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Abstract

We propose the particle dual averaging (PDA) method, which generalizes the
dual averaging method in convex optimization to the optimization over probability
distributions with quantitative runtime guarantee. The algorithm consists of an inner
loop and outer loop: the inner loop utilizes the Langevin algorithm to approximately
solve for a stationary distribution, which is then optimized in the outer loop. The
method can thus be interpreted as an extension of the Langevin algorithm to
naturally handle nonlinear functional on the probability space. An important
application of the proposed method is the optimization of neural network in the
mean field regime, which is theoretically attractive due to the presence of nonlinear
feature learning, but quantitative convergence rate can be challenging to obtain. By
adapting finite-dimensional convex optimization theory into the space of measures,
we analyze PDA in regularized empirical / expected risk minimization, and establish
quantitative global convergence in learning two-layer mean field neural networks
under more general settings. Our theoretical results are supported by numerical
simulations on neural networks with reasonable size.

1 Introduction

Gradient-based optimization can achieve vanishing training error on neural networks, despite the
apparent non-convex landscape. Among various works that explains the global convergence, one
common ingredient is to utilize overparameterization to translate the training dynamics into function
spaces, and then exploit the convexity of the loss function with respect to the function. Such endeavors
usually consider models in one of the two categories: the mean field regime or the kernel regime.

On one hand, analysis in the kernel (lazy) regime connects gradient descent on wide neural network
to kernel regression with respect to the neural tangent kernel (Jacot et al., 2018), which leads to global
convergence at linear rate (Du et al., 2019; Allen-Zhu et al., 2019; Zou et al., 2020). However, key
to the analysis is the linearization of the training dynamics, which requires appropriate scaling of
the model such that distance traveled by the parameters vanishes (Chizat and Bach, 2018a). Such
regime thus fails to explain the feature learning of neural networks (Yang and Hu, 2020), which is
believed to be an important advantage of deep learning; indeed, it has been shown that deep learning
can outperform kernel models due to this adaptivity (Suzuki, 2018; Ghorbani et al., 2019a).

In contrast, the mean field regime describes the gradient descent dynamics as Wasserstein gradient
flow in the probability space (Nitanda and Suzuki, 2017; Mei et al., 2018; Chizat and Bach, 2018b),
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Figure 1: 1D visualization of parameter
distribution of mean field two-layer neu-
ral network (tanh) optimized by PDA. The
inner loop uses the Langevin algorithm to
solve an approximate stationary distribu-
tion q

(t)
⇤ , which is then optimized in the

outer loop towards the true target q⇤.

which captures the potentially nonlinear evolution of parameters travelling beyond the kernel regime.
While the mean field limit is appealing due to the presence of “feature learning”, its characterization is
more challenging and quantitative analysis is largely lacking. Recent works established convergence
rate in continuous time under modified dynamics (Rotskoff et al., 2019), strong assumptions on the
target function (Javanmard et al., 2019), or regularized objective (Hu et al., 2019), but such result can
be fragile in the discrete-time or finite-particle setting — in fact, the discretization error often scales
exponentially with the time horizon or dimensionality, which limits the applicability of the theory.
Hence, an important research problem that we aim to address is

Can we develop optimization algorithms for neural networks in the mean field regime with more
accurate quantitative guarantees the kernel regime enjoys?

We address this question by introducing the particle dual averaging (PDA) method, which globally
optimizes an entropic regularized nonlinear functional. For two-layer mean field network which is an
important application, we establish polynomial runtime guarantee for the discrete-time algorithm; to
our knowledge this is the first quantitative global convergence result under similar settings.

1.1 Contributions

We propose the PDA algorithm, which draws inspiration from the dual averaging method originally
developed for finite-dimensional convex optimization (Nesterov, 2005, 2009; Xiao, 2009). We
iteratively optimize a probability distribution in the form of a Boltzmann distribution, samples from
which can be obtained from the Langevin algorithm (see Figure 1). The resulting algorithm has
comparable per-iteration cost as gradient descent and can be efficiently implemented.

For optimizing two-layer neural network in the mean-field regime, we establish quantitative global
convergence rate of PDA in minimizing an KL-regularized objective: the algorithm requires Õ(✏�3)
steps and Õ(✏�2) particles to reach an ✏-accurate solution, where Õ hides logarithmic factors.
Importantly, our analysis does not couple the learning dynamics with certain continuous time limit,
but directly handles the discrete update. This leads to a simpler analysis that covers more general
settings. We also derive the generalization bound on the solution obtained by the algorithm. From
the viewpoint of the optimization, PDA is an extension of Langevin algorithm to handle entropic-
regularized nonlinear functionals on the probability space. Hence we believe our proposed method
can also be applied to other distribution optimization problems beyond the training of neural networks.

