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Abstract

Despite achieving correct answers, we find that001
existing Knowledge Base Question Answering002
(KBQA) models struggle to follow the expected003
reasoning structures. We introduce the task of004
isomorphism prediction to enhance reasoning005
fidelity beyond answer generation, with a focus006
on generalization. We propose a contrastive007
knowledge co-distillation framework that uni-008
fies textual and graphical KBQA paradigms,009
improving overall isomorphism prediction and010
model generalization. Furthermore, incorporat-011
ing isomorphism prediction as an auxiliary task012
could also improve KBQA performance.013

1 Introduction and Related Work014

The task of question answering over knowledge015

bases (KBQA) involves reasoning over structured016

sources of knowledge in the form of knowledge017

bases (KB) to answer natural language queries. Be-018

yond improved answer accuracy, a key challenge in019

KBQA lies in understanding how the models per-020

form and ensuring that they faithfully reconstruct021

the reasoning process. To that end, recent work022

has leveraged the idea of isomorphisms (Dutt et al.,023

2023) to characterize the complexity of KBQA024

questions. Isomorphisms act as a structural proxy025

for reasoning difficulty by grouping instances that026

exhibit similar reasoning patterns over the knowl-027

edge base. Prior work has explored using isomor-028

phisms as a diagnostic test to investigate the gen-029

eralization capabilities of KBQA systems. For ex-030

ample, Dutt et al. shows that leveraging gold iso-031

morphisms as inference-time scaffolds improves032

zero-shot generalization without retraining.033

In this work, we introduce the task of isomor-034

phism prediction to improve reasoning fidelity035

in KBQA. Our task formulation is motivated by036

the observation, that when optimized for answer037

prediction, KBQA systems are able to generate038

spurious logical forms that do not conform to the039

underlying reasoning path but can lead to partial 040

correct answers (Table 3). Furthermore, we ob- 041

serve that predicting the correct isomorphism cate- 042

gory is challenging even for large language models 043

(LLMs) (Table 6), highlighting the fact that the task 044

requires models to capture structural dependencies 045

beyond surface-level answer generation. Rather 046

than solely using isomorphisms as a diagnostic tool, 047

we frame them as a learning objective to encour- 048

age models to explicitly predict their underlying 049

reasoning structures. 050

An advantage of this formulation is that it is 051

applicable to both major KBQA paradigms: (i) 052

semantic parsing-based approaches, which trans- 053

late natural language queries into logical forms 054

(e.g., S-expressions or SPARQL) for execution 055

over the KB (Xie et al., 2022; Ye et al., 2021; Li 056

et al., 2024), and (ii) information retrieval-based 057

approaches, where models directly interact with 058

the knowledge graph to retrieve answers (Das et al., 059

2022; Dutt et al., 2022; He et al., 2021). Build- 060

ing on this, we also propose a contrastive knowl- 061

edge co-distillation framework that unifies these 062

two paradigms to enhance isomorphism prediction. 063

Our experiments show that multitask learning 064

with isomorphism prediction improves both KBQA 065

and isomorphism prediction performance. Addi- 066

tionally, the proposed knowledge co-distillation 067

framework bridges the strengths of both KBQA 068

paradigms and enables better generalization. 069

2 Preliminaries 070

2.1 Isomorphism Prediction 071

We introduce isomorphism prediction to charac-
terize reasoning paths following the definitions in
Dutt et al. (2023). Each subgraph Gi represents
the logical structure required to answer a question
Qi, where nodes correspond to entities and edges
represent relations. Two subgraphs Gi and Gj are
considered isomorphic if there exists a bijective
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mapping ψ : Vi → Vj between their node sets and
preserves structural adjacency:

