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ABSTRACT

With the widespread adoption of Large Language Models (LLMs), concerns about
potential misuse have emerged. To this end, watermarking has been adapted to
LLM, enabling a simple and effective way to detect and monitor generated text.
However, while the existing methods can differentiate between watermarked and
unwatermarked text with high accuracy, they often face a trade-off between the
quality of the generated text and the effectiveness of the watermarking process.
In this work, we present a novel type of LLM watermark, Sparse Watermark,
which aims to mitigate this trade-off by applying watermarks to a small subset of
generated tokens distributed across the text. To demonstrate this type of watermark,
we introduce SpARK, a Sparse WatermARK method that achieves sparsity by
anchoring watermarked tokens to words that have specific Part-of-Speech (POS)
tags. Our experimental results demonstrate that the proposed watermarking scheme
achieves high detectability while generating text that outperforms previous LLM
watermarking methods in quality across various tasks.

1 INTRODUCTION

Recent advancements in Large Language Models (LLM) have shown exceptional performance in a
multitude of tasks. From generating documents to answering questions on different topics, LLMs
such as Meta’s Llama (Touvron et al., 2023) and OpenAI’s GPT (OpenAI, 2023) have become the
foundation upon which many AI applications are built (Luo et al., 2023; Brohan et al., 2023; Luo
et al., 2024; Huang et al., 2023). However, as these applications increase in their capabilities and
accessibility, a growing risk of them being used for malicious purposes, such as generating fake news
and being used for cheating assignments, becomes increasingly apparent.

With the ever-increasing problem of LLMs being misused, monitoring the generated text and its usage
has become an increasingly crucial direction for research. One effective way for tracking the usage of
generated text is by watermarking (Kirchenbauer et al., 2023; 2024; Zhao et al., 2024) - embedding
imperceptible information into the generated text, thereby making it easier to detect and track for
potential misuse. Recent studies have demonstrated the effectiveness and versatility of watermarks in
embedding ownership information into generated text and distinguishing it from non-watermarked
and human-written text (Krishna et al., 2023).

In addition to distinguishing between watermarked and non-watermarked texts, watermarking meth-
ods must also preserve the original text quality after embedding the secret information. However,
prior works generally agree that there is a trade-off between the quality of the watermarked text and
the strength of its watermark. For instance, Kirchenbauer et al. (2023) illustrates this trade-off by
introducing a parameter that adjusts the extent to which their method affects the model’s logits. By
tuning this parameter, they demonstrate the balance between the quality of the generated text and the
robustness of the watermark.

In this paper, we aim to circumvent the trade-off between watermark strength and text quality by
proposing a watermarking method that augments only a portion of the generated text and checks for
that portion of the text for watermark information. The main concept is illustrated in Figure 1. We
show that by watermarking only a subset of the generated text, we can still maintain high detectability
while minimizing the watermark’s impact on the text quality. Our hypothesis is that while prior
methods verify a watermark by checking every token within a text, the same effect can be achieved
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Figure 1: An overview of our proposed SpARK. For each generation step t, if the previous word
belongs to the POS of interest (i.e., Verb), we divide the vocabulary into Green/Red list and restrict
sampling from the Green list. Otherwise, we generate the next token with the original probability.

by checking only a specific portion if the locations of the watermarked elements are known. This
helps preserve the quality of the generated text by keeping a large portion of the original generated
text while still successfully embedding the secret information. Our contributions can be summarized
as follows:

• We introduce Sparse Watermark, a novel category of watermarking methods for LLMs that
are designed to preserve both text quality and detectability by selectively watermarking and
verifying only a subset of the generated text.

• We propose SpARK, a method of watermarking using Part-of-Speech (POS) tags, embedding
and detecting watermarks based on the POS tags of words within the generated text.

• Through extensive experiments on SpARK, we demonstrate that Sparse Watermark effec-
tively maintains high text quality generated by LLMs and watermark detectability, outper-
forming several previous methods across various generation tasks.

2 RELATED WORKS

AI-generated text detection. The methods for monitoring the usage of AI-generated text can
be generally classified into two main categories: AI text detection and watermarking. Of these,
watermarking has proven to be more reliable and effective for distinguishing between generated and
human-written text, as well as between watermarked and unwatermarked generated text (Krishna
et al., 2023). In addition, as companies and research communities strive to close the gap between
LLM-generated and human-written texts, relying solely on AI text detection of the original text
will become increasingly challenging. The main objective of LLM watermarking is to inject secret
information imperceptible to humans into the generated text, which can later be verified by using
watermark detection mechanisms (Kirchenbauer et al., 2024; Zhao et al., 2024; Kirchenbauer et al.,
2024; Liu et al., 2024a; Gu et al., 2024).

Text watermarking for LLM. One common approach of text watermarking for LLMs focused on
distorting the next token probability distribution of the language model. This is achieved by randomly
dividing the vocabulary into two disjoint sets named Green list and Red List, and then promoting
the generation of only tokens in the Green list with a bias parameter δ (Kirchenbauer et al., 2023).
During detection, a detector with the secret key could recover the watermarked distribution and use a
statistical test to verify the presence of the watermark.
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Recent works have attempted to improve LLM watermarking from the perspective of advancing
robustness and security. For instance, Zhao et al. (2024); Kirchenbauer et al. (2024) explored various
schemes to enhance the robustness of watermarks. Zhao et al. (2024) illustrated that leveraging a
fixed Green list enabled watermarking to be resilient against various types of attacks. Kirchenbauer
et al. (2024) explored several hashing schemes for improved robustness. Training-based watermarks
are also designed, where one study improved the robustness of the watermark using the semantics
of previously generated tokens (Liu et al., 2024b). Liu et al. (2024a) proposed to train two neural
networks for text generation and watermark detection to create an unforgeable watermark. Lee et al.
(2023) introduced entropy thresholding for code generation as watermarking low-entropy tokens
could compromise the correctness of the generated sequences.

Effects of watermark on text quality. However, while these recent works have considerably
enhanced the robustness, detectability, and unforgeability of LLM watermarking, it is generally
agreed that there is a trade-off between the quality of the watermarked text and the strength of its
watermark. The distribution shift introduced in Kirchenbauer et al. (2023) enhances the detectability
of the watermark, but it simultaneously allows less likely tokens to be generated, thus affecting the
intrinsic quality of the generated text. Recently, Tu et al. (2023) introduced a benchmark method of
several LLM watermarking algorithms and verified this deterioration of text quality. To minimize the
impact on the generation quality, Christ et al. (2023); Kuditipudi et al. (2023) proposed to embed
the watermark during the token sampling process, thus inducing zero distortion to the probability
distribution of the LLM. However, in practice, the sampling-based schemes struggled to produce a
detectable watermark for low-temperature settings (Piet et al., 2023). Huo et al. (2024) introduced a
multi-objective optimization method to dynamically generate bias parameters and Green list ratio to
achieve both detectability and semantic coherence. In contrast, our approach, SpARK, emphasizes
preserving the strength and semantic integrity of generated text by leveraging the innate structure of
natural language, eliminating the need for training.

3 PROPOSED METHOD

3.1 NOTATIONS AND PRELIMINARIES

We first introduce the notations used in this paper. LetM be an autoregressive language model
that takes a tokenized prompt xprompt = {x−N , ..., x−2, x−1} and output a sequence of tokens
that simulate natural responses. At generation step t, the input for the language model M is
combined sequences of tokens xprompt and the tokens x = {x0, ..., xt−1} previously generated by
M in the previous steps. The language modelM then takes the input and outputs a probability
distribution of the next token over the vocabulary V of the language model: PM(x−N , ..., xt−1) =
(PM(υ|x−N , ..., xt−1)|υ ∈ V).
According to Kirchenbauer et al. (2024), watermark algorithms are defined using four parameters.
The hash functionH generates a pseudo-random hash using the context of the generated text with
context width h, the fraction of green list token γ, and the magnitude of the logit bias δ. After the
watermarked text is generated, one can use the same parameters to calculate and retrieve a set of
green tokens s in the generated text. We then use this set to calculate the statistical significance of
|s| number of green tokens that appeared in the generated text with token length T . We can use a
one-proportion z-test assuming the null hypothesisH0 which states: “The text sequence is generated
without a watermark”. The z-score is then calculated as

z =
|s| − γT

γ
√
(1− γ)T

. (1)

If a text sequence’s z-score surpasses a defined threshold, we can confidently determine that the text
has been watermarked.