1.2 Related Literature

Mean field limit of two-layer NNs. The key observation for the mean field analysis is that when the
number of neurons becomes large, the evolution of parameters is well-described by a nonlinear partial
differential equation (PDE), which can be viewed as solving an infinite-dimensional convex problem
(Bengio et al., 2006; Bach, 2017). Global convergence can be derived by studying the limiting
PDE (Mei et al., 2018; Chizat and Bach, 2018b; Rotskoff and Vanden-Eijnden, 2018; Sirignano and
Spiliopoulos, 2020), yet quantitative convergence rate generally requires additional assumptions.

Javanmard et al. (2019) analyzed a particular RBF network and established linear convergence (up to
certain error1) for strongly concave target functions. Rotskoff et al. (2019) provided a sublinear rate
in continuous time for a modified gradient flow. In the regularized setting, Chizat (2019) obtained
local linear convergence under certain non-degeneracy assumption on the objective. Wei et al. (2019)
also proved polynomial rate for a perturbed dynamics under weak `2 regularization.

1Note that such error yields sublinear rate with respect to arbitrarily small accuracy ✏.
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Our setting is most related to Hu et al. (2019), who studied the minimization of a nonlinear functional
with KL regularization on the probability space, and showed linear convergence (in continuous time)
of a particle dynamics named mean field Langevin dynamics when the regularization is sufficiently
strong. Chen et al. (2020) also considered optimizing a KL-regularized objective in the infinite-width
and continuous-time limit, and derived NTK-like convergence guarantee under certain parameter
scaling. Compared to these prior works, we directly handle the discrete time update in the mean-field
regime, and our analysis covers a wider range of regularization parameters and loss functions.

Langevin algorithm. Langevin dynamics can be viewed as optimization in the space of probability
measures (Jordan and Kinderlehrer, 1996; Jordan et al., 1998); this perspective has been explored
in Wibisono (2018); Durmus et al. (2019). It is known that the continuous-time Langevin diffusion
converges exponentially fast to target distributions satisfying certain growth conditions (Roberts
and Tweedie, 1996; Mattingly et al., 2002). The discretized Langevin algorithm has a sublinear
convergence rate that depends on the numerical scheme (Li et al., 2019) and has been studied under
various metrics (Dalalyan, 2014; Durmus and Moulines, 2017; Cheng and Bartlett, 2017).

The Langevin algorithm can also optimize certain non-convex objectives (Raginsky et al., 2017; Xu
et al., 2018; Erdogdu et al., 2018), in which one finite-dimensional “particle” can attain approximate
global convergence due to concentration of Boltzmann distribution around the true minimizer. How-
ever, such result often depends on the spectral gap that grows exponentially in dimensionality, which
renders the analysis ineffective for neural net optimization in the high-dimensional parameter space.

Very recently, convergence of Hamiltonian Monte Carlo in learning certain mean field models has
been analyzed in Bou-Rabee and Schuh (2020); Bou-Rabee and Eberle (2021). Compared to these
concurrent results, our formulation covers a more general class of potentials, and in the context of
two-layer neural network, we provide optimization guarantees for a wider range of loss functions.

1.3 Notations

Let R+ denote the set of non-negative real numbers and k · k2 the Euclidean norm. Given a density
function q : Rp ! R+, we denote the expectation with respect to q(✓)d✓ by Eq[·]. For a function
f : Rp ! R, we define Eq[f ] =

R
f(✓)q(✓)d✓ when f is integrable. KL is the Kullback-Leibler

divergence: KL(qkq0) def
=

R
q(✓) log

⇣
q(✓)
q0(✓)

⌘
d✓. Let P2 denote the set of positive densities q on Rp

such that the second-order moment Eq[k✓k22] <1 and entropy �1 < �Eq[log(q)] < +1 are well
defined. N (0, Ip) is the Gaussian distribution on Rp with mean 0 and covariance matrix Ip.

2 Problem Setting

We consider the problem of risk minimization with neural networks in the mean field regime. For
simplicity, we focus on supervised learning. We here formalize the problem setting and models. Let
X ⇢ Rd and Y ⇢ R be the input and output spaces, respectively. For given input data x 2 X , we
predict a corresponding output y = h(x) 2 Y through a hypothesis function h : X ! Y .