(m,n) ∈ Ei ⇔ (ψ(m), ψ(n)) ∈ Ej

By assigning each subgraph to an isomorphism cat-072

egory Ci, we abstract away entity-specific details073

and focus purely on the structural reasoning pattern074

used to derive answers. We present the definitions075

and examples of each isomorphism type in Table 5.076

Models are trained using a multi-class classifica-077

tion objective. We assess isomorphism prediction078

performance with macro F1-scores.079

2.2 KBQA Tasks080

Text Model: S-expression Generation Follow-081

ing Xie et al. (2022), the input to the text model082

consists of the question Qi and the linearized rep-083

resentation of the subgraph (upper-left in Figure 1).084

The model generates an S-expression that retrieves085

the predicted answers when executed on the KB.086

Graph Model: Node Classification The graph087

model operates directly on the subgraph Gi. It088

assigns probabilities to all nodes in the subgraph,089

indicating their likelihood of being answers. Train-090

ing is optimized with binary cross-entropy.091

KBQA Evaluation Mechanism We evaluate the092

aforementioned KBQA tasks with Hits@K, where093

K is the number of gold answers for a given ques-094

tion. This measures the proportion of correct an-095

swers in the top-K predictions.096

For the text model, since S-expression genera-097

tion does not produce ranked outputs, we use beam098

search to generate Nbeam S-expression candidates,099

execute them through the KB, rank the executed100

answers by frequency, and compute Hits@K like-101

wise. Refer to Section A.2 for detailed equations.102

3 Contrastive Knowledge Co-Distillation103

for Isomorphism Prediction104

Our Contrastive Knowledge Co-Distillation frame-105

work (Figure 1) consists of two key objectives: iso-106

morphism prediction augmentation and contrastive107

representation alignment.108

3.1 Isomorphism Prediction Augmentation109

We employ two parallel encoding pathways. The110

textual encoder produces a pooled embedding ht111

by processing the question along with a linearized112

subgraph. The graph encoder, implemented as113

a GNN, directly operates on the structured sub- 114

graph and generates a pooled graph-level represen- 115

tation hg. These representations are concatenated 116

as hconcat = [ht; , hg] and passed through a classi- 117

fier optimized via cross-entropy loss: 118

Liso = −
∑
i

logP (Ci | hconcat) (1) 119

3.2 Contrastive Knowledge Co-Distillation 120

Unlike traditional one-way knowledge distillation, 121

Contrastive Co-Distillation (Yao et al., 2024; Nour- 122

bakhsh et al., 2024) (CoD) fosters bidirectional 123

knowledge transfer between text and graph mod- 124

els by contrastive representation learning and stop 125

gradient operation. 126

As Tian et al. (2022) suggests, contrastive repre- 127

sentation learning captures structural information 128

from the teacher’s representation space: 129

lcl(t, s) = − log
esim(t,s)/τ∑

q 1[q ̸=t] esim(t,q)/τ
(2) 130

, where t and s are teacher and student represen- 131

tations, q indicates other representations from the 132

training data, sim(., .) is cosine similarity, τ is 133

temperature. 134

Based on this, we first define MLP projection 135

heads to map text and graph representations into a 136

shared space: zt = MLPt(ht) and zg = MLPt(hg), 137

respectively. The CoD loss is computed as: 138

LCoD =
1

2

∑
i

[lcl(z
text
i , ẑi

graph)+lcl(ẑi
text, zgraphi )]

(3) 139

, where .̂ is the stop gradient operator (Chen and 140

He, 2021) to set the input variable to a constant. 141

Putting these together, our final objective jointly 142

performs mutual distillation and model optimiza- 143

tion end-to-end through a single loss: 144

Ltotal = Liso + LCoD (4) 145

4 Experiments 146

4.1 Dataset 147

We employ the WebQuestionsSP (WebQSP) 148

dataset (Yih et al., 2016), a popular benchmark in 149

English for KBQA. Specifically, we use the dataset 150

of Xie et al. (2022) where each question is accom- 151

panied with (i) a corresponding subgraph of the 152

Freebase knowledge base (Bollacker et al., 2008) 153

where the answer resides, and (ii) a correspond- 154

ing logical form in the form of S-expressions or 155
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Figure 1: Our contrastive knowledge co-distillation framework. The T5 encoder processes a linearized knowledge
subgraph representation, while the GNN directly operates on the KG. Their representations are concatenated for
isomorphism classification and projected into a shared space for contrastive co-distillation.

