
AGNUS: Robust Entity Disambiguation using LLMs

Anonymous ACL submission

Abstract001

Entity disambiguation (ED) is the process of002
disambiguating entities relating to a knowledge003
base and a necessary step of the entity link-004
ing workflow. With the advent of pretrained005
generative large language models (LLM), the006
field of natural language processing has been007
revolutionised, yet related techniques for ED008
are scarce. In this paper, we introduce AG-009
NUS an approach leveraging pretrained010
LLM contextual knowledge to disambiguate011
entities. We mitigate challenges posed by mod-012
ern LLMs: order-dependant bias for candidate013
options, hallucinations and evaluation data con-014
tamination. We reach state-of-the-art results015
in 4 datasets, beating prior work by 3.7% on016
average for zero-shot configurations, provide017
code and a novel synthetic dataset for entity018
disambiguation1.019

1 Introduction020

Entity disambiguation – choosing an entity among021

candidates for a textual mention and given context –022

remains a critical challenge for semantic web appli-023

cations and text analysis to this day. While Large024

Language Models (LLMs) have transformed the025

field of Natural Language Processing (NLP), as026

of writing their application to entity disambigua-027

tion has remained limited. Applying LLMs naively028

to Entity Disambiguation (ED) entails following029

issues:030

• Order Bias: LLMs exhibit token order-031

dependent predictions, with performance vary-032

ing up to 14% in our experiments across candi-033

date permutations, decreasing disambiguation034

robustness.035

• Hallucinations: LLMs may suggest options036

not within a designated candidate set.037

1https://anonymous.4open.science/r/Agnus/
README.md

As such, we consider naive approaches unfit 038

for robust disambiguation, leading to our research 039

question: 040

How can LLMs disambiguate entities in a robust 041

fashion? 042

Particularly as research involving reasoning ca- 043

pabilities of LLMs for task completion is starting to 044

bear fruit, the context-dependant task of entity dis- 045

ambiguation could greatly benefit from their use. 046

We present AGNUS , a novel framework ad- 047

dressing these challenges through: 048

• Masked Attention Candidate Set: Order- 049

invariant encoding through position embed- 050

ding overloading. 051

• Agnus Contextual Decoding: We constrain 052

generated tokens to valid candidates in an 053

auto-regressive tree-based fashion. 054

Our approach to encoding each entity candidate 055

into an order-invariant collection prevents interac- 056

tions from one candidate to any other. By pre- 057

venting transformer-based LLMs from applying 058

attention between entities within a given candidate 059

set and overloading their position embeddings, we 060

effectively hide the candidate order from LLMs 061

altogether. 062

We restrict LLM text generation in a tree-based 063

autoregressive fashion, eliminating disambiguation 064

hallucinations while allowing for LLM reasoning 065

capabilities via decoding strategies choose con- 066

textually optimal entities from a given candidate 067

space. 068

In this paper, we apply LLMs with loosely- 069

structured entity-specific representation criteria, 070

disregarding entity connectivity aspects within 071

Knowledge Graphs (KGs). Further, as disambigua- 072

tion criteria for our method may be loosely-defined, 073

one can attribute different types of information 074

to entities (e.g. entity types, labels, description) 075
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from a variety of sources, allowing for easy out-076