2.1 Neural Network and Mean Field Limit

We adopt a neural network in the mean field regime as a hypothesis function. Let ⌦ = Rp be a
parameter space and h✓ : X ! Y (✓ 2 ⌦) be a bounded function which will be a component of a
neural network. We sometimes denote h(✓, x) = h✓(x). Let q(✓)d✓ be a probability distribution
on the parameter space ⌦ and ⇥ = {✓r}Mr=1 be the set of parameters ✓r sampled from q(✓)d✓. A
hypothesis is defined as an ensemble of h✓r as follows:

h⇥(x)
def
=

1

M

MX

r=1

h✓r (x). (1)

A typical example in the literature of the above formulation is a two-layer neural network.
Example 1 (Two-layer Network). Let ar 2 R and br 2 Rd (r 2 {1, 2, . . . ,M}) be parameters for
output and input layers, respectively. We set ✓r = (ar, br) and ⇥ = {✓r}Mr=1. Denote h✓r (x)

def
=

�2(ar�1(b>r x)) (x 2 X ), where �1 and �2 are smooth activation functions. Then the hypothesis h⇥

is a two-layer neural network composed of neurons h✓r : h⇥(x) =
1
M

P
M

r=1 �2(ar�1(b>r x)).
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Remark. The purpose of �2 in the last layer is to ensure the boundedness of output (e.g., see
Assumption 2 in Mei et al. (2018)); this nonlinearity can also be removed if parameters of output layer
are fixed. In addition, although we mainly focus on the optimization of two-layer neural network, our
proposed method can also be applied to ensemble h⇥ of deep neural networks h✓r .

Suppose the parameters ✓r follow a probability distribution q(✓)d✓, then h⇥ can be viewed as a
finite-particle discretization of the following expectation,

hq(x) = Eq[h✓(x)]. (2)

which we refer to as the mean field limit of the neural network h⇥. As previously discussed, when
h⇥ is overparameterized, optimizing h⇥ becomes “close” to directly optimizing the probability
distribution on the parameter space ⌦, for which convergence to the optimal solution may be
established under appropriate conditions (Nitanda and Suzuki, 2017; Mei et al., 2018; Chizat and
Bach, 2018b). Hence, the study of optimization of hq with respect to the probability distribution
q(✓)d✓ may shed light on important properties of overparameterized neural networks.

2.2 Regularized Empirical Risk Minimization

We briefly outline our setting for regularized expected / empirical risk minimization. The prediction
error of a hypothesis is measured by the loss function `(z, y) (z, y 2 Y), such as the squared
loss `(z, y) = 0.5(z � y)2 for regression, or the logistic loss `(z, y) = log(1 + exp(�yz)) for
binary classification. Let D be a data distribution over X ⇥ Y . For expected risk minimization,
the distribution D is set to the true data distribution; whereas for empirical risk minimization, we
take D to be the empirical distribution defined by training data {(xi, yi)}ni=1 (xi 2 X , yi 2 Y)
independently sampled from the data distribution. We aim to minimize the expected / empirical
risk together with a regularization term, which controls the model complexity and also stabilizes the
optimization. The regularized objective can be written as follows: for �1,�2 > 0,

min
q2P2

n
L(q) def

= E(X,Y )⇠D[`(hq(X), Y )] +R�1,�2(q)
o
, (3)

where R�1,�2 is a regularization term composed of the weighted sum of the second-order moment
and negative entropy with regularization parameters �1, �2:

R�1,�2(q)
def
= �1Eq[k✓k22] + �2Eq[log(q)]. (4)

Note that this regularization is the KL divergence of q from a Gaussian distribution. In our setting,
such regularization ensures that the Gibbs distributions q(t)⇤ specified in Section 3 are well defined.

While our primary focus is the optimization of the objective (3), we can also derive a generalization
error bound for the empirical risk minimizer of order of O(n�1/2) for both the regression and binary
classification settings, following Chen et al. (2020). We defer the details to Appendix D.

2.3 The Langevin Algorithm

Before presenting our proposed method, we briefly review the Langevin algorithm. For a given
smooth potential function f : ⌦! R, the Langevin algorithm performs the following update: given
the initial ✓(1) ⇠ q(1)(✓)d✓, step size ⌘ > 0, and Gaussian noise ⇣(k) ⇠ N (0, Ip),

✓(k+1)  ✓(k) � ⌘r✓f(✓
(k)) +

p
2⌘⇣(k). (5)

Under appropriate conditions on f , it is known that ✓(t) converges to a stationary distribution
proportional to exp(�f(·)) in terms of KL divergence at a linear rate (e.g., Vempala and Wibisono
(2019)) up to O(⌘)-error, where we hide additional factors in the big-O notation.

