ∥2
Ra − PTu

(qv − qu)

∥∥∥∥
2

≤ δ +
1

2
κR2

a. (B.17)

Then we have

⟨PTu (x− qu) ,PTu (qv − qu)⟩ ≥ 0.55∥PTu (x− qu) ∥2∥PTu (qv − qu) ∥2. (B.18)
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Proof. Let δT = δ + 1
2κR

2
a. Given our global constraints that δ = 1

aRnbrs, a ≥ 40 and Rnbrs ≤ τM ≤ 1/κ,

δT
Ra

=
1
aRnbrs +

1
2κ(1−

1
a )

2R2
nbrs

(1− 1
a )Rnbrs

=
1

a(1− 1
a )

+
1

2
κ(1− 1

a
)Rnbrs

≤ 1

a− 1
+

1

2
(1− 1

a
)

≤ 5

6
.

(B.19)

From the assumption we have ∥∥∥∥ PTu
(x− qu)

∥PTu (x− qu) ∥2
Ra − PTu (qv − qu)

∥∥∥∥
2

≤ δT . (B.20)

Square both sides of the equation (B.20), we have

R2
a + ∥PTu (qv − qu) ∥22 − 2

〈
PTu

(x− qu)

∥PTu (x− qu) ∥2
Ra,PTu (qv − qu)

〉
≤ δ2T . (B.21)

Then we have 〈
PTu

(x− qu)

∥PTu (x− qu) ∥2
Ra,PTu (qv − qu)

〉
≥ R2

a − δ2T + ∥PTu
(qv − qu) ∥22

2

≥
√

R2
a − δ2T ∥PTu

(qv − qu) ∥2.
(B.22)

Therefore, we have

⟨PTu (x− qu) ,PTu (qv − qu)⟩ ≥

√
1−

δ2T
R2

a

∥PTu (x− qu) ∥2∥PTu (qv − qu) ∥2. (B.23)

Substituting our result from eq(B.19 to) eq (B.23), we have the following inequality:

⟨PTu
(x− qu) ,PTu

(qv − qu)⟩ ≥ 0.55∥PTu
(x− qu) ∥2∥PTu

(qv − qu) ∥2. (B.24)

Lemma B.5. If qu, qv ∈M and ∥qu − qv∥2 ≤ τM, we have

dM(qu, qv) ≤ 2∥qu − qv∥2, (B.25)

where dM(·, ·) is the intrinsic distance along the manifold.

Proof. Let qt = qu + t(qv − qu), t ∈ [0, 1]. From Theorem C in (Leobacher & Steinicke, 2021), we know

d

dt
PM[qt] = (I − II∗[qt − PM[qt]])

−1 PTPM[qt]
M(qv − qu). (B.26)
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Therefore, we have

∥ d
dt
PM[qt]∥2 ≤ ∥ (I − II∗[qt − PM[qt]])

−1 ∥op∥PTqtM(qv − qu)∥2

≤ ∥qv − qu∥2
1− κ∥qt − PM[qt]∥2

=
∥qv − qu∥2

1− κd(qt,M)

≤ ∥qv − qu∥2
1− κmin{∥qt − qu∥2, ∥qt − qv∥2}

≤ ∥qv − qu∥2
1− 1

2κ∥qv − qu∥2

≤ ∥qv − qu∥2
1− 1

2κτM

≤ 2∥qv − qu∥2,

(B.27)

where in the second line we’ve used the property that ∀η, ∥II∗[η]∥ ≤ κ∥η∥2, and in the last line we’ve applied the fact that
τM ≤ 1/κ. Then the intrinsic distance along the manifold is

dM(qu, qv) ≤
∫ 1

t=0

∥ d
dt
PM[qt]∥2dt

≤
∫ 1

t=0

2∥qv − qu∥2dt

= 2∥qv − qu∥2.

(B.28)

This completes the proof.

Lemma B.6. For any qu, qv ∈M, we have

∥PNu (qv − qu) ∥2 ≤
1

2
κd2M(qu, qv). (B.29)

Proof. Consider the geodesic γ : [0, 1]→M ⊂ RD with constant speed ∥v∥2, where γ (0) = qu,γ (1) = qv. Then the
intrinsic distance between the qu and qv is:

dM(qu, qv) =

∫ 1

t=0

∥v∥2dt = ∥v∥2. (B.30)

From equation (B.13) and the fact γ̇(0) ∈ Tu, we have

∥PNu
(γ(1)− γ(0))∥2 =

∥∥∥∥∫ 1

t=0

∫ t

s=0

γ̈(s)dsdt

∥∥∥∥
2

(B.31)

∥PNu
(qv − qu) ∥2 = ∥PNu

(γ (1)− γ (0))∥2

=

∥∥∥∥PNu

∫ 1

t=0

∫ t

s=0

γ̈ (s) dsdt

∥∥∥∥
2

≤
∥∥∥∥∫ 1

t=0

∫ t

s=0

γ̈ (s) dsdt

∥∥∥∥
2

≤
∫ 1

t=0

∫ t

s=0

∥γ̈ (s) ∥2dsdt

≤
∫ 1

t=0

∫ t

s=0

κ∥v∥2dsdt

=
1

2
κ∥v∥22

=
1

2
κd2M(qu, qv).

(B.32)
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This completes the proof.

Lemma B.7. If qu, qv ∈M and ∥qu − qv∥2 ≤ τM, we have

∥PNu
(qv − qu) ∥2 ≤

8

3
κ∥PTu

(qv − qu) ∥22. (B.33)

Proof. Given qu, qv ∈M and ∥qu − qv∥2 ≤ τM, from lemma B.5, we know dM(qu, qv) ≤ 2∥qu − qv∥2. From lemma
B.6, we have ∥PNu

(qv − qu) ∥2 ≤ 1
2κd

2
M(qu, qv). By lemma B.1, we have ∥qu − qv∥22 ≤ 4

3∥PTu (qu − qv) ∥22. Then we
have

∥PNu
(qv − qu) ∥2 ≤

1

2
κd2M(qu, qv)

≤ 2κ∥qu − qv∥22

=
8

3
κ∥PTu (qu − qv) ∥22.

(B.34)

This completes the proof.

Lemma B.8. For any t > 0, with probability at least 1− e−
t2

2σ2 in the noise, for any qu, qv ∈M and u
1→ v ∈ E1,

−⟨PNu
(x− qu) ,PNu

(qv − qu)⟩ ≤
8

3
κ(diam(M) +

√
2σ
√

log |E1|+ t)∥PTu
(qv − qu)∥22. (B.35)

Proof. As u 1→ v ∈ E1, we have ∥qu − qv∥ ≤ Rnbrs ≤ τM from the construction of E1. We decompose the left hand
side in equation (B.35) as follows:

−⟨PNu
(x− qu) ,PNu

(qv − qu)⟩ = −⟨PNu
(x♮ − qu) ,PNu

(qv − qu)⟩ − ⟨z,PNu
(qv − qu)⟩ . (B.36)

From lemma B.7, we have ∥PNu
(qv − qu) ∥2 ≤ 8

3κ∥PTu
(qv − qu) ∥22. Then the first component on the right hand side

can be rewritten as:
−⟨PNu (x♮ − qu) ,PNu (qv − qu)⟩ ≤ ∥x♮ − qu∥2∥PNu (qv − qu) ∥2

≤ 8

3
κdiamM∥PTu

(qv − qu) ∥22.
(B.37)

Now consider a set of random variables
Xy = −⟨z,y⟩ y ∈ Y, (B.38)

with

Y =

{
PNu

(qv − qu)

∥PNu(qv − qu)∥2

∣∣∣ ∀u 1→ v ∈ E1, u ̸= v,∀u, v ∈ V

}
.

Because z ∼ N (0, σ2I), Xy follows the distribution Xy ∼ N (0, σ2), and (Xy)y∈Y is a Gaussian process. We first bound
the expectation of the supremum of this Gaussian process E[supy∈Y Xy] by starting from

et
′E[supy∈Y Xy ] = eE[t

′ supy∈Y Xy ]

≤ E[et
′ supy∈Y Xy ]

≤
|Y|∑
i=1

E[et
′Xy ]

= |Y |e 1
2σ

2t′2 , ∀t′ > 0.

(B.39)

Take logarithm of both sides, we have

E[sup
y∈Y

Xy] ≤
log |Y|

t
+

σ2t′

2
. (B.40)
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When t′ =

√
2 log |Y |

σ , the right hand side of equation (B.40) is minimized, and we obtain

E[sup
y∈Y

Xy] ≤
√
2σ
√
log |Y |. (B.41)

By using Borell–TIS inequality (Adler & Taylor, 2007), for any t > 0 we have

P(sup
y∈Y

Xy − E[sup
y∈Y

Xy] > t) ≤ e
−t2

2σ2 . (B.42)

This implies

P
(
−
〈
z,
PNu(qv − qu)

∥PNu
(qv − qu)∥2

〉
− E[sup

y∈Y
Xy] ≤ t

)
> 1− e

−t2

2σ2 . (B.43)

Therefore, with probability at least 1− e−
t2

2σ2 , we have

−⟨z,PNu
(qv − qu)⟩ ≤ ∥PNu

(qv − qu)∥2(E[sup
y∈Y

Xy] + t)

≤ ∥PNu
(qv − qu)∥2(

√
2σ
√

log |Y |+ t)

≤ 8

3
κ∥PTu

(qv − qu)∥22(
√
2σ
√

log |Y |+ t). by lemma B.7

(B.44)

Plug equation (B.37) and equation (B.44), with probability at least 1− e−
t2

2σ2 , we have

− ⟨PNu
(x♮ − qu) ,PNu

(qv − qu)⟩ − ⟨z,PNu
(qv − qu)⟩

≤ − ⟨PNu
(x♮ − qu) ,PNu

(qv − qu)⟩+ sup
u

1→v

−⟨z,PNu
(qv − qu)⟩

≤ 8

3
κ(diam(M) +

√
2σ
√
log |Y |+ t)∥PTu

(qv − qu)∥22.