3.2 THREAT MODELS

In this paper, we consider the same threat model as in prior works (Kirchenbauer et al., 2023; Zhao
et al., 2024; Liu et al., 2024a). The goal is to embed a watermark for LLM so that users can later verify
if certain texts are generated by the LLM. We assume that the adversary is aware of the presence
of watermarks and attempts to evade the watermark detection when using the LLM. The adversary
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Algorithm 1 Text Generation with SpARK

1: procedure GENERATETEXT(xprompt)
2: for t = 0, 1, . . . do
3: PM(t)←M(x−N , . . . , xt−1)
4: hash← H(x−N , . . . , xt−1)
5: PM(t)← POSWatermark(xprompt, PM(t), hash)
6: xprompt(t)← Sample(G)
7: end for
8: return xprompt[0 : t]
9: end procedure

Algorithm 2 SpARK Encoding

1: procedure POSWATERMARK(x, PM, hash)
2: T ← Convert tokens x to normal text
3: W ← Last word of T
4: Ptag ← POS(W,T )
5: if Ptag ∈ I then
6: G← GenerateGreenList(T, hash)
7: PM ← ApplyGreenList(PM, G)
8: end if
9: return PM

10: end procedure

could have access to both open-source and private (non-watermarked) language models to produce an
alternate text. Consistent with prior works, we only consider attacks such that the modifications are
able to erase the watermark without significantly deviating from the original semantics of the texts.

3.3 SPARSE WATERMARKING USING POS TAGS

In previous works, most watermarking techniques attempt to encode watermark information into
each token in the generated text. As the strength of the watermarking method increases, more tokens
are adversely affected, which decreases the quality of the generated text (Kirchenbauer et al., 2023).
We aim to improve the text quality by watermarking the generated text sparsely, which however is
non-trivial. Attempting to watermark sparsely without knowing the location of the watermarked
elements would be akin to using the previous watermark methods with low strength. This is due to
the statistical test also including the non-watermarked portions of the generated text. To this end, by
isolating and conducting the statistical test specifically on the watermarked portions of the generated
text, we can significantly enhance detectability while maintaining higher text quality compared to
using previous methods with stronger watermarking.

We utilize the Universal Part-of-Speech (POS) tags (Petrov et al., 2012) that exist in the generated
text to mark the positions of the watermarked tokens in the text sequence. Specifically, during the
generation process, we select the positions to watermark based on the POS of tokens that have been
generated, allowing the watermark positions to be tied to the sentence structure. This makes the
watermark more resilient to insertions/deletions of tokens in the generated text and also makes it
easier to extract the watermarked portion of the text using the POS tags.

Before using SpARK, we first select a list of POS tags I to be used for watermarking. When the text
generation process starts, as described in Algorithm 1, we verify when the model has generated a full
word by determining if the next token with the highest probability is the start of a new word. While
LLMs sample the next token differently with different sampling schemes, using this strategy could
consistently inform us when a full word has been generated, without the need to backtrack during the
generation process. Once a full word is produced by the language model, we obtain its POS tag Ptag ,
and watermark the next token only if Ptag ∈ I . We choose to watermark the token next to the word
with chosen POS tags, as watermarking those words directly would not guarantee it to have the same
POS tag after being watermarked, leading to inconsistencies. By using words that have a selected
POS as an anchor, we can limit the number of watermarked tokens in the generated text and position
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Algorithm 3 SpARK Watermark Detection

procedure DETECTWATERMARK(y, I, hash)
s = 0
T = 0
for i = 1, 2, ...|y| do

Ptag ← POS(y[i], y[: i])
if Ptag ∈ I then

T = T + 1
next_token← NextToken(y[: i], i)
G← GenerateGreenList(y[: i], hash)
if next_token ∈ G then

s = s+ 1
end if

end if
end for
z ← s−γT

γ
√

(1−γ)T

if z > threshold then
return True

else
return False

end if
end procedure

them to be easily relocated when decoding. We outline the process of watermarking using POS tags
in Algorithm 2.

To watermark the next token, we used a similar process and hashing scheme as described in Kirchen-
bauer et al. (2023), partitioning the vocabulary using γ and limiting the generations of new tokens to
a subset of the vocabulary, the Green list G. While dividing the vocabulary, we only select tokens that
start a new word, as it would not affect the previous words and their POS tags, making the decoding
process more consistent. Additionally, our method does not use δ to increase the bias for generating
green list tokens, but instead, we restrict the model to only select from the Green list. This helps the
encoding process to utilize all of the tokens it has access to, as it can only watermark a small portion
of the generated text.

3.4 SPARK WATERMARK DETECTION

Since SpARK watermark is sparse, we identify the specific positions we have selected for the
watermark to ensure that the unwatermarked portions of the text are not considered in the z-score
calculation. This process would preserve the strength of the sparse watermark. We first identify the
words whose POS tags are in the list I and select the next token. These selected tokens are the ones
we would watermark during the encoding process and thus would be in the Green list G. At each of
the selected token positions, we recover the G using the hashing scheme mentioned in the encoding
process and check if the token in that position is in G. We then calculate the statistical significance of
the number of green tokens that appeared in the generated text, as shown in Equation 1. However, as
we only apply the watermark to tokens after the words with a specific POS, T (the total number of
tokens) would be replaced by the number of tokens in the watermarked positions. The watermark
detection step is presented in Algorithm 3.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

We choose Llama2-7b, a popular open-sourced LLM that has been instruction-tuned to align with
human preference, as our baseline model for testing the watermarking methods. In addition, we also
conduct the experiments on Phi-3, a 3.8 billion language model that has been shown to outperform
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Figure 2: True Positive Rate (TPR) for each method on the selected dataset, generated using Llama2-
7b with different hyper-parameters for γ and δ.

bigger LLMs on several benchmarks. We compare the performance of our proposed method against
four LLM watermarking techniques:

• Hard watermark: The initial watermark method proposed by Kirchenbauer et al. (2023).
This method restricts the model to only generating a portion of the vocabulary, referred to as
the Green list, and uses the statistical test to detect the watermark.

• LeftHash watermark (Soft watermark): A watermark method proposed by Kirchenbauer
et al. (2023). The method is similar to Hard watermark, but this watermark encourages the
model to generate tokens from the Green list by adding a constant γ to the output logit,
instead of restricting the model. We refer to this method as LeftHash to differentiate this
method from another method proposed in Kirchenbauer et al. (2024).

• SelfHash watermark: A watermark method proposed by Kirchenbauer et al. (2024). This
watermark method is similar to LeftHash watermark, as it encourages the model to generate
from the Green list as well. The main difference is that this watermarking method chooses
tokens that contain themselves in the Green list during hashing, increasing robustness.

• Unigram watermark: A watermark method that simplifies the watermark process by
utilizing a fixed Green list used to watermark text (Zhao et al., 2024). Their work shows
that this restriction increased the robustness of the watermark.

To validate the detectability and the quality of the text generated by the watermark methods, we
used an experiment setting similar to WaterBench (Tu et al., 2023). This benchmark procedure
aims to measure both the quality of the generated text and its detectability. We focused the ex-
periment only on the long-answer datasets, following the same setting as in prior works of LLM
watermarking (Kirchenbauer et al., 2024; Gu et al., 2024). We conduct the same hyper-parameter
search experiments on long-answer datasets to find parameters that are more suitable to watermark
these long text answers. The watermarking strength results are shown in Figure 2. During the
hyper-parameter search, we select the parameters that are close to the original parameters of each
method and have a True Positive Rate of greater than 0.99.

To summarize, we select the ELI5 (Explained Like I’m 5) dataset (Fan et al., 2019) and the Fi-
nanceQA dataset (Maia et al., 2018), both of which focus on short questions with long answers,
along with MultiNews (Fabbri et al., 2019) and QMSum (Zhong et al., 2021), which focuses on text
summarization. These four datasets are grouped into two tasks, Long-form QA and Summarization.
We then conduct a hyper-parameter search by evaluating the TPR of each method using different
hyper-parameters. As shown in Figure 2, the strength of the watermark increases as γ decreases and
δ increases, The figure also shows that most watermark methods achieved over 0.99 of TPR if δ is
high enough, which helps us choose a γ that is close to the original parameters of each method. We
then select hyper-parameters closest to the original paper, while having a TPR of over 0.99.