Alternatively, note that when the normalization constant
R
exp(�f(✓))d✓ exists, the Boltzmann

distribution in proportion to exp(�f(·)) is the solution of the following optimization problem,

min
q:density

{Eq[f ] + Eq[log(q)]} . (6)

Hence we may interpret the Langevin algorithm as approximately solving an entropic regularized
linear functional (i.e., free energy functional) on the probability space. This connection between
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sampling and optimization (see Dalalyan (2017); Wibisono (2018); Durmus et al. (2019)) enables us
to employ the Langevin algorithm to obtain (samples from) the closed-form Boltzmann distribution
which is the minimizer of (6); for example, many Bayesian inference problems fall into this category.

However, the objective (3) that we aim to optimize is beyond the scope of Langevin algorithm – due
to the nonlinearity of loss `(z, y) with respect to z, the stationary distribution cannot be described as
a closed-form solution of (6). To overcome this limitation, we develop the particle dual averaging
(PDA) algorithm which efficiently solves (3) with quantitative runtime guarantees.

3 Proposed Method

We now propose the particle dual averaging method to approximately solve the problem (3) by
optimizing a two-layer neural network in the mean field regime; we also introduce the mean field limit
of the proposed method to explain the algorithmic intuition and develop the convergence analysis.

3.1 Particle Dual Averaging

Our proposed particle dual averaging method (Algorithm 1) is an optimization algorithm on the space
of probability measures. The algorithm consists of an inner loop and outer loop; we run Langevin
algorithm in inner loop to approximate a Gibbs distribution, which is optimized in the outer loop
so that it converges to the optimal distribution q⇤. This outer loop update is designed to extend
the classical dual averaging scheme (Nesterov, 2005, 2009; Xiao, 2009) to infinite dimensional
optimization problems (described in Section 3.2). Below we provide a more detailed explanation.

• In the outer loop, the last iterate ⇥̃(t) of the previous inner loop is given. We compute
@z`(h⇥̃(t)(xt), yt), which is a component of the Gibbs potential2, and initialize a set of parti-
cles ⇥(1) at ⇥̃(t). In Appendix B we introduce a different “restarting” scheme for the initialization.

• In the inner loop, we run the Langevin algorithm (noisy gradient descent) starting from ⇥(1), where
the gradient at the k-th inner step is given byr✓g

(t)(✓(k)r ), which is a sum of weighted average of
@z`(h⇥̃(s)(xs), ys)@✓h(✓

(k)
r , xs) and the gradient of `2-regularization (see Algorithm 1).

Algorithm 1 Particle Dual Averaging (PDA)

Input: data distribution D, initial density q(1), number of outer-iterations T , learning rates {⌘t}Tt=1,
number of inner-iterations {Tt}Tt=1

Randomly draw i.i.d. initial parameters ✓̃(1)r ⇠ q(1)(✓)d✓ (r 2 {1, 2, . . . ,M})
⇥̃(1)  {✓̃(1)r }M

r=1

for t = 1 to T do
Randomly draw data (xt, yt) from D
⇥(1) = {✓(1)r }M

r=1  ⇥̃(t)

for k = 1 to Tt do
Run inexact noisy gradient descent for r 2 {1, 2, . . . ,M}
r✓g

(t)(✓(k)r ) 2
�2(t+2)(t+1)

P
t

s=1 s@z`(h⇥̃(s)(xs), ys)@✓h(✓
(k)
r , xs) +

2�1t

�2(t+2)✓
(k)
r

✓(k+1)
r  ✓(k)r � ⌘tr✓g

(t)(✓(k)r ) +
p
2⌘t⇣

(k)
r (i.i.d. Gaussian noise ⇣(k)r ⇠ N (0, Ip))

end for
⇥̃(t+1)  ⇥(Tt+1) = {✓(Tt+1)

r }M
r=1

end for
Randomly pick up t 2 {2, 3, . . . , T +1} following the probability P[t] = 2t

T (T+3) and return h⇥̃(t)

Figure 1 provides a pictorial illustration of Algorithm 1. Note that this procedure is a slight modifica-
tion of the normal gradient descent algorithm: the first term of r✓g

(t) is similar to the gradient of
the loss @✓r`(h⇥(k)(x), y) ⇠ @z`(h⇥(k)(x), y)@✓h(✓

(k)
r , x) where ⇥(k) = {✓(k)r }M

r=1. Indeed, if we

2In Algorithm 1, the terms @z`(h⇥̃(s)(xs), ys) appear in inner loop; but note that these terms only need to
be computed in outer loop because they are independent to the inner loop iterates.
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set the number of inner-iterations Tt = 1 and replace the direction r✓g
(t)(✓(k)r ) with the gradient of

the L2-regularized loss, then PDA exactly reduces to the standard noisy gradient descent algorithm
considered in Mei et al. (2018). Algorithm 1 can be extended to the minibatch variant in the obvious
manner; for efficient implementation in the empirical risk minimization setting see Appendix E. 1.