SPARQL-query. Such a design enables us to eval-156

uate the performance of KBQA systems from ei-157

ther a semantic parsing or information retrieval158

paradigm. Additionally, to investigate different lev-159

els of KBQA generalization, we use the approach160

of Jiang and Usbeck (2022) to obtain a dev or test161

split with equal proportion of i.i.d., compositional,162

and zero-shot examples. We present the statistics163

of our dataset in Table 1.164

Code Desc. i.i.d. Comp Z.S. Total

T-0 50.3 0.0 49.7 54.5

T-1 37.3 44.3 18.4 23.5

T-2 17.1 47.1 35.7 5.2

T-3 83.3 6.7 10.0 2.2

T-4 12.8 81.5 5.6 14.5

ALL 40.8 24.9 34.3 100.0

Table 1: Distribution of isomorphisms over the gener-
alization splits (i.i.d., compositional (Comp), zero-shot
(Z.S.)) of WebQSP.

4.2 Models165

Our text model is based on T5 (Raffel et al.,166

2023), while our graph model is built using Re-167

lational Graph Convolutional Network (RGCN)168

layers (Schlichtkrull et al., 2017). To incorporate169

question context, we first encode the question using170

T5 and concatenate the resulting embedding with171

each node before passing through the GNN.172

4.3 Experiments173

We establish T5 and GNN baselines, each trained174

separately for isomorphism prediction and their re-175

spective KBQA tasks defined in Section 2.2. We176

evaluate our approach under two settings: 1) CoD177

framework for isomorphism prediction; 2) Multi- 178

task KBQA using isomorphism prediction as an 179

auxiliary task. We report in Section 5 the average 180

performance over three seeds. 181

Moreover, we show that isomorphism prediction 182

is challenging through two diagnostic experiments. 183

Firstly, we evaluate several widely-used LLMs 184

on the isomorphism prediction task using few-shot 185

prompting. As shown in Table 6, the models strug- 186

gle to reliably predict isomorphisms. 187

Further, we analyze whether optimizing for S- 188

expression generation inherently preserves isomor- 189

phism structures. Although isomorphism cate- 190

gories can be deterministically derived from S- 191

expressions, models like T5 are trained to optimize 192

answer accuracy rather than faithfully reconstruct- 193

ing reasoning paths. As a result, they may reach 194

correct answers through spurious reasoning rather 195

than the intended structural pattern. Indeed, iso- 196

morphism prediction performance drops by 16% 197

overall when inferred post-hoc from generated S- 198

expressions compared with being explicitly learned 199

in our T5 baseline (Table 3). This highlights the 200

importance of directly modeling isomorphisms be- 201

yond relying on answer-driven supervision alone. 202

5 Results and Analysis 203

Isomorphism Prediction with CoD Overall, 204

CoD outperforms both baselines (ALL in Table 2). 205

We further stratify questions along generalization 206

level and isomorphism category. 207

For generalization, GNN excels in i.i.d. cases 208

but suffers in generalization, while T5 struggles the 209

most in compositional settings. Although CoD per- 210

forms lower in the i.i.d. setting, it significantly im- 211

proves generalization, especially in compositional 212

cases. This suggests that our contrastive knowledge 213

co-distillation enables better adaptation rather than 214
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Figure 2: Macro-F1 performance of the models/settings
for different generalization levels in WebQSP.

