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Abstract

Data imbalance is easily found in annotated data when the observations of certain1

continuous label values are difficult to collect for regression tasks. When they2

come to molecule and polymer property predictions, the annotated graph datasets3

are often small because labeling them requires expensive equipment and effort.4

To address the lack of examples of rare label values in graph regression tasks, we5

propose a semi-supervised framework to progressively balance training data and6

reduce model bias via self-training. The training data balance is achieved by (1)7

pseudo-labeling more graphs for under-represented labels with a novel regression8

confidence measurement and (2) augmenting graph examples in latent space for9

remaining rare labels after data balancing with pseudo-labels. The former is to10

identify quality examples from unlabeled data whose labels are confidently pre-11

dicted and sample a subset of them with a reverse distribution from the imbalanced12

annotated data. The latter collaborates with the former to target a perfect balance13

using a novel label-anchored mixup algorithm. We perform experiments in seven14

regression tasks on graph datasets. Results demonstrate that the proposed frame-15

work significantly reduces the error of predicted graph properties, especially in16

under-represented label areas.17

1 Introduction18

Predicting the properties of graphs has attracted great attention from drug discovery [Ramakrishnan19

et al., 2014, Wu et al., 2018] and material design [Ma and Luo, 2020, Yuan et al., 2021], because20

molecules and polymers are naturally graphs. Properties such as density, melting temperature, and21

oxygen permeability are often in continuous value spaces [Ramakrishnan et al., 2014, Wu et al., 2018,22

Yuan et al., 2021]. Graph regression tasks are important and challenging. It is hard to observe label23

values in certain rare areas since the annotated data usually concentrate on small yet popular areas in24

the property spaces. Graph regression datasets in chemistry and material science are ubiquitously25

imbalanced. Previous attempts that address data imbalance mostly focused on categorical properties26

and classification tasks, however, imbalanced regression tasks on graphs are under-explored.27

Besides data imbalance, the annotated graph regression data are often small in real world. For28

example, measuring the property of a molecule or polymer often needs expensive experiments or29

simulations. It has taken nearly 70 years to collect only around 600 polymers with experimentally30

measured oxygen permeability in the Polymer Gas Separation Membrane Database [Thornton et al.,31

2012]. On the other side, we have hundreds of thousands of unlabeled graphs.32

Pseudo-labeling unlabeled graphs may enrich and balance training data, however, there are two33

challenges. First, if one directly trained a model on the imbalanced labeled data and used it to do34

pseudo-labeling, it would not be reliable to generate accurate and balanced labels. Second, because35

quite a number of unlabeled graphs might not follow the distribution of labeled data, massive label36

noise is inevitable in pseudo-labeling and thus selection is necessary to expand the set of data37

examples for training. Moreover, the selected pseudo-labels without noise cannot alleviate the label38

Submitted to 37th Conference on Neural Information Processing Systems (NeurIPS 2023). Do not distribute.



Imbalanced labeled 
data !"#$

Confidently predicted 
data !%&'(

Augmented data ℋ*+,

Unlabeled data !+'-$-
with predicted labels

Regression with confidence:

reverse

sampling

reverse

label-anchored 
mixup

Balanced training data 
!"#$ ∪ !%&'( ∪ ℋ*+,

/(1) Representations 
of all real graphsℋ

Train
/ 1 : ! → ℋ

with !"#$ ∪ !%&'(
for ℋ"#$ and ℋ%&'(

Train
5 6 :ℋ → ℝ

with 
ℋ"#$ ∪ℋ%&'( ∪ ℋ*+,

6 = / 1
9; ; = 5(6)

SGIR modelsNot balanced yet!

self-training

Figure 1: An overview of our SGIR framework to train effective graph regression models with
imbalanced labeled data. To balance the data properly, SGIR selects highly confident examples from
predicted labels of unlabeled data and augments label areas that seriously lack data (even after added
the confidently predicted data) by a novel label-anchored mixup algorithm.

imbalance problem. Because the biased model tends to generate more pseudo-labels in the label39

ranges where most data concentrate. In this situation, the selected pseudo-labels may aggravate the40

model bias and lead the model to have even worse performance on the label ranges where we lack41

enough data. Even though the pseudo-labeling had involved quality selection and the unlabeled set42

had been fully used to address label imbalance, the label distribution of annotated and pseudo-labeled43

examples might still be far from a perfect balance. This is because there might not be a sufficient44

number of pseudo-labeled examples to fill the gap in the under-represented label ranges.45

Figure 1 illustrates our ideas to overcome the above challenges. First, we want to progressively46

reduce the model bias by gradually improving training data from the labeled and unlabeled sets. The47

performance of pseudo-labeling models and the quality of the expanded training data can mutually48

enhance each other through iterations. Second, we relate the regression confidence to the prediction49

variance under perturbations. Higher confidence indicates a lower prediction variance under different50

perturbation environments. Therefore, we define and use regression confidence score to avoid pseudo-51

label noise and select quality examples in regression tasks. To fully exploit the quality pseudo-labels52

to compensate for the data imbalance in different label ranges, we use a reversed distribution of53

the imbalanced annotated data to reveal label ranges that need to be more or less selected for label54

balancing. Third, we attempt to achieve the perfect balance of training data by creating graph55

examples of any given label value in the remaining under-represented ranges.56

In this paper, we propose a novel Semi-supervised framework for Graph Imbalanced Regression57

(SGIR). SGIR has three novel designs to implement our ideas. First, it is a self-training framework58

with multiple iterations for model learning and balanced training data generation. Second, it samples59

more quality pseudo-labels for the less represented label ranges. We define a new measurement of60

regression confidence from recent studies on graph rationalization methods which provide perturba-61

tions for predictions at training and inference. After applying the confidence to filter out pseudo-label62

noise, we adopt reverse sampling to find optimal sampling rates at each label value that maximize the63

possibility of data balance. If a label value is less frequent in the annotated data, the sampling rate at64

this value is bigger and more pseudo-labeled examples are selected for model training. Third, we65

design a novel label-anchored mixup algorithm to augment graph examples by mixing up a virtual66

data point and a real graph example in latent space. Each virtual point is anchored at a certain label67

value that is still rare in the expanded labeled data. The mixed-up graph representations continue68

complementing the label ranges where we seriously lack data examples.69

To empirically demonstrate the advantage of SGIR, we conduct experiments on seven graph property70

regression tasks from three different domains. Results show that SGIR significantly reduces the71

prediction error on all the tasks and in both under-/well-represented label ranges. For example, on the72

smallest dataset Mol-FreeSolv that has only 276 annotated graphs, SGIR reduces the mean absolute73

error from 1.114 to 0.777 (relatively 30% improvement) in the most under-represented label range74

and reduces the error from 0.642 to 0.563 (12% improvement) in the entire label space compared to75

state-of-the-art graph regression methods.76
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2 Related Work77

2.1 Imbalanced Learning78

Data resampling is known as under-sampling majority classes or over-sampling minority classes.79

SMOTE [Chawla et al., 2002] created synthetic data for minority classes using linear interpolations80

on labeled data. Cost-sensitive techniques [Cui et al., 2019, Lin et al., 2017] assigned higher81

weights to the loss of minority classes. And posterior re-calibration [Cao et al., 2019, Tian et al.,82

2020, Menon et al., 2021] encouraged larger margins for the prediction logits of minority classes.83

Imbalanced regression tasks have unique challenges due to continuous label values [Yang et al.,84

2021]. Some of the methods from imbalanced classifications were extended to imbalanced regression85

tasks. For example, SMOGN [Branco et al., 2017] adopted the idea and method of SMOTE for86

regression; Recently, Yang et al. [2021] used regression focal loss and cost-sensitive reweighting;87

and BMSE [Ren et al., 2022] used logit re-calibration to predict numerical labels. LDS [Yang et al.,88

2021] smoothed label distribution using kernel density estimation. RANKSIM [Gong et al., 2022]89

regularized the latent space by approximating the distance of data points in the label space. Although90

these methods would improve performance on under-represented labels, they come at the expense of91

decreased performance on well-represented labels, particularly when annotated data is limited. SGIR92

avoids this by using unlabeled graphs to create more labels in the under-represented label ranges.93

2.2 Semi-supervised Learning94

To exploit unlabeled data, semi-supervised image classifiers such as FIXMATCH [Sohn et al., 2020]95

and MIXMATCH [Berthelot et al., 2019] used pseudo-labeling and consistency regularization. Their96

performance relies on weak and strong data augmentation techniques, which are under-explored for97

regression tasks and graph property prediction tasks. At the same time, semi-supervised learners98

suffer from the model bias caused by the unlabeled imbalance. Therefore, after pseudo-labeling99

unlabeled data, DARP [Kim et al., 2020] and DASO [Oh et al., 2022] refined the biased pseudo-100

labels by aligning their distribution with an approximated true class distribution of unlabeled data.101

CADR [Hu et al., 2022] adjusted the threshold for pseudo-label assignments. CREST [Wei et al.,102

2021] selected more pseudo-labels for minority classes in self-training. To the best of our knowledge,103

there was no work that leveraged unlabeled data for regression tasks on imbalanced graph data,104

although SSDKL [Jean et al., 2018] performed semi-supervised regression for non-graph data105

without considering label imbalance. SGIR makes the first attempt to solve the imbalanced regression106

problem using semi-supervised learning.107

2.3 Molecular Graph Property Prediction108

Graph neural network models (GNN) [Kipf and Welling, 2017, Veličković et al., 2018, Hamilton109

et al., 2017, Xu et al., 2019] have demonstrated their power for regression tasks in the fields of110

biology, chemistry, and material science [Hu et al., 2022, Liu et al., 2022]. Data augmentation is an111

effective way to exploit limited labeled data. The node-level augmentation [Rong et al., 2019, Zhao112

et al., 2021b] modified graph structure to improve the accuracy of node classification. On the graph113

level, augmentation-based methods were mostly designed for classification tasks [Han et al., 2022,114

Wang et al., 2021]. Recently, GREA [Liu et al., 2022] delivered promising results for predicting115

polymer properties. But the model bias caused by imbalanced continuous labels was not addressed.116

INFOGRAPH [Sun et al., 2020] exploited unlabeled graphs, however, the data imbalance issue was117

not addressed either. Our work aims to achieve balanced training data for graph regression in real118

practice where we have a small set of imbalanced labeled graphs and a large set of unlabeled data.119

3 Problem Definition120

To predict the property y ∈ R of a graph G ∈ G, a graph regression model usually consists of an121

encoder g : G → h ∈ Rd and a decoder f : h → ŷ ∈ R. The encoder g(·) is often a graph neural122

network (GNN) that outputs the d-dimensional representation vector h of graph G, and the decoder123

f(·) is often a multi-layer perceptron (MLP) that makes the label prediction ŷ given h.124

Let Gimb = {(Gi, yi)}nimb
i=1 denote the labeled training data for graph regression models, where125

nimb is the number of training graphs in the imbalanced labeled dataset. It often concentrates on126
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certain areas in the continuous label space. To reveal it, we first divide the label space into C127

intervals and use them to fully cover the range of continuous label values. These intervals are128