of-the-box disambiguation from custom, possibly077

incoherently-connected or even mixed Knowledge078

Bases (KBs) without the need for training or struc-079

tural changes. Finally, as LLMs make use of large080

quantities of oftentimes unspecified data for their081

training, it may cause issue for meaningful evalua-082

tion due to potential benchmark contamination. In083

an attempt to mitigate contamination, we introduce084

a method for generating synthetic evaluation data.085

Our experiments demonstrate AG-086

NUS achieves:087

• Elimination of order bias, removing position-088

induced variations (Section 3.2).089

• Prohibits hallucinations via autoregressive090

output restrictions (Section 3.3).091

• Reduces benchmark contamination by creat-092

ing a novel synthetic dataset (Section 4.4) and093

introducing a synthetic dataset generation ap-094

proach for entity linking and entity disam-095

biguation.096

Our contributions advance the state-of-the-art097

for ED by introducing:098

• Robust zero-shot ED pipeline consisting of:099

– Masked Attention Candidate Set100

(MACS) encoding for candidate101

order-invariant disambiguation.102

– Agnus Contextual Decoding (ACDC) to103

constrain LLM responses to valid ones.104

• Contamination-resistant evaluation methodol-105

ogy with flexible contextual criteria.106

• Open-source implementation2 for out-of-the-107

box zero-shot disambiguation.108

In the following, we introduce related work for109

entity disambiguation (Section 2.1) and large lan-110

guage models (Section 2.2).111

2 Related Work112

2.1 Entity Disambiguation113

Entity disambiguation (ED) is a critical task in114

natural language processing and understanding,115

where the goal is to map ambiguous entity men-116

tions in text to their correct entries in a knowl-117

edge base. Current state-of-the-art ED and entity118

2https://anonymous.4open.science/r/Agnus/
README.md

linking models (Shavarani and Sarkar, 2023; van 119

Hulst et al., 2020; Barba et al., 2022; Ding et al., 120

2024a; Xiao et al., 2023; Ayoola et al., 2022; Or- 121

lando et al., 2024) make use of various deep learn- 122

ing architectures to outperform more traditional 123

works. In recent years, transformer-based sys- 124

tems, such as BLINK (Wu et al., 2020), REL (van 125

Hulst et al., 2020), SpEL (Shavarani and Sarkar, 126

2023), DeepType (Raiman and Raiman, 2018) and 127

GENRE (Cao et al., 2021) have taken over the stage 128

with many basing themselves on BERT (Devlin 129

et al., 2019) embeddings. Recently, LLM-based 130

systems have entered the space with ChatEL (Ding 131

et al., 2024b) and EntGPT (Ding et al., 2024a). In 132

(Ding et al., 2024a), authors improve entity disam- 133

biguation over naive LLM baselines by tackling the 134

issues with prompt engineering and providing LLM 135

backbones with self-generated contextual data. 136

2.2 Large Language Models 137

Applying LLMs to ED is accompanied by a multi- 138

tude of considerations when contrasted with more 139

traditional ED. Among these, there exist bench- 140

mark contamination (Section 2.2.1), hallucina- 141

tions (Section 2.2.2), decoding mechanisms (Sec- 142

tion 2.2.3) and order-specific biases (Section 2.2.4) 143

that endanger robust disambiguation. In the follow- 144

ing, we address these areas of prior work. 145

2.2.1 Dataset Contamination 146

Benchmark contamination in LLMs (Xu et al., 147

2024) has become a critical issue as models trained 148

on vast amounts of publicly available data may 149

inadvertently ’memorize’ aspects of popular bench- 150

mark datasets, potentially leading to inflated esti- 151

mates of their true capabilities. 152

To address these challenges, researchers have 153

started developing various countermeasures (Chen 154

et al., 2025), including dynamic evaluation bench- 155

marks (Wang et al., 2025; Zhu et al., 2024a,b) to 156

effectively prevent pre-benchmarking disclosure. 157

Another measure is to provide a means of evalu- 158

ation for the degree of contamination (Xu et al., 159

2024) by computing perplexity (Li, 2023) – by 160

applying the exponential function to the average 161

negative log likelihood over a particular sequence 162

of text to measure a model’s ’surprise’ (or inverse 163

confidence) for a particular output. 164

2.2.2 Hallucinations 165

Despite remarkable capabilities in generating 166

human-like text, LLMs may produce factual inaccu- 167
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(Mention: “Mika”, Context: “Mika left his mark on Grand Prix history.”)
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Figure 1: AGNUS disambiguation – Takes an input document, (1.) generates candidate entities for mentions
(e.g. MIKA), (2.) applies masked attention to candidate entity collection (MACS, Section 3.2) and (3.) passes
representation to a specified LLM, followed by (4.) constrained decoding (ACDC, Section 3.3) for context-sensitive
disambiguation and returns the disambiguated entity (e.g. Mika (F1)).

racies or nonsensical sequences, a phenomenon re-168

ferred to as hallucination (Huang et al., 2025). The169

underlying causes of hallucinations are an active170

area of research. Some potential contributing fac-171

tors include the vast scale of the training data, po-172

tentially containing potentially noisy data (Petroni173

et al., 2021; Ji et al., 2023) and the autoregres-174

sive nature of text generation based on prior to-175

kens (Holtzman et al., 2020; Maynez et al., 2020).176

The presence of hallucinations poses a significant177

challenge for the reliable application of LLMs178

on downstream NLP tasks, posing issue for ro-179

bust and trustworthy ED. Recent research efforts180

have started counteracting hallucinations through181

retrieval augmentation, fact verification and the182

incorporation of knowledge graphs (Lewis et al.,183

2020; Pusch and Conrad, 2024).184

In this paper, we eliminate the possibility for185

entity candidate hallucinations by defining a spe-186

cialised constrained decoding strategy for ED.187

2.2.3 Constrained Decoding188

Early work on LLMs (Brown et al., 2020; Radford189

et al., 2019) demonstrated that decoder-only lan-190

guage models process natural language prompts191

effectively without an enforced schema, meaning192

that input-output pairs are structurally not bound193

by predefined templates or grammars. This flexi-194

bility allows for broad applicability but introduces195

challenges in reliability, consistency, and controlla-196

bility (Bender et al., 2021).197

To mitigate challenges of unstructured interac-198

tion, researchers have developed various prompt199

engineering methods (Sahoo et al., 2024; Ouyang200

et al., 2022a; Madaan et al., 2023; Wei et al., 2022) 201

to implicitly guide LLMs towards more structured 202

outputs. However, these approaches depend on the 203

model’s ability to infer structure from textual cues 204

rather than enforcing it. Therefore, constrained de- 205

coding (Beurer-Kellner et al., 2024) approaches to 206

enforce strict restrictions on LLM text generation 207

have been developed. 208

2.2.4 Order Bias 209

Prior work has established that modern gen- 210

erative large language models demonstrate in- 211

herent tendencies toward positional preferences 212

when processing ordered lists of candidate an- 213

swers (Pezeshkpour and Hruschka, 2023; Wei 214

et al., 2024; Zheng et al., 2023; Anonymous, 215

2025) and being sensitive towards the arrange- 216

ment order of otherwise identical answer collec- 217

tions (Dominguez-Olmedo et al., 2023; Li et al., 218

2023; Li and Gao, 2024; Wang et al., 2023, 2024a; 219

Xue et al., 2024). Approaches to mitigation in- 220

clude compensation for positional preferences (Wei 221

et al., 2024; Zhao et al., 2021), systematic per- 222

mutation averaging and applying multiple forward 223

passes with varied option sequences (Pezeshkpour 224

and Hruschka, 2023; Wang et al., 2023), as well 225

as reasoning-enhanced strategies (Wang et al., 226

2024a,b) to attenuate sequence dependence. AG- 227

NUS employs a method to mitigate candidate order 228

bias without requiring additional training by adapt- 229

ing the approach from (Anonymous, 2025) to entity 230

disambiguation. 231
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3 AGNUS232

