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Figure 1: INQUIRE is a text-to-image retrieval benchmark of 250 expert-level queries comprehensively
labeled over a new five million image dataset. The queries span a range of ecological and biodiversity
concepts, requiring reasoning, image understanding, and domain expertise.

Abstract

We introduce INQUIRE, a text-to-image retrieval benchmark designed to challenge
multimodal vision-language models on expert-level queries. INQUIRE includes
iNaturalist 2024 (iNat24), a new dataset of five million natural world images,
along with 250 expert-level retrieval queries. These queries are paired with all
relevant images comprehensively labeled within iNat24, comprising 33,000 total
matches. Queries span categories such as species identification, context, behavior,
and appearance, emphasizing tasks that require nuanced image understanding
and domain expertise. Our benchmark evaluates two core retrieval tasks: (1)
INQUIRE-FULLRANK, a full dataset ranking task, and (2) INQUIRE-RERANK, a
reranking task for refining top-100 retrievals. Detailed evaluation of a range of
recent multimodal models demonstrates that INQUIRE poses a significant challenge,
with the best models failing to achieve an mAP@50 above 50%. In addition, we
show that reranking with more powerful multimodal models can enhance retrieval
performance, yet there remains a significant margin for improvement. By focusing
on scientifically-motivated ecological challenges, INQUIRE aims to bridge the gap
between AI capabilities and the needs of real-world scientific inquiry, encouraging
the development of retrieval systems that can assist with accelerating ecological
and biodiversity research.

⇤Equal contribution. †Equal supervision, order randomized.
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Figure 2: Category breakdown for the fine-grained queries that make up INQUIRE. Each query
category falls under one of the following supercategories: Species, Context, Behavior, or Appearance.

1 Introduction

Recent advances in multimodal learning have resulted in advanced models [60; 43; 3] that demonstrate
remarkable generalization capabilities in zero-shot classification [60; 83], visual question-answering
(VQA) [39; 80; 4; 40], and image retrieval [80; 40]. These models offer the potential to assist in the
exploration, organization, and extraction of knowledge from large image collections. However, despite
this success, there remains a significant gap in the evaluation of these models on domain-specific,
expert-level queries, where nuanced understanding and precise retrieval are critical. Addressing
this gap is essential for future deployment in specialized fields such as biodiversity monitoring and
biomedical imaging, among other scientific disciplines.

Previous studies of the multimodal capabilities of this new generation of models have primarily
focused on the task of VQA. In VQA, it has been demonstrated that there remains a large performance
gap between state-of-the-art models and human experts in the context of challenging perception and
reasoning queries such as those found on college-level exams [81; 84]. However, no such expert-level
benchmark exists for image retrieval. The most commonly used text-to-image retrieval benchmarks
are derived from image captioning datasets, and contain simple queries related to common everyday
categories [79; 42]. Current multimodal models achieve near perfect performance on some of these
benchmarks, indicating that they no longer pose a challenge (e.g., BLIP-2 [40] scores 98.9 on
Flickr30K [79] top-10). Existing retrieval datasets are generally small [58; 59; 79; 42], limited to a
single visual reasoning task (e.g., landmark-location matching [58; 59; 74]), and lack concepts that
would require expert knowledge [58; 59; 74; 79; 42]. These limitations impede our ability to track
and improve image retrieval capabilities.

A domain that is well-suited for studying this problem is the natural world, where images collected by
enthusiast volunteers provide vast and largely uncurated sources of publicly available scientific data.
In particular, the iNaturalist [2] platform contains over 180 million species images and contributes
immensely to research in biodiversity monitoring [16; 48]. These images also contain a wealth of
“secondary data” not reflected in their species labels [57], including crucial insights into interactions,
behavior, morphology, and habitat that could be uncovered through searches. However, the time-
consuming and expert-dependent analysis needed to extract such information prevents scientists from
taking advantage of this valuable data at scale. This cost is amplified as scientists typically want to
retrieve multiple relevant images for each text query, so that they can track changes of a property
over space and time [78]. This domain serves as an ideal testbed for expert image retrieval, as these
images contain expert-level diverse and composite visual reasoning problems, and progress in this
field will enhance impactful scientific discovery.