[b0, b1), [b1, b2), . . . , [bC−1, bC). Then, we assign the labeled examples into C intervals and count129

them in each interval to construct the frequency set {µi}Ci=1. We could find that max{µi}
min{µi} ≫ 1 (i.e.,130

label imbalance) often exists, instead of µ1 = µ2 = · · · = µC (i.e., label balance) that is assumed by131

most existing models. The existing models may be biased to small areas in the label space that are132

dominated by the majority of labeled data and lack a good generalization to areas that are equally133

important but have much fewer examples.134

Labeling continuous graph properties is difficult [Yuan et al., 2021], limiting the size of labeled data.135

Fortunately, a large number of unlabeled graphs are often available though ignored in most existing136

studies. In this work, we aim to use the unlabeled examples to alleviate the label imbalance issue137

in graph regression tasks. That is, let Gunlbl = {Gj}nimb+nunlbl
j=nimb+1 denote the nunlbl available unlabeled138

graphs. We want to train g(·) and f(·) to deliver good performance through the whole continuous139

label space by utilizing both Gimb and Gunlbl.140

4 Proposed Framework141

To progressively reduce label imbalance bias, we propose a novel framework named SGIR that142

iteratively creates reliable labeled examples in the areas of label space where annotations were not143

frequent. As presented in Figure 1, SGIR uses a graph regression model to create the labels and144

uses the gradually balanced data to train the regression model. To let data balancing and model145

construction mutually enhance each other, SGIR is a self-training framework that trains the encoder146

g(·) and decoder f(·) using two strategies through multiple iterations. The first strategy is to use147

pseudo-labels based on confident predictions and reverse sampling, leveraging unlabeled data (see148

Section 4.2). Because the unlabeled graph set still may not contain real examples of rare label values,149

the second strategy is to augment the graph representation examples for the rare areas using a novel150

label-anchored mixup algorithm (see Section 4.3).151

4.1 Theoretical Motivation for the Iteratively Balancing Self-Training Framework152

There is a lack of study on the theoretical principle of imbalanced regression. Our theoretical153

motivation extends the generalization error bound from classification [Cao et al., 2019] to regression.154

The original bound enforces bigger margins for minority classes, which potentially hurt the model155

performance for well-represented classes [Tian et al., 2020, Zhang et al., 2023]. Our result provides a156

more safe way to reduce the error bound by utilizing unlabeled graphs with self-training in graph157

regression tasks. Suppose the hypothesis class is F and C(F) is assumed to be a proper complexity158

measure of F . Given a specific regression function f(·) and n[bi,bi+1) examples i.i.d sampled from159

the i-th interval [bi, bi+1), we denote the error and the training margins of the interval as E[bi,bi+1)160

and γ
[bi,bi+1)

, respectively. We have the following theorem based on the standard margin-based161

generalization bound from [Kakade et al., 2008, Cao et al., 2019, Zhao et al., 2021a]:162

Theorem 4.1 With probability (1− δ) over the randomness of the training data, the error E[bi,bi+1)163

for interval [bi, bi+1) is bounded by164

E[bi,bi+1)[f ] ⪅
1

γ
[bi,bi+1)

√
C(F)

n[bi,bi+1)
+

√
log log2(1/γ[bi,bi+1)

) + log(1/δ)

n[bi,bi+1)
, (1)

where ⪅ hides constant terms.165

Details and proofs are in appendix B. The bound decreases as the increase of the examples in166

corresponding label ranges. We are motivated to reduce and balance the bound for different intervals167

by manipulating n[bi,bi+1) with pseudo-labels and augmented examples. A classic self-training168

framework is expected useful in label-balanced classification/regression tasks McLachlan [1975], Xie169

et al. [2020] and cannot balance n[bi,bi+1) across intervals. For a virtuous circle of model training with170

imbalanced labeled set Gimb, the most confident predictions on Gunlbl should be selected to compensate171

for the under-represented labels, as well as to enrich the dataset Gimb. In each iteration, the model172

becomes less biased to the majority of labels. And the less biased model can make predictions of173

higher accuracy and confidence on the unlabeled data. Therefore, we hypothesize that model training174

and data balancing can mutually enhance each other.175
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SGIR is a self-training framework targeting to generalize the model performance everywhere in the176

continuous label space with particularly designed balanced training data from the labeled graph data177

Gimb, confidently selected graph data Gconf, and augmented representation data Haug. For the next178

round of model training, the gradually balanced training data reduce the label imbalance bias carried179

by the graph encoder g(·) and decoder f(·). Then the less biased graph encoder and decoder are180

applied to generate balanced training data of higher quality. Through these iterations, the model bias181

from the imbalanced or low-quality balanced data would be progressively reduced because of the182

gradually enhanced quality of balanced training data.183

4.2 Balancing with Confidently Predicted Labels184

At each iteration, SGIR enriches and balances training data with pseudo-labels of good quality. The185

unlabeled data examples in Gunlbl are firstly exploited by reliable and confident predictions. Then the186

reverse sampling from the imbalanced label distribution of original training data Gimb is used to select187

more pseudo-labels for under-represented label ranges.188

4.2.1 Graph regression with confidence189

A standard regression model outputs a scalar without a certain definition of confidence of its prediction.190

The confidence is often measured by how much the predicted probability is close to 1 in classifications.191

The lack of confidence measurements in graph regression tasks may introduce noise to the self-training192

framework that aims at label balancing. It would be more severe when the domain gap exists between193

labeled and unlabeled data [Berthelot et al., 2022]. Recent studies [Liu et al., 2022, Wu et al.,194

2022] have proposed two concepts that help us define a good measurement: rationale subgraph and195

environment subgraph. A rationale subgraph is supposed to best support and explain the prediction196

at property inference. Its counterpart environment subgraph is the complementary subgraph in the197

example, which perturbs the prediction from the rationale subgraph if used. Our idea is to measure the198

confidence of graph property prediction based on the reliability of the identified rationale subgraphs.199

Specifically, we use the variance of predicted label values from graphs that consist of a specific200

rationale subgraph and one of many possible environment subgraphs.201

We denote Gi as the i-th graph in a batch of size B. The model separates Gi into G
(r)
i and G

(e)
i . For202

the j-th graph Gj in the same batch, we have a combined example G(i,j) = G
(r)
i ∪ G

(e)
j that has203

the rationale of Gi and environment subgraph of Gj . So it is expected to have the same label of Gi.204

By enumerating j ∈ {1, 2, . . . , B}, the encoder g(·) and decoder f(·) are trained to predict the label205

value of any G(i,j). We define the confidence of predicting the label of Gi as:206

σi =
1

Var
(
{f(g(G(i,j)))}j=1,2,...,B

) . (2)

It is the reciprocal of prediction variance. We follow Liu et al. [2022] for implementation to efficiently207

and effectively create G(i,j) in the latent space without decoding graph structure. That is, it directly208

gets the representation of G(i,j) as the sum of the representation vectors h
(r)
i of G

(r)
i and h

(e)
j209

of G(e)
j . So we have σi = 1/Var

(
{f(h(r)

i + h
(e)
j )}

j=1,2,...,B

)
. Now we have predicted labels210

and confidence values for graph examples in the large unlabeled dataset Gunlbl. Examples with211

low confidences will bring noise to the training data if we use them all. So we only consider a212

data example Gi to be of good quality if its confidence σi is not smaller than a threshold τ . We213

name this confidence measurement based on graph rationalization as GRATION. GRATION is214

tailored for graph regression tasks by considering the environment subgraphs as perturbations. We215

will compare its effect on quality graph selection against other graph-irrelevant methods such as216

DROPOUT [Gal and Ghahramani, 2016], CERTI [Tagasovska and Lopez-Paz, 2019], DER (Deep217

Evidential Regression) [Amini et al., 2020], and SIMPLE (no confidence) in experiments. Then, we218

apply reverse sampling on quality examples from Gunlbl to balance the distribution of training data.219

4.2.2 Reverse sampling220

The reverse sampling in SGIR helps reduce the model bias to label imbalance. Specifically, we want221

to selectively add unlabeled examples predicted in the under-represented label ranges. Suppose we222
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have the frequency set {µi}Ci=1 of C intervals. We denote pi as the sampling rate at the i-th interval223

and follow Wei et al. [2021] to calculate it. Basically, to perform reverse sampling, we want pi < pj224

if µi > µj . We define a new frequency set {µ′
i}Ci=1 in which µ′

i equals the i-th smallest in {µ} if µi225

is the i-th biggest in {µ}. Then the sampling rate is226

pi =
µ′
i

max{µ1, µ2, . . . , µC}
. (3)

To this end, we have the confidently labeled and reversed sampled data Gconf. In each self-training227

iteration, we combine it with the original training set Gimb.228

4.3 Balancing with Augmentation via Label-Anchored Mixup229

Although Gimb ∪ Gconf is more balanced than Gimb, we observe that Gimb ∪ Gconf is usually far from a230

perfect balance, even if Gunlbl could be hundreds of times bigger than Gimb. To create graph examples231

targeting the remaining under-represented label ranges, we design a novel label-anchored mixup232

algorithm for graph imbalanced regression. Compared to existing mixup algorithms [Wang et al.,233

2021, Verma et al., 2019] for classifications without awareness of imbalance, our new algorithm can234

augment training data with additional examples for target ranges of continuous label value.235

A mixup operation in the label-anchored mixup is to mix up two things in a latent space: (1) a virtual236

data point representing an interval of targeted label and (2) a real graph example. Specifically, we first237

calculate the representation of a target label interval by averaging the representation vectors of graphs238

in the interval from the labeled dataset Gimb. Let M ∈ {0, 1}C×nimb be an indicator matrix, where239

Mi,j = 1 means that the label of Gj ∈ Gimb belongs to the i-th interval. We denote H ∈ Rnimb×d as240

the matrix of graph representations from the GNN encoder g(·) for Gimb. The representation matrix241

Z ∈ RC×d of all intervals is: Z = norm(M) ·H, where norm(·) is the row-wise normalization. Let242

ai denote the center label value of the i-th interval. Then we have the representation-label pairs of all243

the label intervals {(zi, ai)}Ci=1, where zi is the i-th row of Z.244

Now we can use each interval center ai as a label anchor to augment graph data examples in a245

latent space. We select ni ∝ pi real graphs from Gimb ∪ Gconf whose labels are closest to ai, where246

pi is calculated by Eq. (3). The more real graphs are selected, the more graph representations are247

augmented. ni is likely to be big when the label anchor ai remains under-represented after Gconf is248

added to training set. Note that the labels were annotated if the graphs were in Gimb and predicted if249

they were in Gunlbl. For j ∈ {1, 2, . . . , ni}, we mix up the interval (zi, ai) and a real graph (hj , yj),250

where hj and yi are the representation vector and the annotated or predicted label of the j-th graph,251

respectively. Then the mixup operation is defined as252

h̃(i,j) = λ · zi +
(
1− λ

)
· hj , ỹ(i,j) = λ · ai +

(
1− λ

)
· yj , (4)

where h̃(i,j) and ỹ(i,j) are the representation vector and label of the augmented graph, respectively.253

λ = max(λ′, 1− λ′), λ′ ∼ Beta(1, β), and β is a hyperparameter. λ is often closer to 1 because we254

want ỹ(i,j) to be closer to the label anchor ai. Let Haug denote the set of representation vectors of all255

the augmented graphs. Combined with Gimb and Gconf, we end up with a label-balanced training set256

for the next round of self-training.257

4.4 Optimization258

We use the mean absolute error (MAE) as the regression loss. Specifically, for each (G, y) ∈259

Gimb ∪ Gconf, the loss is ℓimb+conf = MAE(f(g(G)), y). Given (h, y) ∈ Haug, the loss is ℓaug =260

MAE(f(h), y). So the total loss for SGIR is261

L =
∑

(G,y)∈Gimb∪Gconf

ℓimb+conf(G, y) +
∑

(h,y)∈Haug

ℓaug(h, y).