In this section we introduce AGNUS , our pro-233

posed approach for LLM-based robust entity dis-234

ambiguation. AGNUS removes order-based bias235

from entity candidate disambiguation by introduc-236

ing Masked Attention Candidate Set (Section 3.2)237

based on (Anonymous, 2025) and inhibits LLM238

hallucinations by applying Agnus Contextual De-239

coding (Section 3.3). In Figure 1, we present AG-240

NUS: from generating entity candidates, applying241

masked attention (MACS), constrained decoding242

(ACDC) to final disambiguation for the input docu-243

ment "Mika left his mark on Grand Prix history."244

and entity mention Mika, yielding contextually dis-245

ambiguated entity Mika (F1)3.246

3.1 Disambiguation Setup247

AGNUS represents an approach leveraging LLMs248

for the task of disambiguating entities based on en-249

tity candidate information while mitigating LLM-250

specific challenges. For disambiguation, AGNUS251

takes as input a document providing context, a men-252

tion and a collection of candidate entities generated253

via pre-existing candidate generation approaches.254

Due to leveraging the contextual disambigua-255

tion capabilities of LLMs, AGNUS does not require256

candidate entities to solely be a knowledge base-257

backed IRI. Instead, candidate entity representation258

may additionally take any identifying or meaning-259

ful form, such as a description, label, type or combi-260

nation thereof. For each mention contained within261

an input document, we generate a fixed candidate262

set (Fig. 1, Step 1), employing candidates generated263

with DBpedia Lookup4. Each candidate collection264

is encoded using MACS (Fig. 1, Step 2), embed-265

ded into its original textual encoding with parts266

surrounding it (Pre-MACS and Post-MACS) being267

encoded in LLM-specific fashion (see Fig. 3). Sub-268

sequently, the resulting encoded prompt is transmit-269

ted as a whole to the LLM for contextual parsing270

(Fig. 1, Step 3) and decoded via ACDC (Fig. 1,271

Step 4).272

3.2 Masked Attention Candidate Set273

Text sequences encoded on modern generative274

language models rely on underlying position-275

influenced attention mechanisms and positional276

embeddings to add a signal for the order of to-277

3https://en.wikipedia.org/wiki/Mika_
HÃd’kkinen

4https://github.com/dbpedia/dbpedia-lookup

ken appearance within a sequence (Anonymous, 278

2025). This affects desiredly order-invariant se- 279

quences, such as candidate collections – an undesir- 280

able property for entity disambiguation. To render 281

an LLM order-agnostic for parts of a sequence, we 282

tackle both aspects: mask the attention mechanism 283

between entity candidates (Section 3.2.1) and mod- 284

ify positional embedding values (Section 3.2.2) for 285

candidate entities to simulate similar positions. 286

In Figure 4 and Table 1, by disambiguating candi- 287

date entities across iterations of random candidate 288

shuffles, results without MACS vary depending on 289

candidate entity order and applying MACS elimi- 290

nates the order-based influence. 291

3.2.1 Causal Mask 292

To encode a collection of entity candidates in an 293

order-invariant fashion to the underlying LLM, 294

we apply an adapted version of the commonly- 295

employed triangular attention matrix as causal 296

mask (see Figure 3). Entities within a collection 297

cannot attend to one another (grey entries), but do 298

attend (pink entries) – and are attended to – in oth- 299

erwise usual LLM fashion to their own prior tokens 300

(diagonal entries) and rest of the token sequence 301

(to PRE-MACS and by POST-MACS). This means 302

that tokens within each candidate’s representation 303

continue attending to each other. 304

3.2.2 Positional Embedding 305

Every sequence of tokens is attributed a certain 306

range of positional embedding values within its 307

LLM-encoded representation. Within a MACS- 308

encoded collection, every token making up an en- 309

tity candidate is modified to appear as sharing a 310

similar range of positions (see visualization Fig. 2) 311

as other candidates to the underlying LLM. 312

To do so, we formally define relative position 313

i ∈ [0, ..,nc j −1] of each token tc j,i for entity candi- 314

date representation c j ∈C s.t. nc j is the number of 315

tokens for entity c j and collection of all candidate 316

entities C for a given mention and Tc j the set of all 317

tokens for c j: ∀ tc j,i : i ∈ [0, ..,maxc∈C(|nc −1|)]. 318

Therefore as visualised in Figure 2, the shared 319

range of possible positional embeddings is de- 320

fined by the token-wise longest candidate within 321

a MACS collection and starts for each candidate 322

at the end of prior sequence’s token (PRE-MACS) 323

and afterwards continues the candidate encoding 324

with the succeeding sequence’s (POST-MACS) 325

first positional embedding. 326
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Figure 2: MACS – Positional embedding adaptation: Each candidate entity entry is encoded as being on the same
positions for the length of their contents. Candidate entity entries’ first positional embedding is treated and encoded
analogously for each entry. Post-MACS starting positional embedding is computed as subsequent to the longest
option contained within MACS entries.
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Figure 3: MACS – Causal mask: Example from Fig. 1
for entity candidate representations for entities "Mika
(F1)", "Mika (Singer)", "F.C. Mika", "R. Mika".
Grey cells signify blocked attention whereas pink sig-
nifies enabled attention. Intra entity attention and atten-
tion from tokens preceding (Pre-MACS) and succeeding
(Post-MACS) MACS is preserved normally s.t. subse-
quent tokens attend to prior ones.