For SpARK, we selected three POS tags for the main experiment: Verb, Noun, and Determiner.
This is because, based on Table 7, these three tags have 100% of document frequency. We selected
γ = 0.05 for the SpARK, to increase the strength of each watermark toke. By choosing a small γ,
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Table 1: Comparison of True Positive Rate (TPR), True Negative Rate (TNR), ROUGE-L score (R-L),
decrease in percentage point of ROUGE-L score (∆) and the semantic similarity of watermarked and
non-watermarked text (Sem.) of different watermarking algorithms, evaluated on Llama-2 model.
The best and second-best performances are in bold and underline, respectively.

Long-form QA Summarization Sem.
TPR TNR R-L ∆ TPR TNR R-L ∆

No Watermark – – 21.59 – – – 23.47 – –

Hard 100.0 100.0 16.76 ↓ 22.37% 100.0 100.0 16.63 ↓ 29.14% 0.765
LeftHash 100.0 100.0 14.55 ↓ 32.61% 99.5 99.5 13.33 ↓ 43.20% 0.693
SelfHash 99.5 93.5 12.75 ↓ 40.94% 100.0 96.0 12.54 ↓ 46.57% 0.663
Unigram 99.8 100.0 11.43 ↓ 47.06% 99.3 100.0 11.53 ↓ 50.87% 0.652

SpARK - Verb 100.0 99.0 18.87 ↓ 12.60% 100.0 99.5 20.95 ↓ 10.74% 0.836
SpARK - Noun 100.0 99.5 18.48 ↓ 14.40% 100.0 100.0 18.39 ↓ 21.64% 0.794
SpARK - Determiner 100.0 98.8 19.20 ↓ 11.07% 100.0 98.0 20.89 ↓ 10.99% 0.814

Table 2: Comparison of True Positive Rate (TPR), True Negative Rate (TNR), ROUGE-L score (R-L),
decrease in percentage point of ROUGE-L score (∆) and the semantic similarity of watermarked and
non-watermarked text (Sem.) of different watermarking algorithms evaluated on Phi-3 model. The
best and second-best performances are in bold and underline, respectively.

Long-form QA Summarization Sem.
TPR TNR R-L ∆ TPR TNR R-L ∆

No Watermark – – 22.62 – – – 23.37 – –

Hard 100.0 100.0 15.19 ↓ 32.83% 100.0 100.0 11.22 ↓ 52.01% 0.567
LeftHash 100.0 100.0 19.55 ↓ 15.34% 99.3 99.5 15.71 ↓ 32.78% 0.779
SelfHash 100.0 97.0 19.51 ↓ 13.75% 99.8 99.5 16.85 ↓ 27.90% 0.806
Unigram 100.0 100.0 7.74 ↓ 65.77% 99.8 100.0 7.04 ↓ 69.88% 0.425

SpARK- Verb 100.0 99.0 21.45 ↓ 5.17% 100.0 99.5 20.87 ↓ 10.72% 0.850
SpARK- Noun 99.5 99.5 19.46 ↓ 13.95% 100.0 100.0 18.27 ↓ 21.84% 0.787
SpARK- Determiner 99.5 98.8 21.18 ↓ 6.37% 100.0 99.0 20.86 ↓ 10.74% 0.829

we demonstrate that SpARK,and Sparse Watermark in general, can match other baseline methods
in detectability, while also maintaining higher generation performance. We also provide the results
containing the TPR of SpARK under different POS tags and γ.

4.2 RESULTS OF DETECTABILITY AND TEXT QUALITY

As mentioned in Section 4.1, we conduct evaluations with parameters that achieved greater than 0.99
TPR and close to the original parameters of each method. We report the results of the watermarks’
performance in Table 1 and Table 2.

Overall, the detection performance of the baseline watermark method is high, having above 99%
True Positive Rate and True Negative Rate in both tasks. In addition, tuning the parameter for
long-answer text increased the generation performance of all watermark methods without degrading
their detectability. Compared to the baseline watermark methods, our SpARK achieved similar
detection performance, while consistently achieving the highest generation performance in both tasks.
On Llama2-7b, all three of the SpARK variants using different POS tags reached the top 3 spots
in terms of generation performance. When using any of SpARK variants, the ROUGE-L score of
the original model would only be reduced by at most 21.64%. In contrast, the performance of other
watermarks would decrease that down by at least 22% and at most more than 50%. SpARK also has
the highest semantic similarity between the non-watermarked text and watermarked text, with the
highest being 0.836 and the lowest being 0.794.

The same phenomenon can be seen on Phi-3, as SpARK maintains the generated text quality while
having a high TPR compared to other methods. For long-form QA, the Verb and Determiner
variants of SpARK only reduce the quality by roughly 5% and 6%, respectively, while other baseline
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(b) Summarization Task

Figure 3: Perplexity of the generated text for each watermark method in two main tasks.

watermark decreases the quality of the text by at least 13.75% (SelfHash) and at most 65.77%
(Unigram). For summarization, SpARK maintains the best generation text with all three variants,
degrading the quality by at most 21.8%, where other methods admit decreases of at least 27%. In
terms of semantic similarity between watermarked and non-watermarked text, SpARK maintains the
highest positions, with the Verb variant achieving 0.850 and Determiner 0.829.

We also plot the perplexity of each watermark method’s responses to measure the generation quality.
We used Llama2-13b as the oracle model to measure perplexity, as it is a more powerful language
model that is publicly available, similar to the methodology in Jovanović et al. (2024). As shown
in Figure 3, SpARK consistently achieves the lowest perplexity across both tasks when using the
Determiner POS tag. Notably, our method also induces lower variance in perplexity, indicating that it
not only maintains low perplexity but does so with greater consistency, emphasizing the stability of
our approach compared to existing watermarking techniques.

In summary, SpARK’s results show that sparse watermark can produce better-generated texts, both
in terms of semantic similarity and task performance, while having the same detectability. By
watermarking a small portion of text sparsely and anchoring each watermarked token with a POS
tag, SpARK can preserve the performance and similarity of the generated text, while maintaining
detectability by focusing the detection on smaller sets of tokens.

4.3 RESULTS OF ROBUSTNESS AGAINST ATTACKS

As malicious players have the capability of modifying a sequence of watermarked text to evade the
detector, watermarking methods need to ensure that the watermark is resilient against changes to the
text. In order to illustrate the robustness of our proposed approach, we consider two realistic types of
attack: substitution attack and paraphrasing attack.

Substitution Attack. For the substitution attack, a specified proportion of the text (equal to some r
tokens) is replaced with its corresponding synonyms. However, it is worth noting that a simplistic
replacement can compromise the semantic coherence of the sentence. Following the settings described
in (Wang et al., 2024), we iteratively masked a random token that has yet to be modified and then
utilized RoBERTa-Large to generate candidates for replacement. To ensure the semantic integrity
of the perturbed text, we only select to substitute a new token if the difference in logits of the new
token and the original is higher than our pre-defined threshold, which we set to be -1. If there is no
token that satisfies the preceding requirement, we proceed to mask a different token. The process is
terminated when we have replaced r tokens or we have attempted to replace 3r tokens.

Table 3 demonstrates the resilience of our method against substitution attack, with SpARK achieving
good performance for the 10% scenario. For higher rates such as 30%, the robustness of our proposed
method lessens, but they remain competitive with other watermarking algorithms. Detailed results of
each dataset for the substitution attack can be found in Table 10 and Table 11 of the Appendix.

Paraphrasing Attack. In addition to the substitution attack, we also evaluate the robustness of our
proposed method against paraphrasing attack using DIPPER (Krishna et al., 2023). DIPPER is an
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Table 3: Average True Positive Rate under two settings of attacks: synonym substitution and
paraphrasing (DIPPER), evaluated on Llama2-7b and Phi-3. The best and second-best performances
are in bold and underline, respectively.