262

5 Experiments263

We conduct experiments to demonstrate the effectiveness of SGIR and answer the research question:264

how it performs on graph regression tasks and at different label ranges (RQ1). We also make a few265

ablation studies to investigate the effect of model design: where the effectiveness comes from (RQ2).266

5.1 Experimental Settings267

6



-11.6 -6.7 -3.7 -0.70.0

2.5

5.0

7.5

10.0

many-shot region medium-shot region few-shot region

-1.5 0.5 2.5 4.50

20

40

60

#G
ra

ph
s

Mol-Lipo

-63.0 137.0 337.0 537.00
40
80

120
Plym-Melting

-11.6 -5.7 -1.70
3
6
9

#G
ra

ph
s

Mol-ESOL

0.24 1.22 1.82 3.020
15
30
45

Plym-Density

-25.4 -12.6 -4.2
y

0
3
6
9

#G
ra

ph
s

Mol-FreeSolv

-3.6 -0.6 2.4
y(logy)

0

15

30

45 Plym-Oxygen (log y used)

Figure 2: Imbalanced training distributions
Gimb for molecule and polymers.

Datasets Figure 2 presents the imbalanced train-268

ing distribution for six graph regression tasks from269

chemistry and materials science: three molecule270

datasets (Mol-Lipo/ESOL/Freesolv) are from [Wu271

et al., 2018] and three polymer datasets (Plym-272

Melting/Density/Oxygen) are from [Liu et al.,273

2022]. For unlabeled graphs, we integrate 133,015274

molecules from QM9 [Ramakrishnan et al., 2014]275

and 13,114 polymers from [Liu et al., 2022] to276

create a set of 146,129 unlabeled graphs for semi-277

supervised learning approaches. We remove the278

overlap between unlabeled and labeled polymers279

to avoid data leaking. Thus, the unlabeled graphs280

for polymer tasks may be slightly less than 146,129.281

We follow [Yang et al., 2021] to split the datasets to282

characterize imbalanced training distributions and283

balanced test distributions. Besides molecules and polymers, we test SGIR on an age regression284

dataset from images’ superpixels in appendix C.3 to validate its generalization to different domains.285

Evaluation metrics Besides the entire range of label space, we evaluate models and report results286

on three sub-ranges: many-shot region, medium-shot region, and few-shot region [Yang et al., 2021,287

Ren et al., 2022, Gong et al., 2022]. The sub-ranges are defined by the number of training graphs in288

each label value interval. Details for each dataset are presented in Figure 2. To evaluate the regression289

performance, we use mean absolute error (MAE) and geometric mean (GM) [Yang et al., 2021].290

Lower values (↓) of MAE or GM indicate better performance.291

Baselines and Implementations We broadly consider baseline from (1) imbalanced regression:292

LDS [Yang et al., 2021], BMSE [Ren et al., 2022], and RANKSIM [Gong et al., 2022]; (2) (semi-293

supervised) graph learning: INFOGRAPH [Sun et al., 2020] and GREA [Liu et al., 2022]. To294

implement SGIR and the baselines, the GNN encoder is GIN [Xu et al., 2019] and the decoder is295

a three-layer MLP to output property values. The threshold τ for selecting confident predictions296

is determined by the value at a certain percentile of the confidence score distribution. For all the297

methods, we report the results on the test sets using the mean (standard deviation) over 10 runs with298

parameters that are randomly initialized. More Implementation details are in appendix C.2.299

5.2 RQ1: Effectiveness on Regression Prediction300

Overall performance in the entire label range: Table 1 presents results of all methods on six301

graph regression tasks. SGIR performs consistently better than competitive baselines on all tasks.302

Columns “All” in Table 1 show that SGIR reduces MAE over the best baselines (whose MAEs303

are underlined in the table) relatively by 9.1%, 8.1%, and 12.3% on the three molecule datasets,304

respectively. Specifically, on Mol-FreeSolv, the MAE was reduced from 0.642 to 0.563 with no305

change on the standard deviation. This is because SGIR could enrich and balance the training data306

with confidently predicted pseudo-labels and augments for data examples on all the possible label307

ranges, whereas all the baseline models suffer from the bias caused by imbalanced annotations.308

Effectiveness in few-shot label ranges: The performance improvements of SGIR on graph re-309

gression tasks are simultaneously from three different label ranges: many-shot region, medium-shot310

region, and few-shot region. By looking at the results of baselines, we find that the best performance311

at a particular range would sacrifice the performance at a different label range. For example, on the312

Mol-Lipo and Mol-FreeSolv datasets, while GREA is the second best and best baseline, respectively,313

in the many-shot region, its performance in the few-shot region is worse than the basic GNN models.314

Similarly, on the Mol-FreeSolv dataset, LDS reduces the MAE from GNN relatively by +3.5%315

in the few-shot region with a trade-off of a -29% performance decrease in the many-shot region.316

Compared to baselines, the improvements from SGIR in the under-represented label ranges are317

theoretically guaranteed without sacrificing the performance in the well-represented label range.318

And our experimental observations support the theoretical guarantee, even in more challenging319

scenarios, i.e., predictions in the label ranges of fewer training shots on smaller datasets. Specifically,320

SGIR reduces MAE relatively by 30.3% and 9.0% in the few-shot region on Mol-FreeSolv and321

Plym-Oxygen. Because SGIR leverages the mutual enhancement of model construction and data322
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Table 1: MEAN(STD) on six datasets. The best mean is bold. The best baseline is underlined.
MAE ↓ GM ↓

All Many-shot Med.-shot Few-shot All Many-shot Med.-shot Few-shot

Mol-Lipo

GNN 0.485(0.010) 0.421(0.030) 0.462(0.013) 0.566(0.032) 0.297(0.012) 0.252(0.022) 0.294(0.016) 0.348(0.030)

RANKSIM 0.475(0.018) 0.388(0.017) 0.438(0.007) 0.587(0.043) 0.297(0.015) 0.249(0.017) 0.274(0.006) 0.380(0.044)

BMSE 0.494(0.007) 0.409(0.019) 0.450(0.007) 0.614(0.033) 0.304(0.008) 0.260(0.014) 0.279(0.015) 0.382(0.038)

LDS 0.468(0.009) 0.394(0.012) 0.449(0.012) 0.551(0.026) 0.294(0.010) 0.251(0.009) 0.281(0.010) 0.356(0.033)

INFOGRAPH 0.499(0.008) 0.421(0.024) 0.471(0.013) 0.596(0.026) 0.314(0.011) 0.269(0.018) 0.300(0.006) 0.376(0.029)

GREA 0.487(0.002) 0.391(0.015) 0.434(0.008) 0.626(0.018) 0.294(0.010) 0.251(0.009) 0.281(0.010) 0.356(0.033)

SGIR 0.432(0.012) 0.357(0.019) 0.413(0.017) 0.515(0.020) 0.264(0.013) 0.224(0.016) 0.256(0.017) 0.314(0.015)

Mol-ESOL

GNN 0.508(0.015) 0.398(0.018) 0.448(0.012) 0.696(0.025) 0.299(0.017) 0.231(0.017) 0.279(0.014) 0.425(0.035)

RANKSIM 0.501(0.014) 0.389(0.021) 0.443(0.019) 0.689(0.025) 0.293(0.021) 0.227(0.028) 0.258(0.020) 0.449(0.030)

BMSE 0.533(0.023) 0.400(0.027) 0.449(0.015) 0.777(0.069) 0.308(0.018) 0.245(0.036) 0.266(0.009) 0.473(0.035)

LDS 0.517(0.016) 0.423(0.012) 0.474(0.029) 0.668(0.010) 0.304(0.010) 0.261(0.007) 0.283(0.025) 0.393(0.009)

INFOGRAPH 0.561(0.025) 0.475(0.034) 0.466(0.036) 0.776(0.036) 0.336(0.014) 0.306(0.022) 0.276(0.013) 0.484(0.029)

GREA 0.497(0.031) 0.396(0.040) 0.456(0.033) 0.652(0.045) 0.289(0.032) 0.226(0.038) 0.270(0.025) 0.404(0.051)

SGIR 0.457(0.015) 0.370(0.022) 0.411(0.011) 0.604(0.024) 0.263(0.016) 0.226(0.021) 0.240(0.015) 0.347(0.030)

Mol-FreeSolv

GNN 0.726(0.039) 0.617(0.061) 0.695(0.055) 1.154(0.082) 0.363(0.025) 0.317(0.027) 0.360(0.029) 0.556(0.073)

RANKSIM 0.779(0.109) 0.764(0.225) 0.674(0.072) 1.220(0.146) 0.367(0.026) 0.396(0.052) 0.315(0.030) 0.537(0.082)

BMSE 0.856(0.071) 0.809(0.117) 0.820(0.064) 1.122(0.076) 0.456(0.042) 0.426(0.029) 0.457(0.054) 0.552(0.062)

LDS 0.809(0.071) 0.796(0.071) 0.737(0.088) 1.114(0.141) 0.443(0.045) 0.489(0.036) 0.387(0.052) 0.580(0.146)

INFOGRAPH 0.933(0.042) 0.830(0.081) 0.913(0.030) 1.308(0.171) 0.542(0.048) 0.505(0.107) 0.528(0.038) 0.789(0.183)

GREA 0.642(0.026) 0.541(0.064) 0.570(0.008) 1.202(0.023) 0.321(0.038) 0.294(0.064) 0.301(0.024) 0.537(0.049)

SGIR 0.563(0.026) 0.535(0.038) 0.528(0.046) 0.777(0.061) 0.264(0.029) 0.286(0.013) 0.244(0.046) 0.304(0.078)

Plym-Melting

GNN 41.8(1.2) 35.5(1.2) 33.0(0.7) 54.7(2.2) 23.2(1.0) 21.3(1.1) 16.2(1.0) 33.4(2.5)

