
Under review as a conference paper at ICLR 2023

TRIDE: A TEMPORAL, ROBUST, AND INFORMATIVE
DATA AUGMENTATION FRAMEWORK FOR DISEASE
PROGRESSION MODELING

Anonymous authors
Paper under double-blind review

ABSTRACT

Modeling the progression of a target disease using electronic health records
(EHRs), especially early predicting the onset of a disease, is critical for timely
and accurate clinical interventions. While numerous deep learning-based predic-
tion models have shown great success in handling sequential multivariate data
such as EHRs, they often lack temporal robustness. This is problematic because
they may not perform consistently well across different early prediction hours as
training data become scarce upon targeting further future. Indeed, having even
one weak point of time can significantly restrict the reliability of the models. In
this work, we present TRIDE, a temporal, robust and informative data augmen-
tation framework that can learn temporal representations of EHRs and use them
to generate diverse and meaningful training samples by optimizing the level of
data transformation. We validate TRIDE on modeling the progression of an ex-
tremely challenging disease, septic shock, by using real-world EHRs collected
from two different medical systems. Our results show that TRIDE significantly
outperforms strong baseline models across different prediction times and datasets,
and thus enhances the temporal robustness. Further, we provide in-depth analyses
of the generated samples and estimated model parameters to clarify the processes.

1 INTRODUCTION

A disease progression model (DPM) estimates disease’s progression from historical data, such as
multivariate time-series electronic health records (EHRs) (Mould, 2012). One important purpose
of DPM is to detect diseases early, that is, to predict whether a patient will develop a target disease
n hours later. Robust and accurate early prediction models can provide timely clinical interven-
tions (Che et al., 2015; Marlin et al., 2012; Choi et al., 2016b;a; Zhou et al., 2013; Choi et al.,
2016c; 2017a; Li et al., 2015) that will reduce the risk of mortality and the burden on patients and
the healthcare system (Kumar et al., 2006; Wang et al., 2014). Many deep learning-based early
prediction models have demonstrated great success in recent years by utilizing RNNs, CNNs, or
Transformers to EHRs (Birkhead et al., 2015; Choi et al., 2016a;c; Esteban et al., 2016; Lipton
et al., 2015; Zhou et al., 2011; Luo et al., 2020; Rasmy et al., 2021; Yang et al., 2021). However, one
of the major shortcomings with them is that they do not perform consistently well across different
early prediction hours, that is, the lack of temporal robustness.

Figure 1: Temporal Robustness

A major reason for the lack of temporal robustness is that as we
increase n hours in our early prediction task, the observations are
farther away from disease onset, and there are fewer labeled data
(EHRs), which often leads to underperforming and sensitive mod-
els (Lin et al., 2019; Zhang et al., 2019; Khoshnevisan & Chi,
2021). Figure 1 shows a simulation result for an early predic-
tion task of septic shock n hours (x-axis) later. The yellow bars
indicate the numbers of training data available. As n increases
(i.e., targeting more challenging early predictions), the size of the
training data continuously decreases and so does the model’s pre-
diction performance (AUCs). Thus, securing sufficient amount of
quality training data is the key to enhance temporal robustness of early prediction models.
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Figure 2: Overview of Proposed Framework (TRIDE)
Notes: The outer loop indicates gradient descent and the inner loop with red solid arrows represents data
augmentation module. θ is the level of data transformation and xθ is the generated synthetic sample using θ. p
is the sampling probability that controls the size of data augmentation.

In this work, we propose TRIDE, a temporal, robust, and informative data augmentation framework
to address the DPM’s lack of temporal robustness, especially on early prediction tasks. As shown
in Figure 2, TRIDE generates diverse yet informative samples for a target prediction model by inte-
grating a data augmentation module into a model training process (gradient descent). Specifically,
TRIDE optimizes the level of data transformation in a way that the generated samples can improve
the model’s robustness while preserving the original labels. The effectiveness of TRIDE is evaluated
on the task of septic shock early prediction. Sepsis is a life-threatening condition caused by a dysreg-
ulated body response to infection (Singer et al., 2016). Septic shock is the most severe complication
of sepsis, associated with high mortality rate and prolonged length of hospitalization (Singer et al.,
2016). Timely treatment is particularly critical as every hour delay in antibiotic treatment leads to
8% increase in the chance of mortality. Early prediction of septic shock is yet challenging due to
vague symptoms and subtle body responses (Kumar et al., 2006). Also, sepsis, like cancer, involves
various disease etiologies that span a wide range of syndromes, and different patient groups may
show vastly different symptoms (Tintinalli et al., 2011). Using real-world data from two different
US medical systems, we show that TRIDE can optimize the level of data transformation which
would significantly improve the temporal robustness of early prediction models.

Contributions There have been a few lines of research which aim to improve the robustness of pre-
diction models. One is based on existing knowledge from large-scale pretrained models (Li et al.,
2020; Rasmy et al., 2021; Pang et al., 2021) and the other is data augmentation approaches that
can address the problem from the root by generating extra labeled data (Esteban et al., 2017; Che
et al., 2017; Baowaly et al., 2019; Poulain et al., 2022). However, to the best of our knowledge,
there is no prior work on optimizing the level of data transformation for augmenting training data
in order to improve model performance or temporal robustness. To summarize, this work makes
the following contributions: (1) To the best of our knowledge, TRIDE is the first data augmentation
approach for multivariate time-series EHRs, which optimizes the data quality (i.e., the level of data
transformations) to generate diverse, challenging yet informative synthetic samples; (2) our pro-
posed framework outperforms the baselines on two real-world EHR datasets with various settings
for an extremely challenging task, septic shock early prediction and we provide in-depth analyses on
data transformation; (3) Our framework integrates the data augmentation component (i.e., EHR lan-
guage model) into the regular gradient descent of early prediction models, thus capable of generating
target-oriented synthetic samples.