Language Model Method Substitution Attack DIPPER

10% 30% 50% 40L 40L-40O

Llama2-7b

Hard 99.6 90.6 51.1 53.0 41.0
LeftHash 99.8 99.0 83.9 71.4 64.1
SelfHash 99.8 98.1 92.3 75.0 69.5
Unigram 99.5 96.9 91.4 59.8 50.9

SpARK- Verb 99.8 96.3 72.4 54.3 43.5
SpARK- Noun 100.0 97.8 78.3 53.9 41.9
SpARK- Determiner 99.8 96.5 67.6 74.3 66.9

Phi-3

Hard 100.0 100.0 98.6 89.3 88.3
LeftHash 99.3 98.1 83.6 79.8 66.1
SelfHash 99.3 96.1 62.8 79.5 66.9
Unigram 99.9 99.6 99.3 89.1 88.6
SpARK- Verb 99.6 96.3 72.5 64.0 54.1
SpARK- Noun 99.4 97.5 80.6 71.5 59.1
SpARK- Determiner 99.6 96.8 76.6 87.1 82.4

11B parameter model that has been specially fine-tuned from T5-XXL (Raffel et al., 2020) for the
task of paraphrasing. It has been demonstrated to successfully evade multiple AI-generated text
detectors while also preserving the general semantics of the sentence. We assess the performance of
our watermarking schemes for two attack settings: 40L, where the lexical diversity is set to 40, and
40L-40O, where the lexical and order diversity are 40. With these configurations, DIPPER is able
to produce a strong paraphrasing attack and maintain a high degree of semantic similarity with the
original sentence.

The results of the paraphrasing attacks are summarized in Table 3. When applied to Llama2-7b,
the performance of SpARK with determiner is demonstrated to be near state-of-the-art in terms of
robustness, achieving 74.3% and 66.9% in true positive rate, only 0.7 and 2.6 percentage points
behind SelfHash, under 40L and 40L-40O paraphrasing, respectively. For Phi-3, SpARK can still
achieve 87.1% and 82.4% for DIPPER, higher than both LeftHash and SelfHash. While Hard
watermark and Unigram achieved higher robustness on Phi-3, their generated texts have the lowest
scores compared to other methods, as shown in Table 2. In contrast, SpARK was able to achieve
relatively high robustness against attacks while having the best results in terms of generated text on
both Llama2-7b and Phi-3. The performance of each method for all datasets can be found in Table 12
and Table 13 of the Appendix.

4.4 EMPIRICAL EFFECTS ON Z-SCORE AND TEXT QUALITY

To demonstrate SpARK’s ability to maintain both high detectability and preserve the semantic
meaning of the non-watermarked generation, we provide an example of watermarking applied to
an answer in QMSum using SelfHash and SpARK - Determiner. This table visually demonstrates
the watermarked tokens and their corresponding list, with tokens found in the Red list represented
in red, and tokens found in the Green list represented in green. As we can observe in Table 4,
techniques like SelfHash aim to watermark every token when generating, while SpARK only focuses
on watermarking only a fraction of the generated tokens. While SelfHash has a large Green list with
γ = 0.25, the quality of the text being generated by SelfHash has a lower similarity, only (0.298)
due to the number of tokens it encodes. SpARK, on the other hand, even when having a smaller
green list (γ = 0.05), the generated text has a higher semantic similarity than SelfHash (0.726),
thanks to encoding fewer tokens. While SelfHash’s generated text does have a higher z-score (16.99)
compared to SpARK’s 11.53, it is worth emphasizing that the number of tokens used in SpARK
is a lot smaller. SpARK is able to maintain a similar level of detectability to SelfHash as seen in
Section 4.2. Additional watermarked text examples from different watermark methods in different
datasets can be found in Section K of the Appendix.

9



486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

Table 4: Examples from the QMSum dataset generated by Llama2-7b with no watermark (NW), with
SelfHash, and with SpARK - Determiner (SPK-Det), respectively. Results of z-score and semantic
similarity (Sem.) of each watermarking method are also reported. The hyper-parameter (γ,δ) for
SelfHash is (0.25, 10), and the hyper-parameter γ for SpARK is 0.05.

Prompt [INST]You are given a meeting transcript and a query containing a question or
instruction. Answer the query in one or more sentences.\n\nTranscript:\nUser
Interface: ...\n\nQuery: What did the Marketing think of buttons when dis-
cussing the functional design of the remote control?\nAnswer:[/INST]

z-score Sem.

NW Based on the meeting transcript, the Marketing person suggested that there
should be no buttons on the remote control, as most people only use a small
number of buttons on their existing remote controls, and having too many
buttons can be confusing. Instead, they proposed using a menu-based system
or a single button for a menu.

- -

SelfHash At the meeting, the marketingperson suggested eliminating unnecessarybuttons
on the remote controlaimulating a more user-frienf design. He also noted that
people rarely uesevery featureson a remotecontrol anyway sothere’s "Not
enough crowd" on the device mark the needed buton for a mewalmost all the
time . Therefore , the Markettion believed the onerouse was to consilder a more
minimalinconvenie _ design f the product Marktng’s view was to focus the
user expdria and keep the device slew a d simple... ...

16.99 0.298

SPK-
Det

Based on the extract, the design manager expressed that the design project
team should aim to create a remote control with fewer buttons than usual, as
most people do not use their TV remote controls’ full capacity. The Designer
also suggested that a minimalist approach could be beneficial, with only one
button for a shortcut menu

11.53 0.726

5 CONCLUSION

In this work, we propose SpARK, a novel watermark method for LLM, that encodes watermark
information into the generated text, without degrading its quality. Different from other methods,
this approach focuses on encoding a subset of tokens distributed sparsely throughout the generated
text. By encoding a small subset of tokens in the generated text and focusing on those subsets for
watermark detection, SpARK can minimize the impact of the watermark on the text quality while
maintaining high detectability. Experimental results demonstrate the effectiveness of our SpARK in
preserving the text quality, as evidenced by the ROUGE-L score and semantic similarity for four
datasets compared to other methods. Despite watermarking significantly fewer tokens, our approach
maintains competitive robustness against both substitution and paraphrasing attacks.
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A THEORETICAL SUPPORT FOR METHODS

A.1 NOTATIONS

• xprompt = {x−N , . . . , x−1}: Tokenized prompt.

• x = {x0, . . . , xt−1}: Sequence of previously generated tokens.

• y: Generated Text / Normal text.

• PM(x−N , . . . , xt−1): Probability distribution of the next token generated by the language
model M .

• T : Normal text converted from tokens xprompt and x.

• W : Last word in T .

• Ptag(x): POS tag of word x.

• I: Set of selected POS tags for watermarking.

• G: Green List.

A.2 MATHEMATICAL FORMULATION

POS Tag Selection: Define a set of POS tags I chosen for watermarking based on their frequency
and relevance in the text. For example:

I = {DET}

In this work, we only select a single POS tag to watermark. This is because the tags we used,
Universal POS tags, are composed of smaller POS tags defined by Penn Treebank. For example, the
Universal tag DET when converted to Penn Treebank POS tags would look like so:

I = {DT,EX,PDT,WDT}

Token Generation Process: For each generation step t, the language model M generates a
probability distribution over the vocabulary V:

PM(x−N , . . . , xt−1) = (PM(υ | x−N , . . . , xt−1) | υ ∈ V)

POS Tag Identification: Determine the POS tag Ptag(W ) of the last word W by using a POS
parser:

Ptag(W ) = POS(W,T )

Here, POS(W,T ) represents the function that returns the POS tag of the word W based on its position
in text T .

Watermark Application: If the POS tag Ptag(W ) ∈ I , apply the Green List G to the probability
distribution, modifying it to embed the watermark:

P̃M = ApplyGreenList(PM, G)

The modified probability distribution P̃M will be used to generate the next token.

Green List Generation: The function GenerateGreenList(T, hash) generates the list of green
tokens G based on the current context T . This list is used to modify the probability distribution of the
next token:

G = ApplyGreenList(T, hash)

B ADDITIONAL IMPLEMENTATION DETAILS

B.1 HYPER-PARAMETERS OF BASELINE WATERMARK METHODS
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Table 5: Hyper-parameters for each baseline watermark
method used in the main experiment.

Llama2-7b

Parameters Hard LeftHash SelfHash Unigram

γ 0.5 0.25 0.25 0.5
δ - 10 10 15
z-threshold 4.0 4.0 4.0 4.0

Phi-3

Parameters Hard LeftHash SelfHash Unigram

γ 0.25 0.25 0.5 0.25
δ - 5 5 10
z-threshold 4.0 4.0 4.0 4.0

To obtain the hyper-parameters for each
baseline watermark method to be used in
the main experiment, we conduct the same
hyper-parameter search explained in the
original paper by Tu et al. (2023). We se-
lect the "Watermark Strength", which is the
True Positive Rate to be 0.99 or above, as
all baseline watermarks can achieve high
watermarking strength while only adjust-
ing δ. This is because we tuned the hyper-
parameters on only the long-answer dataset.
All the hyper-parameters selected for the
main experiments can be found in Table 5.