RANKSIM 41.1(0.9) 34.1(0.5) 33.6(1.1) 53.5(1.2) 22.6(1.1) 20.5(0.5) 16.8(1.0) 31.4(2.8)

BMSE 42.1(0.7) 35.8(1.4) 34.1(1.3) 54.4(1.5) 23.7(1.2) 21.5(1.0) 18.1(0.5) 32.4(3.0)

LDS 41.6(0.3) 35.3(0.9) 34.5(1.1) 53.2(0.8) 23.2(0.2) 20.5(1.2) 18.3(0.5) 31.4(1.1)

INFOGRAPH 43.6(2.8) 35.3(2.3) 35.0(2.3) 58.3(4.1) 24.6(1.9) 21.3(1.5) 18.4(1.5) 35.4(4.1)

GREA 41.2(0.8) 33.3(0.5) 32.7(0.7) 55.3(3.0) 23.4(0.6) 20.0(0.6) 17.3(0.7) 34.3(2.9)

SGIR 38.9(0.7) 31.7(0.3) 31.5(1.1) 51.4(1.6) 21.1(1.2) 18.5(0.5) 15.9(1.4) 30.2(1.9)

Plym-Density

GNN 61.2(5.4) 63.4(18.9) 46.6(1.6) 72.0(2.8) 29.3(0.6) 29.6(3.3) 23.5(0.9) 35.5(2.0)

RANKSIM 57.5(1.8) 55.1(2.2) 46.3(1.8) 69.4(3.3) 29.3(1.6) 29.9(2.8) 23.1(2.1) 35.4(2.5)

BMSE 61.8(2.0) 59.1(8.6) 48.2(2.0) 75.9(3.5) 31.9(1.3) 31.8(4.2) 26.3(2.2) 38.2(3.2)

(scaled:×1, 000)
LDS 60.1(2.4) 60.4(6.2) 47.0(1.3) 71.3(2.5) 31.5(2.0) 33.2(3.5) 24.4(3.0) 38.0(2.4)

INFOGRAPH 54.9(1.7) 46.8(1.0) 43.0(1.9) 72.3(3.2) 29.3(1.8) 27.3(1.4) 22.6(1.2) 39.2(4.3)

GREA 60.3(1.9) 49.0(4.4) 48.1(2.5) 80.7(4.2) 32.3(1.6) 26.7(2.7) 27.2(2.3) 44.7(6.1)

SGIR 53.0(0.5) 45.4(1.7) 42.5(2.8) 68.6(2.6) 26.6(0.4) 24.0(2.2) 23.0(1.3) 33.4(3.0)

Plym-Oxygen

GNN 183.5(33.4) 6.3(3.2) 14.6(6.6) 464.0(85.3) 7.0(1.8) 2.4(0.7) 3.9(1.1) 29.9(7.2)

RANKSIM 165.7(27.4) 3.9(1.4) 13.0(2.0) 420.7(69.7) 5.9(1.4) 1.8(0.3) 3.6(1.7) 26.6(6.7)

BMSE 190.4(33.4) 26.4(21.6) 27.0(16.4) 454.3(88.9) 25.7(14.8) 14.9(11.7) 15.9(9.6) 63.2(23.5)

LDS 180.0(23.0) 6.6(4.0) 11.8(2.0) 456.3(60.2) 7.6(1.6) 2.4(0.6) 4.7(1.4) 33.6(9.2)

INFOGRAPH 199.5(31.5) 7.5(7.2) 13.0(1.8) 505.5(78.2) 7.8(1.9) 2.3(0.5) 5.1(2.2) 34.8(8.5)

GREA 182.5(30.0) 9.0(8.6) 14.4(4.9) 458.8(79.2) 7.1(1.3) 2.1(0.5) 4.4(1.3) 31.7(5.0)

SGIR 150.9(17.8) 3.8(1.1) 12.2(0.6) 382.8(46.9) 5.8(0.4) 2.1(0.7) 3.3(0.8) 24.4(6.8)

balancing: the gradually balanced training data reduce model bias to popular labels; the less biased323

model improves the quality of pseudo-labels and augmented examples in the few-shot region.324

Effectiveness on different graph regression tasks: We observe that the improvements on molecule325

regression tasks are more significant than those on polymer regression tasks. We hypothesize the326

reasons to be (1) the quality of unlabeled source data and (2) the size of the label space. First, our327

unlabeled graphs consist of more than a hundred thousand unlabeled small molecule graphs from328

QM9 [Ramakrishnan et al., 2014] and around ten thousand polymers (macromolecules) from [Liu329

et al., 2022]. The massive quantity of unlabeled molecules make it easier to have good quality330

pseudo-labels and augmented examples for the three small molecule regression tasks on Mol-Lipo,331

Mol-ESOL, and Mol-FreeSolv [Ramakrishnan et al., 2014]. Because the majority of unlabeled332

molecule graphs have a big domain gap with the polymer regression tasks, the quality of expanded333

training data in polymer regression tasks would be relatively worse than the quality of those in334

molecule regression. This inspires us to collect more polymer data in the future, even if their335

properties could not be annotated. Second, Figure 2 has shown that the label ranges in the polymer336

regression tasks are usually much wider than the ranges in the molecule regression tasks. This poses337

a great challenge for accurate predictions, especially when we train with a small dataset.338

5.3 RQ2: Ablation Studies on Framework Design339

We have five sub-questions to comprehensively analyze the framework design. Four ablation studies340

are (1) Gconf and Haug for data balancing; (2) choices of confidence score; (3) mutually enhanced341
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Table 2: Ablation study on molecule regression
datasets with the metric MAE (↓). σ is the con-
fidence score in Section 4.2.1. p is the reverse
sampling in Section 4.2.2. (h̃, ỹ) is the label-
anchored mixup in Section 4.3.

σ p (h̃, ỹ) All Many-shot Med.-shot Few-shot

M
ol

-L
ip

o

w/o Gunlbl 0.477(0.014) 0.378(0.030) 0.440(0.011) 0.600(0.006)

✓ ✗ ✗ 0.448(0.006) 0.371(0.004) 0.421(0.012) 0.543(0.016)

✗ ✓ ✗ 0.446(0.008) 0.356(0.003) 0.407(0.011) 0.564(0.016)

✓ ✓ ✗ 0.442(0.012) 0.372(0.007) 0.415(0.004) 0.533(0.026)

✗ ✗ ✓ 0.456(0.007) 0.372(0.014) 0.436(0.010) 0.549(0.005)

✓ ✓ ✓ 0.432(0.012) 0.357(0.019) 0.413(0.017) 0.515(0.020)

M
ol

-E
SO

L w/o Gunlbl 0.477(0.027) 0.375(0.014) 0.432(0.042) 0.637(0.042)

✓ ✗ ✗ 0.475(0.014) 0.369(0.014) 0.446(0.017) 0.618(0.039)

✗ ✓ ✗ 0.480(0.017) 0.380(0.035) 0.440(0.017) 0.630(0.020)

✓ ✓ ✗ 0.468(0.007) 0.379(0.012) 0.425(0.013) 0.612(0.028)

✗ ✗ ✓ 0.474(0.010) 0.353(0.018) 0.450(0.009) 0.623(0.027)

✓ ✓ ✓ 0.457(0.015) 0.370(0.022) 0.411(0.011) 0.604(0.024)

M
ol

-F
re

eS
ol

v w/o Gunlbl 0.619(0.019) 0.525(0.022) 0.590(0.035) 1.000(0.072)

✓ ✗ ✗ 0.604(0.020) 0.557(0.037) 0.560(0.029) 0.903(0.055)

✗ ✓ ✗ 0.660(0.028) 0.574(0.015) 0.650(0.036) 0.941(0.066)

✓ ✓ ✗ 0.568(0.029) 0.538(0.020) 0.520(0.045) 0.831(0.132)

✗ ✗ ✓ 0.593(0.045) 0.536(0.033) 0.542(0.067) 0.947(0.062)

✓ ✓ ✓ 0.563(0.026) 0.535(0.038) 0.528(0.046) 0.777(0.061)

Table 3: Choices of regression confidence with
MAE (↓). All other SGIR components are dis-
abled except the regression confidence score.
GRation in Eq. (2) removes noise more effec-
tively than others in graph regression tasks.

Choice of σ All Many-shot Med.-shot Few-shot

M
ol

-L
ip

o

SIMPLE 0.481(0.010) 0.389(0.007) 0.440(0.013) 0.603(0.023)

DROPOUT 0.450(0.026) 0.365(0.031) 0.420(0.022) 0.555(0.037)

CERTI 0.452(0.011) 0.384(0.018) 0.433(0.013) 0.532(0.010)

DER 1.026(0.033) 0.604(0.035) 0.760(0.016) 1.672(0.111)

GRATION 0.448(0.006) 0.371(0.004) 0.421(0.012) 0.543(0.016)

M
ol

-E
SO

L

SIMPLE 0.499(0.016) 0.397(0.023) 0.457(0.018) 0.656(0.033)

DROPOUT 0.483(0.011) 0.381(0.027) 0.443(0.018) 0.636(0.027)

CERTI 0.487(0.030) 0.389(0.039) 0.439(0.024) 0.647(0.043)

DER 0.918(0.135) 0.776(0.086) 0.826(0.098) 1.182(0.245)

GRATION 0.475(0.014) 0.369(0.014) 0.446(0.017) 0.618(0.039)

M
ol

-F
re

eS
ol

v SIMPLE 0.697(0.056) 0.616(0.025) 0.663(0.033) 1.054(0.260)

DROPOUT 0.639(0.013) 0.578(0.060) 0.589(0.017) 1.005(0.140)

CERTI 0.654(0.049) 0.589(0.046) 0.611(0.053) 0.999(0.130)

DER 1.483(0.174) 1.180(0.162) 1.450(0.188) 2.480(0.373)

GRATION 0.604(0.020) 0.557(0.037) 0.560(0.029) 0.903(0.055)

iterative process; and (4) quality and diversity of the label-anchored mixup. (5) The sensitivity342

analysis is conducted for the label interval number C. Given page limitation, we present major results343

for the first two questions below. Readers can refer to the appendix C.4 for complete results.344

Effect of balancing data with different components in Gconf and Haug: Studies on molecule345

regression tasks in Table 2 present how SGIR improves the initial supervised performance to the most346

advanced semi-supervised performance step by step. In the first line for each dataset, we use only347

imbalanced training data Gconf to train the regression model and observe that the model performs badly348

in the few-shot region. The fourth line for each dataset combines the use of regression confidence σ349

and the reverse sampling p to produce Gconf. It improves the MAE performance in the few-shot region350

relatively by +11.2%, +3.2%, and +15.9% on the Mol-Lipo, Mol-ESOL, and Mol-FreeSolv datasets,351

respectively. The label-anchored mixup algorithm produces the augmented graph representations352

Haug for the under-represented label ranges. By applying Haug with Gconf, the last line continues353

improving the MAE performance in the few-shot region (compared to the third line) relatively by354