2 TRIDE: TEMPORAL, ROBUST, AND INFORMATIVE DATA AUGMENTATION

2.1 PROBLEM DEFINITION

Our dataset can be represented as Dtrain = {(x1,y1), ..., (xN ,yN )}, where N is the total number
of patients or hospital visits. It is composed of multivariate irregular time series data and each visit
xk consists of a sequence of events: xk = {x1

k, ...,x
Tk

k }, where xt
k represents patient’s records

at timestamp t and Tk is the number of events in k-th visit, which varies across different visits.
We have xt

k ∈ RS , where S is the number of discrete symptom or token generated from clinical
measurements at each event. In addition, an output label yk = {1, 0} (i.e., shock or non-shock) is
provided for each visit xk. The main goal of early prediction is to learn a prediction function F over
Dtrain that can best approximate an unknown function f : X → Y where X is the true distribution
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Algorithm 1: TRIDE
Input: Training data Dtrain = {xi, yi}ni=1, pretrained EHR language model G,

prediction model F , model weightsW , loss function L, learning rate η
Parameters: Sampling probability p, θ upper bound U , transformation space Θ
Output: Prediction model F with trained weightsW

1 Randomly initialize model weightsW;
2 while termination criterion not met do
3 Select a training sample pair (x, y) at random from Dtrain;

4 With probability p:
5 Initialize θ0 ← 0;
6 for i ∈ {1, ..., N} do
7 max

∆θ
∇L(y,F (TRANSFORMSEQUENCE(G, x, θi)))∆θ

8 Updating θ̂i ← θ̂i−1 +∆θ
9 end

10 xθ∗ ← TRANSFORMSEQUENCE(G, x, θ∗)
11 W ←W − η∇WL(y,F(xθ∗))

12 With probability 1− p:
13 W ←W − η∇WL(y,F(x))
14 end

over entire population. However, when the sizeDtrain is small or does not well represent X , it would
be difficult to approximate f and lead to the lack of temporal robustness.

2.2 TRIDE, A TIME-SERIES DATA AUGMENTATION FRAMEWORK

Motivated by ANONYMIZEDWORK, we propose TRIDE, designed for augmenting multivariate
time-series data such as EHRs to derive a temporally robust early prediction model. Specifically,
TRIDE utilizes a contextualized EHR language model and an optimization function to transform
visit-long sequences into challenging training samples which is well suited for early prediction mod-
els. TRIDE is composed of two key components (see Algorithm 1): (1) data augmentation (lines
5-11, inner loop), which generates optimally different synthetic sequences using constrained worst-
case optimization; (2) modified gradient descent (lines 3-15, outer loop), which integrates the data
augmentation module into model training and updates the weights interactively.

2.2.1 INPUT AND PARAMETERS

Given N training sample pairsDtrain = {xi, yi}Ni=1 (visit sequence xi and class labels yi) as input, a
predefined probability p selects a subset of samples and a transformation function G turns them into
synthetic samples Dsyn for augmentation. For data transformation, pretrained EHR language model
G and transformation level θ (i.e., the distance between an original and transformed sequence) are
utilized to generate synthetic sequence xθi , in which θ lies in a predefined space Θ = R[0,U ]. In
this work, a pretrained EHR language model similar to CEHR-BERT (Pang et al., 2021) is used.
However, since this approach is not transformation function (G) specific, any language models that
can generate a realistic time-series sequence can be utilize. The rest of the inputs is general com-
ponents for a prediction task: prediction model F , its weights W , loss function L, and learning
rate η. TRIDE can work with any types of prediction models and matching loss functions that are
differentiable and effective in evaluating loss values.

2.2.2 DATA AUGMENTATION: OPTIMIZING TRANSFORMATION LEVEL θ

The vital part of the TRIDE algorithm is to estimate the optimal level of data transformation (θ)
and this is performed by two functions: (1) constrained worst-case token (symptom) masking and
(2) language model-based token prediction. Especially, the TRANSFORMSEQUENCE function in
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Figure 3: Mechanism of TRANSFORMSEQUENCE Function

Algorithm 1, which includes the aforementioned functions, introduces a new way of transforming
multivariate time-series data (see Figure 3 for the visual description of data transformation).

First, data transformation starts with selecting target tokens for masking and we perform this task
aligned with the worst-case optimization. As the objective of the optimization function is to maxi-
mize the loss values with regard to θ, we select tokens that most contribute to the loss or prediction
of target class. The contribution level of input is calculated using gradient attribution (Simonyan
et al., 2014) in two steps. The time-series data can be seen as document-level sequences where an
event represents a sentence and a list of events within a visit represents a document. In addition,
because we utilize RNN-based models such as LSTM, there exist multiple cells across time steps
and each event (sentence) is fed to the corresponding time step. Due to this hierarchical structure
(two levels, sentence to document) of prediction framework, it is not trivial to calculate contribution
level (l1 norm of gradients) of output directly with respect to token-level input. Therefore, first, we
determine the contribution level of each time step using the gradient attribution (the upper part of
Figure 3). Within each time step, we calculate the self attention score for tokens with respect to a
special token ([CLS]) and use it as a contribution score with time step. As [CLS] token contains
every information collected from other tokens in a sentence and the token is often used as input
for various classification tasks, we assume that attention scores with respect to [CLS] token would
represent the contribution level of tokens.