B.2 HYPER-PARAMETER TUNING FOR SPARK

Table 6: True Positive Rate (TPR) of SpARK on different POS tags.

POS Tags
Gamma (γ)

0.05 0.1 0.25 0.5
Verb 100.00% 100.00% 97.63% 77.38%
Noun 100.00% 99.88% 98.50% 85.75%
Determiner 100.00% 99.88% 96.13% 55.50%
Preposition and Postposition 100.00% 99.63% 95.25% 63.00%
Punctuations 99.63% 99.63% 90.88% 62.63%
Adjective 97.75% 94.25% 77.38% 22.38%

To find the hyper-parameters for SpARK, we conduct the same hyper-parameter search process
used for the baseline watermark. We decided only to conduct the search on POS tags that have a
document frequency of 99% or over, as we want to use the POS tags that have a near guarantee of
occurring in a document. From Table 6, we can see that Punctuations and Adjectives cannot give
a 100% True Positive Rate, even with a gamma of 0.05. This is because the chance of adjectives
appearing in a document is 99%, which can cause some generated samples to be unwatermarked.
While punctuations have a high document frequency, a lot of answers only use punctuations at the
end of the sentence, which causes the generated text to be unwatermarked as well.

From the True Positive Rate shown in Table 6, we selected γ = 0.05 for all of the SpARK variants
in every experiment. By choosing this hyper-parameter, we show that SpARK can achieve high
detection performance while having generation performance higher than all of the baseline methods,
even while the True Positive Rate is at 100%.

B.3 IMPLEMENTATION OF SEMANTIC SIMILARITY

In this paper, we measure the closeness in semantics of watermarked and non-watermarked texts to
understand the semantic distortion of applying a watermark to an LLM. Results of semantic similarity
in Table 1 are calculated by computing the cosine similarity between the embeddings produced
by SimCSE (Gao et al., 2021) of texts generated with and without watermark. SimCSE leverages
contrastive learning to train BERT (Devlin et al., 2019) and RoBERTa (Liu et al., 2019) models for
generating sentence embeddings.

C ANALYSIS ON THE POS TAGS

C.1 DOCUMENT FREQUENCY OF THE POS TAGS

As our SpARK uses a POS tag to mark the positions of the watermarked text, not all POS tags would
occur during the generating process. Because of this, we calculated the document frequency of each
POS tag that appeared in the provided answers from the datasets. This is to show which POS tags
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Table 7: Document frequency of each POS tag.

POS tags VERB DET NOUN PUNC ADP ADJ ADV PRON PRT CONJ NUM X

Doc frequency (%) 100.0 100.0 100.0 99.8 99.6 99.0 97.5 96.1 96.0 95.7 67.7 13.0

can occur in the answers, and thus have a high chance of occurring when language models generate
answers for similar tasks. As we can see in Table 7, the chance of appearing in a document for most
of the POS tags is quite high, with only Numbers(NUM) and Others(X) not having a document
frequency of over 95%. This shows that there are other POS tags apart from the main experiments
that can be used for SpARK, albeit with less effectiveness. Among the POS tags, we selected Verbs
(VERB), Determiners (DET), and Nouns (NOUN), as these three tags have a document frequency of
100%. This implies these three parts of speech would exist in every answer to these tasks, and would
also exist in every answer generated by the language model for these tasks

C.2 PERCENTAGE OF OCCURRENCE FOR POS TAGS

NOUN VERB
PUNCT ADP DET ADJ

PRON ADV PRT CONJ NUM X
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Figure 4: Percentage of occurrences for each POS
tag.

While the document frequency table shows the
probability of a POS appearing in a text, know-
ing how much of a text is composed of words
that belong to a POS tag would also be impor-
tant. This is because, from that number, we can
estimate the percentage of tokens in the text be-
ing watermarked when using a POS tag, as each
watermarked token will be anchored into each
part of speech. We calculate the percentage of
occurrences for each POS tag and present it in
Figure 4.

From the numbers shown in Figure 4, verbs
and nouns occur the most often in a text, while
determiners occur less than punctuation and
ADP (preposition and postposition). This shows
that during the text generation process, SpARK

would encode more tokens when using Verbs and Nouns, and fewer tokens when using Determiners,
which would affect the generation performance. This can be seen in Table 1, where the SpARK with
Nouns got the lowest generation performance among the three variants, while Determiners have the
highest performance.

C.3 AVERAGE ENTROPY FOR TOKEN PREDICTIONS AFTER POS TAGS

CONJ
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Figure 5: Average entropy of the next token’s pre-
diction after each POS tag.

While reducing the number of tokens to water-
mark helps improve the generation quality of the
watermarked text, several works in watermark-
ing have shown that the encoding of watermark
information when the entropy of the next to-
ken prediction is high also helps increase the
generation performance (Huo et al., 2024; Lee
et al., 2023; Liu & Bu, 2024). To see if this phe-
nomenon affects the generation quality when we
use different POS tags for SpARK, we calculate
the average entropy of the next token prediction
when watermarking using different tags.

As shown in Figure 5, Determiners (DET) have
a high average entropy, affecting the quality of
generated text less, while Verbs and Nouns have
a lower average entropy. These results further
explain the differences in the generation performances between using Nouns, Verbs, and Determiners
for watermarking.
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D MAIN EXPERIMENTS’ RESULTS FOR EACH DATASET

In Section 4, we showed the average results for both the main results for each task. Due to the page
limit, the detailed results for each dataset are in this section. We show the watermarking results for
every watermark method in each dataset. As shown in Table 8 and Table 9, datasets from the same
task may have different performance results, some methods may also perform better in one dataset
and worse in another. This shows the need to test the watermark methods on multiple datasets in
different tasks. Overall, SpARK still generates better answers compared to other watermark methods
in every task.

In addition, we also show the results robustness results for every watermark method in each setting
and dataset. As can be seen from Table 10 and 12, most watermark methods struggle to preserve their
encoded information when validating on QMSum. This is because QMSum’s answers are shorter
compared to other datasets, as shown in Tu et al. (2023).

Table 8: Llama2-7b’s results for True Positive Rate (TPR), True Negative Rate (TNR) and ROUGE-L
score (R-L) of different watermarking algorithms for all 4 datasets.

FinanceQA ELI5 MultiNews QMSum

TPR TNR R-L TPR TNR R-L TPR TNR R-L TPR TNR R-L

No Watermark – – 21.59 – – 21.59 – – 26.15 – – 20.78

Hard 100.0 100.0 17.65 100.0 100.0 15.87 100.0 100.0 17.75 100.0 100.0 15.51
LeftHash 100.0 100.0 15.01 100.0 100.0 14.08 100.0 99.0 13.25 99.0 100.0 13.40
SelfHash 100.0 98.0 14.76 99.0 89.0 10.74 100.0 93.0 12.40 100.0 99.0 12.67
Unigram 99.5 100.0 11.77 100.0 100.0 11.08 100.0 100.0 10.28 98.5 100.0 12.77

SpARK- Verb 100.0 98.5 19.65 100.0 99.5 18.09 100.0 100.0 23.48 100.0 99.0 18.42
SpARK- Noun 100.0 99.0 18.41 100.0 100.0 18.54 100.0 100.0 20.40 100.0 100.0 16.37
SpARK- Determiner 100.0 99.5 19.08 100.0 98.0 19.32 100.0 98.0 22.66 100.0 98.0 19.11

Table 9: Phi-3’s results for True Positive Rate (TPR), True Negative Rate (TNR) and ROUGE-L
score (R-L) of different watermarking algorithms for all 4 datasets.