3.3 Agnus Contextual Decoding327

LLMs may add or remove information in unex-328

pected fashions. This ranges from a corrupt ex-329

pected result format to hallucinating non-existing330

options. Due to the nature of entity disambiguation,331

only given options may be produced. As such, we332

define an input-flexible grammar based on entity333

candidates. Let the set of candidate sequences be334

O = {o1, . . . ,on} where each candidate option oi ∈335

Σli is a sequence of length li. The vocabulary is de-336

fined as Σ =
{

t i
k | i ∈ {1, . . . ,n}, k ∈ {1, . . . , li}

}
∪337

{EOS}. We then define the set of nonterminals338

as V =
{

Xk
i | i ∈ {1, . . . ,n}, k ∈ {0, . . . , li}

}
where339

Xk
i denotes the state after generating the first k to-340

kens of candidate ci. The start symbol transitions341

to the initial state of each candidate: S → X0
1 |342

X0
2 | . . . | X0

n . For each oi, we define the following343

transitions: Xk
i → t i

k+1Xk+1
i , ∀ k ∈ {0, . . . , li −344

1}, X li
i → EOS.345

4 Experiments and Results 346

AGNUS combines techniques to create an LLM- 347

enabled approach to robust entity candidate dis- 348

ambiguation. In this section, we conduct experi- 349

ments to evaluate AGNUS with different configura- 350

tions regarding representations of entity candidates, 351

LLMs, our candidate encoding (MACS) and our 352

constrained decoding (ACDC). We report entity 353

disambiguation results in comparison to prior work 354

in Table 1. 355

4.1 Technical Details 356

All our experiments were run on a server with 357

NVIDIA RTX 4090 (24GB vRAM), 1TB RAM, 358

128 CPU cores, Debian (Bookworm), CUDA 12.5 359

and Python 3.11. As for LLMs, we decided 360

on instruct models for our experiments such that 361

they would run on our hardware and be com- 362

parable in size, leading to the following selec- 363

tion: Mistral (7B-Instruct) (Jiang et al., 2023), 364

Llama2 (7B) (Touvron et al., 2023), Llama3 (8B- 365

Instruct) (Dubey et al., 2024) and Qwen (2.5-7B- 366

Instruct) (Yang et al., 2024) – for the rest of the 367

paper we omit detailed version specifications. 368

4.2 Evaluation 369

We outperform related work on 4 out of 5 common 370

datasets (AIDA (Yosef et al., 2011), KORE 50 (Hof- 371

fart et al., 2012), MSNBC (Cucerzan, 2007), 372

ACE04 (Ratinov et al., 2011), AQUAINT (Milne 373

and Witten, 2008)) in zero-shot settings despite our 374

employed LLMs being at least an order of mag- 375

nitude smaller5. We note that Ding et al. (2024b) 376

5EntGPT (Ding et al., 2024a) and ChatEL (Ding et al.,
2024b) employ Llama2 70B (Touvron et al., 2023) and GPT-
3.5 (Ouyang et al., 2022b); ChatEL (Ding et al., 2024b) addi-
tionally makes use of PaLM 540B (Chowdhery et al., 2023)
and GPT-4 (OpenAI, 2023). OpenAI has not disclosed pa-
rameter counts for GPT-3.5 and GPT-4, but each of them
is assumed to have at least 175B parameters, with rumors

5



argue that model parameter count has a significant377

influence on the entity disambiguation task.378

We report our ED F1 results in Table 2. Our379

model performs strongly across all datasets and380

even surpasses finetuned or trained prior work in381

certain cases. Despite being a zero-shot approach,382

AGNUS attains overall new state-of-the-art results383

for KORE 50 (82.3%) and ACE04 (95.5%). Un-384

surprisingly when evaluating on AIDA, approaches385

trained on AIDA outperform ours, but AGNUS386

(86.7%) exceeds second-ranked zero-shot approach387

EntGPT-P (Ding et al., 2024a) (82.1%) F1 mea-388

sure by 4.6%. Evaluating against KORE 50, AG-389

NUS reaches 82.3% in comparison to ChatEL’s390

78.7%, surpassing it by 3.6%. As for ACE and391

AQUAINT, our results (95.5% and 87.5%) improve392

upon EntGPT-P’s (91.8% and 79.1%) respectively393

by 3.7% and 8.4%. For MSNBC, we do not beat394

the state-of-the-art for zero-shot entity disambigua-395

tion and instead reach 82.4%, underperforming396

ChatEL (Ding et al., 2024b) (88.1%) by 5.7% and397

finetuned state-of-the-art CoherentED (96.3%) by398

13.9%.399

While AGNUS yields improvements across some400

benchmarks, we consider our primary benefit lying401

in enhancing disambiguation robustness via order402

invariance for candidates and by preventing struc-403

turally invalid outputs.404

4.3 Ablation Study405

AGNUS employs multiple techniques to mitigate406

issues relating to LLM-based ED. Particularly, AG-407

NUS relies on LLMs for disambiguation, MACS408

for order-invariant candidate encoding, ACDC for409

entity decoding and particularly candidates’ rep-410

resentation. In our ablation study, we therefore411

design experiments to verify the impact of these412

aspects on model results by investigating candi-413

date representation (Section 4.3.1), LLM selection414

(Section 4.3.2), MACS (Section 4.3.3) and ACDC415

(Section 4.3.4).416

4.3.1 Candidate Representation417

To validate LLM disambiguation capabilities based418

on contextual candidate entity information, we ap-419

ply AGNUS to candidate representations of differ-420

ent entity information types. We selected DBpe-421

dia (& Wikipedia) entity IRIs, entity types, tex-422

tual entity descriptions and labels as meaning-423

ful entity information characterising entity candi-424

claiming GPT-4 having 1.76 trillion parameters according to
https://en.wikipedia.org/wiki/GPT-4.