Code Desc. T5 GNN CoD

T-0 89.1 88.8 85.9

T-1 60.8 58.8 68.3

T-2 38.9 44.1 43.5

T-3 45.7 41.1 59.7

T-4 50.3 59.4 51.8

ALL 57.0 58.4 61.9

Table 2: Macro-F1 of different settings (T5, GNN, and
CoD) over isomorphism categories in WebQSP. ALL
refers to the entire dataset. Best performance in bold,
second-best underlined.

memorizing dataset biases.215

Across isomorphism types, all models perform216

well in T-0 category (single-hop retrieval). As217

reasoning complexity increases, different model218

strengths become more evident. T5 performs well219

in linear chains (T-0, T-1) but struggles with more220

complex structures, while GNN is better with221

graph-structured constraints (T-2, T-4) but limited222

with sequential dependencies (T-3). Notably, CoD223

significantly improves on T-1 and T-3 and shows224

moderate gains in T-2 and T-4, which indicates that225

the unification brings together the complimentari-226

ties of the two models.227

Multitask with KBQA and Isomorphism228

Prediction Table 4 shows that incorporating iso-229

morphism prediction improves both KBQA and230

isomorphism prediction tasks compared to single-231

task baselines. Our preliminary result shows that232

isomorphism prediction provides additional struc-233

tural supervision, which may help models better234

capture reasoning patterns beyond answer retrieval.235

Code Desc. T5 (Sexp) T5 (Iso Pred)

T-0 82.0 89.1

T-1 50.3 60.8

T-2 37.3 38.9

T-3 35.9 45.7

T-4 40.1 50.3

ALL 40.9 57.0

Table 3: F1 performance of T5 on isomorphism predic-
tion when inferred from generated S-expressions versus
explicitly predicted as a supervised task.

Model Task KBQA Iso Pred

T5
KBQA only 50.7 -
Iso Pred only - 59.0
Multitask 52.2 61.7

GNN
KBQA only 54.6 -
Iso Pred only - 59.4
Multitask 55.3 64.0

Table 4: Comparison of the respective task baselines
and the multitask setting using isomorphism prediction
as an auxiliary task.

6 Conclusion 236

We introduce isomorphism prediction task to en- 237

hance reasoning fidelity in KBQA. Our contrastive 238

knowledge co-distillation framework improves iso- 239

morphism prediction and generalization, particu- 240

larly in compositional and zero-shot settings. Addi- 241

tionally, isomorphism prediction as an auxiliary 242

task improves KBQA performance, suggesting 243

structural reasoning signals could aid answer gen- 244

eration. Future work can explore broader model 245

architectures and datasets. 246

7 Limitations 247

Model Scope We focus on T5 and GNN-based 248

models; future work could extend to larger LLMs 249

and alternative graph reasoning frameworks. 250

Dataset Diversity Our experiments use WebQSP. 251

Future work could extend evaluations to bench- 252

marks with more diverse KG schemas. 253

Explicit Isomorphism Learning Future work 254

could explore unsupervised learning to infer rea- 255

soning structures without predefined labels. 256
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Iso-Type Illustration Definition Example Question S-expression

T-0 Direct 1-hop connection from
constraint to answer

What is the name of money in
Brazil?

(JOIN (R loca-
tion.country.currency_used) m.015fr)

T-1 2-hop linear path Where does the Queen of Den-
mark live?

(JOIN (R people.place_lived.location)
(JOIN (R people.person.places_lived)
m.0g2kv))

T-2 V-pattern with two constraints
meeting at a shared node

What was Elie Wiesel’s fa-
ther’s name?

(AND (JOIN people.person.gender
m.05zppz) (JOIN (R peo-
ple.person.parents) m.02vsp))

T-3 A chain pattern connecting
constraints serially

Where did Joe Namath attend
college?

(AND (JOIN com-
mon.topic.notable_types
m.01y2hnl) (JOIN (R educa-
tion.education.institution) (JOIN (R
people.person.education) m.01p_3k)))

T-4 Y-pattern with merging con-
straints

Who does Zach Galifianakis
play in The Hangover?

(JOIN (R film.performance.character)
(AND (JOIN film.performance.film
m.0n3xxpd) (JOIN (R film.actor.film)
m.02_0d2)))

Table 5: Isomorphism types with their corresponding definitions, example questions, and S-expressions.