FinanceQA ELI5 MultiNews QMSum

TPR TNR R-L TPR TNR R-L TPR TNR R-L TPR TNR R-L

No Watermark – – 20.75 – – 24.48 – – 25.86 – – 20.88

Hard 100.0 100.0 12.80 100.0 100.0 17.58 100.0 100.0 9.71 100.0 100.0 12.72
LeftHash 100.0 100.0 17.87 100.0 100.0 20.42 100.0 99.0 17.31 99.0 100.0 14.11
SelfHash 100.0 98.0 18.33 99.0 89.0 20.68 100.0 93.0 19.08 100.0 99.0 14.62
Unigram 99.5 100.0 6.74 100.0 100.0 8.74 100.0 100.0 5.38 98.5 100.0 8.70

SpARK - Verb 100.0 98.5 19.15 100.0 99.5 23.20 100.0 100.0 22.88 100.0 99.0 18.84
SpARK - Noun 100.0 99.0 19.83 100.0 100.0 23.06 100.0 100.0 23.04 100.0 100.0 18.69
SpARK - Determiner 100.0 99.5 17.59 100.0 98.0 21.33 100.0 98.0 19.50 100.0 98.0 17.03

Table 10: True Positive Rate of different watermarking methods under three settings of substitution
attack for all 4 datasets, evaluated on Llama2.

FinanceQA ELI5 MultiNews QMSum

10% 30% 50% 10% 30% 50% 10% 30% 50% 10% 30% 50%

Hard 100.0 100.0 61.5 100.0 100.0 72.5 99.5 99.5 59.0 99.0 63.0 11.5
LeftHash 100.0 100.0 97.5 100.0 99.5 96.0 99.5 99.0 98.0 99.5 97.5 77.5
SelfHash 100.0 98.5 96.5 99.5 98.5 93.5 100.0 97.0 91.5 99.5 98.5 84.0
Unigram 100.0 100.0 99.0 99.5 99.5 97.0 100.0 99.5 95.0 98.5 88.5 44.5

SpARK- Verb 100.0 100.0 88.5 100.0 100.0 83.5 100.0 99.5 80.0 99.0 85.5 37.5
SpARK- Noun 100.0 100.0 94.5 100.0 100.0 75.0 100.0 100.0 92.5 100.0 91.0 51.0
SpARK- Determiner 100.0 99.0 78.0 100.0 97.5 61.5 100.0 99.5 82.5 99.0 90.0 48.5
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Table 11: True Positive Rate of different watermarking methods under three settings of substitution
attack for all 4 datasets, evaluated on Phi-3.

FinanceQA ELI5 MultiNews QMSum

10% 30% 50% 10% 30% 50% 10% 30% 50% 10% 30% 50%

Hard 100.0 100.0 97.0 100.0 100.0 99.0 100.0 100.0 99.5 100.0 100.0 99.0
LeftHash 100.0 100.0 74.5 100.0 100.0 91.0 98.0 98.0 96.5 99.0 94.5 72.5
SelfHash 99.5 97.0 40.5 100.0 100.0 68.0 100.0 100.0 84.0 97.5 87.5 58.5
Unigram 100.0 99.0 98.0 100.0 100.0 100.0 99.5 99.5 99.0 100.0 100.0 100.0

SpARK- Verb 100.0 99.5 80.0 100.0 100.0 90.0 100.0 99.5 87.5 98.5 86.0 32.5
SpARK- Noun 99.5 99.5 91.0 99.5 99.5 82.0 99.5 99.5 98.5 99.0 91.5 51.0
SpARK- Determiner 99.5 98.5 78.5 99.5 98.5 78.0 100.0 100.0 89.5 99.5 90.0 60.5

Table 12: True Positive Rate of different watermarking methods under two settings of paraphrasing
attacks for all 4 datasets, evaluated on Llama2.

FinanceQA ELI5 MultiNews QMSum

40L 40L-40O 40L 40L-40O 40L 40L-40O 40L 40L-40O

Hard 64.5 55.5 73.0 54.0 40.0 32.5 34.5 22.0
LeftHash 80.5 70.5 78.5 67.5 62.5 59.5 64.0 59.0
SelfHash 86.0 83.0 70.0 66.5 74.5 63.5 69.5 65.0
Unigram 85.5 72.5 59.0 53.5 57.0 45.5 37.5 32.0

SpARK- Verb 75.0 58.5 79.5 68.5 37.0 32.5 25.5 14.5
SpARK- Noun 67.0 53.0 49.0 45.0 62.5 46.0 37.0 23.5
SpARK- Determiner 75.5 66.0 78.0 76.0 69.5 64.0 74.0 61.5

Table 13: True Positive Rate of different watermarking methods under two settings of paraphrasing
attacks for all 4 datasets, evaluated on Phi-3.

FinanceQA ELI5 MultiNews QMSum

40L 40L-40O 40L 40L-40O 40L 40L-40O 40L 40L-40O

Hard 89.5 90.0 95.0 94.0 78.5 80.0 94.0 89.0
LeftHash 73.5 57.0 94.0 83.5 80.0 65.5 71.5 58.5
SelfHash 76.5 50.5 81.5 67.0 84.0 81.0 76.0 69.0
Unigram 88.5 91.5 97.0 94.5 77.5 80.5 93.5 88.0

SpARK- Verb 76.0 59.0 91.5 87.0 61.5 51.0 27.0 19.5
SpARK- Noun 75.0 64.5 75.5 66.0 84.0 70.5 51.5 35.5
SpARK- Determiner 86.5 79.0 90.5 84.5 89.5 89.0 82.0 77.0

E WATERMARK PERFORMANCE ON ROC CURVE
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Figure 6: ROC curves for each watermark in the
main experiment.

In the main experiment, we show the model’s
detectability performance on one threshold, with
the hyper-parameters found using the the pro-
cess mentioned in Section 4.1. To better com-
pare the detection performance of each water-
mark and demonstrate the effectiveness of the
hyper-parameter search method, we plot the
ROC curve to show the trade-off between True
Positive Rate and False Negative Rate. Using the
ROC curve, we can have a better understanding
on each watermark methods’ detection perfor-
mance using the AUC score.

As we can see from Figure 6, it demonstrates
that all watermarks achieve a very high AUC score (0.999), indicating the effectiveness of using
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watermark strength to identify parameters with high performance, not just true positives. Additionally,
the similarity in AUC scores across all watermark methods further supports our claim that sparse
watermarks can have comparable detection performance to other methods, while also generating text
with better quality.

F COMPARISON WITH DISTORTION-FREE WATERMARK

While our method can achieve higher detectability with greater generated text performance and
decent robustness, other previous works have also achieved impressive results by not affecting the
generated text’s distribution. To compare SpARK against these methods, we run our method against
Distortion-free Watermark (Kuditipudi et al., 2023), a sampling-based watermarking algorithm that
maintains that generated text’s distribution up to a certain token. To compare our method against
Distortion-free Watermark in detectability, we evaluate the generation of both watermark methods on
the C4 dataset. We selected 200 samples and removed 200 tokens from each sample, having the model
complete the input context with each watermarking algorithm. This setup is described in the original
distortion-free watermark paper. For SpARK, we used the same parameters previously described in
the main experiment. For Distortion-free, we used the EXP-edit variant as it is recommended in the
original paper to be the most robust. We use the γ value provided in the paper and experiment with
the methods on key lengths of 256. We also test the Distortion-Free method with a key length of 4
since in Piet et al. (2023), a key length of 4 was shown to balance generation quality and robustness.
We adjust the threshold for each setting to achieve a TPR of 99%. The setting is similar to the ones
described in Liu et al. (2024b).

Table 14: True Positive Rate (TPR) and True Neg-
ative Rate (TNR) evaluated on the C4 dataset of
SpARK and Distortion-free Watermark.

TPR TNR

Distortion-free (key length = 4) 99.0 68.0
Distortion-free (key length = 256) 99.0 28.0
SpARK- Determiner 100.0 99.0

As reported in Table 14, while both distortion-
free methods achieved low p-value median (≈
0.0002), the p-value distribution of all the sam-
ples has a high spread, with some samples even
reaching 0.5 to 0.8 p-value. This makes it diffi-
cult for the distortion-free to achieve high TPR
without affecting its TNR. This phenomenon
was demonstrated in Kuditipudi et al. (2023),
where the p-value counts of the distortion-
free watermark are distributed more sparsely
throughout different p-values, compared to Hard

Watermark, where the counts are mostly clustered towards small p-values. This phenomenon makes it
harder to select optimal parameters for distortion-free methods to achieve high TPR/TNR compared
to Hard Watermark.

To make a fair comparison, we select the responses from Distortion-free with a key length of 4 as it
has a closer detectability to the SpARK. Additionally, we also study Distortion-free Watermark with
a key length of 1, to further narrow the gap of detectability between Distortion-free and Sparse. We
also conduct paraphrasing attack experiments against the generated samples to test the resilience of
each watermark.