3.2 Mean Field View of PDA

In this subsection we discuss the mean field limit of PDA and explain its algorithmic intuition. Note
that the inner loop of Algorithm 1 is the Langevin algorithm with M particles, which optimizes the
potential function given by the weighted sum:

g(t)(✓) =
2

�2(t+ 2)(t+ 1)

tX

s=1

s
�
@z`(h⇥̃(s)(xs), ys)h(✓, xs) + �1k✓k22

�
.

Due to the rapid convergence of Langevin algorithm outlined in Subsection 2.3, the particles ✓(k+1)
r

(r 2 {1, . . . ,M}) can be regarded as (approximate) samples from the Boltzmann distribution:
exp

�
�g(t)

�
. Hence, the inner loop of PDA returns an M -particle approximation of some stationary

distribution, which is then modified in the outer loop. Importantly, the update on the stationary
distribution is designed so that the algorithm converges to the optimal solution of the problem (3).

We now introduce the mean field limit of PDA, i.e., taking the number of particles M ! 1 and
directly optimizing the problem (3) over q. We refer to this mean field limit simply as the dual
averaging (DA) algorithm. The dual averaging method was originally developed for the convex
optimization in finite-dimensional spaces (Nesterov, 2005, 2009; Xiao, 2009), and here we adapt it to
optimization on the probability space. The detail of the DA algorithm is described in Algorithm 2.

Algorithm 2 Dual Averaging (DA)

Input: data distribution D and initial density q(1)

for t = 1 to T do
Randomly draw a data (xt, yt) from D
g(t)  @z`(hq(t)(xt), yt)h(·, xt) + �1k · k22
Obtain an approximation q(t+1) of the density function q(t+1)

⇤ / exp
⇣
�

Pt
s=1 2sg(s)

�2(t+2)(t+1)

⌘

end for
Randomly pick up t 2 {2, 3, . . . , T + 1} following the probability P[t] = 2t

T (T+3) and return hq(t)

Algorithm 2 iteratively updates the density function q(t+1)
⇤ 2 P2 which is a solution to the objective:

min
q2P2

(
Eq

h tX

s=1

sg(s)
i
+

�2

2
(t+ 2)(t+ 1)Eq[log(q)]

)
, (7)

where the function g(t) = @z`(hq(t)(xt), yt)h(·, xt) + �1k · k22 is the functional derivative of
`(hq(xii), yt) + �1Eq[k✓k22] with respect to q at q(t). In other words, the objective (7) is the sum of
weighted average of linear approximations of loss function and the entropic regularization in the
space of probability distributions. In this sense, the DA method can be seen as an extension of the
Langevin algorithm to handle entropic regularized nonlinear functionals on the probability space by
iteratively linearizing the objective.

To sum up, we may interpret the DA method as approximating the optimal distribution q⇤ by iteratively
optimizing q(t)⇤ , which takes the form of a Boltzmann distribution. In the inner loop of the PDA
algorithm, we obtain M (approximate) samples from q(t)⇤ via the Langevin algorithm. In other words,
PDA can be viewed as a finite-particle approximation of DA – indeed, the stationary distributions
obtained in PDA converges to q(t+1)

⇤ by taking M ! 1. In the following section, we present
the convergence rate of the DA method, and also take into account the iteration complexity of the
Langevin algorithm; we defer the finite-particle approximation error analysis to Appendix C.
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4 Convergence Analysis

We now provide quantitative global convergence guarantee for our proposed method in discrete time.
We first derive the outer loop complexity, assuming approximate optimality of the inner loop iterates,
which we then verify in the inner loop analysis. The total complexity is then simply obtained by
combining the outer- and inner-loop runtime.

4.1 Outer Loop Complexity

We first analyze the convergence rate of the dual averaging (DA) method (Algorithm 2). Our analysis
will be made under the following assumptions.
Assumption 1.

(A1) Y ⇢ [�1, 1]. `(z, y) is a smooth convex function w.r.t. z and |@z`(z, y)|  2 for y, z 2 Y .

(A2) |h(✓, x)|  1 and h(✓, x) is smooth with respect to ✓ for x 2 X .