Second, we estimate the amount of data transformation for controlling the data diversity. Transfor-
mation level θ determines both the number of time steps to transform and the number of tokens to
mask. Specifically, we first select top θ numbers of time steps (i.e., θ ∗ E where E is the number
of events in a visit x) based on the contribution level of time steps, and then we distribute θ number
of mask tokens among the selected time steps, based on the attention scores. Figure 3 illustrates
the process where the amount and positions of data transformation are decided. Once target tokens
within chosen time steps are replaced with [MASK] tokens, pretrained language model G predicts
the tokens based on the context information to generate a realistic sequence of symptoms. At the
end of the process, the transformed sequence with the estimated theta is added to the training dataset
to update model weights.

2.2.3 DATA TRANSFORMATION G : EHR LANGUAGE MODEL

Based on the similarity between our medical data abstracted from EHRs (sequence of symptoms)
and textual data in natural language (sequence of words), we adopt the original BERT (Devlin et al.,
2019) architecture with some modification. First, position embeddings are trained on the order num-
bers of tokens. In this work, a visit “sequence” represents a list of variable number of tokens where
each token represents a single symptom, namely a measurement of each feature (e.g., temperature
measured as normal) and it is ordered by the start and end time of each symptom. Second, motivated
by previous works (Nguyen et al., 2017; Pang et al., 2021) and to fully incorporate temporal aspects
of our sequences, we introduce an additional special token ([t-HR]) that represents time intervals
between consecutive events. Features (e.g., vital signs) in EHRs are measured irregularly based
on their needs and clinicians make such decisions to effectively diagnose patients’ conditions and
keep track of disease trajectory. That being said, by incorporating time intervals into model training,
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learned embeddings could embrace useful information regarding clinicians’ practice of measuring
patients’ conditions. We expect that this would play an important role in understanding temporal
relations between tokens (symptoms) within a visit and benefit the self-attention process inside the
BERT framework. For a visual representation of our EHR language model, see Figure 7 in Ap-
pendix A.1.2. For pretraining a model, we inherit “masked language modeling” procedure from the
original BERT paper in which the authors mask some percentage of the input tokens at random and
then predict those masked tokens based on the encoder output.

2.2.4 MODEL TRAINING: MODIFIED GRADIENT DESCENT

This step is identical to the regular gradient descent of any differentiable prediction models (lines
11 and 13). Given either the original training samples or transformed samples and its correspond-
ing class labels, TRIDE updates the model parametersW based on the gradient computed and the
predefined learning rate η.

3 EXPERIMENT SETUP

3.1 DATASETS AND PREPROCESSING

Two EHR Datasets 210,289 visits of adult patients (i.e., age > 18) admitted to Christiana Care
Health System (CCHS) in Newark, Delaware (07/2013-12/2015); 106,844 adult patient visits from
Mayo Clinic (MAYO) in Rochester, Minnesota (07/2013-12/2015) are used. For consistency, we
define our target population as suspected of infection, identified by administration of any anti-
infectives, or a positive PCR test result. This definition and the following data pre-processing steps
are determined by three leading clinicians with extensive experience.

Labeling We adopt the agreement between International Classification of Diseases, Ninth Revision
(ICD-9) codes recorded in EHRs, and our expert-defined rules based on the Third International
Consensus Definitions for Sepsis and Septic Shock Singer et al. (2016) to achieve the most reliable
population across all datasets. Our clinicians identify septic shock at event-level as having received
vasopressor(s) or persistent hypotension for more than 1 hour (systolic blood pressure (SBP)<90;
or mean arterial pressure<65; or drop in SBP>40 in an 8-hour window).

Sampling Using the agreement criteria results in 2,963 positive cases in CCHS and 3,499 cases
in MAYO. To balance the number of positive and negative cases, we perform a stratified random
sampling by maintaining the same underlying age, gender, ethnicity, and length of stay distribution.
In addition, 10,000 randomly sampled cases (i.e., patient visits) that do not fall under the agreement
are used for pretraining EHR language model. Appendix A.2.4 describes the summary statistics.

Feature Selection A total 19 continuous features are used, as suggested by our experts; 1) vital signs
(8): heart rate, temperature, systolicBP, etc., 2) lab test results (11): BUN, lactate, platelet, white
blood cell count (WBC), etc. However, any other types of features can be used if the features could
be properly discretized and represent clinical symptoms.

Discretization and Aggregation Motivated by ANONYMIZEDWORK, we utilized temporal abstrac-
tion (Shahar, 1997) to aggregate and discretize low-level numeric time-series data within 60 minutes
interval into high-level concept sequences (i.e., a list of symptom tokens). This approach can greatly
reduce the effect of irregular time intervals and missing values in EHRs.

3.2 MODEL EVALUATION

Baseline and Proposed Models We evaluate our proposed framework, TRIDE, with five differ-
ent EHR representation learning models, including BERT-based language models. In addition, all
models described below employ a vanilla LSTM on their top layer for the prediction purposes. The
following describes the baseline EHR representation learning models: (1) EHR, raw (not abstracted)
EHRs with numerous enhancements: i) standardization with feature-wise mean and standard devia-
tion, ii) aggregation of the events within an hour together with statistical features, and iii) expert rule-
based imputation (Kim & Chi, 2018), where vital signs and laboratory results are carried forward
with the last value for 8 hours and 24 hours, respectively.; (2) ANON (ANONYMIZEDWORK), lan-
guage modeling-based approach that learns representations from a sequence of abstract symptoms
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(tokens) same as our proposed model, but employ static language model (word2vec). (3) BERT,
our proposed algorithm that employ BERT to learn contextualized EHR representations from visit-
long sequences. The difference from ANON is the model architecture (static vs. contextualized); (4)
TIMEBERT, a variant of the BERT model that incorporates additional time information in a form
of special time interval tokens in its input; (5) XFERBERT, a BERT model with transfer learning.
This is the same as BERT, but it is pretrained on dataset from another domain (i.e., hospital). For ex-
ample, if evaluation is performed on CCHS data, a BERT model pretrained on Mayo data represents
this model; Lastly, (6) TRIDE, our proposed time-series data augmentation algorithm, is compared
to the five aforementioned models that do not incorporate data augmentation to investigate additional
performance improvement from data augmentation.