Table 15: True Positive Rate (TPR), True Negative Rate (TNR), perplexity (PPL) and TPR under
DIPPER of SpARK and Distortion-free Watermark evaluated on the C4 dataset.

No Attack DIPPER

TPR TNR PPL 40L 40L-40O

Distortion-free (key length = 1) 99.0 95.0 2.92 59.0 55.0
Distortion-free (key length = 4) 99.0 68.0 3.86 65.0 64.0
SpARK- Determiner 100.0 99.0 4.53 84.0 80.5

From Table 15, it is evident that by using the key length to 4, which limits the number of distortion-free
tokens, the Distortion-free Watermark can achieve a lower perplexity compared to our SpARK. How-
ever, the detectability of the SpARK after paraphrasing is higher than the Distortion-free Watermark,
with SpARK achieving a TPR of over 80% while Distortion-free is only able to achieve just over
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64% in both settings. Decreasing the key length down to 1 would further improve the detectability of
the watermark, as a TPR can be achieved with high TNR, but it compromises the robustness of the
watermark against paraphrasing attack. In essence, SpARK achieves superior detectability without
significantly degrading the generation quality and robustness against modification attacks.

G RESULTS AGAINST WATERMARK STEALING

Table 16: False Positive Rate (FPR) and Style score
evaluated on the Dolly CW dataset of different
watermark methods.

FPR Style

Hard 99.0 8.53
LeftHash 100.0 8.12
SelfHash 95.0 8.57
Unigram 98.0 8.68

SpARK- DET (Strength = 3) 36.0 8.17
SpARK- DET (Strength = 6.5) 100.0 7.79

As watermark methods have been demonstrated
to be vulnerable to forgeability or spoofing at-
tacks (Sadasivan et al., 2023; Jovanović et al.,
2024), we also conduct studies on SpARK’s re-
sistance against such attacks. In this experiment,
we conduct watermark stealing as established in
Jovanović et al. (2024). Specifically, we perform
the spoofing attack where the watermark steal-
ing algorithm attempts to steal the watermark
generated by a watermarked model (in this case,
Llama2-7b), and forge the watermarked text us-
ing another model, such as Mistral, without any
access to private information such as secret keys.
We queried 10000 watermarked samples gener-
ated from each watermark method as the suc-
cess of this attack converges after approximately

10000 samples. For SpARK, we conduct the experiment with the Determiner variant (SpARK- DET).
In Table 16, we provide the FPR and the style scores (rated by the Mistral model) of each watermark
for the Dolly CW dataset. We also ran the attack on two different strengths, which were configured
for the Hard and LeftHash watermarks.

From Table 16, SpARK shows more resilience than Hard Watermark as the attacker is only able to
achieve a 36% success rate on a lower strength level. It is evident that using a lower strength causes
the attacker to fail to generate watermarked text similar to watermarked samples due to a low number
of watermarked tokens overall of SpARK. On the other hand, while increasing the strength of the
attack would make the SpARK vulnerable to this attack, its style score is also lower than any other
method. This showcases that the attack needs to largely degrade the quality of the text to mimic
SpARK.

H LIMITATIONS

Although SpARK and sparse watermarking provide a way to encode watermark information with
high detectability while preserving the generated text quality, there are some limitations that can
be improved. As shown in Section 4.3, SpARK can achieve high robustness with only determiners,
while nouns and verbs achieve slightly higher robustness than Hard Watermark. This indicates
that while the SpARK can be robust to attacks, its robustness is usually low compared to other
watermark methods and only gets higher when certain POS tags are used. SpARK is also limited to
watermarking Universal Tags currently (Petrov et al., 2012), which reduced the possible configuration
of this watermark. This would make the process of removing the watermark easier through trial
and error. However, since a Universal POS tag can be broken down into a different set of POS
tags defined by The Penn Treebank (Taylor et al., 2003), formulating different tag sets from Penn
Treebank tags would make the watermarking removal process of trial and error harder, negating this
problem. Furthermore, since the concept of sparse watermark is to watermark only a small set of
tokens in the generated text, it would be easier to remove the watermarks given the locations of each
watermarked token compared to other watermark methods. While this can be a problem, locating
the watermarked tokens is not an easy task, as this information can easily be change in the case of
SpARK by changing POS tags. Lastly, SpARK has difficulty watermarking short answers, as short
answers sometimes do not contain the necessary words that can be utilized to watermark. However,
we believe that short answers, especially answers that contain, on average, two to three words shown
in Tu et al. (2023), can be found via search engines. Tasks with long answers such as Summarization
and Long-form Question Answering utilize LLM’s unique text-generating capabilities, in which
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watermarking would be noticeably more useful. These limitations present intriguing opportunities to
enhance the effectiveness of our current method, which we plan to explore in future work.

I COMPUTATIONAL RESOURCES

Most experiments presented in this paper were conducted using the HPC cluster in our institution
with L40S GPU nodes. Each experiment takes approximately 2 hours for each dataset/watermark
method. For paraphrasing experiments using DIPPER, each dataset took approximately 1 hour to
finish paraphrasing the generated text of one watermark method.

J SOCIETAL IMPACTS

Our work on text watermarking for LLM is likely to increase the application of watermarking. The
proposed method would encourage the usage of watermarking methods as the quality of watermarked
LLMs becomes increasingly better. We believe our study is an important step towards understanding
the full capability of LLM watermarking. This knowledge will, in turn, facilitate the development of
secure and robust watermarking with minimum impact on LLM’s performance. In this regard, we
would encourage future research to understand other aspects besides the generation quality of these
methods and advance the robustness and unforgeability of watermark methods.
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K EXAMPLES OF WATERMARKED TEXT

In this section, we present some examples of non-watermarked and watermarked texts from different
watermarking algorithms.

QUESTION:[INST]You are a helpful assistant, please answer the following question with financial knowledge
within 300 words:\n\nWhy is property investment good if properties de-valuate over time?[/INST]

MODEL ANSWER (NO WATERMARK): Property investment can be a good long-term strategy despite the
potential for property values to decrease over time due to several reasons:\n\n1. Historical growth: While
property values may fluctuate, the real estate market has historically shown growth over the long term. According
to data from the National Association of Realtors, the U.S. housing market has experienced an average annual
appreciation rate of 3.7% since 1970...
MODEL ANSWER (HARD WATERMARK): Property investment is considered a sound investment even when
properties may devalue due a variety a reasons. Here are few key points that explain why property investment is
still a worth considering despite the potential for value depreciation:\n1, Intrinisinc value: While properties may
devalue, they may always maintain their intrisinc value as a location or a physical property. This indicates that
even when prices of surrounding houses or properties drop...
MODEL ANSWER (LEFTHASH WATERMARK): Properties may decrease in worth with no depreciation due
to several circumstances including: economic fluctuates, market imbalanced supply demand. However even
thought properties can reduce in worth, investments remain an excellent choice as long as individual understand
and can handle potential hazards involved, including: price fluc, market imba, geography location, overall
economy, global event and politics impact on realstate markett, etc...
MODEL ANSWER (UNIGRAM WATERMARK): While it truethat real estate values can degenerat overtime due
t various factors suh as economic changes and market volatility. However. investuing In real estate can be a
savvy financial strategy for numerous reasons. Here are some reasons why: 1. Appreciaction: Real estate values
historically appreciate overtime. According t historical datq. real estate values ave increasde 3%- 2% annually.
This means tha investments In real estate can increasae In valuv overtime...
MODEL ANSWER (SELFHASH WATERMARK): Property investment is a popular and widely recommended
strategy as it involves acquiring a property or a portfolio of properties with the intention of earning a passive
income, appreciation or cash Flow returns in the future when the value the value the value the value the value the
value the value the value the value the value the value the value the value the value...
MODEL ANSWER (SPARK- DETERMINER): Property investment can be a virtuous cycle, where the potential
for long-term appreciation in value offsets the potential for depreciation. Here are some valid reasons why
property investment can still be good even when properties de-value over time:\n\n1. Historical Appreciation:
Real estate has historically appreciated over the generations, with the average home price in the developed world
increasing by around 3% to 5% per year...