dates for our experiments (Tables 1 and 3). We 425

note that in Table 1 across all datasets, IRI-based 426

representations perform best with an average F1 427

performance of 86.9%, outperforming labels by 428

10.2% – with a tie of 87.9% for AQUAINT. For all 429

datasets beside KORE 50 and AQUAINT, descrip- 430

tions reach the second-highest score (avg.: 73.5%), 431

but are still surpassed by labels (76.7%) on aver- 432

age by 3.2%. We note that the shorter and more 433

unique a representation is, the better AGNUS seems 434

to perform. In our experiments, we find effects 435

of representation depend on benchmarked dataset 436

with representation-based score differences ranging 437

from 5.6% (ACE04) to 34.9% (AQUAINT) with a 438

mean of 21.12% across our 6 datasets. 439

4.3.2 Large Language Model 440

To verify our approach’s generalizability across 441

LLMs, we run AGNUS on 4 LLMs: Llama2 (Tou- 442

vron et al., 2023), Llama3 (Dubey et al., 2024), 443

Qwen (Yang et al., 2024) and Mistral (Jiang et al., 444

2023). In Table 3, we notice similar trends across 445

most LLMs for the AIDA dataset with Llama2 rep- 446

resenting a slight outlier: All LLMs except for 447

Llama2 attain their respective best results using 448

IRIs (Qwen: 84.6%, Mistral: 86.7%, Llama3: 449

84.0%) as candidate information, whereas our 450

outlier LLM manages to slightly improve on its 451

80.9% F1 measure, reaching 81.3% by employ- 452

ing labels as candidate representation. Typically, 453

Llama3, Mistral and Qwen reach similar results 454

to each other using IRIs (84.0% – 86.7%) and 455

descriptions (70.2% – 76.3%) as candidate repre- 456

sentations. Using labels, Qwen plummets down 457

to 64.6%, whereas Llama3 (74.5%) and Mistral 458

(74.3%) attain F1 scores close to each other. For 459

type candidate information, Mistral (70.5%) no- 460

ticeably outperforms Qwen (42.2%) and Llama3 461

(39.2%); Llama2 manages to outperform its succes- 462

sor Llama3 (56.0%). Llama3 (70.2%) and Qwen 463

(72.1%) handle descriptions as meaningful entity 464

information comparably well with Mistral (76.3%) 465

performing slightly better and Llama2 (56.5%) dis- 466

playing worst results. 467

4.3.3 Masked Attention Candidate Set 468

We investigate how MACS affects qualitative re- 469

sults and whether it actually renders disambigua- 470

tion order-invariant. To this end, we run experi- 471

ments shuffling candidates over 10 iterations and 472

display results in Figure 4. Our experiments over 473

3 different LLMs (Llama3, Mistral, Qwen) dis- 474

6
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Table 1: Ablation Study (Candidate Representation over datasets): AGNUS (Mistral) F1 measures on AIDA,
AIDA-Syn, KORE 50, MSNBC, ACE04 and AQUAINT with different candidate entity representations (IRI, label,
entity type, entity description), along with per representation and per dataset averages. Top entry by dataset in bold,
second underlined.

Entity Representation AIDA AIDA-Syn KORE 50 MSNBC ACE04 AQUAINT Mean
AGNUS w. IRI 0.867 0.863 0.823 0.824 0.955 0.879 0.869
AGNUS w. Label 0.743 0.706 0.785 0.589 0.899 0.879 0.767
AGNUS w. Type 0.705 0.719 0.595 0.591 0.934 0.530 0.679
AGNUS w. Description 0.763 0.790 0.515 0.679 0.954 0.706 0.735

Mean 0.769 0.770 0.679 0.671 0.936 0.748 0.762

Table 2: ED evaluation table – Upper category: ED systems trained on AIDA. Lower category: 0-shot ED systems
(AGNUS , EntGPT-P, ChatEL). Top scores per column and category bolded, second highest underlined. Scores
obtained from respective papers. Note that baseline with hidden candidates also uses matching to candidates (else
naive results would tend to 0) and MACS ablations are run over multiple iterations, showing score variability.

Trained (or finetuned) on AIDA-CoNLL

Model AIDA KORE 50 MSNBC ACE04 AQUAINT Mean
End2End (Kolitsas et al., 2018) 0.891 0.569 0.933 0.892 0.894 0.836
GENRE (Cao et al., 2021) 0.933 0.542 0.943 0.901 0.899 0.844
REL (van Hulst et al., 2020) 0.928 0.618 0.935 0.897 0.873 0.850
ReFinED (Ayoola et al., 2022) 0.939 0.567 0.941 0.908 0.918 0.855
EntGPT-I (GPT3.5) (Ding et al., 2024a) 0.920 0.753 0.922 0.937 0.906 0.888
ExtEnD (Barba et al., 2022) 0.926 - 0.947 0.918 0.916 0.927
CoherentED (Xiao et al., 2023) 0.894 - 0.963 0.934 0.946 0.934

LLM 0-shot ED

Model AIDA KORE 50 MSNBC ACE04 AQUAINT Mean
ChatEL (Ding et al., 2024b) - 0.787 0.881 0.893 0.767 0.832
EntGPT-P (GPT3.5) (Ding et al., 2024a) 0.821 0.716 0.867 0.918 0.791 0.823
EntGPT-P (Llama2 70B) (Ding et al., 2024a) 0.708 0.647 0.741 0.746 0.635 0.695
Ours – AGNUS (Llama2 8B) 0.809 0.529 0.562 0.897 0.576 0.675
Ours – AGNUS (Mistral) 0.867 0.823 0.824 0.955 0.875 0.869
Baseline: Mistral (hidden candidates) 0.791 0.794 0.739 0.953 0.720 0.799
Ablation: w.o. MACS (best) 0.865 0.811 0.814 0.962 0.907 (0.872)
Ablation: w.o. MACS (worst) 0.833 0.779 0.766 0.950 0.847 (0.835)

Table 3: Ablation Study (LLM, Candidate Representa-
tion, ACDC): AGNUS F1 measures for different types
of candidate representations for Qwen, Mistral, Llama2,
Llama3 and without constrained decoding via ACDC.
AGNUS without ACDC utilises fuzzy search, ranking
reply and candidate, matching to candidate with highest
similarity.