(A3) KL(q(t+1)kq(t+1)
⇤ )  1/t2.

Remark. (A2) is satisfied by smooth activation functions such as sigmoid and tanh. Many loss
functions including the squared loss and logistic loss satisfy (A1) under the boundedness assumptions
Y ⇢ [�1, 1] and |h✓(x)|  1. Note that constants in (A1) and (A2) are defined for simplicity and
can be relaxed to any value. (A3) specifies the precision of approximate solutions of sub-problems
(7) to guarantee the global convergence of Algorithm 2, which we verify in our inner loop analysis.

We first introduce the following quantity for q 2 P2,

e(q)
def
= Eq[log(q)]�

4

�2
� p

2

✓
exp

✓
4

�2

◆
+ log

✓
3⇡�2

�1

◆◆
.

Observe that the expression consists of the negative entropy minus its lower bound for q(t)⇤ under
Assumption (A1), (A2); in other words e(q(t)⇤ ) � 0. We have the following convergence rate of DA3.
Theorem 1 (Convergence of DA). Under Assumptions (A1), (A2), and (A3), for arbitrary q⇤ 2 P2,
iterates of the DA method (Algorithm 2) satisfies

2

T (T + 3)

T+1X

t=2

t
⇣
E[L(q(t))]� L(q⇤)

⌘

 O
⇣ 1

T 2

�
1 + �1Eq⇤

⇥
k✓k22

⇤�
+

�2e(q⇤)

T
+

�2

T
(1 + exp(8/�2))p

2 log2(T + 2)
⌘
,

where the expectation E[L(q(t))] is taken with respect to the history of examples.

Theorem 1 demonstrates the convergence rate of Algorithm 2 to the optimal value of the regularized
objective (3) in expectation. Note that 2

T (T+3)

P
T+1
t=2 tE[L(q(t))] is the expectation of E[L(q(t))]

according to the probability P[t] = 2t
T (T+3) (t 2 {2, . . . , T + 1}) as specified in Algorithm 2. If we

take p,�1,�2 as constants and use Õ to hide the logarithmic terms, we can deduce that after Õ(✏�1)
iterations, an ✏-accurate solution of the optimal distribution: L(q)  infq2P2 L(q) + ✏ is achieved in
expectation. Importantly, this convergence rate applies to any choice of regularization parameters, in
contrast to the strong regularization required in Hu et al. (2019); Jabir et al. (2019).

On the other hand, due to the exponential dependence on ��1
2 , our convergence rate is not informative

under weak regularization �2 ! 0. Such dependence follows from the classical LSI perturbation
lemma (Holley and Stroock, 1987), which is likely unavoidable for Langevin-based methods in the
most general setting (Menz and Schlichting, 2014), unless additional assumptions are imposed (e.g.,
a student-teacher setup); we intend to further investigate these conditions in future work.

3In Appendix B we introduce a more general version of Theorem 1 that allows for inexact hq(t)(x), which
simplifies the analysis of finite-particle discretization presented in Appendix C.
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4.2 Inner Loop Complexity

In order to derive the total complexity (i.e., taking both the outer loop and inner loop into account)
towards a required accuracy, we also need to estimate the iteration complexity of Langevin algorithm.
We utilize the following convergence result under the log-Sobolev inequality (Definition A):
Theorem 2 (Vempala and Wibisono (2019)). Consider a probability density q(✓) / exp(�f(✓))
satisfying the log-Sobolev inequality with constant ↵, and assume f is smooth andrf is L-Lipschitz,
i.e., kr✓f(✓)�r✓f(✓0)k2  Lk✓ � ✓0k2. If we run the Langevin algorithm (5) with learning rate
0 < ⌘  ↵

4L2 and let q(k)(✓)d✓ be a probability distribution that ✓(k) follows, then we have,

KL(q(k)kq)  exp(�↵⌘k)KL(q(1)kq) + 8↵�1⌘pL2.

Theorem 2 implies that a �-accurate solution in KL divergence can be obtained by the Langevin
algorithm with ⌘  ↵

4L2 min
n
1, �

4p

o
and 1

↵⌘
log 2KL(q(1)kq)

�
-iterations.

Since the optimal solution of a sub-problem in DA (Algorithm 2) takes the forms of q(t+1)
⇤ /

exp
⇣
�

Pt
s=1 2sg(s)

�2(t+2)(t+1)

⌘
, we can verify the LSI and determine the constant for q(t+1)

⇤ (✓)d✓ based on
the LSI perturbation lemma from Holley and Stroock (1987) (see Lemma B and Example 2 in
Appendix A. 2). Consequently, we can apply Theorem 2 to q(t+1)

⇤ for the inner loop complexity when
r✓ log q

(t+1)
⇤ is Lipschitz continuous, which motivates us to introduce the following assumption.