Unlike the graph model, the text model does not366

inherently rank its predictions. To approximate a367

ranking mechanism, we employ beam search to368

generate Nbeam candidate S-expressions Si,j , j =369

1, ..., Nbeam. We then execute these S-expressions370

through KB to obtain a predicted answer set Pi, and371

aggregate Pi,j by their frequency across all beams.372

Using this ranked set, for some ε > 0, Hits@Ktext373

is computed as:374

Hits@Ktext =
|TopK(Rank(∪NbeamPi)) ∩Ai|

K + ε
(6)375

where Rank(∪NbeamPi) refers to the aggregated376

ranking of answer candidates obtained from exe-377

cuting Si through KB.378

A.3 Few-shot LLM on Isomorphism379

Prediction380

We evaluate a couple of widely-used LLMs on the381

isomorphism prediction task with few-shot prompt-382

ing, including GPT-3.5-turbo and GPT-4o-mini. As383

shown in Table 6, these models struggle to reliable384

predict isomorphisms even with multiple examples385

per type of isomorphism. We try k-shot prompting386

with k = 1, 3, where we include k examples of387

each isomorphism type (T-0 to T-4), selected ran-388

domly from the training split. The exact prompts389

used can be found in Appendix A.4.390

We experiment with not only the number of few-391

shot examples provided to the model, but also the392

technique used to serialize the knowledge graph393

tuples into a text format as well as the level of394

detail in the prompt about descriptions of particular395

isomorphisms. For serializing the knowledge graph396

tuples of the form (entity1, rel, entity2) we try: 397

1. Basic serialization: where we simply con- 398

catenate the knowledge graph tuples using 399

whitespace, for example "entity1 rel entity2". 400

2. Descriptive serialization: where we concate- 401

nate each individual tuple with slightly more 402

description, for example "entity1 is connected 403

to entity2 via relation rel". 404

We try two levels of isomorphism description 405

detail in our prompt. In the first setting, Prompt 406

1 (Appendix A.4.1), we provide a brief textual de- 407

scription of each of the isomorphisms’ structural 408

characteristics. Whereas in Prompt 2 (Appendix 409

A.4.2), we do not provide any description what- 410

soever of individual isomorphism categories. The 411

LLMs’ final answers are extracted using a regex ex- 412

pression to match the last occurrence of the pattern 413

“T-X”, which indicates the model’s isomorphism 414

prediction. These predictions are then evaluated 415

using a standard macro F-1 score. These scores, 416

across all experiments, are shown in Table 6. We 417

find that even with few-shot examples, and across 418

all our prompting methods described above, the 419

best performance achieved is a mean macro F-1 420

of 0.15 by the gpt-3.5-turbo model when given 421

3 examples per isomorphism class, basic serial- 422

ized tuples and brief descriptions of isomorphisms’ 423

structure. 424

A.4 Few-shot LLM Prompt 425

Below are the two versions of prompts we experi- 426

mented with. Prompt 1 contains brief structural de- 427

scriptions of each isomorphism category, whereas 428
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Model Configuration Macro F1

GPT-3.5-turbo
k=1 (base) 0.09220
k=1 (descriptive tuples) 0.14062
k=1 (descriptive tuples, no iso. desc. in prompt) 0.14118
k=3 (base) 0.15474

GPT-4o-mini
k=1 (base) 0.10530
k=3 (base) 0.10273
k=3 (descriptive tuples) 0.14423
k=3 (descriptive tuples, no iso. desc. in prompt) 0.11832
k=5 (base) 0.07076
k=5 (descriptive tuples) 0.12022
k=5 (descriptive tuples, no iso. desc. in prompt) 0.09122

Table 6: Isomorphism prediction performance of GPT-
3.5-turbo and GPT-4o-mini using few-shot prompting.
The base configuration refers to when we serialize in
a basic manner and provide brief isomorphism descrip-
tions in the prompt.