+3.3%, +1.3%, and +6.5% on the Mol-Lipo, Mol-ESOL, and Mol-FreeSolv datasets, respectively.355

Because the use of Haug provides a chance to lead the label distributions of training data closer to356

a perfect balance. Specifically, the effect of semi-supervised pseudo-labeling, or Gconf, comes from357

the regression confidence σ and reverse sampling rate p. Results on Mol-ESOL and Mol-FreeSolv358

show that without the confidence σ (the second line), reverse sampling was useless due to heavy label359

noise. Results on all molecule datasets indicate that without the reverse sampling rate p (the first360

line), the improvement to few-shot region by pseudo-labels was limited.361

Effect of regression confidence measurements: Table 3 shows that compared to existing methods362

that could define regression confidence, the measurement we define and use, GRATION, is the best363

option for evaluating the quality of pseudo-labels in graph regression tasks. Because GRATION uses364

various environments subgraphs, which provide diverse perturbations for robust graph learning [Liu365

et al., 2022]. We also observe that DROPOUT can be a good alternative of GRATION. DROPOUT has366

extensive assessments [Gal and Ghahramani, 2016] and makes it possible for SGIR to be extended to367

regression tasks for other data types such as images and texts.368

6 Conclusions369

In this work, we explored a novel graph imbalanced regression task and improved semi-supervised370

learning on it. We proposed a self-training framework to gradually reduce the model bias of data371

imbalance through multiple iterations. In each iteration, we selected more high-quality pseudo-labels372

for rare label values and continued augmenting training data to approximate the perfectly balanced373

label distribution. Experiments demonstrated the effectiveness and reasonable design of the proposed374

framework, especially on material science.375
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Table 4: Comparing SGIR with related methods on research problem settings.

Is Semi-supervised Learning Addressing Solving
method? Graph data? Imbalance? Regression?

(Otherwise, assuming:) (Supervised) (Non-graph) (Balance) (Classification)

DARP Kim et al. [2020] ✓ ✓
DASO Oh et al. [2022] ✓ ✓
BI-SAMPLING He et al. [2021] ✓ ✓
CADR Hu et al. [2022] ✓ ✓
CREST Wei et al. [2021] ✓ ✓

LDS Yang et al. [2021] ✓ ✓
BMSE Ren et al. [2022] ✓ ✓
RANKSIM Gong et al. [2022] ✓ ✓

SSDKL Jean et al. [2018] ✓ ✓
INFOGRAPH Sun et al. [2020] ✓ ✓ ✓

SGIR (Ours) ✓ ✓ ✓ ✓

A Related Work516

We compare SGIR with a line of related work on four important settings of research problem517

in Table 4. From the table we find that existing work mostly focused on solving imbalance problems518

in semi-supervised classification tasks with categorical labels and non-graph data. There lacks519

an exploration of research on semi-supervised learning and imbalance learning for graph property520

prediction.521

B Proofs of Theoretical Motivations522

In imbalanced classification tasks, the generalization error bound enforces bigger margins for minority523

classes Cao et al. [2019]. And it may hurt the model performance for well-represented classes Liu524

et al. [2019], Tian et al. [2020]. Also, there is a lack of study on the theoretical principle of imbalanced525

regression. So, we extend the generalization error bound to the regression tasks and utilize unlabeled526

graphs to increase the number of data examples for under-represented label ranges, instead of527

penalizing the margins for the well-represented label ranges.528

As we divide the label distribution into C intervals, every graph example can be assigned into an529

interval (as the ground-truth interval) according to the distance between the interval center and the530

ground-truth label value. Besides, we use S[bi,bi+1)(G) to denote the reciprocal of the distance531

between the predicted label of the graph G and the i-th interval [bi, bi+1), where i ∈ {1, 2, . . . , C}.532

In this way, we could define f(·) as a regression function that outputs a continuous predicted label.533

Then S[bi,bi+1)(G) consists of f(·) and outputs the logits to classify the graph to the i-the interval.534

We consider all training examples to follow the same distribution. We assume that conditional on535

label intervals, the distributions of graph sampling are the same at training and testing stages. So, the536

standard 0-1 test error on the balanced test distribution is537

Ebal [f ] = Pr
(G,[bi,bi+1))∼Pbal

[
S[bi,bi+1)(G) < max

j ̸=i
S[bj ,bj+1)(G)

]
, (5)

where Pbal denotes the balanced test distribution. It first samples a label interval uniformly and then538

samples graphs conditionally on the interval. The error for the i-th interval [bi, bi+1) is defined as539

E[bi,bi+1) [f ] = Pr
G∼P[bi,bi+1)

[
S[bi,bi+1)(G) < max

j ̸=i
S[bj ,bj+1)(G)

]
, (6)

where P[bi,bi+1) denotes the distribution for the interval [bi, bi+1). We define γ (G, [bi, bi+1)) =540

S[bi,bi+1)(G)−maxj ̸=i S[bj ,bj+1)(G) as the margin of an example G assigned to the interval [bi, bi+1).541

To define the training margin γ
[bi,bi+1)

for the interval [bi, bi+1), we calculate the minimal margin542

across all examples assigned to that interval:543

γ
[bi,bi+1)

= min
Gj∈[bi,bi+1)

γ (Gj , [bi, bi+1)) . (7)
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We assume that the MAE regression loss is small enough to correctly assign all training examples to544

the corresponding intervals. Given the hypothesis class F , C(F) is assumed to be a proper complexity545

measure of F . We assume there are n[bi,bi+1) examples i.i.d sampled from the conditional distribution546

P[bi,bi+1) for the interval [bi, bi+1). Then, we rely on two theorems from previous studies Kakade547

et al. [2008], Cao et al. [2019], Zhao et al. [2021a] to derive theorem 4.1.548

B.1 Existing Theorems549

Given a classifier f from the function class F , an input example x from the feature space X and its550

label y.551

Theorem B.1 (from Bartlett and Mendelson [2002], Kakade et al. [2008]) Assume the expected552

loss on examples is E [f ] and the corresponding empirical loss ˆE [f ]. Assume the loss is Lipschitz with553

Lipschitz constant Le. And it is bounded by c0. For any δ > 0 and with probability at least 1 − δ554

simultaneously for all f ∈ F we have that555

E [f ] ≤ Ê [f ] + 2LeRn(F) + c0

√
log(1/δ)

2n
, (8)

where n is the number of example and R̂n(F) is the Rademacher complexity measurement of the556

hypothesis class F .557

Theorem B.2 (from Kakade et al. [2008]) Applying theorem B.1 and considering the fraction558

of data having γ-margin mistakes, or Kγ [f ] := |i:yif(xi)<γ|
n . Assume ∀f ∈ F we have559

supx∈X |f(x)| ≤ c1. Then, with probability at least 1 − δ over the example, for all margins560

γ > 0 and all f ∈ F we have,561

E [f ] ≤ Kγ [f ] + 4
Rn(F)

γ
+

√
2 log (log2(4c1/γ)) + log(1/δ)

2n
, (9)

≤ Kγ [f ] + 4
Rn(F)

γ
+

√√√√ log
(
log2

4c1
γ

)
n

+

√
log(1/δ)

2n
. (10)

B.2 Proof of theorem 4.1562

In our work, we use the regression function f to predict the label value. We calculate the reciprocal563

of the distance between the predicted label and interval centers as unnormalized probabilities of the564

graph S[bi,bi+1)(G) being assigned to the interval [bi, bi+1), i ∈ {1, 2, . . . , C}. Given a hard margin565

γ, we use Eγ,[bi,bi+1)[f ] to denote the hard margin loss for examples in the interval [bi, bi+1):566

Eγ,[bi,bi+1)[f ] = Pr
G∼P[bi,bi+1)

[
S[bi,bi+1)(G) < max

j ̸=i
S[bj ,bj+1)(G) + γ

]
. (11)

We assume its empirical variant is Êγ,[bi,bi+1)[f ]. The empirical Rademacher complexity567

R̂(bi,bi+1](F) is used as the complexity measurement C(F) for the hypothesis class F . With a568

vector σ of i.i.d. uniform {−1,+1} bits, we have569

R̂(bi,bi+1](F) = (12)

1

n(bi,bi+1]
Eσ

sup
f∈F

∑
Gi∈[bi,bi+1)

σi

[
S[bi,bi+1) (Gi)−max

j ̸=i
S[bj ,bj+1) (Gi)

] (13)

As any Gi in the interval (bi, bi+1] is an i.i.d. sample from the distribution P[bi,bi+1), we directly apply570

the standard margin-based generalization bound theorem B.2 Kakade et al. [2008]: with probability571
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Table 5: Statistics of six tasks for graph property regression.
Dataset # Graphs (Train/Valid/Test) # Nodes (Avg./Max) # Edges (Avg./Max)

Mol-Lipo 2,048 / 1,076 / 1,076 27.0 / 115 59.0 / 236
Mol-ESOL 446 / 341 / 341 13.3 / 55 27.4 / 125
Mol-FreeSolv 276 / 183 / 183 8.7 / 24 16.8 / 50

Plym-Melting 2,419 / 616 / 616 26.9 / 102 55.4 / 212
Plym-Density 844 / 425 / 425 27.3 / 93 57.6 / 210
Plym-Oxygen 339 / 128 / 128 37.3 / 103 82.1 / 234

Superpixel-Age 3619 / 628 / 628 67.9 / 75.0 265.6 / 300

1− δ, for all choices of γ
[bi,bi+1)

> 0 and f ∈ F ,572

E[bi,bi+1) ≤ Êγ,[bi,bi+1)[f ] + 4
R̂(bi,bi+1](F)

γ
[bi,bi+1)

(14)

+

√√√√√2 log

(
log2(

4c1
γ
[bi,bi+1)

)

)
+ log(1/δ)

2n[bi,bi+1)
,

≤ Êγ,[bi,bi+1)[f ] +
1

γ
[bi,bi+1)

√
C(F)

n[bi,bi+1)
(15)

+

√√√√√2 log

(
log2(

4c1
γ
[bi,bi+1)

)

)
log(1/δ)

2n[bi,bi+1)
,

⪅
1

γ
[bi,bi+1)

√
C(F)

n[bi,bi+1)
+

√
log log2(1/γ[bi,bi+1)

) + log(1/δ)

2n[bi,bi+1)
. (16)

We derive Eq. (15) from Eq. (14) because the Rademacher complexity R̂(bi,bi+1](F) typically scales573

as
√

C(F)
n(bi,bi+1]

for some complexity measurement C(F) Cao et al. [2019]. We derive Eq. (16) from574

Eq. (15) by ignoring constant factors Cao et al. [2019]. Since the overall performance Ebal[f ] is575

calculated over all intervals, we get it as Ebal[f ] =
1
C

∑C
i=1 E[bi,bi+1).576

C Experiments577

C.1 Dataset Details578

We give a comprehensive introduction to our datasets used for regression tasks and splitting idea579

from Yang et al. [2021], Gong et al. [2022]. The data statistics is presented in Table 5.580