(B.45)

We conclude the proof by noting that |Y | <
∣∣E1
∣∣.

C. Phase II Analysis

Lemma C.1. Given noise vector z ∼iid N (0, σ2), let H = maxq∈Q

∥∥PTqMz
∥∥. Then, with probability at least 1− e−

9d
2 ,

we have
H ≤ σ

(
4
√

log |Q|+ 10
√
d
)
. (C.1)

Proof. For any landmark q, we define set Sq = {v ∈ TqM : ∥v∥ = 1}. From Corrollary 4.2.13 in (Vershynin, 2018), we

know that for any δ, Sq can be δ-covered by at most
(

1+δ/2
δ/2

)d
=
(
1 + 2

δ

)d
points. In particular, we can choose δ = 1

2 and

let Cq to be a 1/2 cover of Sq such that |Cq| ≤ 5d. We let SQ = ∪q∈QSq and CQ = ∪q∈QCq . Then, we have

H = max
u∈SQ

⟨u, z⟩ (C.2)

≤ max
v∈CQ

⟨v, z⟩+ 1

2
H, (C.3)

(C.4)

this implies
H ≤ 2 max

v∈CQ

⟨v, z⟩ . (C.5)

Let h(z) = maxv∈CQ
⟨v, z⟩, and since it’s a 1-lipshitz function in z, by applying gaussian concentration inequality, we

have
P (h(z)− E[h(z)] ≥ s) ≤ e−

s2

2σ2 . (C.6)
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We then bound its expectation. For any t > 0,

etE[h(z)] ≤ E[et[h(z)]]

= E[etmaxv∈CQ
⟨v,z⟩]

≤
∑

v∈CQ

E[et⟨v,z⟩]

= |CQ|e
1
2σ

2t2 .

(C.7)

Take logarithm of both sides, we have

E[h(z)] ≤ log |CQ|
t

+
σ2t

2
. (C.8)

When t =

√
2 log |CQ|

σ , the right hand side of equation (C.8) is minimized, and we obtain

E[h(z)] ≤
√
2σ
√
log |CQ| =

√
2σ
√
d log 5 + log |Q|. (C.9)

Plugging this result back to C.6, we have

P
(
h(z)−

√
2σ
√

d log 5 + log |Q| ≥ s
)
≤ e−

s2

2σ2 . (C.10)

Picking s = 3σ
√
d, this implies with probability at least 1− e−

9d
2 , we have

max
v∈CQ

⟨v, z⟩ = h(z) ≤ σ
(√

(2 log 5)d+ 2 log |Q|+ 3
√
d
)
≤ σ

(√
2 log |Q|+ 5

√
d
)
. (C.11)

Plugging this result back to C.5, we have with probability ≥ 1− e−
9d
2 ,

H ≤ σ
(
2
√
2 log |Q|+ 10

√
d
)
. (C.12)

Lemma C.2. Suppose for any landmark q′′ ∈ q +Nη
q

6, with

η ≥ ϵ+ δ + σ
(
4
√
log |Q|+ 10

√
d
)
, (C.13)

there exists a zero-order edge q
0→ q′, such that

q′ ∈ BM(q′′, c4τM), (C.14)

where δ is the covering radius for Q, ϵ > 0, and c4 ≤ 1
40 .

Then, for x = x♮ + z, with probability at least 1− e−
9d
2 in the noise z, the following property obtains: for every point q

such that x ∈ q +N ϵ
q , there exists a zero-order edge q

0→ q′′′ for some q′′′ ∈ BM(x♮, c4τM + δ).

Proof. For x = x♮ + z ∈ q +N ϵ
qM, we have ∥∥PTq (x− q)

∥∥
2
≤ ϵ. (C.15)

By the covering property, there exists q′′ ∈ Q, such that

dM(x♮, q
′′) ≤ δ. (C.16)

Since ∥∥PTq (x− q)
∥∥
2
≥
∥∥PTq (q

′′ − q)
∥∥
2
−
∥∥PTq (x♮ − q′′)

∥∥
2
−
∥∥PTqz

∥∥
2
, (C.17)

6Nη
qM =

{
v ∈ RD | ∥PTqMv∥2 ≤ η

}
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we have ∥∥PTq (q
′′ − q)

∥∥
2
−
∥∥PTq (x♮ − q′′)

∥∥
2
−
∥∥PTqz

∥∥
2
≤ ϵ. (C.18)

Together with
∥∥PTq (x♮ − q′′)

∥∥
2
≤ ∥x♮ − q′′∥2 ≤ δ, and Lemma C.1, then with probability at least 1− e

−9d
2 , we have∥∥PTq (q

′′ − q)
∥∥
2
≤ ϵ+ δ +H

≤ η.
(C.19)

By assumption, there exists a zero-order edge q
0→ q′, such that q′ ∈ BM(q′′, c4τM). Then

dM(q′,x♮) ≤ dM(q′, q′′) + dM(q′′,x♮)

≤ c4τM + δ.
(C.20)

Lemma C.3. Assume σ
√
D ≤ c1τM for some c1 ≤ 1

640 and for any landmark q′′ ∈ q + Nη
q , with η ≥ ϵ + δ +

σ
(
4
√

log |Q|+ 10
√
d
)

, where δ is the covering radius of Q and ϵ > 0, there exists a zero-order edge q
0→ q′, such that

q′ ∈ BM(q′′, c4τM), where c4 ≤ 1
40 . Then, for any noisy x = x♮ + z where x ∈ q + N ϵ

q, with probability at least

1− 2e
−9d
2 in the noise, q∗ = argmin

q′:q
0→q′ ∥q′ − x∥2 satisfies landmark q∗ ∈ BM(x♮, (2c4 + 16c1)τM + 2δ)

Proof. Given the assumption, lemma C.2 guarantees that with probability at least 1− e
−9d
2 , there exists a landmark q′′′ and

a zero-order edge q
0→ q′′′, such that q′′′ ∈ BM(x♮, c4τM + δ). Since q∗ = argmin

q′:q
0→q′ ∥q′ − x∥2, we know that

∥q∗ − x∥2 ≤ ∥q′′′ − x∥2. (C.21)

which is the same as

∥q∗ − x♮ − z∥2 ≤ ∥q′′′ − x♮ − z∥2. (C.22)

From triangular inequality, we have

∥q∗ − x♮∥2 ≤ ∥q′′′ − x♮∥2 + 2∥z∥2. (C.23)

Since g(z) = ∥z∥2 is 1-lipschitz function in z and E[∥z∥2] ≤ σ
√
D, then with probability at least 1− e−

t2

2σ2 , we have

∥z∥2 ≤ σ
√
D + t. (C.24)

Take t = 3σ
√
D, then with probability at least 1− e−

9D
2 , we have

∥z∥2 ≤ 4σ
√
D ≤ 4c1τM, (C.25)

which implies with probability at least 1− e−
9D
2 , we have

∥q∗ − x♮∥2 ≤ ∥q′′′ − x♮∥2 + 8c1τM ≤ (c4 + 8c1)τM + δ ≤ τM. (C.26)

The last inequality follows from the conditions c4 ≤ 1/40, c1 ≤ 1/640, δ = Rnbrs/a ≤ τM/40. Together with the fact that
on this scale dM(x♮, q

∗) ≤ 2∥q∗ − x♮∥2, we have

dM(x♮, q
∗) ≤ (2c4 + 16c1)τM + 2δ. (C.27)
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D. Phase III Analysis

Lemma D.1. Consider the first-order edge u
1→ v. Let ξuv = PTu

(qv − qu) denote the edge embedding, where PTu
is

the projection operator onto the tangent space Tu of the manifoldM at landmark qu. Let γ : [0, 1]→M be a geodesic
joining qu and qv with constant speed ∥v∥2, where γ(0) = qu,γ(1) = qv . Then, for all t ∈ [0, 1], we have

∥γ̇(t)− ξuv∥2 ≤
3

2
κd2M(qu, qv). (D.1)

Proof. From Taylor expansion, we have

qv = qu +

∫ 1

a=0

γ̇(a)da. (D.2)

Therefore ξuv = PTu

∫ 1

a=0
γ̇(a)da. Then

∥γ̇(t)− ξuv∥2 =

∥∥∥∥γ̇(t)− PTu

∫ 1

a=0

γ̇(a)da

∥∥∥∥
2

=

∥∥∥∥γ̇(0) + ∫ t

b=0

γ̈(b)db− PTu

∫ 1

a=0

(
γ̇(0) +

∫ a

b=0

γ̈(b)db

)
da

∥∥∥∥
2

=

∥∥∥∥∫ t

b=0

γ̈(b)db−
∫ 1

a=0

∫ a

b=0

PTu
γ̈(b)dbda

∥∥∥∥
2

=

∥∥∥∥∫ 1

a=0

∫ t

b=0

γ̈(b)dbda−
∫ 1

a=0

(∫ t

b=0

PTu γ̈(b)db

)
+

(∫ a

b=t

PTu γ̈(b)db

)
da

∥∥∥∥
2

=

∥∥∥∥∫ 1

a=0

(∫ t

b=0

PNu
γ̈(b)db−

∫ a

b=t

PTu
γ̈(b)db

)
da

∥∥∥∥
2

≤
∫ 1

a=0

∥∥∥∥∫ t

b=0

PNu γ̈(b)db

∥∥∥∥
2

+

∥∥∥∥∫ a

b=t

PTu γ̈(b)db

∥∥∥∥
2

da

≤
∫ 1

a=0

(t+ |a− t|)κ∥v∥22 da

=

(∫ t

a=0

[2t− a] da+

∫ 1

a=t

a da

)
κ∥v∥22

=
(
2t2 − 1

2 t
2 + 1

2 −
1
2 t

2
)
κ∥v∥22

=

(
1

2
+ t2

)
κ∥v∥22

≤ 3

2
κ∥v∥22

=
3

2
κd2M(qu, qv).