Model AIDA
IRI Label Type Description

AGNUS (Qwen) 0.846 0.646 0.422 0.721
AGNUS (Mistral) 0.867 0.743 0.705 0.763
AGNUS (Llama2) 0.809 0.813 0.560 0.565
AGNUS (Llama3) 0.840 0.745 0.392 0.702
AGNUS (Llama3) w.o. ACDC 0.765 0.698 0.331 0.677

play how disambiguation varies without the use475

of MACS and remains unchanged when applying476

MACS. Order invariance persists across all 10 iter-477

ations of shuffled candidates when MACS is em-478

ployed whereas not applying the causal mask to479

candidate entities yields result variations. With-480

out MACS, Llama3 averages at 66.53% (MACS: 481

66.40%) and varies between 59.56% – 73.02%, a 482

difference of 13.46%. Mistral on the other hand 483

varies in the range of 32.47% – 43.69%, averaging 484

at 38.07% without MACS across iterations of can- 485

didate shuffles (with MACS: 38.20%). In Table 2, 486

we also display MACS ablations over 2 iterations, 487

from one non-MACS execution to another exhibit- 488

ing 3.7% F1 difference on average and beating AG- 489

NUS in ACE04 (96.2% vs. 95.5%). Finally, Qwen 490

also exhibits changes resulting from candidate or- 491

der changes: with an average of 65.57% (MACS: 492

64.54%) its candidate order-dependant results vary 493

within the range 57.61% – 72.84%. Based on our 494

experiments, we conclude that MACS effectively 495

removes order-based bias from candidates with an 496

overall minor average reduction in F1 score. 497
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Figure 4: Ablation Study (MACS) - F1 Score Variability:
Disambiguation without (left) and with MACS (right)
with randomised candidate shuffles over 10 iterations
with Llama3, Mistral and Qwen on perplexity decoding –
disambiguates to highest confidence – for AIDA. MACS
and non-MACS results are similar on average. Without
MACS, performance varies (Llama3: 13.5%, Mistral:
11.2%, Qwen: 15.2%).

4.3.4 Agnus Contextual Decoding498

In Table 3, additionally to checking out the im-499

pact of candidate representations across language500

models, we also evaluate AGNUS without our con-501

strained decoding method (ACDC). With this setup,502

we find that AGNUS hallucinates across the board,503

decreasing F1 scores for all types of candidate rep-504

resentation. In non-ACDC experiments, we apply505

fuzzy matching to improve the likelihood of finding506

at least one entity. Exact disambiguation to can-507

didate matches in our zero-shot experiments yield508

extremely subpar results (close to 0) and would509

otherwise be misrepresenting (exaggerating) the510

added value of our robustness-oriented approach.511

On average, F1 performance without ACDC is low-512

ered by 5.2%, the largest drops appearing with IRI513

(-7.5%) and type (-6.1%) candidate representations,514

followed by label (-4.7%) and descriptions (-2.5%).515

4.4 Contamination Detection & Mitigation516

To estimate potential contamination, we employ517

perplexity (Li, 2023) to quantify a model’s uncer-518

tainty for a given token sequence prediction. Per-519

plexity reflects the inverse likelihood assigned to a520

particular token sequence by a model: lower per-521

plexity indicates higher predictive confidence and522

a higher likelihood of contamination. To mitigate523

contamination and evaluate the generalizability of524

LLMs, we propose synthetically generating a novel525

dataset derived from an existing one by replacing526

each entity mention with a distinct, contextually 527

similar mention and corresponding entity. We ap- 528

ply our method with the DeepSeek-R1 (DeepSeek- 529

AI et al., 2024) model6 to AIDA (Yosef et al., 2011) 530

and release AIDA-Syn7. For each sequence, we 531

produced five alternative mention-entity sets, but 532

for AIDA-Syn only one was retained per instance 533

to reduce the risk of future pretraining exposure. 534

All alternatives, along with a generation script, are 535

made available8. To assess contamination levels 536

across different LLMs, we introduce a modified 537

decoding strategy, illustrated in Figure 4 with dis- 538

ambiguation performed by selecting a candidate 539

entity with highest confidence. The model that per- 540

forms worst with this strategy is presumed to be 541

least contaminated. Our findings show that Mis- 542

tral (Jiang et al., 2023) yields the lowest perfor- 543

mance with a perplexity-based decoding method 544

on AIDA, suggesting being least affected by bench- 545

mark contamination. Applying the same decoding 546

strategy with AIDA-Syn, F1 score decreases from 547

38.20% to 22.82%, a substantial relative drop of 548

15.38%. This reduction supports the hypothesis 549

that AIDA-Syn exhibits reduced contamination. 550

These results demonstrate that our approach may 551

effectively mitigate benchmark contamination and 552

provides a more robust basis for evaluating the 553

generalization capabilities of LLMs for ED. 554

5 Conclusion 555

We propose a set of techniques to enable robust 556

LLM-based entity disambiguation by addressing 557

the issues of unwanted order bias and hallucina- 558

tions.Our experimental results show that by do- 559

ing so, our zero-shot approach outperforms prior 560

work on average by 3.5%. Further, we introduce 561

a methodology to mitigate evaluation contamina- 562

tion and publish a novel dataset AIDA-Syn based 563

on AIDA, along with code to generate different ver- 564

sions of it. While our approach using MACS and 565

ACDC yields modest average improvements across 566

benchmarks, our primary benefit lies in enhancing 567

output robustness and controlling generation be- 568

havior, particularly in cases where unconstrained 569

and order-variant decoding leads to semantically or 570

structurally invalid outputs. 571

6Version from May 2025: https://www.deepseek.com/
7The existence and validity of all entities were verified

using the DBpedia SPARQL endpoint, resulting in a final
dataset of 888 documents.

8https://anonymous.4open.science/r/Agnus/
README.md
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6 Limitations572