In this work, we introduce INQUIRE, a new dataset and benchmark for expert-level text-to-image
retrieval and reranking on natural world images. INQUIRE includes the iNat24 dataset and 250
ecologically motivated retrieval queries. The queries span 33,000 true-positive matches, pairing each
text query with all relevant images that we comprehensively labeled among iNat24’s five million
natural world images. iNat24 is sampled from iNaturalist [2], and contains images from 10,000
different species collected and annotated by citizen scientists, providing significantly more data for
researchers interested in fine-grained species classification. The queries contained within INQUIRE
come from discussions and interviews with a range of experts including ecologists, biologists,
ornithologists, entomologists, oceanographers, and forestry experts.
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Figure 3: Proportion of queries in INQUIRE as-
sociated with each iconic group of species.

Table 1: Comparison to common datasets used
to evaluate text-to-image retrieval [26]. Unlike
other datasets, INQUIRE has significantly more
images and many matches per query rather than
exactly one. MpQ: Matches per query

Dataset Images Queries MpQ Expert

Flickr30k [79] 1,000 5k 1 7
COCO [42] 5,000 25k 1 7

INQUIRE 5,000,000 250 1–1.5k 3

Our evaluation of multimodal retrieval methods demonstrates that INQUIRE poses a significant
challenge, necessitating the development of models able to perform expert-level retrieval within large
image collections. A key finding from our experiments is that reranking, a technique typically used
in text retrieval [54; 35; 34], offers a promising avenue for improvement in image retrieval. We
hope that INQUIRE will inspire the community to build next-generation image retrieval methods
towards the ultimate goal of accelerating scientific discovery. We make INQUIRE, the iNat24
dataset, pre-computed outputs from state-of-the-art models, and code for evaluation available at
https://inquire-benchmark.github.io/.

2 Related Work

Vision-Language Models (VLMs). Large web-sourced datasets containing paired text and images
have enabled recent advances in powerful VLMs [15; 85]. Contrastive methods such as CLIP [60]
and ALIGN [32], among others, learn an embedding space where the data from the two modalities
can be encoded jointly. The ability to reason using natural language and images together has yielded
impressive results in a variety of text-based visual tasks such as zero-shot classification [60; 83],
image captioning [39; 80; 4; 30; 40], and text-to-image generation [53; 7; 61; 64; 8]. However, the
effectiveness of these contrastive VLMs for more complex compositional reasoning is bottlenecked
by the information loss induced by their text encoders [33].

There also exists a family of more computationally expensive VLMs that connect the outputs of
visual encoders directly into language models. Models like LLaVA [43; 44], BLIP [39; 40; 21], and
GPT-4o [3; 55] have demonstrated impressive vision-language understanding. However, despite
their potential for answering complex vision-language queries, these models are not suitable for
processing large sets of images at interactive rates, which is essential for retrieval, due to their large
computational requirements during inference. In this paper, we do not introduce new VLMs, but aim
to better understand the capabilities and shortfalls of existing methods for text-to-image retrieval.

Image Retrieval. Effective feature representations are essential for achieving strong image retrieval
performance. Earlier approaches from image-to-image used hand-crafted features [49; 12] but these
have largely been replaced with deep learning-based alternatives [36; 9; 6; 11]. More recently, in the
context of text-to-image retrieval, we have seen the adoption of contrastive VLMs [60; 32] trained on
web-sourced paired text and image datasets. These models enable zero-shot text-based retrieval and
have been demonstrated to exhibit desirable scaling properties as training sets become larger [26; 24].
However, despite the potential of VLMs for image retrieval, their evaluation has been mostly limited
to small datasets adapted from existing image captioning benchmarks, such as Flickr30k [79] and
COCO [42], which contain just 1,000 and 5,000 images, respectively. Furthermore, recent models are
saturating performance on these less challenging datasets, e.g., BLIP-2 [40] scores 98.9 on Flickr30K
and 92.6 on COCO top-10 text-to-image retrieval. As most text-to-image benchmarks have been
derived from image captioning datasets, each query is a descriptive caption that matches exactly one
image. In contrast, real-world retrievals often involve multiple images relevant to a single query, and
the query itself typically does not describe every aspect of the images as thoroughly as a caption does.
We compare INQUIRE to common text-to-image retrieval datasets in Table 1.