Evaluation Metrics We measure the temporal robustness of models using two types of evaluation
metrics aligned with our definition: (1) For raw prediction performance, we use the five metrics
(accuracy, precision, recall, F1-score, and AUC) and focus on F1-score and AUC for comparison.
(2) For lower-bound performance, we report the lowest performance among performance scores
across all prediction hours and denote it as F1-LB (Lower Bound) or AUC-LB. The more temporally
robust model will have larger lower-bound performance. In addition, we utilize 2 folds stratified
cross validation and repeat an experiment 3 times for each fold. The performance of the models are
reported with mean values and standard deviations from total 6 trials of experiments, and we provide
significance test results.

Regular vs. Robust Two types of test set are employed for evaluation. First, “Regular” set, is the
regular test set used for early prediction, in which the numbers of patients in training, validation,
and test sets increase as models predict septic shock in nearer future. The other test set is denoted
as “Robust” because in this setting, models are evaluated upon the same group of patients across
varying prediction hours. In this setting, the only differences made by the variation of prediction
hours is that the number of training and validation data. Therefore, we could evidently measure the
robustness of proposed model, meaning that we could observe how model performances changes
while the training data sizes vary (i.e., how sensitive each model is to training data size variances).
Specifically, in Robust setting, every prediction tasks use the same test set, which is for the 48 hour
early prediction task (see Table 3 in Appendix A.2.3 for more detail).

Hyperparameters The configuration of TRIDE hyperparameters is as follows: 1) the hyperparam-
eter p that controls augmentation size (S) ranges from 5% to 30% with a 5% increase; 2) the upper
bound of theta (U) that constraints θ values is set to be in the range of [0.1, 0.7] with 0.1 interval.
Details of the other hyperparameter configurations are described in Appendix A.2.5.

4 RESULT

4.1 EVALUATION OF TEMPORAL ROBUSTNESS

We presents two prediction results for evaluating temporal robustness. 48 hours early prediction
results reveal the general robustness (i.e., performance at specific time point) of models and 6-48
hours early prediction results uncover the temporal robustness (i.e., performance across times).

4.1.1 48 HOURS EARLY PREDICTION

Table 1 presents the experiment results (i.e., average performance from multiple runs and corre-
sponding standard deviation) for 48 hours septic shock early prediction on two datasets, CCHS and
MAYO, and six models. The first block (top three rows) on each dataset compare the baseline mod-
els and the result show that our BERT significantly outperforms ANON and EHR across two datasets,
demonstrating that learning contextual information from EHRs could help building a robust model.
Moreover, the performance increase from ANON to BERT is bigger in MAYO data than CCHS, as-
suming that this could be because of the MAYO’s larger training samples used for pretraining BERT
(see Table 4 in Appendix A.2.4). Prior works often show that BERT performs better when pre-
trained with larger training data. The second block (4-5 rows) on each dataset compare BERT-based
models, XFERBERT and TIMEBERT, and shows different results between CCHS and MAYO. In
CCHS, XFERBERT outperforms BERT, but BERT outperforms XFERBERT in MAYO. This sug-
gests that training data size and quality could have a great impact on BERT performance. When
comparing BERT with TIMEBERT, TIMEBERT outperforms BERT on both datasets, suggesting
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Table 1: Model Performance for 48 Hours Septic Shock Early Prediction

Dataset Model Accuracy Precision Recall F1-Score AUC
EHR 0.706(± 0.027) 0.706(± 0.021) 0.705(± 0.044) 0.705(± 0.031) 0.777(± 0.044)
ANON 0.748*(± 0.017) 0.739(± 0.026) 0.769(± 0.040) 0.753*(± 0.018) 0.832*(± 0.020)

CCHS BERT 0.789*†(± 0.030) 0.771*(± 0.039) 0.826*†(± 0.020) 0.797*†(± 0.023) 0.870*†(± 0.013)

XFERBERT 0.814*†(± 0.016) 0.807*†(± 0.016) 0.826*†(± 0.034) 0.816*†‡(± 0.018) 0.897*†‡(± 0.009)
TIMEBERT 0.821*†(± 0.021) 0.825*†‡(± 0.017) 0.816*†(± 0.041) 0.820*†(± 0.025) 0.900*†‡(± 0.009)

TRIDE 0.829*†‡(± 0.011) 0.813*†‡(± 0.030) 0.856*†(± 0.033) 0.833*†‡(± 0.010) 0.914*†‡§(± 0.010)
EHR 0.697(± 0.049) 0.682(± 0.043) 0.729(± 0.144) 0.697(± 0.079) 0.768(± 0.055)
ANON 0.680(± 0.016) 0.648(± 0.028) 0.774(± 0.081) 0.703(± 0.024) 0.759(± 0.022)

MAYO BERT 0.771*†(± 0.017) 0.744*†(± 0.026) 0.820*(± 0.077) 0.778*†(± 0.027) 0.852*†(± 0.021)