(D.3)

Lemma D.2. For any z and x♮,y ∈M, let

Tmax = sup
y∈BM(x♮,1/κ),v∈TyM,∥v∥2=1

⟨v, z⟩ , (D.4)

Then if dM(y,x♮) ≤ 1/κ, we have∥∥− logy x♮ − grad[φx](y)
∥∥
2
≤ 1

2
κd2M(y,x♮) + Tmax. (D.5)

Proof. We first decompose the left hand side into∥∥− logy x♮ − grad[φx](y)
∥∥
2
=
∥∥− logy x♮ + PTyM(x− y)

∥∥
2

≤
∥∥− logy x♮ + PTyM(x♮ − y)

∥∥
2
+
∥∥PTyMz

∥∥
2
.

(D.6)
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Consider a geodesic η : [0, 1] →M with constant speed ∥vη∥2, where η(0) = y,η(1) = x♮, then we bound the signal
term (first term) of the above bound:

∥∥− logy x♮ + PTyM(x♮ − y)
∥∥
2
=

∥∥∥∥−η̇(0) + PTyM

∫ 1

a=0

η̇(a)da

∥∥∥∥
2

=

∥∥∥∥−η̇(0) + PTη(0)M

∫ 1

a=0

(
η̇(0) +

∫ a

b=0

η̈(b)db

)
da

∥∥∥∥
2

=

∥∥∥∥PTη(0)M

∫ 1

a=0

∫ a

b=0

η̈(b)dbda

∥∥∥∥
2

≤
∫ 1

a=0

∫ a

b=0

∥η̈(b)∥2 dbda

≤
∫ 1

a=0

∫ a

b=0

κ∥vη∥22dbda

=
1

2
κd2M(y,x♮).

(D.7)

Since y ∈ BM(x♮, 1/κ), we have ∥∥PTyMz
∥∥
2
≤ Tmax. (D.8)

Combining the above, we end up with the result.

Lemma D.3. For any point z and x♮,y ∈M, let

Tmax = sup
y∈BM(x♮,1/κ),v∈TyM,∥v∥2=1

⟨v, z⟩ , (D.9)

if dM(y,x♮) ≤ 1/κ, then we have
∥grad[φx](y)∥2 ≤ dM(y,x♮) + Tmax. (D.10)

Proof.
∥grad[φx](y)∥2 =

∥∥PTyM(y − x)
∥∥
2

≤
∥∥PTyM(y − x♮)

∥∥
2
+
∥∥PTyMz

∥∥
2
.

(D.11)

It’s easy to show that
∥∥PTyM(y − x♮)

∥∥
2
≤ dM(y,x♮). Let

Tmax = sup
y∈BM(x♮,1/κ),v∈TyM,∥v∥2=1

⟨v, z⟩ , (D.12)

then we have ∥∥PTyMz
∥∥
2
≤ Tmax. (D.13)

Combining the above two bounds, we end up with the desired result.

Lemma D.4. Let ζ : [0, 1]→M be a geodesic in a Riemannian manifoldM. Take any initial vector v0 ∈ Tζ(0)M, and
let vt be its parallel transport along ζ up to time t. Then

∥vt − v0∥2 ≤ 3κt∥v0∥2∥ζ̇∥2. (D.14)

Proof. When paralleling transport a v0 ∈ Tζ(0)M along the geodesic ζ, we have

d

dt
vt = Π(vt, ζ̇(t)). (D.15)

From fundamental theorem of calculus, we have

vt = v0 +

∫ t

a=0

Π(va, ζ̇(a))da. (D.16)
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From above and applying Lemma 8 in (Yan* et al., 2023), we have

∥vt − v0∥2 =

∥∥∥∥∫ t

a=0

Π(va, ζ̇(a))da

∥∥∥∥
2

≤
∫ t

a=0

∥∥∥Π(va, ζ̇(a))
∥∥∥
2
da

≤
∫ t

a=0

3κ∥v0∥2∥ζ̇∥2da

= 3κt∥v0∥2∥ζ̇∥2.

(D.17)

Lemma D.5. Let γ : [0, 1]→M be a geodesic joining qu and qv with constant speed, where γ(0) = qu,γ(1) = qv . Then,
for all t ∈ [0, 1], we have ∥∥PTγ(t)M − PTγ(0)M

∥∥
op
≤ 3
√
2κt∥γ̇∥2. (D.18)

Proof. ∥∥PTγ(t)M − PTγ(0)M
∥∥
op

= sup
∥w∥2=1

∥∥(PTγ(t)M − PTγ(0)M
)
w
∥∥
2

= sup
∥w∥2=1

∥∥(PTγ(t)M − PTγ(0)M
)
(w|| +w⊥)

∥∥
2

≤ sup
∥w∥2=1

∥∥(PTγ(t)M − PTγ(0)M
)
w||
∥∥
2
+
∥∥(PTγ(t)M − PTγ(0)M

)
w⊥
∥∥
2

= sup
∥w∥2=1

∥∥PTγ(t)Mw|| −w||
∥∥
2
+
∥∥PTγ(t)Mw⊥

∥∥
2
,

(D.19)

where w|| = PTγ(0)Mw,w⊥ = PT⊥
γ(0)

Mw.

Together with Lemma D.4, we bound the first term
∥∥(PTγ(t)M − PTγ(0)M

)
w||
∥∥
2
.∥∥PTγ(t)Mw|| −w||

∥∥
2
= min

h∈Tγ(t)M

∥∥h−w||
∥∥
2

≤
∥∥Π0→tw|| −w||

∥∥
2

≤ 3κt∥w||∥2∥γ̇∥2.

(D.20)

Here Π0→t is a transport operator which transports a vector in Tγ(0)M to the Tγ(t)M along the geodesic γ.

We next bound the second term
∥∥PTγ(t)Mw⊥

∥∥
2
.∥∥PTγ(t)Mw⊥

∥∥
2
=
∥∥∥PTγ(t)MPT⊥

γ(0)
Mw⊥

∥∥∥
2

≤ ∥w⊥∥2
∥∥∥PTγ(t)MPT⊥

γ(0)
M

∥∥∥
op

= ∥w⊥∥2
∥∥∥PT⊥

γ(0)
MPTγ(t)M

∥∥∥
op

= ∥w⊥∥2 sup
∥u∥2=1

∥∥∥PT⊥
γ(0)

MPTγ(t)Mu
∥∥∥
2

= ∥w⊥∥2 sup
∥u∥2=1,u∈Tγ(t)M

∥∥∥PT⊥
γ(0)

Mu
∥∥∥
2

= ∥w⊥∥2 sup
∥u∥2=1,u∈Tγ(t)M

∥∥(I − PTγ(0)M
)
u
∥∥
2

= ∥w⊥∥2 sup
∥u∥2=1,u∈Tγ(t)M

min
h∈Tγ(0)M

∥h− u∥2

≤ ∥w⊥∥2 sup
∥u∥2=1,u∈Tγ(t)M

∥Πt→0u− u∥2

≤ 3κt∥∥w⊥∥2∥γ̇∥2.

(D.21)
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Therefore,
sup

∥w∥2=1

∥∥PTγ(t)Mw|| −w||
∥∥
2
+
∥∥PTγ(t)Mw⊥

∥∥
2
≤ sup

∥w∥2=1

3κt∥γ̇∥2(∥w||∥2 + ∥w⊥∥2)

≤ sup
∥w∥2=1

3
√
2κt∥γ̇∥2∥w∥2

= 3
√
2κt∥γ̇∥2.

(D.22)

Hence ∥∥PTγ(t)M − PTγ(0)M
∥∥
op
≤ 3
√
2κt∥γ̇∥2. (D.23)

Lemma D.6. Let γ : [0, 1] →M be a minimum length geodesic joining qu and qu+ with constant speed dM(qu, qu+),
where γ(0) = qu,γ(1) = qu+ . Suppose for any t ∈ [0, 1], dM(γ(t),x♮) ≤ 1/κ, then, we have

⟨grad[φx](γ(t)), ξuu+⟩ ≤ −0.55

2

(
1

2
dM(x♮,γ(0))− Tmax

)
dM(qu, qu+)

+

(
3
√
2κtdM(qu, qu+)dM(γ(t),x♮) + 2Tmax + tdM(qu, qu+) +

1

2
κt2d2M(qu, qu+)

)
dM(qu, qu+).

(D.24)

Proof. We note that

⟨grad[φx](γ(t)), ξuu+⟩ = ⟨grad[φx](γ(0)), ξuu+⟩+ ⟨grad[φx](γ(t))− grad[φx](γ(0)), ξuu+⟩
≤ ⟨grad[φx](γ(0)), ξuu+⟩+ ∥grad[φx](γ(t))− grad[φx](γ(0))∥2 dM(qu, qu+).

(D.25)

For any x ̸= qu, our first-order step rule is equivalent of choosing

u+ = arg min
v:u

1→v∈E1

∥∥∥∥Ra
PTu

(x− qu)

∥PTu
(x− qu)∥2

− PTu
(qv − qu)

∥∥∥∥
2

.