More recent datasets have been purpose-built to probe specific weaknesses of retrieval systems,
such as compositionality [50; 29; 62], object relationships [82], negation [72; 66], and semantic
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Figure 4: The INQUIRE benchmark consists of a full-dataset ranking task and a reranking task
targeting different aspects of the image retrieval problem.

granularity [76]. [25] created a retrieval dataset for camera trap images, but use image captions that
were automatically generated from a small set of discrete image attributes, limiting their utility beyond
this set. The problem of fine-grained retrieval, where there may only be subtle visual differences
between concepts of interest, has also been explored extensively [73]. However, typically these
datasets convert existing classification datasets to the retrieval setting, resulting in small image pools
and limited query diversity. INQUIRE addresses these shortcomings with a considerably larger image
set and fine-grained queries that require advanced image understanding and domain expertise.

Reranking. In text retrieval, a common workflow is to first efficiently obtain an initial ranking of
documents using pre-computed text embeddings and then rerank the top retrievals with a more costly
but sophisticated model [54; 35; 34]. While VLMs like CLIP [60] enable efficient image retrieval and
more expensive models such as GPT-4o [55] could perform more complex ranking, this workflow
has not been extensively explored in text-to-image applications primarily due to a lack of evaluation
datasets. To this end, INQUIRE introduces a reranking challenge to drive further progress on this task.

Expert-level Benchmarks. Visual classification benchmarks have evolved from simply containing
common everyday categories [63; 42] to having more “expert-level” concepts [68; 69]. Challenging
datasets like the iNaturalist benchmarks [69; 70], contain large class imbalances and fine-grained
concepts that require expert-level knowledge to identify. The NeWT benchmark from [70] is similar
in spirit to INQUIRE in that it proposes a collection of natural world questions. However, NeWT is
a set of binary classification challenges, and while there is a variety of tasks, the majority of them
are standard species classification. Further, NeWT uses a small (200–400) fixed set of positive and
negative labeled images for each task, so it is not suitable for evaluating retrieval.

In general, evaluation benchmarks have struggled to keep pace with the growing capabilities of
recent large models which perform very well on them [5]. For language, specific datasets have been
developed to challenge common sense reasoning abilities [52; 14]. Multimodal datasets have also
been proposed to assess vision-language capabilities [75; 38; 46; 77]. Nevertheless, these benchmarks
test general skills in tasks that are not particularly challenging for humans and thus, are not testing a
models’ abilities in scenarios where expert-level knowledge is required.

To address the need for more difficult benchmarks, recent expert-level benchmarks have been devised
for LLMs [28; 84] and multimodal models [81; 51]. For instance, MMMU [81] features questions
that cover a range of college-level disciplines while Encyclopedic-VQA [51] comprises visual
questions related to fine-grained entities which demand encyclopedic knowledge. The relatively low
performance on these benchmarks, compared to human performance, highlights current limitations
in multimodal models. However, there is no equivalent expert-level dataset for fine-grained text-to-
image retrieval. INQUIRE fills this gap by providing a set of challenging and visually fine-grained
retrieval questions focused on real-world tasks in retrieval from natural world image collections.

3 The INQUIRE Benchmark
Here we describe INQUIRE, our novel benchmark for assessing expert-level image retrieval for fine-
grained queries on natural world image collections. INQUIRE consists of a collection of 250 queries,
where each query is represented as a brief text description of the concept of interest (e.g., “Alligator
lizards mating" [56]), and contains its relevant image matches comprehensively labeled over a dataset
of five million natural world images. These queries represent real scientific use cases collected to cover
diverse, expert sources including discussions with scientists across environmental and ecological
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disciplines. Several examples of our queries are illustrated in Figure 1, with more in Appendix J. Our
queries challenge retrieval methods to demonstrate fine-grained detail recognition, compositional
reasoning, character recognition, scene understanding, or natural world domain knowledge. While
queries can require expert-level knowledge, the information needed to solve them is publicly available
online and thus feasible for large web-trained models to learn. In this section, we detail the data
sources utilized for the construction of INQUIRE, describe the data collection process, and introduce
two image retrieval tasks — INQUIRE-FULLRANK and INQUIRE-RERANK — that address different
aspects of real-world text-to-image retrieval.