XFERBERT 0.750*†(± 0.021) 0.723*†(± 0.019) 0.800*(± 0.059) 0.758*†(± 0.028) 0.832*†(± 0.018)
TIMEBERT 0.789*†‡(± 0.015) 0.769*†‡(± 0.028) 0.820*(± 0.054) 0.792*†(± 0.019) 0.869*†‡(± 0.013)

TRIDE 0.801*†‡± 0.010) 0.777*†‡(± 0.010) 0.836*(± 0.016) 0.806*†‡§(± 0.011) 0.871*†‡(± 0.012)

Notes: The best model for each block is marked in bold and the best overall model is additionally underlined.
*, †, ‡, and § indicate significant differences to EHR, ANON, BERT, and TIMEBERT, respectively (p < .05).

that incorporating time interval tokens into training was effective in learning temporal patterns of
EHRs. In addition, the smaller performance improvement in MAYO data indicates that using TIME-
BERT on EHRs with less uniformly distributed time intervals could be less effective. Lastly, TRIDE
outperforms TIMEBERT on two datasets, suggesting that our proposed algorithm can work well on
early prediction. Again, we assume that TRIDE outperforming slightly less in Mayo data could be
because of the data quality and size. As shown in the XFERBERT case, Mayo may have richer and
better data (see Appendix A.2.4). We conjecture that because MAYO already has good quality data,
there could be less improvement for TRIDE to make.

4.1.2 6-48 HOURS EARLY PREDICTION

Figure 4 shows the experiment results for 6 to 48 hours early prediction on two models, EHR and
TRIDE. We vary datasets and test sets to show the generalizable temporal robustness of TRIDE.
All four plots exhibit similar patterns in which 1) TRIDE significantly outperforms EHR across all
prediction hours and 2) the performance decrease of TRIDE from 6 to 48 hours is smaller than EHR
(i.e., lower sensitivity to training data size decreases). Such patterns demonstrate that TRIDE can
build temporally robust early prediction models.
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Figure 4: Model Performance (AUC) on 6-48 Hours Early Prediction

Table 2 presents the model performance from 6 to 48 hours early prediction. To measure model’s
temporal robustness, we utilizes two types of test set and two additional evaluation metrics for mea-
suring lower-bound (LB) performance. In general, the table shows consistent results with the 48
hours early prediction. For all four settings, BERT outperformed others in all four metrics, showing
the effectiveness of using BERT on EHRs and early prediction. And XFERBERT outperforming
BERT in CCHS only, suggesting that data size and quality could be important in training BERT.
Next, TIMEBERT outperforms BERT except for F1-LB on MAYO data. As mentioned before,
we assume that less uniformly distributed time intervals in Mayo data could decrease the impact
of TIMEBERT. Lastly, we compare TRIDE with TIMEBERT. The results show that TRIDE out-
performs TIMEBERT in all settings including the robust and lower-bound metrics, which makes
TRIDE the most temporally-robust model among the six models.
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Table 2: Model Performance for 6-48 Hours Septic Shock Early Predictions (CCHS)

Dataset Setting Model F1 AUC F1-LB AUC-LB
EHR 0.762(± 0.016) 0.831(± 0.020) 0.705(± 0.031) 0.777(± 0.044)
ANON 0.803*(± 0.008) 0.879*(± 0.006) 0.753*(± 0.018) 0.832*(± 0.020)
BERT 0.838*†(± 0.006) 0.909*†(± 0.006) 0.791*†(± 0.020) 0.868*†(± 0.022)

CCHS Regular XFERBERT 0.848*†‡(± 0.005) 0.920*†‡(± 0.005) 0.809*†(± 0.024) 0.885*†‡(± 0.017)
TIMEBERT 0.851*†‡(± 0.007) 0.925*†‡(± 0.005) 0.821*†‡(± 0.016) 0.894*†‡(± 0.008)

TRIDE 0.867*†‡§(± 0.005) 0.936*†‡§(± 0.004) 0.833*†‡(± 0.018) 0.907*†‡§(± 0.007)

EHR 0.744(± 0.020) 0.823(± 0.026) 0.705(± 0.031) 0.777(± 0.044)
ANON 0.782*(± 0.014) 0.864*(± 0.008) 0.753*(± 0.018) 0.832*(± 0.020)
BERT 0.819*†(± 0.009) 0.898*†(± 0.009) 0.792*†(± 0.021) 0.873*†(± 0.020)

Robust XFERBERT 0.827*†‡(± 0.005) 0.909*†‡(± 0.006) 0.813*†(± 0.027) 0.889*†‡(± 0.016)
TIMEBERT 0.836*†‡(± 0.008) 0.915*†‡(± 0.005) 0.822*†‡(± 0.016) 0.897*†‡(± 0.008)

TRIDE 0.848*†‡§(± 0.008) 0.926*†‡§(± 0.004) 0.834*†‡(± 0.021) 0.911*†‡(± 0.006)
EHR 0.736(± 0.023) 0.784(± 0.021) 0.697(± 0.023) 0.727(± 0.019)
ANON 0.765*(± 0.004) 0.816*(± 0.005) 0.703(± 0.024) 0.759*(± 0.022)
BERT 0.810*†(± 0.007) 0.876*†(± 0.003) 0.779*†(± 0.011) 0.845*†(± 0.010)

MAYO Regular XFERBERT 0.790*†(± 0.009) 0.856*†(± 0.004) 0.745*†(± 0.024) 0.811*†(± 0.029)
TIMEBERT 0.814*†(± 0.005) 0.883*†‡(± 0.004) 0.779*†(± 0.005) 0.849*†(± 0.013)

TRIDE 0.829*†‡(± 0.008) 0.891*†‡§(± 0.003) 0.790*†‡(± 0.018) 0.865*†‡§(± 0.005)