Then, lemma B.3 guarantees that there exists a v satisfies Equation (B.17). From our step rule, we know that qu+ also
satisfies Equation (B.17). Together with Lemma B.4 and dM(γ(0),x♮) ≤ 1/κ, we have

⟨grad[φx](γ(0)), ξuu+⟩ ≤ −0.55 ∥grad[φx](γ(0))∥2 ∥ξuu+∥2
≤ −0.55

(∥∥PTγ(0)M (x♮ − γ(0))
∥∥
2
−
∥∥PTγ(0)Mz

∥∥
2

)
∥ξuu+∥2

≤ −0.55
(
dM(γ(0),x♮)

(
1− 1

2
κdM(γ(0),x♮)

)
− Tmax

)
1

2
dM(qu, qu+)

≤ −0.55
2

(
1

2
dM(γ(0),x♮)− Tmax

)
dM(qu, qu+).

(D.26)

where from the second to the third line we’ve used the same argument from equation (A.28) to lower bound∥∥PTγ(0)M (x♮ − γ(0))
∥∥
2

by dM(γ(0),x♮)
(
1− 1

2κdM(γ(0),x♮)
)

and ∥ξuu+∥2 by 1
2dM(qu, qu+) And we can bound

∥grad[φx](γ(t))− grad[φx](γ(0))∥2:

∥grad[φx](γ(t))− grad[φx](γ(0))∥2 ≤
∥∥(PTγ(t)M − PTγ(0)M

)
(γ(t)− x♮)

∥∥
2

+
∥∥(PTγ(t)M − PTγ(0)M

)
z
∥∥
2

+
∥∥PTγ(0)M(γ(t)− γ(0))

∥∥
2

≤
∥∥PTγ(t)M − PTγ(0)M

∥∥
op

dM(γ(t),x♮)

+
∥∥PTγ(t)Mz

∥∥
2
+
∥∥PTγ(0)Mz

∥∥
2

+
∥∥PTγ(0)M(γ(t)− γ(0))

∥∥
2
.

(D.27)
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Together with Lemma D.5, we have∥∥PTγ(t)M − PTγ(0)M
∥∥
op

dM(γ(t),x♮) ≤ 3
√
2κtdM(qu, qu+)dM(γ(t),x♮). (D.28)

Since γ(t) ∈ BM(x♮, 1/κ) ∀t ∈ [0, 1], we have∥∥PTγ(t)Mz
∥∥
2
≤ Tmax, (D.29)

hence ∥∥PTγ(t)Mz
∥∥
2
+
∥∥PTγ(0)Mz

∥∥
2
≤ 2Tmax. (D.30)

From Taylor expansion on the geodesic γ, we have∥∥PTγ(0)M(γ(t)− γ(0))
∥∥
2
=

∥∥∥∥PTγ(0)M

∫ t

a=0

γ̇(a)da

∥∥∥∥
2

=

∥∥∥∥PTγ(0)M

∫ t

a=0

(
γ̇(0) +

∫ a

b=0

γ̈(b)db

)
da

∥∥∥∥
2

=

∥∥∥∥γ̇(0)t+ ∫ t

a=0

∫ a

b=0

PTγ(0)Mγ̈(b)dbda

∥∥∥∥
2

≤ tdM(qu, qu+) +
1

2
κt2d2M(qu, qu+).

(D.31)

Therefore,

∥grad[φx](γ(t))− grad[φx](γ(0))∥2 ≤ 3
√
2κtdM(qu, qu+)dM(γ(t),x♮) + 2Tmax + tdM(qu, qu+) +

1

2
κt2d2M(qu, qu+).

(D.32)

Combining all of things above, we have

⟨grad[φx](γ(t)), ξuu+⟩ ≤ −0.55
2

(
1

2
dM(x♮,γ(0))− Tmax

)
dM(qu, qu+)

+

(
3
√
2κtdM(qu, qu+)dM(γ(t),x♮) + 2Tmax + tdM(qu, qu+) +

1

2
κt2d2M(qu, qu+)

)
dM(qu, qu+).

(D.33)

Lemma D.7. Suppose
qu ∈ BM(x♮, c/κ) \BM(x♮, CTmax), (D.34)

for some constant c ≤ 0.1, C ≥ 321, with

Tmax = sup
y∈BM(x♮,1/κ),v∈TyM,∥v∥2=1

⟨v, z⟩ , (D.35)

and

dM(qu, qu+) ≤ min

{
1

100κ
,
1

8
Tmax

}
, (D.36)

then
dM(qu+ ,x♮) ≤ dM(qu,x♮)−

1

80
dM(qu, qu+). (D.37)

Proof. Let γ : [0, 1]→M be a minimum length geodesic joining qu and qu+ with constant speed dM(qu, qu+), where
γ(0) = qu,γ(1) = qu+ . Then we have

dM(x♮, qu+)− dM(x♮, qu) =

∫ 1

t=0

d

dt
dM(x♮,γ(t))dt

=

∫ 1

t=0

〈
d

dy
dM(x♮,y)

∣∣∣
y=γ(t)

, γ̇(t)

〉
dt

=

∫ 1

t=0

〈
− logγ(t) x♮

∥ logγ(t) x♮∥2
, γ̇(t)

〉
dt.

(D.38)
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We can further decompose the integrand as follows:〈
− logγ(t) x♮

∥ logγ(t) x♮∥2
, γ̇(t)

〉

=
1

∥ logγ(t) x♮∥2

〈
− logγ(t) x♮ + grad[φx](γ(t))− grad[φx](γ(t)), γ̇(t) + ξuu+ − ξuu+

〉
=

1

dM(γ(t),x♮)

(
⟨grad[φx](γ(t)), ξuu+⟩+

〈
− logγ(t) x♮ − grad[φx](γ(t)), γ̇(t)

〉
+ ⟨grad[φx](γ(t)), γ̇(t)− ξuu+⟩

)
.

(D.39)
We will proceed to use Lemma D.6 to bound the first term, Lemma D.2 to bound the second term, and Lemmas D.1 and
D.3 to bound the last term. In order to apply these lemmas, we observe that ∀t ∈ [0, 1], dM(γ(t),x♮) ≤ dM(γ(0),x♮) +
dM(γ(0),γ(t)) ≤ dM(γ(0),x♮) + dM(γ(0),γ(1)) ≤ c

κ + 1
100κ ≤

1
8κ .

Thus from Lemma D.6 we have

⟨grad[φx](γ(t)), ξuu+⟩ ≤ −0.55
2

(
1

2
dM(x♮,γ(0))− Tmax

)
dM(qu, qu+)

+

(
3
√
2κtdM(qu, qu+)dM(γ(t),x♮) + 2Tmax + tdM(qu, qu+) +

1

2
κt2d2M(qu, qu+)

)
dM(qu, qu+)

≤
(
−1

8
dM(x♮,γ(t)) +

1

8
dM(qu, qu+) +

1

2
Tmax

)
dM(qu, qu+)

+

(
3
√
2

8
dM(qu, qu+) + 2Tmax + dM(qu, qu+) +

1

200
dM(qu, qu+)

)
dM(qu, qu+)

≤
(
−1

8
dM(x♮,γ(t)) +

5

2
Tmax + 2dM(qu, qu+)

)
dM(qu, qu+).

(D.40)
Similarly, from Lemma D.2 we have〈

− logγ(t) x♮ − grad[φx](γ(t)), γ̇(t)
〉
≤
∥∥∥− logγ(t) x♮ − grad[φx](γ(t))

∥∥∥ · ∥γ̇(t)∥
≤
(
1

2
κd2M(γ(t),x♮) + Tmax

)
· dM(qu, qu+)

≤
(

1

16
dM(γ(t),x♮) + Tmax

)
· dM(qu, qu+),

(D.41)

and Lemmas D.1 and D.3 also give

⟨grad[φx](γ(t)), γ̇(t)− ξuu+⟩ ≤ ∥grad[φx](γ(t))∥ · ∥γ̇(t)− ξuu+∥

≤ (dM(γ(t),x♮) + Tmax) ·
(
3κ

2
dM

2(qu, qu+)

)
≤
(

3

200
dM(γ(t),x♮) +

3

200
Tmax

)
dM(qu, qu+).

(D.42)

Lastly, we combine the terms to get

⟨grad[φx](γ(t)), ξuu+⟩+
〈
− logγ(t) x♮ − grad[φx](γ(t)), γ̇(t)

〉
+ ⟨grad[φx](γ(t)), γ̇(t)− ξuu+⟩

≤
(
− 1

40
dM(γ(t),x♮) +

15

4
Tmax + 2dM(qu, qu+)

)
dM(qu, qu+)

≤
(
− 1

40
dM(γ(t),x♮) + 4Tmax

)
dM(qu, qu+)

≤
(
− 1

80
dM(γ(t),x♮)

)
dM(qu, qu+),

(D.43)
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where we’ve used our assumption that dM(qu, qu+) ≤ 1
8Tmax and dM(γ(t),x♮) ≥ dM(γ(0),x♮) − dM(qu, qu+) ≥

CTmax − 1
8Tmax ≥ 320Tmax. Finanly, plugging this result back to Equation D.39, we observe

dM(x♮, qu+)− dM(x♮, qu) =

∫ 1

t=0

〈
− logγ(t) x♮

∥ logγ(t) x♮∥2
, γ̇(t)

〉
dt

≤
∫ 1

t=0

1

dM(γ(t),x♮)

(
− 1

80
dM(γ(t),x♮)

)
dM(qu, qu+)dt

≤ − 1

80
dM(qu, qu+).