3.1 The iNaturalist 2024 Dataset
As part of the INQUIRE benchmark, we create a new image dataset, which we refer to as iNaturalist
2024 (iNat24). This dataset contains five million images spanning 10,000 species classes collected
and annotated by community scientists from 2021–2024 on the iNaturalist platform [2]. iNat24 forms
one of the largest publicly available natural world image repositories, with twice as many images as
in iNat21 [70]. To ensure cross-compatibility for researchers interested in using both datasets, iNat24
and iNat21 have the same classes but do not contain the same images, freeing iNat21 to be used as a
training set. The sampling and collection process of iNat24 is in Appendix H.

3.2 Query and Image Collection Process
Query Collection. To ensure that INQUIRE comprises text queries that are relevant to scientists,
we conducted interviews with individuals across different ecological and environmental domains -
including experts in ornithology, marine biology, entomology, and forestry. Further queries were
sourced from reviews of academic literature in ecology [57]. Representative queries and statistics can
be seen in Figures 1, 2, and 3. We retained only queries that (1) could be discerned from images
alone, (2) were feasible to comprehensively label over the entire iNat24 dataset, and (3) were of
interest to domain experts.

Image Annotation. All image annotations were performed by a small set of individuals whose
interest and familiarity with wildlife image collections enabled them to provide accurate labels for
challenging queries. Annotators were instructed to label all candidate images as either relevant (i.e.,
positive match) or not relevant (i.e., negative match) to a query, and to mark an image as not relevant
if there was reasonable doubt. To allow for comprehensive labeling, where applicable, iNat24 species
labels were used to narrow down the search to a sufficiently small size to label all relevant images for
the query of interest. For queries in which species labels could not be used, labeling was performed
over the top CLIP ViT-H-14 [24] retrievals alone. In this case, the resulting annotations were only
kept if we were certain that this labeling captured the vast majority of positives, including labeling
until at least 100 consecutive retrievals were not relevant (see Appendix H). Queries that were deemed
too easy, not comprehensively labeled, or otherwise not possible to label were excluded from our
benchmark. In total, this process resulted in 250 queries which involved labeling 194,334 images, of
which 32,696 were relevant to their query. Further details are in Appendix H.

Query Categories. Each query belongs to one of four supercategories (appearance, behavior,
context, or species), and further into one of sixteen fine-grained categories (e.g., Animal Structures
and Habitats). Figure 2 shows the distribution of query categories, and Figure 3 shows the distribution
of iconic groups of the species represented by each query (e.g., Mammals, Birds). We also note
queries that use scientific terminology, words typically used only within scientific contexts (e.g., “A
godwit performing distal rhynchokinesis”).

Data Split. We divide all queries into 50 validation and 200 test queries using a random split,
stratified by category.

3.3 Retrieval Tasks
We introduce two tasks to address different aspects of the text-to-image retrieval problem. Real-
world retrieval implementations often consist of two stages: an initial top-k retrieval with a more
computationally efficient method (e.g., CLIP zero-shot using pre-computed image embeddings),
followed by a reranking of the top-k retrievals with a more expensive model. To enable researchers
to explore both stages, while ensuring that those with more limited computational resources can
participate, we follow previous large-scale reranking challenges like TREC [19; 20] by offering both
a full dataset retrieval task and a reranking task (see Figure 4).
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Table 2: INQUIRE-FULLRANK retrieval performance for selected CLIP-style models. Larger models,
trained on higher quality datasets, tend to achieve better performance.