EHR 0.701(± 0.031) 0.768(± 0.028) 0.666 (± 0.045) 0.740 (± 0.030)
ANON 0.736*(± 0.009) 0.801*(± 0.007) 0.703*(± 0.024) 0.759(± 0.022)
BERT 0.782*†(± 0.013) 0.860*†(± 0.006) 0.768*†(± 0.011) 0.838*†(± 0.004)

Robust XFERBERT 0.761*†(± 0.016) 0.840*†(± 0.010) 0.735*(± 0.032) 0.809*†(± 0.036)
TIMEBERT 0.790*†‡(± 0.013) 0.869*†‡(± 0.006) 0.767*†(± 0.011) 0.849*†‡(± 0.007)

TRIDE 0.803*†‡§(± 0.011) 0.875*†‡§(± 0.004) 0.779*†(± 0.020) 0.851*†‡(± 0.006)

Notes: For each dataset, the best performing model for each block is marked in bold, and the best model across
ALL is underlined and marked in bold. *, †, ‡, and § indicate statistically significant differences compared to
EHR, ANON, BERT, and TIMEBERT, respectively (p < .05).

4.2 ANALYSIS OF DATA TRANSFORMATION

Figure 5 shows analysis results on the data transformation components of TRIDE, which essentially
control the quality (diversity) of generated samples. The left sub-figure answers the where question
– that is, which events or tokens were mostly transformed by TRIDE, while the right figure clarifies
that how much tokens TRIDE transformed for augmentation.

(a) Distribution of Transformed Time Indices (b) Distribution of Estimated Thetas

Figure 5: Analysis Results for Data Transformations

Transformation, Where? By design, TRIDE transforms most contributing time steps within a visit.
The left figure shows the distribution of the indices of transformed time steps on its x-axis, and we
denote most recent time step as 0. As expected, the result show that more recent time steps (which
are close to 0) were transformed more, thus indicating that they contributed more to predictions.

8



Under review as a conference paper at ICLR 2023

Transformation, How Much? In addition, we had an analysis on the transformation level (θ). The
right figure shows the distributions of θs estimated during the entire training steps of TRIDE, using
the best hyperparmeters, on two datasets. We can observe that two distributions are neither uniform
nor skewed, showing that the TRIDE is capable of determining the optimal transformation levels
with respect to target dataset and prediction models, as opposed to fixed or random levels.

5 RELATED WORK

Temporal Robustness There exist many definitions of robustness, for example, test set perfor-
mance, resistance to small and adversarial input perturbations or attacks, generalizability within or
across domains (Hendrycks et al., 2019; Drenkow et al., 2021; Yi et al., 2021). However, in this
work, given the nature of disease progression modeling, we focus on two components to define
our temporal robustness: (1) Raw prediction performance on test sets. But, in our case, we focus
on the performance across time; (2) The more important component is the worst-case performance
across prediction hours. In real-world scenario, it is very difficult to know when a patient will de-
velop a target disease. Thus, having any weak points or models throughout prediction hours would
significantly degrade the model’s reliability.

Language Models for EHRs Due to the importance of the ability to adjust vector representations
corresponding to surroundings or contexts (Richardson et al., 2020; Tonelli et al., 2018), language
models such as BERT (Devlin et al., 2019) have been widely used to assist the learning of contextu-
alized embedding for medical concepts (e.g., diagnosis codes). Li et al. (2020) introduced BEHRT
and aimed to develop a pretrained model that predicts the existence of specific medical codes in cer-
tain visits. Different from the original BERT, it incorporated patients’ ages to imply temporal orders
of the codes. Shang et al. (2019) proposed G-BERT that incorporated a graph neural network (GNN)
to expand the context of each clinical code through ontologies. Rasmy et al. (2021) designed Med-
BERT, which utilized a domain-specific pretraining task and large-scale dataset ( 20M patients).
Pang et al. (2021) introduced CEHR-BERT which resembles our TIMEBERT. They trained a tem-
poral BERT for EHRs by inserting time-indicative artificial tokens between visits and employed a
new pretraining task, visit type prediction. Despite of the advances in learning context-aware lan-
guage models for EHRs, (1) the previous works may not be suitable for capturing dynamics of rapid
disease progression from multivariate time-series EHRs due to their discrete and coarse-grained
medical codes (Lee et al., 2020) and more importantly, (2) no prior works have aimed to address
temporal robustness in early prediction tasks.

Data Augmentation for EHRs Largely two groups of generative adversarial network (GAN)-based
data augmentation approaches have been applied to time-series EHRs which contains either discrete
medical codes or real-valued multivariate data. One focuses on generation solely, aiming to generate
most realistic synthetic samples regardless of the samples’ impact on model robustness (Choi et al.,
2017b; Esteban et al., 2017; Baowaly et al., 2019; Li et al., 2021). The other group of works aimed
to build detection or prediction models using a GAN architecture combined with semi-supervised
learning (SSL) (Che et al., 2017; Yu et al., 2019; Cui et al., 2020; Poulain et al., 2022). This line
of approaches showed improvements in predictions, but had no direct control over data transforma-
tion level, which is closely related to generating quality (i.e., sufficiently different and challenging)
training data and can help improve model robustness.