(D.44)

This completes the proof

A. Supporting Results
Preliminiaries on the logarithmic map. The following sequence of lemmas provides an upper bound on the number of
landmarks |Q|, under the assumption that the landmarks are δ-separated. Our argument will assume that the manifoldM is
connected and geodesically complete. Under these assumptions, the exponential map

expx♮
(·) : Tx♮

M→M (A.1)

is surjective, i.e., for every q ∈M, there exists v ∈ Tx♮
M such that

expx♮
(v) = q. (A.2)

Moreover, by the Hopf-Rinow theorem, there exists a length-minimizing geodesic joining x♮ and q, and hence there exists
v ∈ Tx♮

M of norm ∥v∥ = dM(x♮, q) satisfying (A.2). In particular, for every q ∈M, there exists v ∈ Tx♮
M of norm at

most ∥v∥ ≤ diam(M) satisfying (A.2).

The logarithmic map
l̃ogx♮

:M→ Tx♮
M (A.3)

is defined, in the broadest generality, as the inverse of the exponential map. This mapping can be multi-valued, since for a
given q there may be multiple tangent vectors v satisfying (A.2). Notice that because exp is surjective, its inverse, l̃og is
well defined for all q ∈ M. When dM(x♮, q) ≤ rinj is smaller than the injectivity radius of the exponential map at x♮

7,
there is a unique minimum norm element v⋆ of the set l̃ogx♮

(q). This is typically denoted

logx♮
(q) (A.4)

and satisfies ∥v⋆∥ = dM(x♮, q).8 We can extend this notation from q ∈ BM(x♮, rinj) to all ofM, by letting

logx♮
(q) (A.5)

denote a minimum norm element of the set l̃ogx♮
(q), chosen arbitrarily in the case that there are multiple minimizers.9 With

this choice, logx♮
(q) is well-defined, single-valued over all ofM, and defines a mapping

logx♮
:M→ BTx♮

M

(
0,diam(M)

)
(A.6)

Our analysis will assume that the landmarks Q are δ-separated onM, i.e., dM(qi, qj) ≥ δ for all i ̸= j. We will show
under this assumption that logx♮

(qi) and logx♮
(qj) are δ′-separated, albeit with a radius of separation δ′ which could be

significantly smaller than δ.

This argument makes heavy use of properties of geodesic triangles – in particular, Toponogov’s theorem, which compares
side lengths of geodesic triangles in spaces of bounded sectional curvature to side lengths of triangles in spaces of constant
sectional curvature. Our argument uses the following properties of the mapping log defined above:

7inj(x♮) = sup{r > 0 : expx♮
is a diffeomorphism onB(0, r) ⊂ Tx♮M}

8This is often taken as the definition of the logarithmic map.
9This selection is possible thanks to the axiom of choice.
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• Inverse Property: for v = logx♮
(q), expx♮

(v) = q

• Minimum Norm Property: ∥ logx♮
(q)∥ = dM(x♮, q) ≤ diam(M).

Our analysis does not require analytical properties of the logarithmic map, such as continuity, which do not obtain beyond
the injectivity radius of the exponential map.

Lemma A.1. For any R > 0, and any δ-separated pair of points q, q′ ∈ BM(x♮, R) (i.e., pair of points satisfying
dM(q, q′) ≥ δ), we have

∥logx♮
q − logx♮

q′∥ ≥
√
2

4
exp(−κR)δ. (A.7)

Proof. We will prove this claim by applying Toponogov’s theorem, a fundamental result in Riemannian geometry.
Toponogov’s theorem is a comparison theorem for triangles, which allows us to compare side lengths of geodesic triangles
in an arbitrary manifold of bounded sectional curvature to the side lengths of geodesic triangles in a model space of constant
sectional curvature. From Lemma 10 in (Yan* et al., 2023), the sectional curvatures ofM are bounded from below by the
extrinsic curvature κ, i.e.,

κs ≥ −κ2. (A.8)

Our plan is as follows: form a geodesic triangle△(x, q−κ2 , q′
−κ2) in the model M−κ2 with constant section curvature −κ2,

whose side lengths satisfy

dM−κ2 (x, q−κ2) = dM(x♮, q), dM−κ2 (x, q
′
−κ2) = dM(x♮, q

′), (A.9)

and whose angle satisfies
∠(q−κ2 ,x, q′

−κ2) = ∠(q,x♮, q
′) (A.10)

Then by Toponogov’s theorem, the third sides of these pair of triangles satisfy the inequality

dM(q, q′) ≤ dM−κ2 (q−κ2 , q′
−κ2), (A.11)

i.e., the third side in the constant curvature model space is larger than that inM.

We construct the triangle△(x, q−κ2 , q′
−κ2) more explicitly as follows: fix a arbitrary base point x ∈M−κ2 . Let v,v′ be

two distinct tangent vectors in the tangent space TxM−κ2 satisfying

∥v∥2 = ∥ logx♮
q∥2, ∥v′∥2 = ∥ logx♮

q′∥2, (A.12)

and θ = ∠(logx♮
q, logx♮

q′) = ∠(v,v′). Set q−κ2 = expx(v) ∈M−κ2 , q′
−κ2 = expx(v

′) ∈M−κ2 .

Notice that ∥v − v′∥ = ∥ logx♮
q − logx♮

q′∥. We would like to lower bound this quantity. From (A.11) and the fact that
dM(q, q′) ≥ δ, we have dM−κ2 (q−κ2 , q′

−κ2) ≥ δ, and the task becomes one of lower bounding ∥v − v′∥ in terms of this
quantity. To facilitate this bound, we moveM−κ2 to hyperbolic spaceM−1, where we can apply standard results from
hyperbolic trigonometry, by scaling all side lengths by κ. Namely, form a third geodesic triangle inM−1, by taking an
arbitrary x−1 ∈M−1, choosing v−1,v

′
−1 ∈ Tx−1

M−1 with ∠(v−1,v
′
−1) = θ and ∥v−1∥2 = κ∥v∥, ∥v′

1∥2 = κ∥v′∥. As
above, set q−1 = expx−1

(v−1), and q′
−1 = expx−1

(v′
−1). Then

dM−1
(q−1, q

′
−1) = κdM−κ2 (q−κ2 , q′

−κ2). (A.13)

Moreover,
∥v−1 − v′

−1∥ = κ∥v − v′∥. (A.14)

For compactness of notation, let L′ denote the third sidelength of△−1,

L′ = dM−1
(q−1, q

′
−1) = κ ∗ dM−κ2 (q−κ2 , q′

−κ2). (A.15)

The lengths of the other two side are a = κ ∗ ∥v∥2 ≤ κR, b = κ ∗ ∥v′∥2 ≤ κR, and angle between these two sides is equal
to θ. In the corresponding Euclidean triangle on the tangent space, we also have the two sides are of length a and b, and the
third side has length

L = κ ∗ ∥v − v′∥2. (A.16)
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AsM−1 is hyperbolic, from hyperbolic law of cosines, we have

coshL′ = cosh a cosh b− sinh a sinh b cos θ. (A.17)

From the fact that cosh(a− b) = cosh a cosh b− sinh a sinh b, we could further get

coshL′ = cosh(a− b) + sinh a sinh b(1− cos θ). (A.18)

Since sinh t is convex over t ∈ [0,∞), we have sinh t ≤ t
κR sinh(κR) for t ≤ κR, hence sinh a sinh b ≤ ab

(κR)2 sinh
2(κR).

And cosh(a− b) = cosh |a− b| ≤ coshL. Then we have

coshL′ ≤ coshL+
ab

(κR)2
sinh2(κR)(1− cos θ). (A.19)

From the law of cosines applying on Euclidean triangle with length of two sides a, b and the length of the third side L, we
know

L2 = a2 + b2 − 2ab cos θ

≥ 2ab(1− cos θ)

≥ 2ab
(coshL′ − coshL)(κR)2

ab sinh2(κR)

= 2(κR)2
(coshL′ − coshL)

sinh2(κR)
.

(A.20)

Since dM(q, q′) ≥ δ, then L′ = κ ∗ dM−κ2 (q−κ2 , q′
−κ2) ≥ κ ∗ dM(q, q′) ≥ κδ. Then equation (A.20) implies

L2 +
2(κR)2

sinh2(κR)
coshL ≥ 2(κR)2

sinh2(κR)
coshκδ. (A.21)

By triangle inequality, we know L ≤ a+ b ≤ 2κR. From the mean value form of the Taylor series, we have sinh(κR) =
κR cosh(r1) for some 0 ≤ r1 ≤ κR and

coshL ≤ 1 +
L2

2
cosh(r2), (A.22)

for some 0 ≤ r2 ≤ L. Multiply equation (A.21) both side by sinh2(κR)
2(κR)2 and plug in the value above, we get

coshκδ ≤ sinh2(κR)

2(κR)2
L2 + coshL (A.23)

≤ cosh2(r1)

2
L2 +

(
1 +

L2

2
cosh(r2)

)
. (A.24)

Rearrange the terms, we get

L2 ≥ 2
(
cosh2(r1) + cosh(r2)

)−1
(cosh(κδ)− 1) (A.25)

≥ 2
(
cosh2(κR) + cosh(2κR)

)−1 κ2δ2

2
(A.26)

≥ 1

2
exp(−2κR)κ2δ2. (A.27)

(A.28)

where from the first to second line we used that cosh(t) ≥ 1 + t2

2 . As a result, we have ∥logx♮
q− logx♮

q′∥ = ∥v− v′∥ =
L/κ ≥

√
2
2 exp(−κR)δ ≥

√
2
4 exp(−κR)δ.
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Lemma A.2. Consider x♮ ∈M and let QR = {q : q ∈ BM(x♮, R) ∩Q}. Then the number of landmarks within R ball
centering at x♮, i.e. |QR|, satisfies

|QR| ≤
(
1 + 4

√
2ReκR/δ

)d
,∀R > 0. (A.29)

In particular, we have

|Q| ≤
(
1 + 4

√
2δ−1 diam(M)eκ diam(M)

)d
. (A.30)

Proof. For every q ∈ QR, there is a unique tangent vector logx♮
q ∈ Tx♮

M. Now we define the set VR = {logx♮
q ∈

Tx♮
M ∀q ∈ QR}. Then the number of landmarks within the intrinsic ball BM(x♮, R) is |QR| = |VR|.