Training dataset Method Params (M) mAP@50 nDCG@50 MRR
WildCLIP [25] CLIP ViT-B-16 150 7.4 16.1 0.33

BioCLIP [67] CLIP ViT-B-16 150 5.0 8.6 0.17

OpenAI [60]

CLIP RN50 102 6.8 15.1 0.29
CLIP RN50x16 291 13.6 25.5 0.48
CLIP ViT-B-32 151 7.5 16.8 0.30
CLIP ViT-B-16 150 10.4 20.9 0.40
CLIP ViT-L-14 428 14.4 27.1 0.46

DFN [24]
CLIP ViT-B-16 150 15.1 28.1 0.48
CLIP ViT-L-14 428 23.1 37.3 0.54
CLIP ViT-H-14@378 987 33.3 48.8 0.69

WebLI [83] SigLIP ViT-L-16@384 652 31.1 46.6 0.68
SigLIP SO400m-14@384 878 34.2 49.1 0.69

INQUIRE-FULLRANK. The goal of this task is end-to-end retrieval, starting from the entire five
million image iNat24 dataset. Progress on the full retrieval task can be made with better and more
efficient ways to organize, process, filter, and search large image datasets. Although performance
will increase with improvements to either of the two stages in a typical retrieval pipeline, we hope
this task also encourages the development of retrieval systems beyond the two-stage approach.

INQUIRE-RERANK. This task evaluates reranking performance from a fixed initial ranking of 100
images. We believe that significant progress in retrieval will come from developing better reranking
methods that re-order an initial retrieved subset. Thus, fixing the starting images for each query
provides a consistent evaluation of reranking methods. This task also lowers the barrier to entry by
giving researchers a considerably smaller set of top retrievals to work with, rather than requiring
them to implement an end-to-end retrieval system. The top 100 ranked images for each query are
retrieved using CLIP ViT-H-14 zero-shot retrieval on the entire iNat24 dataset. Consistent with
previous large-scale reranking challenges [19; 20; 37], we retain only queries for which at least one
positive image is among the top 100 retrieved images and no more than 50% of these top images are
relevant. This ensures that the reranking evaluation remains meaningful and discriminative. This
filtering process yields a task subset of 200 queries (reduced from our original 250 queries), split into
40 validation and 160 test queries according to the original validation/test split, with and 4,000 and
16,000 corresponding images, respectively.

4 Retrieval Methods
The goal of text-to-image retrieval is to rank images from a potentially large image collection
according to their relevance to an input text query. Here, we describe the retrieval and reranking
methods that we evaluate, covering current state-of-the-art approaches.

Embedding Similarity. Models such as CLIP [60] are well suited for the text-to-image retrieval
setting as they operate on a joint vision and language embedding space. In this setting, similarity
between an image and text query is simply determined by their cosine similarity. The key advantage
of embedding models is that the embedding for each image can be pre-computed once offline as
they do not change over time. At inference time, only the embedding of the text query needs to be
computed and then compared to the cached image embeddings for retrieval. This is helpful as the
number of images we wish to search over can be on the order of millions, or even billions [65]. Thus
to speed up retrieval, the image embeddings can be pre-computed and indexed using approximate
nearest neighbor methods [23], allowing for near-instantaneous retrievals on large collections. This is
beneficial both for end-to-end retrieval and as the first step for a multi-stage retrieval approach. We
also benchmark recent models such as WildCLIP [25] and BioCLIP [67] which are adapted versions
of CLIP that explicitly target natural world use cases.

Reranking with Multimodal Models. Reranking is a common paradigm in text retrieval, where a
rapid search through pre-computed document indexes for potential matches is followed by a more
expensive reranking of the top retrievals [54; 35; 34]. In the image domain, reranking has been
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Table 3: Results for the INQUIRE-FULLRANK task using two-stage retrieval. The top-k images
are retrieved with CLIP ViT-H/14 and then reranked with the selected large multimodal models.
Reranking offers a significant avenue of improvement.

Rerank Top 50 Rerank Top 100

Method mAP@50 nDCG@50 MRR mAP@50 nDCG@50 MRR
Initial ranking (ViT-H/14) 33.3 48.8 0.69 33.3 48.8 0.69
Best possible rerank 50.3 60.2 0.94 65.6 72.7 0.96

Open-source multimodal models
BLIP-2 FLAN-T5-XXL [40] 32.7 47.7 0.62 31.2 46.5 0.58
InstructBLIP-T5-XXL [21] 34.1 49.0 0.67 33.0 48.3 0.64
PaliGemma-3B-mix-448 [13] 35.0 49.7 0.70 35.6 50.6 0.68
LLaVA-1.5-13B [44] 33.1 48.4 0.66 32.2 47.9 0.64
LLaVA-v1.6-7B [45] 33.3 48.4 0.66 32.3 47.9 0.62
LLaVA-v1.6-34B [45] 34.8 49.7 0.69 35.7 51.2 0.69
VILA-13B [41] 35.0 49.6 0.67 35.7 50.8 0.65
VILA-40B [41] 37.4 51.4 0.73 40.2 54.6 0.72