6 CONCLUSION

Modeling patient disease progression is an essential task that supports clinical decision making.
However, training data often become scarce and it leads to a significant problem, the lack of tem-
poral robustness of early prediction models. To address the problem, we propose TRIDE, a tem-
poral, robust, and informative data augmentation framework that generates sufficiently diverse yet
informative training samples, thus deriving a temporally robust model. Toward robustness, TRIDE
optimizes the diversity (i.e., the level of data transformation) of training samples by controlling the
position and number of tokens to transform within time-series EHRs. The experimental results on
two real-world EHR datasets demonstrate the temporal robustness of our framework compared to
various baseline models. In addition, two analysis results on data transformation reveal that TRIDE’s
ability to accurately optimize the transformations towards improving robustness.
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A APPENDIX

A.1 PROPOSED METHOD: TRIDE

A.1.1 DATA AUGMENTATION

Figure 6 illustrates the detailed training procedure of TRIDE. First, the outer loop follows the regular
training process, gradient descent, of any supervised learning models. Until we hit the max iteration,
we select a random data point, calculate the loss, and update the weight of a classifier based on the
loss. After the max iteration, the training process ends, and we test the model with a test set. The
new component added to the regular training process is located in the inner loop, where we generate
sufficiently different training samples. Here we use a predefined sampling probability p to select data
points to transform. Our goal of data transformation here is to optimize the transformation level (θ)
with respect to a classifier (loss) and dataset for building a robust model. Once optimization finishes,
transformed data sample using the optimal theta is added to the outer loop and used to update the
model weights. By actively incorporating data augmentation component into a regular training
process, and providing challenging data samples to the classifier, TRIDE can help build a robust
classifier or prediction model.
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Figure 6: Flowchart of TRIDE
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A.1.2 PRETRAINING EHR LANGUAGE MODELS

Figure 7 illustrates the pretraining process of our TIMEBERT. We use the sequences of symptoms
that are extracted from original real-valued time-series data using temporal abstraction as an input
to BERT-based models. Input to the BERT-based model is composed of three embeddings similar
to the original BERT – token embeddings, segment embeddings, and position embeddings, and all
three embeddings utilize the sequences of symptoms resulted from temporal abstraction. Token
embeddings are trained on individual tokens recognized from a tokenizer; segment embeddings are
learned on indicators of events (e.g., a number that represents whether this sequence is originated
from an event at t1 or t2) and play a role of differentiating sequences from different events; and
position embeddings are trained on the order of tokens, where the order is determined by each
token’s start and end time.

In this work, “sequence” is defined as a list of variable number of tokens where each token rep-
resents a single symptom, namely a measurement of each feature (e.g., temperature measured as
normal), and the sequence length is determined by the number of symptoms collected in one event
(or time stamp). Depending on tasks, our model uses either a single event-size sequence or multiple
sequences with a visit-size. In every case, we place a special token ([CLS]) at the first place of a se-
quence and another special token ([SEP]) at the end, similar to BERT. In case of preparing visit-size
sequences, each sequence of tokens from an event is concatenated with another sequences from its
neighboring event using a special token ([SEP]). In addition, motivated by previous works Nguyen
et al. (2017); Pang et al. (2021) and to fully incorporate temporal aspects of our sequences, we intro-
duce an additional special token ([t-HR]) that represents time intervals between consecutive events.
The tokens are in brown color in Figure 7. The features (e.g., vital signs) in EHRs are measured
irregularly based on their needs and clinicians make such decisions to effectively diagnose patients
condition and keep track of disease trajectory. That being said, by incorporating time intervals into
model training, learned embeddings could embrace useful information regarding clinicians’ practice
of measuring patients conditions. We expect that this would play a important role in understanding
temporal relations between tokens (symptoms) within a visit and benefit the self-attention process
inside the BERT framework.

Different from the original BERT, in which WordPiece tokenizer is utilized for recognizing tokens
from a sentence, our model split a sentence with white spaces to identify individual tokens similar
to the classic word2vec Mikolov et al. (2013) approach. The rationale behind this decision is: 1)
we assume that feature and its value together should be considered as one token or word to fully

Symptoms(t1):
Systolic Blood Pressure=Very High
Diastolic Blood Pressure=High
Temperature=Normal
White Blood Cell Count=Normal > Low

Symptoms(t2):
Temperature=Normal
White Blood Cell Count=Normal > Low

Symptoms(t3):
Systolic Blood Pressure=High
Diastolic Blood Pressure=High > Normal
Temperature=Normal
White Blood Cell Count=Normal > Low

Timet1 t2 t3

Bidirectional Encoder (Transformers)
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Figure 7: BERT for Multivariate Time-Series EHRs
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represent a patient’s symptom and form a semantic unit; and 2) we understand the objective of using
WordPiece tokenizer is not suitable to our setting as, in our setting, there exists a fixed number
of vocabulary generated from a rule-based abstraction process, whereas the main purpose of using
sub-word-based tokenizers such as WordPiece or byte pair encoding (BPE) is to better handle open
vocabulary problems and to reduce sparsity (i.e., the number of vocabulary) in learning natural
language Sennrich et al. (2015).

A.2 EXPERIMENTS

A.2.1 TASK DESCRIPTION: EARLY PREDICTION

Our task is to predict whether a patient will develop septic shock m hours later when provided with
the last n hours of patient’s records. In this work, m ranges from 6 to 48 hours as requested by our
clinicians as described in the result section. For this setting, the shock visits are right-aligned by
their first onset of septic shock and the non-shock visits by a truncated time point. In addition, the
non-shock visits are trimmed so that they have the same distribution of length as shock visits and
become balanced. Lastly, due to the rapid progression of sepsis, this work only focuses on the five
days of patients’ records.