Due to our introduction of order-invariance by ap-573

plication of a causal mask and modifying positional574

embeddings, we are limited to open source LLMs,575

making evaluation with DeepSeek (DeepSeek-AI576

et al., 2024), GPT-3.5 (Ouyang et al., 2022b), GPT-577

4 (OpenAI, 2023) impossible.578

Alike other deep learning approaches to entity579

disambiguation, AGNUS is limited by its generated580

candidate sets and by only working with candi-581

date entities that have some form of textual label,582

description, types or otherwise meaningful infor-583

mation for a LLM to predict.584

While ACDC does mitigate hallucinations, a585

given LLM’s next token prediction may be to con-586

tinue with non-entity tokens, such as a greeting or587

similar, therewith potentially negatively affecting588

entity disambiguation. Designing a specific decod-589

ing strategy to include such behaviour could be a590

potential benefit in the future.591

In this paper, our models are not finetuned for592

the entity disambiguation task nor given particular593

domain-specific information that could boost their594

information. Therefore, we concede that going for595

a few-shot approach could yield improved results.596

Further, despite having the out-of-the-box struc-597

tural capabilities for it, we could not evaluate our598

approach on knowledge bases other than Wikipedia599

or DBpedia due to not being aware of comparable600

and valid evaluation benchmarks for it.601

LLMs are language-dependant and have mainly602

been trained with English in mind. We only bench-603

mark our system604

Regarding evaluation contamination and the cre-605

ation of AIDA-Syn, we did not go as in-depth ex-606

plaining our procedure, safeguards against LLM607

hallucinations, inherent surrounding bias as we608

would have liked, nor provide in-depth statistics or609

analyses. We use it mainly to evaluate our approach610

and show that despite there being novel entities and611

candidates, AGNUS is capable of attaining similar612

results as for the non-synthetic version with the613

suggested least contaminated LLM.614
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A Appendix1096

Over the course of researching and developing AG-1097

NUS , we implemented some further aspects that1098

we could not allude to in depth. Here are some1099

supplemental materials about them that might be1100

of interest to fellow researchers.1101

A.1 AIDA-Syn1102

We created AIDA-Syn using DeepSeek-R1 and1103

generated 5 variants of coherent mentions and enti-1104

ties each. We filtered out variants and documents1105

where entities did not correspond to a valid DB-1106

pedia entity or where other LLM-related issues1107

may have arisen. Some issues were related to1108

DeepSeek’s maximum number of generated tokens1109

activating prior to reaching the end. Key criteria for1110

our generation included semantic coherence, lex-1111

ical diversity, naturalness, plausibility within the1112

surrounding text, and alignment with existing enti-1113

ties – our employed setups and prompts are publicly1114

available9. In the end, we generated a collection1115

of 888 synthetic documents with multiple variants1116

of mentions and entities for each. We would have1117

liked to employ ACDC for DeepSeek’s suggested1118

entities, but unfortunately the API does not allow1119

for finegranular control and our hardware limita-1120

tions did not allow for us to run the high-parameter1121

and high-performing models.1122

As a means of verifying that our generated men-1123

tions and entities are sensical, we used a two-1124

pronged approach. First, one researcher manually1125

went through a random sample of 100 documents,1126

verifying contextual coherence for all variants. Sec-1127

ond, we attempted to run the full suite of annota-1128

tors via GERBIL (Verborgh et al., 2018) to see1129

whether existing approaches could annotate docu-1130

ments effectively – we report the results in Table 6.1131

Unfortunately, many D2KB annotators did not run1132

on our full AIDA-Syn (or ASM-1010, ASM-5011,1133

ASM-10012) and the original AIDA datasets, instead1134

returning timeout errors and similar. In Table 5 we1135

display some details about the synthetic AIDA-Syn1136

dataset including number of documents (888), total1137

number of mentions (15,314) as well as entity type1138

9https://anonymous.4open.science/r/Agnus/
README.md

10http://gerbil.aksw.org/gerbil/experiment?id=
202505190000

11http://gerbil.aksw.org/gerbil/experiment?id=
202505190001

12http://gerbil.aksw.org/gerbil/experiment?id=
202505190002

consistency between the original dataset and the 1139

transformed documents. Our assumption is that 1140

a certain degree of overlap between types should 1141

persist, but that it shouldn’t be an absolute overlap 1142

the sake of document diversity. 1143

Due to licensing, our datasets are provided as an- 1144

notations without contextual input document text, 1145

but with our own novel mentions, entities and off- 1146

sets. Unfortunately, researchers may want to look 1147

for contextual clues to inject our annotations into 1148

relevant documents. Hypothetically, such may even 1149

be possible by potentially matching with a source 1150

NIF-processed data (e.g. GERBIL) – which we 1151

cannot recommend with a clear conscience and 1152

would not condone nor support by any means at 1153

our disposal whether through code13 or otherwise. 1154

A.2 Context Length 1155

The number of tokens an LLM may process at 1156

once and is therefore limited to is known as con- 1157

text length. If tokens surpass the maximal context 1158

length an LLM was trained for, it produces gibber- 1159

ish at an increased likelihood – to the point that 1160

some LLMs will opt to instead raise an error when 1161

a threshold is reached. To counteract the issue of 1162

context length for LLM-based entity disambigua- 1163

tion, we introduce Hierarchical Elimination Tree 1164

Disambiguation, a linearly scalable disambiguation 1165

method for iterative pruning of unwanted candidate 1166

entities – alike single-elimination tournaments. 1167

We did not run into issues relating to context 1168

length in our experiments when comparing with 1169

prior work due to the limited number of candidates. 1170

Regardless, we developed a relatively simple ap- 1171

proach allowing to sidestep the context length issue 1172

(see Figure 5). 1173

The approach resolves the problem of context 1174

length by transforming the disambiguation task of 1175

|C| candidates into tasks of smaller subsets of at 1176

most k disambiguation candidates instead, aggre- 1177

gating results and repeating the AGNUS disam- 1178

biguation process (see Fig. 1) with further sub- 1179

sets of candidate entities until disambiguation con- 1180

verges on one entity. Formally, with N = |C| entity 1181

candidates, k maximum threshold for concurrent 1182

candidates and j ∈ (1, ..,⌈logk N⌉), Hierarchical 1183

Elimination Tree Disambiguation (HET) leads to 1184

1+∑
⌈logk(n)⌉
j=1 ⌈ n

k j ⌉ disambiguation tasks of at most 1185

size k each being computed. 1186

13https://anonymous.4open.science/r/Agnus/
README.md
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Table 4: Ablation Study (Entity Representation - Single and Pairwise): Disambiguation results (F1-measure) on
AIDA for pairwise and singular (diagonal) entity representation information types for candidates on AGNUS (Mistral):
entity IRI, entity type(s), entity label and entity description. Per column top-ranked score in bold, second-ranked
underlined.