Proprietary multimodal models
GPT-4V [3] 35.8 50.7 0.73 36.5 51.9 0.72
GPT-4o [55] 39.6 53.4 0.79 43.7 57.9 0.78

comparatively rare as the types of datasets for which it can be used are limited. In our experiments,
we show that multimodal language models such as LLaVA [45], VILA [41], and GPT-4 [3; 55] are
effective rerankers out-of-the-box. To adapt these multimodal models for ranking, which requires
a continuous score for a given text query and image pair, we prompt: Does this image show {some
query}? Answer with “Yes" or “No" and nothing else. (precise prompting details used for each model
can be found in Appendix I). The logits of the “Yes" and “No" tokens are then used to compute the
score: s = sy/(sy + sn), where sy = exp(logitY es) and sn = exp(logitNo).

5 Results
Here we present a comprehensive evaluation of retrieval methods on INQUIRE. All results are reported
on the test set. Additional results, including on the validation set, are in Appendix E.

5.1 Metrics

We evaluate using Average Precision at k (AP@k), Normalized Discounted Cumulative Gain (nDCG),
and Mean Reciprocal Rank (MRR). We primarily discuss AP as we find that this metric is the most
discriminative of model performance. While these metrics have been commonly used to evaluate
text retrieval, especially in the context of large-scale document retrieval [71; 19], they have not
found use in image retrieval due to the nonexistence of benchmarks like INQUIRE containing many
relevant images for retrieval, rather than just one. Thus, we include them in our analysis to encourage
their use in future image retrieval research. We note that the utilized AP@k metric uses a modified
normalization factor suited to the retrieval setting.

Existing image retrieval benchmarks typically evaluate using the recall@k metric (e.g., [40]), measur-
ing if any of the top k images are relevant. While this makes sense in the setting where just one image
is relevant, INQUIRE has potentially many relevant images and thus, we employ metrics that measure
both relevance and ranking of retrievals. Detailed discussion our metrics is provided in Appendix G.

5.2 Fullrank Retrieval Task Results
We report full retrieval evaluation on INQUIRE in Tables 2 and 3. The per-category performance of
selected CLIP models is reported in Figures 5 and 6. Further detailed results are in Appendix E.

The best CLIP models leave significant room for improvement. Table 2 shows that the top
performing CLIP model achieves a moderate mAP@50 of 35.6. Although scaling models increases
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Figure 5: Left: CLIP zero-shot retrieval performance across supercategories using an identical
backbone (ViT-B/16) trained or fine-tuned on different datasets. We see how training datasets have a
significant effect on final performance, e.g., BioCLIP is tuned on natural world data at the expense of
forgetting other categories. Right: CLIP retrieval performance of models trained on DFN [24].

Figure 6: Retrieval performance for selected methods on INQUIRE query categories, ordered by
difficulty. Some categories like LIFE CYCLE AND DEVELOPMENT are exceptionally hard for current
models. GPT-4o reranking improves performance in every category over its initial ViT-H-14 ranking.

performance (see Figure 5), these results suggest that just scaling might not be enough, so future
research should seek methods to better incorporate domain knowledge.

Small models struggle to answer many queries. In Table 2 we can see that CLIP RN50 and CLIP
ViT-B-32 score an mAP@50 of just 7.6 and 8.2 respectively, demonstrating that these smaller models
are unable to provide accurate retrievals for nearly all queries. Since the largest models get compar-
atively much higher scores, the queries are not impossible but rather difficult for smaller models.
DFN ViT-B-16, trained with curated data, outperforms the larger OpenAI ViT-L-14, emphasizing the
opportunity to improve the performance of efficient models via better data or training methods.