Let δR =
√
2
4 exp(−κR)δ. From Lemma A.1, we know that VR forms a δR-separated subset of B(0, R) on Tx♮

M. And for

any logx♮
q ∈ VR, we have

∥∥∥logx♮
q
∥∥∥
2
= dM(x♮, q) ≤ R. Then it’s natural to notice that |VR| ≤ P (B(0, R), δR), where

P (B(0, R), δR) is the largest cardinality of a δR-separated subset of B(0, R) ∈ Tx♮
M.

Since P (B(0, R), δR) is the largest number of closed disjoint balls with centers in B(0, R) and radii δR/2, then by volume
comparison, we have

P (B(0, R), δR) ∗ vol(BδR/2) ≤ vol(BδR/2+R). (A.31)

Then we will have |VR| ≤ P (B(0, R), δR) ≤
(
1 + 2R

δR

)d
which gives the bound we need.

To bound Q, we can simply take R = diam(M) and notice |Q| =
∣∣Qdiam(M)

∣∣.
Lemma A.3. LetM∈ RD be a complete d-dimensional manifold. Suppose the set of landmarks Q = {q} ⊂ M forms a
δ-net forM, and first -order edges E1 satisfies that u 1→ v ∈ E1 if ∥qu − qv∥2 ≤ Rnbrs, where Rnbrs ≤ τM, and τM is the
reach of the manifold. Assume δ ≤ diamM, and κdiam(M) ≥ 1. Then the number of first-order edges

∣∣E1
∣∣ satisfies

log
∣∣E1
∣∣ ≤ (κdiam(M) + log(a)− log(δ) + log(diam(M)) + log(100)) d. (A.32)

Proof. From construction, we have ∣∣E1
∣∣ ≤ |Q| max

qu∈Q

∣∣E1
u

∣∣ , (A.33)

where E1
u denotes the first-order edges at landmark qu. As we have Rnbrs ≤ τM ≤ 1/κ, following Lemma A.2 and

Equation (A.30), we get

∣∣E1
∣∣ ≤ (1 + 4

√
2δ−1Rnbrse

κRnbrs

)d (
1 + 4

√
2δ−1 diam(M)eκ diam(M)

)d
(A.34)

=
(
1 + 4

√
2aeκRnbrs

)d (
1 + 4

√
2δ−1 diam(M)eκ diam(M)

)d
. (A.35)

We recall that a = Rnbrs/δ ≥ 40. Since eκRnbrs ≥ 1, we have 1
40ae

κRnbrs ≥ 1, which means 1 + 4
√
2aeκRnbrs ≤

( 1
40 + 4

√
2)aeκRnbrs ≤ ( 1

40 + 4
√
2)a · e, since κRnbrs ≤ 1. Similarly, since δ ≤ diamM, and κdiam(M) ≥ 1,

1 + 4
√
2δ−1 diam(M)eκ diam(M) ≤ ( 1e + 4

√
2)δ−1 diam(M)eκ diam(M), which gives

∣∣E1
∣∣ ≤ (( e

40
+ 4
√
2e)a

)d(
(
1

e
+ 4
√
2)δ−1 diam(M)eκ diam(M)

)d

(A.36)

≤
(
(
e

40
+ 4
√
2e)(

1

e
+ 4
√
2)

)d (
aδ−1 diam(M)eκ diam(M)

)d
(A.37)

≤ (100)
d
(
aδ−1 diam(M)eκ diam(M)

)d
. (A.38)
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Taking the log, we get

log
∣∣E1
∣∣ ≤ (κdiam(M) + log(a)− log(δ) + log(diam(M)) + log(100)) d. (A.39)

Lemma A.4. There exists a numerical constant C such that with probabilty at least 1− e−9d/2,

Tmax = sup
{
⟨v, z⟩ | dM(y,x♮) ≤ 1/κ,

v ∈ TyM, ∥v∥2 = 1

}
. (A.40)

satisfies
Tmax ≤ Cmax{κ, 1} × σ

√
d. (A.41)

Proof. Let κ̄ = max{κ, 1}. From Theorem 10 of (Yan* et al., 2023), we have that with probability at least 1− e−
x2

2σ2 ,

Tmax ≤ 12σ
(
κ̄
√
2π(d+ 1) +

√
log 12κ̄

)
+ x. (A.42)

We note that there exists numerical constants C1, C2, such that
√
log 12κ̄ ≤ C1κ̄, and

√
d+ 1 ≤ C2

√
d. Setting x = 3σ

√
d,

then we have
12σ(κ̄

√
2π(d+ 1) +

√
log 12κ̄) + x ≤ 12σκ̄

√
2πC2

√
d+ σC1κ̄+ 3σ

√
d

=
(
12κ̄
√
2πC2 + C1κ̄+ 3

)
σ
√
d

, (A.43)

yielding the claimed bound.

Lemma A.5. Let

Tmax = sup
{
⟨v, z⟩ | dM(y,x♮) ≤ 1/κ,

v ∈ TyM, ∥v∥2 = 1

}
. (A.44)

Then with probability at least 1− e−
t2

2σ2 , we have

Tmax ≥ σ
√

d/2− t. (A.45)

Proof. Since Tmax is the supremum of a 1-Lipschitz function and is therefore 1-Lipschitz in z, it follows that

P [Tmax ≤ E[Tmax]− t] ≤ e−t2/2σ2

. (A.46)

By setting y = x♮ and v = PTx♮
Mz we obtain Tmax ≥

∥∥∥PTx♮
Mz

∥∥∥
2

and thus E[Tmax] ≥ E
[∥∥∥PTx♮

Mz
∥∥∥
2

]
.

Since z is i.i.d. Gaussian with variance σ2, the rotational invariance of Gaussian distributions implies that E[∥PTx♮
Mz∥] =

E[∥σgd∥], where gd ∼ N (0, Id) is a d dimensional standard Gaussian vector. As ∥gd∥ is 1-Lipschitz, from Lemma A.6 we
have

1 ≥ Var[∥gd∥] = E[∥gd∥2]− E[∥gd∥]2 = d− E[∥gd∥]2, (A.47)

and thus E[∥gd∥] ≥
√
d− 1. Therefore,

E[∥PTx♮
Mz∥] = E[σ∥gd∥] ≥ σ

√
d− 1 ≥ σ

√
d/2, for d ≥ 2. (A.48)

For the case where d = 1, we compute directly:

E[∥PTx♮
M∥] =

√
2σ

Γ((d+ 1)/2)

Γ(d/2)
=
√
2/πσ ≥

√
d/2σ. (A.49)

Combining the cases for d ≥ 2 and d = 1, and substituting into Equation (A.46), we conclude that

Tmax ≥ σ
√
d/2− t with probability at least 1− e−t2/2σ2

. (A.50)
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Lemma A.6 (Bounded Variance of 1-Lipschitz Function). Let g ∼ N (0, I) be a standard Gaussian, f is a 1-Lipschitz
function, then we have

Var[f(g)] ≤ 1. (A.51)

Proof. In the prove, we utilize the Gaussian Poincaré inequality (Boucheron et al., 2003)[Theorem 3.20] which says that

Var[h(g)] ≤ E[∥∇h(g)∥2] (A.52)

for any C1 function h. Let ρε be the standard Gaussian mollifier ρε(z) = 1
(2πε)d

e−
∥z∥2
2ε and let

fε = f ∗ ρε =
∫
z

f(x− x)ρε(z)dz,

then fε is smooth. As

|fε(x)− fε(y)| =
∣∣∣∣∫

z

(fε(x− z)− fε(y − z)) ρε(z)dz

∣∣∣∣ (A.53)

≤
∫
z

|(fε(x− z)− fε(y − z))| ρε(z)dz (A.54)

≤ ∥x− y∥
∫
z

ρε(z)dz = ∥x− y∥, (A.55)

fε is also 1-Lipschitz. Following the Gaussian Poincaré inequality we have

Var[fε(g)] ≤ E[∥∇fε(g)∥2] ≤ 1. (A.56)

To conclude the result, we need to show the interchangeability of the interation and the limit. As fε is 1-Lipschitz, we have

|fε(x)|2 ≤ ∥fε(0)∥+ ∥x∥ (A.57)

≤
∣∣∣∣∫

z

f(−z)ρε(z)dz
∣∣∣∣+ ∥x∥ (A.58)

≤
∫
z

∥z∥ρε(z)dz + ∥x∥ (A.59)

=
√
εE[∥g∥] + ∥x∥. (A.60)

As the moments of a standard Gaussian are upper bounded, |fε(g)− E[fε(g)]|2 can be uniformly upper bounded by some
integrable function for all ε ≤ 1. And thus

Var[f [g]] =

∫
ε→0

Var[fε(g)] ≤ 1. (A.61)

B. Experimental Details
B.1. Gravitational Waves Data Generation

We generate synthetic gravitational waveforms with the PyCBC package (Nitz et al., 2023) with masses drawn from a
Gaussian distribution with mean 35 and variance 15. We use rejection sampling to limit masses to the range [20, 50]. Each
waveform is sampled at 2048Hz, padded or truncated to 1 second, and normalized to have unit ℓ2 norm. We simulate
noise as i.i.d. Gaussian with standard deviation σ = 0.01 (Yan* et al., 2023). The training set consists of 100, 000 noisy
waveforms, the test set contains 20, 000 noisy waveforms.