Prompt 2 simply instructs the model to identify the429

isomorphism based on the examples provided.430

A.4.1 Prompt 1: Structural Descriptions431

System prompt: “You are a helpful assistant432

that identifies isomorphism patterns in knowledge433

graphs.”434

User prompt: “Given a question, its entities,435

and knowledge graph tuples, determine the isomor-436

phism pattern that shows how constraints connect437

to reach the answer node. In this classification: T-0438

means a direct 1-hop connection from constraint to439

answer, T-1 is a 2-hop linear path, T-2 is a V-pattern440

with two constraints meeting at a shared node, T-3441

is a chain pattern connecting constraints serially, T-442

4 is a Y-pattern with merging constraints, and T-5+443

involve more complex multi-hop patterns. Analyze444

the structure by tracing the paths from constraints445

to the answer, counting hops and noting how paths446

merge or branch. Respond with “Isomorphism: T-447

X” where X is the pattern number (0-4), output448

only the final answer. Find some examples below:449

{ Question: ...450

Entities: (example serialized entities)451

Serialized tuples from knowledge graph: (example452

serialized knowledge graph tuples)453

Isomorphism: T-X } (k examples for each type of454

isomorphism)455

456

###457

Question: (target question)458

Entities: (target serialized entities)459

Serialized tuples from knowledge graph: (target460

serialized knowledge graph tuples) 461

Isomorphism:” 462

A.4.2 Prompt 2: Non-descriptive instructions 463

System prompt: “You are a helpful assistant 464

that identifies isomorphism patterns in knowledge 465

graphs.” 466

User prompt: “Given a question, its entities, 467

and knowledge graph tuples, determine the isomor- 468

phism pattern that shows how constraints connect 469

to reach the answer node. Analyze the structure 470

by tracing the paths from constraints to the an- 471

swer, counting hops and noting how paths merge or 472

branch. Respond with “Isomorphism: T-X” where 473

X is the pattern number (0-4), output only the final 474

answer. Find some examples below: 475

{ Question: ... 476

Entities: (example serialized entities) 477

Serialized tuples from knowledge graph: (example 478

serialized knowledge graph tuples) 479

Isomorphism: T-X } (k examples for each type of 480

isomorphism) 481

482

### 483

Question: (target question) 484

Entities: (target serialized entities) 485

Serialized tuples from knowledge graph: (target 486

serialized knowledge graph tuples) 487

Isomorphism:” 488

A.5 Hyperparameter Settings 489

On average, our total experiments take around 15 490

GPU hours. 491

A.5.1 Experiments on Isomorphism 492

Prediction with CoD 493

We use the following hyperparameters to obtain 494

results in Table 2. 495

Model Batch Dropout Others

T5 8 0.2 -
GNN 10 0.2 -
CoD 6 0.3 Weight Decay: 1e-3

Shared Space Dim: 2048

Input Max Length: 512, Patience: 5, LR: 5e-5

Table 7: Hyperparameters used for experiments in Table
2. Results are averaged over three seeds.
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A.5.2 Experiments on Multitask with KBQA496

and Isomorphism Prediction497

We use the following hyperparameters to obtain498

results in Table 4.499

Model Batch Dropout Others

T5 Baseline 10 -
Generation Max Len: 128

GNN Baseline 6 0.2
-

T5 Multitask 10 0.3
Weight Decay: 1e-3

Generation Max Len: 128

GNN Multitask 4 0.2
-

Input Max Length: 512, Patience: 5, LR: 5e-5

Table 8: Hyperparameters used for KBQA and multitask
experiments in Table 4. Results are averaged over three
seeds.

A.6 System Specifications500

See Table 9.

Component Specification

GPU NVIDIA A100 80GB PCIe
CPU AMD EPYC 7763 (256 vCPUs)
RAM 1TB
CUDA Version 12.6
GPU Memory 80GB

Table 9: Hardware specifications of the computational
resources used for experiments.

501

A.7 Potential Risks and Considerations502

Our work builds on WebQSP and Freebase, which503

may inherit biases from their original data collec-504

tion. While our focus is on structural reasoning505

rather than entity-specific biases, these biases could506

still affect model behavior. Additionally, although507

we do not train large models from scratch, prompt-508

ing LLMs, fine-tuning T-5, and training GNN still509

lead to computational costs, contributing to the en-510

vironmental footprint.511
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