Entity Representation AGNUS w. IRI AGNUS w. Type AGNUS w. Label AGNUS w. Desc.
AGNUS w. IRI 0.867 0.855 0.763 0.854
AGNUS w. Type 0.855 0.705 0.734 0.766
AGNUS w. Label 0.763 0.734 0.743 0.744
AGNUS w. Desc. 0.854 0.766 0.744 0.763

Table 5: Some data statistics for AIDA-Syn. Type-Consistency compares pre-transformation types of entities to
post-transformation types of entities and checks overlap.

# Documents Mentions # Type-Consistent Docs. Type Consist. (Mean)
888 15,314 331 46.60%

System AIDA-Syn AIDA ASM-10 ASM-50 ASM-100
Babelfy (Moro et al., 2014) 0.7503 0.6729 0.7660 0.7111 0.6912
WAT (Piccinno and Ferragina, 2014) 0.8641 0.6986 0.9355 0.8235 0.8332
REL (van Hulst et al., 2020) - ? 0.9030 0.7942 0.6829

Table 6: F1 measures on datasets AIDA-Syn, AIDA for
AGNUS and GERBIL-available systems (all other pub-
licly available systems on GERBIL (Verborgh et al.,
2018) timed out or returned "The annotator caused too
many single errors" for the platform despite repeated
attempts).

AIDA* 100 cands., k = 2 10 candidates
AGNUS (Mistral) 0.8329 0.8669

Table 7: ED for AGNUS on 581 AIDA documents with
100 candidates (HET, k = 2) and 10 candidates.

In Table 7, we show the result of a computed1187

’stress test’ for HET with 100 candidates and k = 21188

to maximise the number of disambiguation runs1189

to see how much performance would deteriorate1190

for AIDA. Our ’worst-case’ HET experiment cre-1191

ates 7 elimination rounds and 98 disambiguation1192

tasks for each mention. By doing so, the likelihood1193

of potentially propagating errors increases, but the1194

performance difference between our HET-activated1195

stress test and usual-setting AGNUS is only 3.4%1196

for AIDA14. Nevertheless, we do not recommend1197

running HET with k = 2 unless absolutely neces-1198

sary for a small context length (e.g. when introduc-1199

ing multiple shots) due to the unnecessarily large1200

amount of disambiguations to be performed for1201

large candidate sizes. For reference, with k = 101202

and 100 candidates, it would still be 7 elimination1203

rounds, but with a total of 12 disambiguations of at1204

14Please note that we perform our evaluation on 581 doc-
uments from the AIDA dataset due to a flat multiplier of 98
costing unnecessary amounts of time and electricity on our
limited hardware.

most 10 candidates each. 1205

A.3 Candidate Representation (Pairwise 1206

Effects) 1207

We investigated effects of single candidate repre- 1208

sentation types within our paper. We considered it 1209

interesting to have a look at pairwise combinations 1210

thereof as well to verify to what extent adding more 1211

information could yield better results – as would 1212

be an initial human intuition. 1213

In Table 4, we evaluated AGNUS on pairwise 1214

combinations of candidate repsentation types to 1215

verify effects as well as the extent of increased 1216

information content on results. We note that disam- 1217

biguating based on meaningful IRIs, such as from 1218

Wikipedia (e.g. https://en.wikipedia.org/ 1219

wiki/Mika_(singer)), yields the best scores re- 1220

gardless of representation it may be combined with. 1221

Any further representation type worsens results, 1222

seemingly indicating that highly-defining compact 1223

representations may yield best results. 1224

Types by themselves return mixed results, 1225

slightly improving upon description-based candi- 1226

dates, but deteriorate label-based results slightly. 1227

This may be due to the high overlap among can- 1228

didates for this representation, potentially causing 1229

confusion upon disambiguation and yielding worst 1230

results (7.0%) in our experiments. Adding labels 1231

(7.3%) or descriptions (7.7%) to types increases 1232

candidate information, decreasing ambiguity and 1233

leading to improved results. Labels as an entity 1234

characteristic by themselves (7.43%) are relatively 1235

ambiguous, but benefit slightly from further infor- 1236

mation in the form of descriptions (7.44%). Over- 1237

all, top scores are reached with IRI representations 1238

regardless of other combined information – actu- 1239

ally suffering from any additional representations 1240
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Figure 5: Agnus Hierarchical Elimination Tree: When context window exceeds LLM capabilities, Agnus makes use
of a hierarchical elimination tree, splitting the disambiguation task into smaller ones, each of size k where k is the
number of allowed candidates to not exceed the context window.

(by itself: 8.67%, with type(s): 8.55%, with de-1241

scription: 8.54%) –, most notably suffering from1242

labels (7.63%).1243

A.4 Notes on Baseline Experiments1244

Do note that in the case of "w.o. ACDC" (with-1245

out constrained decoding), we apply fuzzy match-1246

ing between candidate representations for both pre-1247

dicted and expected values, ranking similarity for1248

the sake of comparison fairness and picking the1249

highest-overlap-similarity candidate as a match.1250

Just using the results as-is for a "baseline" com-1251

parison seemed disingenuine as "exact matching"1252

criteria would put baseline results very close (if not1253

exactly) to 0 in most cases.1254

Applying hard-prompting based finetuning to1255

our employed suite of large language models would1256

likely alleviate the effects to a certain degree, but1257

would simultaneously render the comparison in-1258

valid due to comparing our zero-shot model to a1259

1-shot baseline, therewith having only limited ex-1260

pressivity over our existing ED evaluation table1261

(Table 1).1262

Due to similar reasons, our baseline without can-1263

didates still uses matching to candidates (it did not1264

see or produce) rather than dryly applying an exact1265

matching scheme, therewith heightening the likeli-1266

hood of correct results. Hence, we urge readers to1267

not overestimate baseline performance.1268
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