Assumption 2.
(A4) @✓h(·, x) is 1-Lipschitz continuous: k@✓h(✓, x)�@✓h(✓0, x)k2  k✓�✓0k2, 8x 2 X , ✓, ✓0 2 ⌦.

Remark. (A4) is parallel to (Mei et al., 2018, Assumption A3), and is satisfied by two-layer neural
network in Example 1 when the output or input layer is fixed and the input space X is compact. We
remark that this assumption can be relaxed to Hölder continuity of @✓h(·, x) via the recent result
of Erdogdu and Hosseinzadeh (2020), which allows us to extend Theorem 1 to general Lp-norm
regularizer for p > 1. For now we work with (A4) for simplicity of the presentation and proof.

Set �t+1 to be the desired accuracy of an approximate solution q(t+1) specified in (A3): �t+1 =
1/(t+ 1)2, we have the following guarantee for the inner loop.
Corollary 1 (Inner Loop Complexity). Under (A1), (A2), and (A4), if we run the Langevin algo-
rithm with step size ⌘t = O

⇣
�1�2�t+1

p(1+�1)2 exp(8/�2)

⌘
on (7), then an approximate solution satisfying

KL(q(t+1)kq(t+1)
⇤ )  �t+1 can be obtained within O

⇣
�2 exp(8/�2)

�1⌘t
log 2KL(q(t)kq(t+1)

⇤ )
�t+1

⌘
-iterations.

Moreover, KL(q(t)kq(t+1)
⇤ ) (t 2 {1, 2, . . . , T + 1}) are uniformly bounded with respect to t as long

as q(1) is a Gaussian distribution and (A3) is satisfied.

We comment that for the inner loop we utilized the overdamped Langevin algorithm, since it is the
most standard and commonly used sampling method for the objective (7). Our analysis can easily
incorporate other inner loop updates such as the underdamped Langevin algorithm (Cheng et al.,
2018; Eberle et al., 2019) or the Metropolis-adjusted Langevin algorithm (Roberts and Tweedie,
1996; Dwivedi et al., 2018), which may improve the iteration complexity.

4.3 Total Complexity

Combining Theorem 1 and Corollary 1, we can now derive the total complexity of our proposed
algorithm. For simplicity, we take p,�1,�2 as constants and hide logarithmic terms in Õ and ⇥̃. The
following corollary establishes a Õ(✏�3) total iteration complexity to obtain an ✏-accurate solution in
expectation because Tt = ⇥̃(t2) = Õ(✏�2) for t  T .
Corollary 2 (Total Complexity). Let ✏ > 0 be an arbitrary desired accuracy and q(1) be a Gaussian
distribution. Under assumptions (A1), (A2), (A3), and (A4), if we run Algorithm 2 for T = ⇥̃(✏�1)

iterations on the outer loop, and the Langevin algorithm with step size ⌘t = ⇥
⇣

�1�2�t+1

p(1+�1)2 exp(8/�2)

⌘

for Tt = ⇥̃(⌘�1
t

) iterations on the inner loop, then an ✏-accurate solution: L(q)  infq2P2 L(q) + ✏
of the objective (3) is achieved in expectation.
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Quantitative convergence guarantee. To translate the above convergence rate result to the finite-
particle PDA (Algorithm 1), we also characterize the finite-particle discretization error in Appendix C.
For the particle complexity analysis, we consider two versions of particle update: (i) the warm-
start scheme described in Algorithm 1, in which ⇥(1) is initialized at the last iterate ⇥̃(t) of the
previous inner loop, and (ii) the resampling scheme, in which ⇥(1) is initialized from the initial
distribution q(1)(✓)d✓ (see Appendix B for details). Remarkably, for the resampling scheme, we
provide convergence rate guarantee in time- and space-discretized settings that is polynomial in both
the iterations and particle size; specifically, the particle complexity of Õ(✏�2), together with the
total iteration complexity of Õ(✏�3), suffices to obtain an ✏-accurate solution to the objective (3) (see
Appendix B and C for precise statement).