High-quality training data is crucial for expert-level queries. In Figure 5-left we show the retrieval
performance on different supercategories for CLIP ViT-B/16 models that are trained on different
datasets: BioCLIP [67], WildCLIP [25], OpenAI [60], and DFN [24]. The DFN model, trained on
two billion filtered image-text pairs, is the best generalist model on OpenCLIP’s benchmarks [31]
and also outperforms all the others here, demonstrating the effectiveness of high quality pretraining.
Conversely, models specifically trained on natural world data demonstrate degraded performance:
BioCLIP was trained primarily on taxonomic captions and images, including iNat21, yet fails
significantly on non-species queries, while WildCLIP has degraded performance in all supercategories.
This performance emphasizes the need for better natural world models and fine-tuning strategies that
can gain domain-specific expertise while preserving generalist capabilities.

Reranking offers a valuable opportunity for improving retrieval. Table 3 shows that reranking
with larger models like VILA-40B and GPT-4o gives a significant performance boost in mAP@50 of
7 and 12 points, respectively. Still, even GPT-4o performs significantly worse than the best possible
rerank of its initial CLIP ViT-H-14 ranking. Increasing the size of the initial retrieval set from 50 to
100 can further improve performance by surfacing more relevant images, but only higher-performing
models benefit: The mAP@50 for GPT-4o increases by 5 points, while lower-performing models
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Table 4: Results for the INQUIRE-RERANK task on various embedding and multimodal models. For
each task, a fixed set of the top-100 images is provided, which we then rerank using different methods.
Evaluation metrics are calculated based solely on this fixed set, disregarding any potential positives
outside of the top-100 images. Therefore, a perfect score is achievable within this context.

Method AP nDCG MRR
Random 22.1 52.6 0.35

Embedding models
CLIP ViT-B-32 [60] 30.2 59.1 0.47
CLIP ViT-L-14 [60] 36.8 64.2 0.57
CLIP ViT-H-14 [24] 42.6 68.7 0.66
SigLIP SO400m-14 [83] 50.1 73.5 0.72

Proprietary multimodal models
GPT-4V [3] 47.8 71.9 0.70
GPT-4o [55] 59.6 78.9 0.78

Method AP nDCG MRR

Open-source multimodal models
BLIP-2 T5-XXL [40] 40.0 65.4 0.55
InstructBLIP-T5-XXL [21] 41.5 66.9 0.59
PaliGemma-3B-mix-448 [13] 42.9 67.9 0.60
LLaVA-v1.5-13B [44] 43.7 68.4 0.61
LLaVA-v1.6-7B [45] 46.9 70.4 0.66
LLaVA-v1.6-34B [45] 47.0 70.4 0.62
VILA-13B [41] 47.1 71.1 0.67
VILA-40B [41] 52.8 74.4 0.71

like LLaVA-v1.6-7B see decreased performance. Further results for varying the initial ranking set
size are in Appendix E. Figure 6 visualizes how GPT-4o reranking improves performance on every
category compared to its initial ViT-H-14 ranking.

Different query types present challenges of varying difficulties to existing models. Figure 6
illustrates the difference in performance across query categories. We see that APPEARANCE queries,
which often require both domain knowledge of an organism’s appearance and the fine-grained
visual reasoning to recognize them, are the most difficult for existing models. Indeed, the LIFE
CYCLE AND DEVELOPMENT set (e.g., “Immature bald eagle", “A cicada in the process of shedding
its exoskeleton") are by far the most difficult. Conversely, CONTEXT queries such those in the
HUMAN IMPACT set (e.g., “leopard on a road", “bird caught in a net"), for which less expertise and
comparatively coarser image understanding are needed, are easier for existing models.

5.3 Rerank Retrieval Task Results

The results for the INQUIRE-RERANK task are presented in Table 4, where we evaluate reranking
performance of both CLIP-style models like ViT-B-32 and larger vision-language models such as
GPT-4o. Since the total number of images for each query is small (i.e., 100), we also show the
expected results of a random reranking for baseline comparison. In Table 5 we further break down
INQUIRE-RERANK results by queries containing scientific terminology and by query supercategory.

Current models struggle with expert-level text-to-image retrieval on INQUIRE. In Table 4 we
observe that the highest average precision score of 59.6, achieved by GPT-4o, is far below the perfect
score of 100, showing substantial room for improvement. Smaller models like CLIP ViT-B-32
only slightly outperform random chance. Since the top retrieved are often visually or semantically
similar, lower-performing models may be confused into promoting irrelevant images, leading to
poorer ranking.