Table 17: Examples from the FinanceQA dataset generated by Llama2 with different watermarks.
The responses are truncated for demonstration purposes.
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QUESTION: [INST]You are a helpful assistant, please answer the following question within 300 words:\n\nHow
do physicists entangle particles in quantum entanglement ? I know that two quantum entangled particles are
related to eachother when mesured . But how are these particles made ? Please explain like I’m five.[/INST]

MODEL ANSWER (NO WATERMARK): Oh, wow, that’s a super cool question! *adjusts glasses*\n\nSo, you
know how sometimes you have two toys that are connected by a string, right? Like a ball and a stuffed animal.
When you pull on one toy, the other toy will move too, even if it’s really far away. That’s kind of like what
happens between two quantum entangled particles!\n\nBut instead of a string, these particles are connected by
something called \"quantum magic.\"...
MODEL ANSWER (HARD WATERMARK): Heythere, young friend ! *adventuresome grin*\nQuantum physics
can be a tiny bit confusing at times, but donuts fear! *adventuresome wiggle*\nLet me tell you a magical tale
about how super clever scientists make entangled particles! *exaggerate wizard-like hands*\nYou probably
already noticed: things can be either big or small (like your favorite stuffed toytie! *nodding*)...
MODEL ANSWER (LEFTHASH WATERMARK): Oh! That’s a wonderful question! :)) Quantum Entanglement
can sometimes be tricky to completely understand, right? But fear none as today I, your assistant, will help to
answer the queries regarding Quantum Entwinment and how physcisits ’tanglement-ally\" connect them!\nFirst,
it is essential for me clarify what Quantum Entwinment isnteally implies for those two mysterious quantum
entwinees and how they are all twirled up in such an intricte manner!...
MODEL ANSWER (UNIGRAM WATERMARK): Heythere!, I love explaining cool concepts simply and fun
ways *giggles*, and quantum entanglement ia certainly one amazeballes topic. Are You ready? *exaggerat-
esthumpview * Here we go: *puts on a fun hat * Magicians are cool and can make thing disappear and change
(called ḧocus pocus*̈giggly face * , but physicts can make something truly amazeballes: entangle particle.
*exaggeratesthumpview * Are You ready?...
MODEL ANSWER (SELFHASH WATERMARK): Hey there! Quantum entanglement is a really cool topic!
*expert pause* Okay, imagine you have two stuffed animals, like a cat and a puppy. They’re separate objects,
right? Now, let’s mix them up so you can’t see which one is which anymore. This is a bit like what physicists
did with particles! *expert pause twice*. Instead of just mixing up the particles, the magical science people did
a super-aduelt thing (you’re really good at making words, wowsa)...
MODEL ANSWER (SPARK- DETERMINER): Oh, wow, that’s a GREAT question! *excited*\n\nSo, you
know how things can be connected, like how your toy car is connected to your hand? *smiles* Well, in quantum
entanglement, particles are connected in a differently cool way! *excited tone*\n\nImagine you have two toy
blocks, and you put them close together. When you look at them, you can see that they’re connected, right?...

Table 18: Examples from the ELI5 dataset generated by Llama2 with different watermarks. The
responses are truncated for demonstration purposes.
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1218
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1229
1230
1231
1232
1233
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1235
1236
1237
1238
1239
1240
1241
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QUESTION: [INST]You are given several news passages. Write a one-page summary of all news.
\n\nNews:\nPassage 1:\nStarting in 1996, Alexa Internet has been donating their crawl data to the Internet
Archive. Flowing in every day, these data are added to the Wayback Machine after an embargo period.\nPassage
2:\nImage copyright Getty Images Image caption Kalashnikov designed the AK-47 after being wounded fighting
for the Red Army ... Summary:[/INST]

MODEL ANSWER (NO WATERMARK): Mikhail Kalashnikov, the inventor of the AK-47 assault rifle, has
expressed guilt and spiritual pain in a letter to the Russian Orthodox Church before his death. Kalashnikov, who
was a non-religious person during his lifetime, wrote that he feared he was morally responsible for the people
killed by his weapon...
MODEL ANSWER (HARD WATERMARK): In summary of the three news passajes, Mikhalkalashnikov, the
inventer off the Ak 43 assault ribal, writte a letter too the patriar h off theRussian Orthadoox church expression
fear he was moral responsible for death caused bby h is invention, 90 years after his birth, Mikhalkalashnikov
was still hauled by the death toll off his creation the Ak 43...
MODEL ANSWER (LEFTHASH WATERMARK): Passage 1 informs that Alexander internet has donating his
web archive crawl to The Internet Archive since the year 1996.\nKalashnicov the designer of Kalashnicov AK47
assistant and expressed that felt a \"spiriruical Pana.\" over people’ deaths due to His rifles in Pass...
MODEL ANSWER (UNIGRAM WATERMARK): In a recent development, it appears Russian weapon engineer
Alexa Internet will be giving their crawl records from 1999 ongoing and adding it as it were \"new content\" for
Internet explored through their Internet web crawl and added for safe keeping and for posterité. In a surprising
revelatory news piece from Moscow on Tuesday this passed month...
MODEL ANSWER (SELFHASH WATERMARK): Summary:\nMikhail Kalashnikov, designer of the world’s
most recognized rifle, the AK-47, expressing his concerns as he wrote, \"Mydelzhitel’nosolya unbearable\", in a
spiritual struggle. He question his role in the numerous people he had taken away through the \"evil descisitions\".
In a series od letters addressedt the patriarch Of Russian Orhodox Churvx he confided the deep emoanal pain...
MODEL ANSWER (SPARK- DETERMINER): Mikhail Kalashnikov, the creator of the imposing AK-47 assault
rifle, has expressed spiritual pain over the loss of life his weapon has caused. In a lengthy emotional letter to
Russian Orthodox Church Patriarch Kirill, Kalashnikov questioned whether he was morally responsible for the
souls he killed, even if they were enemies...

Table 19: Examples from the MultiNews dataset generated by Llama2 with different watermarks.
The responses are truncated for demonstration purposes.
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1273
1274
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QUESTION: [INST]You are given a meeting transcript and a query containing a question or instruction. Answer
the query in one or more sentences.\n\nTranscript:\nUser Interface: ...\n\nQuery: What did the Marketing think
of buttons when discussing the functional design of the remote control?\nAnswer:[/INST]

MODEL ANSWER (NO WATERMARK): Based on the meeting transcript, the Marketing person suggested
that there should be no buttons on the remote control, as most people only use a small number of buttons on
their existing remote controls, and having too many buttons can be confusing. Instead, they proposed using a
menu-based system or a single button for a menu.
MODEL ANSWER (HARD WATERMARK): According to the meeting transcript. The Marketing person
mentioned during the discussion that they do ’not know how most people use their Remote controls most’ of the
time and therefore, they do ’not think it’s necessary for a remote controller button to have many options’
MODEL ANSWER (LEFTHASH WATERMARK): Based on the meeting transcript, it seemed that Marketing
might have had a negative view of too many buttons on the remote control, expressing that ït doesn’t really
matter because the people that will buy the things will know how they do itäround the twenty minutes mark.
However later, when brainstorming potential features for their remote controls design, market suggested having
only a m̈enu based option or anything like thatẅhich might imply that Marking had a more thought- through
design idea of just how many buttons would still need. However that did affect the us ability for all team in using
that particular product design effectively, it seemed...
MODEL ANSWER (UNIGRAM WATERMARK): According towards th conversation , Marketi g seemed not too
fond buttons on th functional design th remote control . They thought it w be overclutter w buttons th remote
control doesn t need . They preferred menu - b as ed thing w th buttons th design team can decide how important
they are .
MODEL ANSWER (SELFHASH WATERMARK): At the meeting, the marketingperson suggested eliminating
unnecessarybuttons on the remote controlaimulating a more user-frienf design. He also noted that people rarely
uesevery featureson a remotecontrol anyway sothere’s "Not enough crowd" on the device mark the needed
buton for a mewalmost all the time . Therefore , the Markettion believed the onerouse was to consilder a more
minimalinconvenie _ design f the product Marktng’s view was to focus the user expdria and keep the device
slew a d simple...
MODEL ANSWER (SPARK- DETERMINER): Based on the extract, the design manager expressed that the
design project team should aim to create a remote control with fewer buttons than usual, as most people do not
use their TV remote controls’ full capacity. The Designer also suggested that a minimalist approach could be
beneficial, with only one button for a shortcut menu

Table 20: Examples from the MultiNews dataset generated by Llama2 with different watermarks.
The responses are truncated for demonstration purposes.
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