Mol-Lipo It is a dataset to predict the property of lipophilicity consisting of 4200 molecules. The581

lipophilicity is important for solubility and membrane permeability in drug molecules. This dataset582

originates from ChEMBL Mendez et al. [2019]. The property is from experimental results for the583

octanol/water distribution coefficient (logD at pH 7.4).584

Mol-ESOL It is to predict the water solubility (log solubility in mols per litre) from chemical585

structures consisting of 1128 small organic molecules.586

Mol-FreeSolv It is to predict the hydration free energy of molecules in water consisting of 642587

molecules. The property is experimentally measured or calculated.588

Plym-Melting It is used to predict the property of melting temperature (◦C). It is collected from589

PolyInfo, a web-based polymer database Otsuka et al. [2011].590
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Plym-Density It is used to predict the property of polymer density (g/cm3). It is collected from591

PolyInfo, a web-based polymer database Otsuka et al. [2011].592

Plym-Oxygen It is used to predict the property of oxygen permeability (Barrer). It is created from593

the Membrane Society of Australasia portal consisting of experimentally measured gas permeability594

data Thornton et al. [2012].595

Unlabeled Data for Molecules and Polymers The total number of unlabeled graphs for molecule596

and polymers is 146,129, consisting of 133,015 molecules from QM9 Ramakrishnan et al. [2014] and597

13,114 monomers (the repeated units of polymers) from Liu et al. [2022]. QM9 is a molecule dataset598

for stable small organic molecules consisting of atoms C, H, O, N, and F. We use it as a source of599

unlabeled data. We integrate four polymer regression datasets including Plym-Melting, Plym-Density,600

Plym-Oxygen and another one from Liu et al. [2022] for the glass transition temperature as the other601

source of unlabeled data. We note that the unlabeled graphs may be slightly less than 146,129 for a602

polymer task on Plym-Melting, Plym-Density or Plym-Oxygen. It is because we remove the overlap603

of graphs for the current polymer task with the polymer unlabeled data.604

Data splitting for Molecules and Polymers We split the datasets based on the approach in previous605

works Yang et al. [2021], Gong et al. [2022] motivated for two reasons. First, we want the training sets606

to well characterize the imbalanced label distribution as presented in the original datasets. Second,607

we want relatively balanced valid and test sets to fairly evaluate the model performance in different608

ranges of label values.609

Superpixel-Age The details of the age regression dataset are presented in Table 5 (Superpixel-Age)610

and Figure 3. The graph dataset Superpixel-Age is constructed from image superpixels using the611

algorithms from Knyazev et al. [2019] on the image dataset AgeDB-DIR from Moschoglou et al.612

[2017], Yang et al. [2021]. Each face image in AgeDB-DIR has an age label from 0 to 101. We fisrt613

compute the SLIC superpixels for each image without losing the label-specific information Achanta614

et al. [2012], Knyazev et al. [2019]. Then we use the superpixels as nodes and calculate the spatial615

distance between superpixels to build edges for each image Knyazev et al. [2019]. Binary edges616

are constructed between superpixel nodes by applying a threshold on the top-5% of the smallest617

spatial distances. After building a graph for each image, we follow the data splitting in Yang618

et al. [2021] to study the imbalanced regression problem. We randomly remove 70% labels in the619

training/validation/test data and use them as unlabeled graphs. Finally, the graph dataset Superpixel-620

Age consists of 3,619 graphs for training, 628 graphs for validation, 628 graphs for testing, and621

11,613 unlabeled graphs for semi-supervised learning.622

C.2 Implementation Details623

We use the Graph Isomorphism Network (GIN) Xu et al. [2019] as the GNN encoder for fθ624

to get the graph representation and three layers of Multilayer perceptron (MLP) as the decoder625

to predict graph properties. The threshold τ for selecting confident predictions is determined by626

the value at a certain percentile of the confidence score distribution. To implement it, we set it627

up as a hyperparameter τpct determining the percentile value of the prediction variance (i.e., the628

reciprocal of confidence) of the labeled training data. In experiments, all methods are implemented629

on Linux with Intel Xeon Gold 6130 Processor (16 Cores @2.1Ghz), 96 GB of RAM, and a RTX630

2080Ti card (11 GB RAM). For all the methods, we reports the results on the test sets using the631

mean (standard deviation) over 10 runs with parameters that are randomly initialized. Note that the632

underlying design of the graph learning model used in SGIR is GREA with a learning objective as633

follows. Given (G, y) ∈ Gimb ∪ Gconf, GREA Liu et al. [2022] will output a vector m ∈ RK that634

indicates the probability of K nodes in a graph being in the rationale subgraph. So, we could get635

h(r) = 1⊤
K ·(m×H) and h(e) = 1⊤

K ·((1K−m)×H), where H ∈ RK×d is the node representation636

matrix. By this, the optimization objectives of a graph consist of637 
ℓimb+conf = MAE(f(h(r)), y) + EG′

[
MAE(f(h+ h′), y)

]
+VarG′

(
{MAE(f(h+ h′), y)}

)
,

ℓregu = 1
K

∑K
k=1 |mk| − γ
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Figure 3: Imbalanced train-
ing distributions Gimb in the
Superpixel-Age dataset.

MAE ↓ GM ↓

All Many-shot Med.-shot Few-shot All Many-shot Med.-shot Few-shot

GNN 14.583(0.413) 10.524(0.994) 11.698(0.404) 22.127(0.780) 9.996(0.386) 7.265(0.858) 7.910(0.492) 18.404(0.673)

RANKSIM 14.464(0.401) 10.468(0.759) 11.610(0.774) 21.910(0.700) 9.606(0.303) 6.936(0.598) 7.721(0.660) 17.534(1.768)

BMSE 15.179(0.594) 10.639(2.303) 12.201(0.900) 23.321(2.525) 10.419(0.393) 7.249(1.526) 8.659(0.827) 19.719(4.318)

LDS 14.674(0.191) 10.972(0.495) 11.985(0.627) 21.623(0.926) 9.867(0.291) 7.317(0.672) 7.997(0.633) 17.298(0.957)

INFOGRAPH 14.515(0.605) 10.610(1.063) 11.150(0.158) 22.476(1.147) 9.879(0.524) 7.391(0.995) 7.377(0.333) 18.969(1.873)

GREA 14.682(0.300) 10.283(0.503) 11.999(0.585) 22.329(0.570) 10.037(0.438) 7.051(0.455) 8.273(0.565) 18.142(1.276)

SGIR 13.787(0.123) 10.171(0.4156) 11.066(0.389) 20.687(0.839) 9.261(0.221) 6.928(0.355) 7.247(0.593) 16.769(1.418)

Table 6: Results of MEAN(STD) on the age prediction using graphs from image
superpixels. The best mean is bolded. The best baseline is underlined.

Table 7: Nine options on the implementation of the label-anchored mixup in Eq. (4). Except for the
imbalanced labeled graphs Gimb, the additional source of the interval representation zi and the real
graph representation hj could be Gconf or Gunlbl. We extensively explore the options for Haug and find
that source zi from Gimb and source hj from Gunlbl are usually the best.

Additional Source Mol-Lipo Plym-Oxygen

zi hj All Many-shot Med.-shot Few-shot All Many-shot Med.-shot Few-shot

None None 0.439(0.004) 0.361(0.010) 0.419(0.013) 0.529(0.022) 165.5(12.2) 4.7(1.7) 16.5(7.2) 417.4(31.1)

None Gconf 0.447(0.015) 0.359(0.004) 0.423(0.016) 0.549(0.033) 158.1(17.0) 4.1(0.7) 11.3(0.7) 401.9(45.1)

None Gunlbl 0.432(0.012) 0.357(0.019) 0.413(0.017) 0.515(0.020) 150.9(17.8) 3.8(1.1) 12.2(0.6) 382.8(46.9)

Gconf None 0.448(0.012) 0.367(0.008) 0.423(0.008) 0.544(0.028) 166.0(18.2) 11.9(11.3) 12.6(0.9) 414.0(52.6)

Gconf Gconf 0.445(0.007) 0.364(0.008) 0.418(0.010) 0.542(0.012) 158.8(8.4) 7.7(8.9) 15.4(7.8) 397.5(15.4)

Gconf Gunlbl 0.449(0.021) 0.360(0.023) 0.416(0.016) 0.560(0.039) 169.5(56.1) 4.5(1.2) 12.7(1.8) 430.4(145.0)

Gunlbl None 0.446(0.007) 0.367(0.009) 0.415(0.011) 0.546(0.011) 173.1(30.3) 3.7(0.4) 13.5(1.4) 440.0(79.3)

Gunlbl Gconf 0.446(0.011) 0.368(0.011) 0.421(0.012) 0.539(0.024) 174.5(9.3) 8.1(3.3) 11.9(0.9) 440.4(25.5)

Gunlbl Gunlbl 0.451(0.007) 0.371(0.012) 0.425(0.008) 0.547(0.015) 156.3(20.5) 8.2(2.9) 12.9(0.9) 392.3(50.6)

ℓregu regularizes the vector m and γ ∈ [0, 1] is a hyperparameter to control the expected size of638

G(r). G′ is the possible graph in the same batch that provides environment subgraphs and h′ is639

the representation vector of the environment subgraph. When combining the rationale-environment640

pairs to create new graph examples, the original GREA creates the same number of examples for the641

under-represented rationale and the well/over-represented rationale. We observe that it may make the642

training examples more imbalanced. Therefore, we use the reweighting technique to penalize more for643

the expectation term (EG′
[
MAE(f(h+h′), y)

]
) and variance term (VarG′

(
{MAE(f(h+h′), y)}

)
)644

in ℓimb+conf when the label is from the under-represented ranges. The weight of the expectation and645

variance terms for a graph with label y is646

w =
exp(

∑B
b=1 |y − yb|/t)

exp(
∑B

j=1

∑B
b=1 |y − yb|/t)

,

where B is the batch size.647

C.3 Additional Experimental Results648

Effectiveness on Age Prediction Besides molecules and polymers, Table 6 presents more results649

by comparing different methods on the Superpixel-Age dataset. SGIR consistently improves the650

model performance compared to the best baselines in different label ranges. In the entire label range,651

SGIR reduces the MAE (GM) relatively by +4.7% (+3.6%). The advantages mainly stem from the652

enhancements in the few-shot region, as demonstrated in Table 6, which shows an improvement of653

+4.3% and +3.1% on the MAE and GM metrics, respectively. Different from LDS, SGIR improves654

the model performance for the under-represented and well-represented label ranges at the same time.655

Table 6 showcases that the empirical advantages of SGIR could generalize across different domains.656

C.4 Complete Ablation Studies and Sensitivity Analysis657

(RQ 2.3) Effect of iterative self-training: Figure 4 confirms that model learning and balanced658

training data mutually enhance each other in SGIR. Because we find that the model performance659

gradually approximates and outperforms the best baseline in the entire label range, as well as the660
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Figure 4: Test performance of SGIR through multiple self-training iterations. MAE for Plym-Density
is scaled by ×1, 000. The iterative self-training algorithm is effective for gradually improving the
quality of training data.
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Figure 5: Sensitivity analysis on the number of label intervals (C) for pseudo-labeling selection (Gconf,
top) and label-anchored mixup algorithm (Haug, bottom). Results are drawn on the Plym-Oxygen.