B.2. Noisy vs. Denoised Gravitational Wave Signal Visualization

The following example (Figure 10) presents a visualization of a noisy gravitational wave signal and its corresponding
denoised version, obtained using Denoiser 1 described in Table 1.
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Figure 10: Left: Noisy gravitational wave signal. Right: Corresponding denoised output obtained using Denoiser 1
described in 1 and the ground truth signal.

C. Traversal Networks on Synthetic Manifolds
In this section, we present traversal networks created by Algorithm 2 on the following synthetic manifolds: sphere (Figure
12), torus (Figure 11).

Figure 11: Traversal network on the torus with noise level σ = 0.01. Left-to-Right, Top-to-Bottom: Clean manifold,
landmarks (blue dots), first-order edges (blue lines), zero-order edges (green lines), final traversal network, and final traversal
network overlayed with clean manifold.

Figure 12: Traversal network on the sphere created based on 100,000 noisy points with noise level σ = 0.01. Left-to-Right,
Top-to-Bottom: Clean manifold, landmarks (blue dots), first-order edges (blue lines), zero-order edges (green lines), final
traversal network, and final traversal network overlayed with clean manifold.

D. Incremental PCA for Efficient Tangent Space Approximation
In this section, we detail the tangent space approximation implementation mentioned in Algorithm 2 and detailed in
Algorithm 4 and Algorithm 5. We use incremental Principal Component Analysis (PCA) to efficiently process streaming
high-dimensional data. Below we present the mathematics and algorithmic details of our implementation.

Initializing Local Model Parameters at New Landmarks: If a newly created landmark qM in Algorithm 2 has no other
landmarks within Rnbrs distance, then its tangent space TqM

is initialized randomly. Otherwise, we establish first-order
connections to all existing landmarks within radius Rnbrs, and the local parameters TqM

and ΞqM
are then initialized in the

following ways.
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Algorithm 4 IncrPCAonMatrix(X, d)

1: Input: X = [x1, . . . ,xn] ∈ RD×n as a collection of points, d as intrinsic dimension.
2: U1 ← [x1/∥x1∥]
3: S1 ← [∥x1∥22]
4: for i = 1, . . . , n− 1 do
5: Ui+1,Si+1 ← IncrPCA(xi+1,Ui,Si, i+ 1, d)
6: end for
7: Output: Un,Sn

Let {qi}ki=1 denote the set of first-order neighbors of landmark qM . We compute the normalized difference vectors:

hi =
qi − qM
∥qi − qM∥

, (D.1)

and assemble them into a matrix H =
[
h1 h2 . . . hk

]
. The tangent space TqM

is spanned by the orthonormal
matrix UqM

obtained through truncated singular value decomposition of H , which ensures UqM
∈ RD×d, where D and d

represent ambient and intrinsic dimensions, respectively. Edge embeddings ΞqM
are then created via projecting vectors

qi − qM onto TqM
.

Updating Tangent Space Approximations Efficiently: Now that a new landmark qM has been created along with TqM

and ΞqM
, we must update all three of them as more points arrive within radius R(M) of qM . As Algorithm 2 proceeds, each

new point that appears within radius R(M) of qM is used to update the local parameters at vertex M . To approximate the
local parameters at qM , we could consider the n noisy points {xi}ni=1 which already lie within radius R(M) of landmark
qM , and local parameters TqM

and ΞqM
can be established using these points. Landmark qM is updated to be the average

of all n+ 1 points. A straightforward way to approximate TqM
would be to form Xn+1 =

[
x1 x2 . . . xn+1

]
and

perform truncated SVD on it. However, this presents a computational challenge, given dimensions of matrix Xn+1 and
computational complexity of SVD. Moreover, performing SVD on the entire set of points within R(M) of qM every time a
new point is seen would be computationally redundant. This is why we implement tangent space estimation updates using
the incremental PCA (Brand, 2006; Arora et al., 2012), detailed below.

Let vertex M have local parameters qM , TqM
,ΞqM

. Let Xn =
[
x1 x2 . . . xn

]
∈ RD×n, which is expanded

by a new sample xn+1 to form the matrix Xn+1 =
[
Xn xn+1

]
. Assume that we have the truncated singular value

decomposition Xn ≈ UnSnV
T
n , with orthonormal Un ∈ RD×d,Vn ∈ Rn×d, and diagonal Sn ∈ Rd×d, with Un spanning

the tangent space at qM prior the arrival of xn+1. Our goal is to compute the truncated SVD of Xn+1 ≈ Un+1Sn+1V
T
n+1,

and to do so efficiently. Since we have

Xn+1 =
[
Xn xn+1

]
(D.2)

=
[
Xn 0

]
+ xn+1

[
0T 1

]
(D.3)

≈
[
UnSnV

T
n 0

]
+ xn+1

[
0T 1

]
(D.4)

·
= X̂n+1, (D.5)

finding the SVD of X̂n+1 is a good approximation for the SVD of Xn+1.

We then define the vector b ∈ R(n+1)×1 and the expand the matrix Vn to be

b =

[
0
1

]
∈ R(n+1)×1, Vexp =

[
Vn

0T

]
∈ R(n+1)×d. (D.6)

and rewrite (D.4) to be

X̂n+1 = UnSnV
T

exp + xn+1b
T (D.7)

=
[
Un xn+1

] [ Sn 0
0T 1

][
Vexp b

]T
. (D.8)
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Algorithm 5 IncrPCA(xi+1,Ui,Si, i+ 1, d)

1: Inputs: xi+1, Ui,Si, i+ 1, d

2: Sexp ←
[

Si 0
0T 0

]
3: x⊥

i+1 = xi+1 −UiU
T
i xi+1

4: Ki+1 = Sexp +

[
UT

i xi+1∥∥x⊥
i+1

∥∥ ] [
UT

i xi+1∥∥x⊥
i+1

∥∥ ]T
5: UKi+1

,SKi+1
← svd(Ki+1)

6: Ui+1 ←
[

Ui
x⊥

i+1

∥x⊥
i+1∥

]
UKi+1

7: Si+1 ← SKi+1

8: if i ≥ d then
9: Ui+1 ← Ui+1[:, : d]

10: Si+1 ← Si+1[: d, : d]
11: end if
12: Output: Ui+1,Si+1

We now consider the first and the last matrices in the product above. Note that for a given point xn, we have x⊥
n+1 =

(I −UnU
T
n )xn+1.

[
Un xn+1

]
=

[
Un UnU

T
n xn+1 + xn+1 −UnU

T
n xn+1︸ ︷︷ ︸

x⊥
n+1

]
(D.9)

=
[
Un UnU

T
n xn+1 + x⊥

n+1

]
(D.10)

=

[
Un

x⊥
n+1

∥x⊥
n+1∥

] [
I UT

n xn+1

0T
∥∥x⊥

n+1

∥∥ ]
. (D.11)

Similarly,

[
Vexp b

]
=

[
Vexp

b⊥

∥b⊥∥

] [ I V T
expb

0T
∥∥b⊥∥∥

]
. (D.12)

Thus we have

X̂n+1 =

[
Un

x⊥
n+1

∥x⊥
n+1∥

] [
I UT

n xn+1

0T
∥∥x⊥

n+1

∣∣ ∥
] [

Sn 0
0T 1

]([
Vexp

b⊥

∥b⊥∥

] [ I V T
expb

0T
∥∥b⊥∥∥

])T

(D.13)

=

[
Un

x⊥
n+1

∥x⊥
n+1∥

] [
I UT

n xn+1

0T
∥∥x⊥

n+1

∣∣ ∥
] [

Sn 0
0T 1

] [
I 0

bTVexp
∥∥b⊥∥∥

]
︸ ︷︷ ︸

K

[
Vexp

b⊥

∥b⊥∥

]T
(D.14)

=

[
Un

x⊥
n+1

∥x⊥
n+1∥

]
K
[
Vexp

b⊥

∥b⊥∥

]T
. (D.15)

where

K =

[
I UT

n xn+1

0T
∥∥x⊥

n+1

∣∣ ∥
] [

Sn 0
0T 1

] [
I 0

bTVexp
∥∥b⊥∥∥

]
. (D.16)
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This is a general form for matrix K. We can further simplify it via

K =

[
Sn UT

n xn+1

0T
∥∥x⊥

n+1

∣∣ ∥
] [

I 0
bTVexp

∥∥b⊥∥∥
]

(D.17)

=

[
Sn +UT

n xn+1b
TVexp UT

n xn+1

∥∥b⊥∥∥∥∥x⊥
n+1

∥∥ bTVexp
∥∥x⊥

n+1

∥∥∥∥b⊥∥∥
]

(D.18)

=

[
Sn 0
0T 0

]
+

[
UT

n xn+1b
TVexp UT

n xn+1

∥∥b⊥∥∥∥∥x⊥
n+1

∥∥ bTVexp
∥∥x⊥

n+1

∥∥∥∥b⊥∥∥
]

(D.19)

=

[
Sn 0
0T 0

]
+

[
UT

n xn+1∥∥x⊥
n+1

∥∥ ] [
bTVexp

∥∥b⊥∥∥ ] (D.20)

=

[
Sn 0
0T 0

]
+

[
UT

n xn+1∥∥x⊥
n+1

∥∥ ] [
V T

expb∥∥b⊥∥∥
]T

. (D.21)

Equation (D.21) is another general form for the matrix K. Note that K is highly structured and sparse(Brand, 2006).
Since it is of size (d+ 1)× (d+ 1), the UK ,SK ,VK ← svd(K) will merely cost O(d3). Thus the best d dimensional

approximation of X̂n+1 is
[

Un
x⊥

n+1

∥x⊥
n+1∥

]
UKSKV T

K

[
Vexp

b⊥

∥b⊥∥

]T
, thus we define

Un+1 =

[
Un

x⊥
n+1

∥x⊥
n+1∥

]
UK , (D.22)

Sn+1 = SK , (D.23)

Vn+1 =
[
Vexp

b⊥

∥b⊥∥

]
VK . (D.24)

Equations (D.22) and (D.23) define the final update equations. Note that in this specific case, b⊥ = bbb, and
∥∥b⊥∥∥ = 1. Here,

the computational cost is O(nDd2) with storage of O(Dd).