Queries with scientific terminology are significantly more challenging, showing that models
might not understand domains-specific language. For example, the query“Axanthism in a green
frog”—referring to a mutation limiting yellow pigment production, resulting in a blue appearance—
uses specialized terminology that a model may not understand. As a result, a model may incorrectly
rank typical green frogs higher than axanthic green frogs, leading to worse-than-random performance.
We show the performance of reranking models on queries with scientific terminology in Table 5.
Interestingly, GPT-4o appears to be closing this gap, with an average difference of 7 points between
queries with and without scientific terminology (AP scores of 53 and 60, respectively), compared to a
16-point difference for the next best model, VILA-40B (AP of 39 and 55). Nevertheless, this gap
remains. Future work should explore methods to improve models’ comprehension of domain-specific
language, which is critical for accurate retrieval in scientific contexts.

Reranking effectiveness varies widely by the query type. Table 5 shows that CONTEXT queries,
often requiring general visual understanding, benefit substantially from reranking. Conversely,
SPECIES queries, requiring fine-grained visual understanding, see minimal improvement, with the
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Table 5: Evaluation of INQUIRE-RERANK with queries grouped into different query types. First,
we group queries containing scientific lingo and no scientific lingo. Next, we group queries by their
supercategory (Appearance, Behavior, Context, Species). Queries with lingo tend to be more difficult,
especially for large models with good generalist understanding but lacking domain expertise. All
results are reported in AP.

By Lingo By Supercategory

Model Lingo No Lingo Appearance Behavior Context Species

WildCLIP 20.8 32.0 31.8 29.8 35.7 36.0
BioCLIP 17.2 30.3 27.8 25.6 31.3 44.8
CLIP ViT-B-32 22.8 31.6 29.5 31.0 36.0 35.3
CLIP ViT-L-14 29.2 37.4 37.2 36.2 40.2 38.2
CLIP ViT-H-14 32.1 44.0 38.1 50.5 45.5 31.2
SigLIP SO400m-14 38.3 51.7 51.7 53.6 54.1 44.6

LLaVA-v1.6-34B 28.2 49.5 41.0 48.2 53.8 37.5
VILA-13B 37.2 48.2 39.3 47.1 58.6 34.8
VILA-40B 38.6 54.5 46.9 54.9 63.1 37.0

GPT-4V 35.9 49.3 40.3 50.2 54.2 39.0
GPT-4o 53.3 60.4 51.9 61.4 75.4 44.3

specialized BioCLIP beating out even GPT-4o. These trends suggest that while recent models have
better generalized vision capabilities, they continue to struggle with fine-grained visual understanding.

6 Limitations and Societal Impact
While the species labels for each image in iNat24 are generated via consensus from multiple citizen
scientists, there may still be errors in the labels which our evaluation will inherit. However, this error
rate is estimated to be low [47]. INQUIRE contains natural world images, which while diverse, may
hinder the relevance of some of our insights to other visual domains. In spite of this, we believe
that due to the wide range of visual queries contained within, progress on INQUIRE will likely be
indicative of multimodal model performance on other challenging domains.

There could be unintended negative consequences if conservation assessments were made based on
the predictions from biased or inaccurate models evaluated in this paper. Where relevant, we have
attempted to flag these performance deficiencies. While we have filtered out personally identifiable
information from our images, the retrieval paradigm allows for free-form text search and thus care
should be taken to ensure that appropriate text filters are in-place to prevent inaccurate or hurtful
associations being made between user queries and images of wildlife.

7 Conclusion
We introduced INQUIRE, a challenging new text-to-image retrieval benchmark which consists of
expert-level text queries that have been exhaustively annotated across a large pool of five million
natural world images called iNat24. This benchmark aims to emulate real world image retrieval and
analysis problems faced by scientists working with these types of large-scale image collections. Our
hope is that progress on INQUIRE will drive advancements in the real scientific utility of AI systems.
Our evaluation of existing methods reveals that INQUIRE poses a significant challenge even for the
current largest state-of-the-art multimodal models, showing there is significant room for innovations
to develop accurate retrieval systems for complex visual domains.
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