few-shot region, after multiple iterations. It also indicates that the quality of the training data is661

steadily improved over iterations. Especially for the under-represented label ranges.662

(RQ 2.4) Effect of label-anchored mixup augmentation: We implement zi using Gimb to improve663

the augmentation quality and Gimb ∪Gunlbl to improve the diversity. For better presentation, we extract664

Table 7 from Table 8 and Table 9 to support our idea. It shows that when many noisy representation665

vectors from unlabeled graphs are included in the interval center zi, the quality of augmented666

examples is relatively low, which degrades the model performance in different label ranges. On the667

other hand, the representations of unlabeled graphs improve the diversity of the augmented examples668

when we assign low mixup weights to them as in Eq. (4). Considering both quality and diversity,669

the effectiveness of the algorithm is further demonstrated in Table 2 by significantly reducing the670

errors for rare labels. From the fifth line of each dataset in Table 2, we find that it is also promising to671

directly use the label-anchored mixup augmentation (as Gimb ∪Haug) for data balancing. Although672

its performance may be inferior to the performance using Gimb ∪ Gconf (as the third line of each673

dataset in Table 2), the potential of the label-anchored mixup algorithm could be further enhanced by674

improving the quality of the augmented examples to close the gap with real molecular graphs.675

(RQ 2.5) Sensitivity of the label interval C: We find the best values of C in main experiments676

using the validation set for pseudo-labeling and label-anchored mixup. We suggest setting the number677

C to approximately 100 for pseudo-labeling and around 1,000 for label-anchored mixup. Specifically,678

sensitivity analysis is conducted on the Plym-Oxygen dataset to analyze the effect of the number C.679

Results are presented in Figure 5.680
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Table 8: Complete results of ablation study and mixup options (MAE ↓ and GM ↓) on three molecule
datasets. The best mean is bolded. For the label-anchored mixup options, the first column is the
source of zi and the second column is the source of hj .

MAE ↓ GM ↓
All Many-shot Med.-shot Few-shot All Many-shot Med.-shot Few-shot

Mol-Lipo

A
bl

at
io

n
St

ud
y Gimb 0.477(0.014) 0.378(0.030) 0.440(0.011) 0.600(0.006) 0.288(0.008) 0.236(0.015) 0.267(0.013) 0.371(0.017)

Gimb ∪ Gconf 0.442(0.012) 0.372(0.007) 0.415(0.004) 0.533(0.026) 0.267(0.013) 0.240(0.008) 0.245(0.016) 0.320(0.027)

Gimb ∪ Gconf (w/o σ) 0.446(0.008) 0.356(0.003) 0.407(0.011) 0.564(0.016) 0.272(0.006) 0.222(0.002) 0.244(0.008) 0.363(0.013)

Gimb ∪ Gconf (w/o p) 0.448(0.006) 0.371(0.004) 0.421(0.012) 0.543(0.016) 0.270(0.002) 0.228(0.009) 0.255(0.008) 0.333(0.015)

Gimb ∪Haug 0.456(0.007) 0.372(0.014) 0.436(0.010) 0.549(0.005) 0.278(0.013) 0.235(0.019) 0.265(0.014) 0.338(0.006)

Gimb ∪ Gconf ∪Haug 0.432(0.012) 0.357(0.019) 0.413(0.017) 0.515(0.020) 0.264(0.013) 0.224(0.016) 0.256(0.017) 0.314(0.015)

z i
an

d
h j

op
tio

ns
in

M
ix

up

Gimb

Gimb 0.439(0.004) 0.361(0.010) 0.419(0.013) 0.529(0.022) 0.267(0.005) 0.231(0.015) 0.256(0.010) 0.318(0.020)

Gimb ∪ Gconf 0.447(0.015) 0.359(0.004) 0.423(0.016) 0.549(0.033) 0.274(0.017) 0.221(0.007) 0.264(0.020) 0.344(0.031)

Gimb ∪ Gunlbl 0.432(0.012) 0.357(0.019) 0.413(0.017) 0.515(0.020) 0.264(0.013) 0.224(0.016) 0.256(0.017) 0.314(0.015)

Gimb ∪ Gconf

Gimb 0.448(0.012) 0.367(0.008) 0.423(0.008) 0.544(0.028) 0.270(0.013) 0.230(0.013) 0.257(0.014) 0.328(0.025)

Gimb ∪ Gconf 0.445(0.007) 0.364(0.008) 0.418(0.010) 0.542(0.012) 0.271(0.009) 0.227(0.011) 0.256(0.011) 0.337(0.016)

Gimb ∪ Gunlbl 0.449(0.021) 0.360(0.023) 0.416(0.016) 0.560(0.039) 0.270(0.019) 0.223(0.017) 0.255(0.019) 0.340(0.032)

Gimb ∪ Gunlbl

Gimb 0.446(0.007) 0.367(0.009) 0.415(0.011) 0.546(0.011) 0.268(0.006) 0.228(0.008) 0.248(0.005) 0.336(0.012)

Gimb ∪ Gconf 0.446(0.011) 0.368(0.011) 0.421(0.012) 0.539(0.024) 0.270(0.004) 0.233(0.010) 0.249(0.009) 0.334(0.017)

Gimb ∪ Gunlbl 0.451(0.007) 0.371(0.012) 0.425(0.008) 0.547(0.015) 0.273(0.008) 0.222(0.007) 0.260(0.012) 0.344(0.014)

Mol-ESOL

A
bl

at
io

n
St

ud
y Gimb 0.477(0.027) 0.375(0.014) 0.432(0.042) 0.637(0.042) 0.273(0.024) 0.215(0.023) 0.248(0.043) 0.401(0.039)

Gimb ∪ Gconf 0.468(0.007) 0.379(0.012) 0.425(0.013) 0.612(0.028) 0.263(0.009) 0.219(0.007) 0.236(0.017) 0.366(0.020)

Gimb ∪ Gconf (w/o σ) 0.480(0.017) 0.380(0.035) 0.440(0.017) 0.630(0.020) 0.269(0.016) 0.219(0.028) 0.249(0.024) 0.368(0.017)

Gimb ∪ Gconf (w/o p) 0.475(0.014) 0.369(0.014) 0.446(0.017) 0.618(0.039) 0.267(0.012) 0.210(0.013) 0.251(0.017) 0.372(0.050)

Gimb ∪Haug 0.474(0.010) 0.353(0.018) 0.450(0.009) 0.623(0.027) 0.272(0.004) 0.202(0.012) 0.257(0.011) 0.397(0.034)

Gimb ∪ Gconf ∪Haug 0.457(0.015) 0.370(0.022) 0.411(0.011) 0.604(0.024) 0.263(0.016) 0.226(0.021) 0.240(0.015) 0.347(0.030)

z i
an

d
h j

op
tio

ns
in

M
ix

up

Gimb

Gimb 0.466(0.009) 0.374(0.023) 0.430(0.010) 0.604(0.032) 0.266(0.010) 0.214(0.027) 0.242(0.018) 0.379(0.016)

Gimb ∪ Gconf 0.460(0.016) 0.368(0.026) 0.420(0.018) 0.605(0.026) 0.268(0.017) 0.215(0.023) 0.252(0.022) 0.362(0.016)

Gimb ∪ Gunlbl 0.457(0.015) 0.370(0.022) 0.411(0.011) 0.604(0.024) 0.263(0.016) 0.226(0.021) 0.240(0.015) 0.347(0.030)

Gimb ∪ Gconf

Gimb 0.469(0.017) 0.369(0.025) 0.432(0.020) 0.615(0.037) 0.260(0.014) 0.204(0.028) 0.248(0.013) 0.358(0.048)

Gimb ∪ Gconf 0.466(0.003) 0.376(0.014) 0.425(0.011) 0.610(0.013) 0.261(0.004) 0.204(0.005) 0.242(0.013) 0.370(0.013)

Gimb ∪ Gunlbl 0.461(0.010) 0.366(0.025) 0.424(0.020) 0.604(0.026) 0.264(0.015) 0.219(0.027) 0.244(0.017) 0.354(0.036)

Gimb ∪ Gunlbl

Gimb 0.472(0.009) 0.369(0.022) 0.435(0.012) 0.623(0.025) 0.266(0.005) 0.202(0.015) 0.257(0.012) 0.366(0.016)

Gimb ∪ Gconf 0.476(0.013) 0.387(0.027) 0.426(0.013) 0.630(0.042) 0.271(0.017) 0.211(0.018) 0.253(0.022) 0.382(0.040)

Gimb ∪ Gunlbl 0.479(0.026) 0.368(0.012) 0.448(0.033) 0.629(0.047) 0.269(0.016) 0.210(0.010) 0.253(0.023) 0.373(0.033)

Mol-FreeSolv

A
bl

at
io

n
St

ud
y Gimb 0.619(0.019) 0.525(0.022) 0.590(0.035) 1.000(0.072) 0.325(0.040) 0.289(0.006) 0.316(0.062) 0.521(0.084)

Gimb ∪ Gconf 0.568(0.029) 0.538(0.020) 0.520(0.045) 0.831(0.132) 0.288(0.031) 0.295(0.037) 0.270(0.037) 0.365(0.088)

Gimb ∪ Gconf (w/o σ) 0.660(0.028) 0.574(0.015) 0.650(0.036) 0.941(0.066) 0.325(0.016) 0.302(0.007) 0.319(0.029) 0.437(0.056)

Gimb ∪ Gconf (w/o p) 0.604(0.020) 0.557(0.037) 0.560(0.029) 0.903(0.055) 0.293(0.024) 0.307(0.050) 0.260(0.018) 0.416(0.080)

Gimb ∪Haug 0.593(0.045) 0.536(0.033) 0.542(0.067) 0.947(0.062) 0.269(0.022) 0.259(0.037) 0.253(0.050) 0.409(0.033)

Gimb ∪ Gconf ∪Haug 0.563(0.026) 0.535(0.038) 0.528(0.046) 0.777(0.061) 0.264(0.029) 0.286(0.013) 0.244(0.046) 0.304(0.078)

z i
an

d
h j

op
tio

ns
in

M
ix

up

Gimb

Gimb 0.572(0.006) 0.528(0.030) 0.531(0.017) 0.852(0.090) 0.289(0.013) 0.299(0.026) 0.265(0.019) 0.370(0.079)

Gimb ∪ Gconf 0.575(0.017) 0.551(0.018) 0.516(0.034) 0.863(0.071) 0.282(0.014) 0.298(0.015) 0.249(0.012) 0.389(0.058)

Gimb ∪ Gunlbl 0.563(0.026) 0.535(0.038) 0.528(0.046) 0.777(0.061) 0.264(0.029) 0.286(0.013) 0.244(0.046) 0.304(0.078)