A.2.2 GENERATING TIME TOKENS FOR IRREGULAR TIME INTERVALS

EHRs are measured irregularly, thus resulting in irregular time intervals between two consecutive
events. To abstract and standardize such irregular numbers and to utilize them into embedding
training, we categorize the time duration of intervals into 25 buckets based on the frequency of
intervals. Specifically, the buckets starts with 1 hour and increment with 1 hour interval until 24
hours of time interval, then time intervals with more than 24 hours are grouped into one bucket (¿
24 hours). Figure 8 shows the simplified distribution of bucketized time intervals. We can observe
that the time intervals from CCHS are more uniformly distributed across different duration while
the time intervals from Mayo are mostly centered around 1 hour interval. We can infer that, from
this distribution, Mayo data are more regularly and frequently measured compared to CCHS data.

Figure 8: Distribution of Time Intervals

A.2.3 DATA SPLIT

We construct training, validation, and test sets for each prediction hour to include data samples
(i.e., patients) from previous hours of prediction tasks. This division procedure enables us to more
effectively monitor model performance when the number of patients increases or decreases. The
numbers in Table 3 represent the number of patient visits included in each set, and the percentages
indicate the proportion of current set size compared to corresponding total training, validation, test
sets.

A.2.4 PRETRAINING DATA FOR EHR LANGUAGE MODELS

From our target population, we randomly sampled 10,000 patient visits with 927,131 events that are
not used for model evaluation, for pretraining EHR language models. Specifically, 5,000 visits each
are sampled from the two classes determined by the expert rule. For shock visits, all events up to the
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Table 3: Data Split Summary Statistics

CCHS MAYO

Hour Train Validation Test Test (Robust) Train Validation Test Test (Robust)

0 3,775 813 812 217 4,362 937 937 263
6 2,839 612 611 217 3,166 681 680 263

12 1,873 404 404 217 2,284 492 491 263
18 1,495 323 322 217 1,864 401 401 263
24 1,310 283 282 217 1,632 351 351 263
30 1,201 259 259 217 1,447 311 311 263
36 1,117 241 240 217 1,338 288 287 263
42 1,046 225 225 217 1,267 272 272 263
48 1,009 216 217‡ 217 1,223 262 263‡ 263

Notes: (‡) marks indicate the test sets used for the robust setting. In the robust setting, the marked test set will
be used solely throughout entire early prediction tasks (6-48 hours).

Table 4: Pretraining Data Summary Statistics

Domain Model # Vocab # Visits # Events Events(Stat) # Tokens Tokens(Stat)
CCHS BERT 308 10,000 276,359 27.6(±50.5) 1,574,369 157.4(±266.3)

TIMEBERT 333 10,000 276,359 27.6(±50.5) 1,840,728 184.1(±316.3)
MAYO BERT 337 10,000 492,783 49.3(±105.2) 2,682,264 268.2(±532.5)

TIMEBERT 362 10,000 492,783 49.3(±105.2) 3,165,047 316.5(±634.7)

Notes: Events(Stat) and Tokens(Stat) columns show the average values and corresponding standard deviations
at visit level.

first onset of septic shock are selected while the events in non-shock visits are cut to have the same
distribution of length as the shock visits.

Each sequence is composed of discretized symptoms (i.e., tokens) measured within a 60-minute
interval. To train contextualized EHR representations based on BERT architecture, the event-level
sequences are concatenated with a special token ([SEP]) and all tokens in a visit are used at the same
time during training. As BERT restricts the number of tokens that can be included in a sentence (i.e.,
a chunk of tokens) to 512, in case of the number of tokens in our visit-long sequence exceeds the
maximum, the sequence will be divided into several sequences with 512 symptom tokens when pre-
training our BERT-based representations. Table 4 provides the summary statistics of data used for
pretraining EHR representations. Two variations of representation learning model, BERT and TIME-
BERT, utilize the same number of visits for pretraining, but have different number of vocabulary as
TIMEBERT additionally incorporates special tokens that represents time intervals.

A.2.5 HYPERPARAMETERS AND IMPLEMENTATION DETAILS

For LSTM, a mini-batch Adam optimizer with a batch size of 16 and 72 hidden units are employed.
The training epochs are determined by the validation loss via early stopping with patience of 3. For
MULAN, a dimension size of 100 is used for output representations. To pretrain EHR language
models from unlabeled EHRs, we employ the structure of a ‘bert-based-uncased’ model imported
from Hugging Face’s transformer package1 Wolf et al. (2020). For pretraining BERT from scratch, a
training epoch was set to 60 for CCHS and 50 for MAYO with batch size of 4 and model block size
(i.e., maximum number of tokens to consider) of 512. We monitored training loss and stopped train-
ing when converged. For pretraining TIMEBERT, a training epoch was set to 100 for both datasets
with the same size of batch and model block. For both BERT-based models, an Adam optimizer
with weight decay rate (0.01) and learning rate (2e-05) was used to pretrain the models, and we
mask 15% of tokens for this task. When pretrained BERT is used for constrained worst-case token
masking and prediction, we use top-k sampling Holtzman et al. (2020) with the k value as 10 to
predict masked symptoms given context. Further, to obtain optimal transformation level θ∗ from the

1https://huggingface.co/bert-base-uncased
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constrained worst-case transformation, we utilize Scipy’s optimize function Virtanen et al. (2020).
The initial theta, θ0 is set to 0.0 only during the first optimization and replaced with previously esti-
mated theta θ̂i−1 to expedite the process. The configuration of TRIDE hyperparameters is described
in the main text.

A.3 RESULT

A.3.1 6-48 HOURS EARLY PREDICTION

Figure 9 shows the overall performance (F1-score) for 6-48 hours early prediction on two different
datasets and test set variations. As described in the main text, TRIDE significantly outperforms the
baseline, thus demonstrating temporal robustness.
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Figure 9: Model Performance (F1) on 6-48 Hours Early Prediction
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