E. Additional Explanations on Algorithm 2
Landmark Update Let {xj}nj=1 denote the previously observed noisy samples within the neighborhood R(i) of the
landmark qi, and let xn+1 be the newly arrived sample with that also lies within this neighborhood. At (n+ 1)-th iteration,
the landmark is updated by computing the average over all n+ 1 noisy samples:

qn+1
i =

1

n+ 1

n+1∑
k=1

xk. (E.1)

However, this update rule requires reprocessing all past samples at each iteration, leading to computational inefficiency. To
address this, our algorithm employs a streaming (or online) averaging method that incrementally updates the landmark using
the previous average:

qn+1
i =

nqn
i

n+ 1
+

xn+1

n+ 1
. (E.2)

Projection Definition Let Ui be the approximated basis for the landmark qi. Then the projection of a point x onto the
affine space qi + Ti is defined as

Pqi+Tix
·
= qi +UiU

T
i (x− qi). (E.3)

Create First-Order Edges for New Landmark When a new landmark qi is created, first-order edges are established
according to the following rule:

create i
1↔ j if ∥qi − qj∥2 ≤ Rnbrs. (E.4)

Edge Embedding Definition The edge embedding Ξi associated with the landmark qi, whose approximate tangent space
basis is Ui, is defined as {

UT
i (qj − qi) | i

1→ j ∈ E1
}
, (E.5)

where E1 denotes the set of first-order edges.
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F. Choosing Denoising Radius
The parameter called denoising radius R(i) in Algorithm 2 controls complexity by determining the number of landmarks
created. Conceptually, as the online algorithm learns, the error in landmarks decreases, which means that R(i) needs to be
decreased as the landmark gets learned. This is why we define a general formula for R(i) as follows:

R(i)2 = c1

(
σ2D +

σ2D

Ni
k
+ c2σ

2d

)
, (F.1)

where Ni denotes the number of points assigned to landmark qi. The power parameter k helps us control the speed of decay
of R(i), making it adaptable to different datasets. Table 1 show the specific constants used to create the R(i) parameter to
produce Figure 9.

Table 1: The choice of hyperparameters yielding each denoiser. Ni corresponds to the number of points assigned to a
landmark qi. For all experiments, σ = 0.01, d = 2,and D = 2048.

DENOISER # R2
DENOISING R2

NBRS

1 1.2(σ2D + σ2D

N
1/2
i

+ 20σ2d) 2.39σ2D

2 2.06σ2D 2.39σ2D

3 1.2(σ2D + σ2D

N
1/2
i

+ 8σ2d) 2.39σ2D

4 2.75σ2D 3.13σ2D

5 1.3(σ2D + σ2D

N
1/3
i

+ 20σ2d) 2.39σ2D

6 1.15(σ2D + σ2D

N
1/2
i

+ 4σ2d) 2.39σ2D

7 2.39σ2D 2.75σ2D

8 1.5(σ2D + σ2D

Ni1/2
+ 30σ2d) 2.39σ2D

9 2σ2D 2.39σ2D
10 2.19σ2D 2.39σ2D
11 3.13σ2D 3.53σ2D
12 1.94σ2D 2.39σ2D

G. Additional Experiments and Details
G.1. Autoencoders

We include nonlinear autoencoders as an additional baseline for denoising gravitational wave signals, as they are generic
learning architectures specifically designed to leverage low-dimensional structure in data. To this end, we create 15 different
networks (see Table 2) with various depths and widths and symmetric encoder/decoders. The widest layers match the input
dimensionality, while the narrowest bottleneck layer is set to dimension 2. All autoencoders are trained using the Adam
optimizer with a learning rate of 1× 10−3. As we can see in the Figure 13, high-complexity autoencoders can reach high
accuracy. We also observe that while autoencoders we tested can achieve higher accuracy, our method exhibits significantly
better efficiency-accuracy trade-offs. In our work, we notice that varying the R(i) parameter in our mixed-order method
improves accuracy of manifold traversal method. As a direction for future work, we plan to further investigate how adjusting
R(i) can enable our method to access higher-accuracy regimes.
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Figure 13: Test-Time Complexity-Accuracy Tradeoff of Manifold Traversal versus Autoencoders.

Table 2: Autoencoder Architectures. Decoder is a mirror image of the encoder.
NUMBER # OF LAYERS IN ENCODER DIMENSIONALITY OF LAYERS

1 1 2048→ 2
2 1 2048→ 1024
3 2 2048→ 512→ 2
4 2 2048→ 1024→ 512
5 4 2048→ 512→ 128→ 16→ 2
6 4 2048→ 1024→ 512→ 256→ 128
7 6 2048→ 1024→ 512→ 128→ 64→ 16→ 2
8 6 2048→ 1024→ 512→ 256→ 128→ 64→ 32
9 8 2048→ 1024→ 512→ 128→ 64→ 32→ 16→ 8→ 2

10 8 2048→ 1024→ 512→ 256→ 128→ 64→ 32→ 16→ 8
11 10 2048→ 1024→ 512→ 256→ 128→ 64→ 32→ 16→ 8→ 4→ 2
12 2 2048→ 32→ 2
13 3 2048→ 64→ 32→ 4
14 3 2048→ 16→ 8→ 4
15 3 2048→ 16→ 4→ 2

G.2. Large-Scale Experiment

We evaluate our method on large-scale real-world image data by performing patch-level denoising. Specifically, we randomly
select 300 RGB images from ImageNet, each corrupted with zero-mean Gaussian noise with a standard deviation of σ = 0.1.
From these, we extract 894, 262 noisy patches of size 8× 8× 3 with the stride 8. After random shuffling, we use the first
890, 000 patches to train our traversal network. As shown in Figure 14, the training error steadily decreases, indicating
effective learning for denoising. One visual examples of clean, noisy, and denoised patches and images are shown in
Figure 15. While integrating image processing techniques to address pixelation and color artifacts may further stabilize and
enhance denoising performance and visual quality, such exploration is beyond the scope of this paper.
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Figure 14: Training Mean Square Error (MSE) Curve for Large-Scale Image Denoising. Here, σ denotes the standard
deviation of the Gaussian noise, M is the number of resulting landmarks, and N is the total number of patches extracted
from the image.

Clean patch #1791 Noisy patch #1791 Denoised patch #1791

Clean patch #711 Noisy patch #711 Denoised patch #711

Original Image Noisy Image Denoised Image

Figure 15: Large-Scale Image Denoising Top and Middle: Two different randomly selected patches from the random
select image. Each row shows, left-to-right: the clean patch, the noisy patch, and the denoised patch. Bottom: Left-to-right:
clean high-resolution image, noisy image, denoised image.

G.3. Single-Image Denoising

We test our method in extreme scenarios when only a single noisy sample is available – an interesting and challenging
setting in many important applications. To investigate our method’s performance in such a challenging setting, we conduct
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an additional experiment to denoise a single natural image from the DIV2K dataset(Agustsson & Timofte, 2017) – a
high-resolution dataset of natural RGB images with diverse contents. We corrupt the image with Gaussian noise at a noise
level of 0.1 and apply our method for patch-level denoising, leveraging the common assumption that image patches lie on a
low-dimensional manifold. Specifically, we extract patches of size 8× 8× 3 with a stride 4, yielding 172, 042 patches from
a randomly selected image. After shuffling, we use the first 170, 000 patches for training. Figure 16 shows the mean squared
error (MSE) decreasing as the number of training patches increases, indicating that the proposed method effectively learns
to denoise. We also provide visual comparisons of clean, noisy, and denoised patches and full images in Figure 17.
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Figure 16: Training Mean Square Error (MSE) Curve for Single-Image Denoising. Here, σ denotes the standard deviation of
the Gaussian noise, M is the number of resulting landmarks, and N is the total number of patches extracted from the image.

Clean patch #132864 Noisy patch #132864 Denoised patch #132864

Clean patch #8643 Noisy patch #8643 Denoised patch #8643

Original Image Noisy Image Denoised Image

Figure 17: Single Image Denoising In the extreme case where only one image is available, our manifold traversal method
successfully performs denoising. Top and Middle: Two different randomly selected patches from the high-resolution
image. Each row shows, left-to-right: the clean patch, the noisy patch, and the denoised patch. Bottom: Left-to-right: clean
high-resolution image, noisy image, denoised image.
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G.4. Ablation Study on Mixed-Order Method

This section presents an ablation study of the mixed-order method to justify the combination of first-order steps for efficiency
and zero-order steps for achieving global optimality. Specifically, we compare with (i) a first-order optimization method
exclusively on first-order edges generated by the online learning algorithm, and (ii) a zero-order optimization method applied
to all edges, where the original first-order edges are treated as zero-order. Both methods use the same step rules as their
respective components in the proposed mixed-order method. The experiments are conducted on the noisy version of the
gravitational wave test set described in Section B.1.

As shown in Figure 18, the efficient gradient-based first-order method achieves the lowest computational cost but suffers from
the highest error. On the other hand, our mixed-order method achieves a significantly better trade-off between complexity
and accuracy in the high-accuracy regime compared to the zero-order method. These results confirm the effectiveness of our
mixed-order method, especially in achieving efficient, high-accuracy denoising.
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Figure 18: Left: Complexity-accuracy trade-off among the first-order optimization, zero-order optimization, and our
proposed mixed-order optimization. Right: A zoomed-in view of the left portion of the left plot.
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