5 Experiments

5.1 Experiment Setup

We employ our proposed algorithm in both synthetic student-teacher settings (see Figure 2(a)(b))
and real-world dataset (see Figure 2(c)). For the student-teacher setup, the labels are generated as
yi = f⇤(xi) + "i, where f⇤ is the teacher model (target function), and " is zero-mean i.i.d. label
noise. For the student model f , we follow Mei et al. (2018, Section 2.1) and parameterize a two-layer
neural network with fixed second layer as:

f(x) =
1

M↵

MX

r=1

�(w>
r
x+ br), (8)

which we train to minimize the objective (3) using PDA. Note that ↵ = 1 corresponds to the mean
field regime (which we are interested in), whereas setting ↵ = 1/2 leads to the kernel (NTK) regime4.

Synthetic student-teacher setting. For Figure 2(a)(b) we design synthetic experiments for both re-
gression and classification tasks, where the student model is a two-layer tanh network with M = 500.
For regression, we take the target function f⇤ to be a multiple-index model with m neurons: f⇤(x) =
1p
m

P
m

i=1 �⇤(hw⇤
i
, xi), and the input is drawn from a unit Gaussian N (0, Ip). For binary classifi-

cation, we consider a simple two-dimensional dataset from sklearn.datasets.make circles
(Pedregosa et al., 2011), in which the goal is to separate two groups of data on concentric circles (red
and blue in Figure 2(b)). We include additional experimental results in Appendix F.

PDA hyperparameters. We optimize the squared loss for regression and the logistic loss for binary
classification. The model is trained by PDA with batch size 50. We scale the number of inner loop
steps Tt with t, and the step size ⌘t with 1/

p
t, where t is the outer loop iteration; this heuristic is

consistent with the required inner-loop accuracy in Theorem 1 and Proposition 2.

(a) objective value
(regression).

(b) parameter trajectory
(classification).

(c) MNIST odd vs. even
(classification).

Figure 2: (a) Iteration complexity of PDA: the O(T�1) rate on the outer loop agrees with Theorem 1. (b)
Parameter trajectory of PDA: darker color (purple) indicates earlier in training, and vice versa. (c) odd vs. even
classification on MNIST; we report the training loss (red) as well as the train and test accuracy (blue and green).

4We use the term kernel regime only to indicate the parameter scaling ↵; this does not necessarily imply that
the NTK linearization is an accurate description of the trained model.
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5.2 Empirical Findings

Convergence rate. In Figure 2(a) we verify the O(T�1) iteration complexity of the outer loop
in Theorem 1. We apply PDA to optimize the expected risk (analogous to one-pass SGD) in the
regression setting, in which the input dimensionality p = 1 and the target function is a single-index
model (m = 1) with tanh activation. We employ the resampled update (i.e., without warm-start; see
Appendix B) with hyperparameters �1 = 10�2,�2 = 10�3. To compute the entropy in the objective
(3), we adopt the k-nearest neighbors estimator (Kozachenko and Leonenko, 1987) with k = 10.

Presence of feature learning. In Figure 2(b) we visualize the evolution of neural network parame-
ters optimized by PDA in a 2-dimensional classification problem. Due to structure of the input data
(concentric rings), we expect that for a two-layer neural network to be a good separator, its parameters
should also distribute on a circle. Indeed the converged solution of PDA (bright yellow) agrees with
this intuition and demonstrates that PDA learns useful features beyond the kernel regime.

Binary classification on MNIST. In Figure 2(c) we report the training and test performance of PDA
in separating odd vs. even digits from the MNIST dataset. We subsample n = 2500 training examples
with binary labels, and learn a two-layer tanh network with width M = 2500. We use the resampled
update of PDA to optimize the cross entropy loss, with hyperparameters �1 = 10�2,�2 = 10�4.
Observe that the algorithm achieves good generalization performance (green) and roughly maintains5

the O(T�1) iteration complexity (red) in optimizing the training objective (3).

Conclusion

We proposed the particle dual averaging (PDA) algorithm for optimizing two-layer neural networks
in the mean field regime. Leveraging tools from finite-dimensional convex optimization developed
in the original dual averaging method, we established quantitative convergence rate of PDA for
regularized empirical and expected risk minimization. We also provided particle complexity analysis
and generalization bounds for both regression and classification problems. Our theoretical findings
are aligned with experimental results on neural network optimization. Looking forward, we plan to
investigate specific problem instances in which convergence rate can be obtained under vanishing
regularization. It is also important to consider accelerated variants of PDA to further improve the
convergence rate in the empirical risk minimization setting. Another interesting direction would be to
explore other applications of PDA beyond two-layer neural networks, such as deep models (Araújo
et al., 2019; Nguyen and Pham, 2020; Lu et al., 2020; Pham and Nguyen, 2021), as well as other
optimization problems for entropic regularized nonlinear functional.
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