Gimb ∪ Gconf

Gimb 0.568(0.032) 0.535(0.038) 0.513(0.036) 0.867(0.083) 0.267(0.019) 0.285(0.020) 0.235(0.026) 0.357(0.035)

Gimb ∪ Gconf 0.577(0.021) 0.537(0.052) 0.522(0.012) 0.896(0.020) 0.280(0.018) 0.301(0.040) 0.246(0.018) 0.374(0.048)

Gimb ∪ Gunlbl 0.565(0.027) 0.518(0.034) 0.522(0.034) 0.864(0.110) 0.262(0.024) 0.255(0.026) 0.247(0.022) 0.360(0.086)

Gimb ∪ Gunlbl

Gimb 0.621(0.053) 0.555(0.044) 0.587(0.063) 0.939(0.176) 0.327(0.048) 0.321(0.024) 0.304(0.059) 0.473(0.105)

Gimb ∪ Gconf 0.598(0.042) 0.552(0.029) 0.545(0.040) 0.924(0.097) 0.311(0.040) 0.300(0.051) 0.295(0.040) 0.428(0.067)

Gimb ∪ Gunlbl 0.559(0.023) 0.518(0.023) 0.503(0.016) 0.882(0.081) 0.266(0.017) 0.278(0.029) 0.229(0.010) 0.410(0.047)

Complete results on the effect of balancing data and label-anchored mixup Table 8 and Table 9681

present studies on the effect of balancing data and different options in the label-anchored mixup682

augmentation for molecules and polymers, respectively. They provide more evidence to our obser-683

vations that (1) the effect of our pseudo-labeling method (Gimb ∪ Gconf) about improving the model684

performance in the entire label range and the few-shot region; (2) the essential role of the regression685

confidence σ and reverse sampling rate p in our pseudo-labeling about improving pseudo-label quality686

and reducing imbalance label bias; and (3) the complementary effect of Haug about approximating687

the perfect balance of the training distribution.688
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Table 9: Complete results of ablation study and mixup options (MAE ↓ and GM ↓) on three polymer
datasets. The best mean is bolded. For the label-anchored mixup options, the first column is the
source of zi and the second column is the source of hj .

MAE ↓ GM ↓
All Many-shot Med.-shot Few-shot All Many-shot Med.-shot Few-shot

Plym-Melting

A
bl

at
io

n
St

ud
y Gimb 41.1(1.4) 32.7(2.7) 30.3(0.9) 57.4(2.1) 21.9(0.5) 19.0(1.9) 14.4(0.9) 34.9(1.8)

Gimb ∪ Gconf 40.0(0.7) 32.7(1.9) 31.4(1.3) 53.6(1.9) 21.3(1.0) 17.7(1.6) 15.8(1.3) 32.4(2.6)

Gimb ∪ Gconf (w/o σ) 41.2(1.1) 33.0(1.6) 32.1(0.7) 56.2(1.7) 22.2(1.1) 18.9(1.4) 15.9(1.3) 33.7(1.2)

Gimb ∪ Gconf (w/o p) 40.3(1.0) 32.5(1.4) 31.3(1.1) 54.7(1.8) 21.7(1.1) 18.2(1.0) 15.2(1.0) 33.9(2.2)

Gimb ∪Haug 40.4(0.4) 32.5(1.5) 30.2(1.3) 55.9(1.1) 21.9(0.8) 19.7(1.8) 14.4(0.8) 34.0(0.9)

Gimb ∪ Gconf ∪Haug 38.9(0.7) 31.7(0.3) 31.5(1.1) 51.4(1.6) 21.1(1.2) 18.5(0.5) 15.9(1.4) 30.2(1.9)

z i
an

d
h j

op
tio

ns
in

M
ix

up

Gimb

Gimb 39.9(1.0) 32.7(1.2) 30.9(1.4) 53.8(1.8) 21.4(0.6) 18.8(0.6) 14.6(0.9) 32.8(1.2)

Gimb ∪ Gconf 40.3(2.0) 32.5(1.5) 30.8(0.9) 55.2(4.9) 21.9(1.9) 19.2(1.7) 15.0(1.0) 33.6(5.3)

Gimb ∪ Gunlbl 38.9(0.7) 31.7(0.3) 31.5(1.1) 51.4(1.6) 21.1(1.2) 18.5(0.5) 15.9(1.4) 30.2(1.9)

Gimb ∪ Gconf

Gimb 40.5(1.0) 32.0(1.2) 30.8(1.2) 56.1(1.7) 21.7(1.3) 18.4(1.0) 14.8(1.6) 34.5(1.9)

Gimb ∪ Gconf 40.5(1.2) 33.2(1.8) 31.7(0.5) 54.3(1.7) 21.4(1.0) 18.3(1.7) 15.1(0.9) 32.7(1.2)

Gimb ∪ Gunlbl 40.1(0.6) 32.3(1.8) 31.5(0.9) 54.3(1.2) 21.8(0.8) 18.4(1.4) 15.9(1.4) 33.1(1.4)

Gimb ∪ Gunlbl

Gimb 40.7(1.4) 31.7(1.1) 31.7(1.6) 56.3(4.5) 21.9(0.9) 18.3(0.5) 15.0(1.4) 35.4(3.9)

Gimb ∪ Gconf 40.5(1.7) 32.3(2.8) 31.2(1.5) 55.4(3.5) 22.0(1.0) 18.7(2.1) 15.4(1.7) 34.4(3.4)

Gimb ∪ Gunlbl 40.9(1.4) 33.3(1.8) 31.6(1.6) 55.4(2.9) 22.2(1.1) 19.4(1.4) 15.3(1.8) 34.0(0.6)

Plym-Density (scaled:×1, 000)

A
bl

at
io

n
St

ud
y Gimb 56.8(2.1) 49.4(4.8) 46.7(2.3) 72.1(2.1) 29.9(2.1) 27.4(2.3) 25.6(3.6) 37.2(1.3)

Gimb ∪ Gconf 54.5(0.6) 49.0(2.6) 42.9(2.1) 69.3(0.8) 27.3(0.8) 26.3(0.9) 21.5(1.4) 34.8(2.6)

Gimb ∪ Gconf (w/o σ) 58.0(1.4) 47.5(2.2) 45.7(3.2) 77.7(2.0) 29.0(1.4) 27.1(2.8) 23.1(2.3) 38.0(3.1)

Gimb ∪ Gconf (w/o p) 55.9(4.8) 50.4(10.0) 44.3(3.1) 70.8(4.0) 29.1(3.6) 29.4(9.0) 23.2(2.6) 35.9(3.9)

Gimb ∪Haug 55.4(3.2) 50.5(5.6) 44.3(1.0) 69.2(4.1) 29.1(3.8) 28.0(4.8) 25.0(3.0) 34.7(4.8)

Gimb ∪ Gconf ∪Haug 53.0(0.5) 45.4(1.7) 42.5(2.8) 68.6(2.6) 26.6(0.4) 24.0(2.2) 23.0(1.3) 33.4(3.0)

z i
an

d
h j

op
tio

ns
in

M
ix

up

Gimb

Gimb 55.6(2.6) 47.1(4.0) 44.1(3.0) 73.0(3.1) 29.1(1.5) 25.9(1.8) 24.4(2.4) 37.7(1.7)

Gimb ∪ Gconf 54.2(0.4) 46.2(2.9) 42.9(2.7) 71.0(1.0) 27.4(1.1) 25.1(2.6) 22.3(1.2) 35.6(2.4)

Gimb ∪ Gunlbl 53.0(0.5) 45.4(1.7) 42.5(2.8) 68.6(2.6) 26.6(0.4) 24.0(2.2) 23.0(1.3) 33.4(3.0)

Gimb ∪ Gconf

Gimb 58.7(3.5) 52.2(3.8) 45.4(1.0) 75.9(6.6) 32.4(2.7) 30.9(3.6) 25.1(1.4) 42.5(5.4)

Gimb ∪ Gconf 56.3(1.9) 49.1(4.7) 43.4(2.2) 73.8(5.3) 28.8(2.5) 27.2(3.5) 22.5(1.6) 37.9(4.8)

Gimb ∪ Gunlbl 54.7(0.9) 50.3(0.7) 42.0(0.5) 69.5(2.7) 27.8(0.8) 29.4(1.6) 21.6(2.0) 33.2(1.1)

Gimb ∪ Gunlbl

Gimb 58.8(9.2) 53.9(10.8) 45.9(7.2) 74.3(9.9) 30.9(7.8) 30.1(7.6) 25.7(6.9) 37.2(9.0)

Gimb ∪ Gconf 55.9(3.1) 49.9(4.2) 43.2(4.1) 72.2(4.4) 27.9(3.1) 26.6(3.2) 22.5(2.7) 35.4(7.2)

Gimb ∪ Gunlbl 55.0(1.8) 49.0(5.1) 41.2(0.6) 72.3(3.1) 27.5(1.8) 27.3(1.9) 21.0(1.3) 35.1(3.9)

Plym-Oxygen

A
bl

at
io

n
St

ud
y Gimb 160.0(24.7) 10.2(10.1) 11.4(1.2) 400.8(57.9) 6.4(0.6) 2.3(0.4) 4.1(0.6) 24.8(4.8)

Gimb ∪ Gconf 158.2(8.8) 5.4(2.8) 13.8(2.1) 399.2(22.3) 6.0(0.5) 2.1(0.5) 3.6(0.9) 24.5(3.5)

Gimb ∪ Gconf (w/o σ) 180.2(4.0) 4.5(2.0) 15.1(4.8) 456.9(11.9) 7.8(1.2) 2.1(0.6) 5.3(0.6) 37.0(3.6)

Gimb ∪ Gconf (w/o p) 168.4(22.4) 7.0(6.4) 14.8(4.3) 423.7(52.7) 7.0(1.4) 2.1(0.5) 4.4(1.6) 31.7(5.9)

Gimb ∪Haug 157.7(21.7) 3.8(0.7) 13.3(1.8) 399.9(57.3) 5.9(0.4) 1.9(0.2) 3.6(0.9) 25.3(1.7)

Gimb ∪ Gconf ∪Haug 150.9(17.8) 3.8(1.1) 12.2(0.6) 382.8(46.9) 5.8(0.4) 2.1(0.7) 3.3(0.8) 24.4(6.8)

z i
an

d
h j

op
tio

ns
in

M
ix

up

Gimb

Gimb 165.5(12.2) 4.7(1.7) 16.5(7.2) 417.4(31.1) 6.0(0.7) 1.9(0.5) 3.6(0.3) 25.8(3.2)

Gimb ∪ Gconf 158.1(17.0) 4.1(0.7) 11.3(0.7) 401.9(45.1) 6.8(1.3) 2.3(0.3) 4.2(0.9) 27.7(9.5)

Gimb ∪ Gunlbl 150.9(17.8) 3.8(1.1) 12.2(0.6) 382.8(46.9) 5.8(0.4) 2.1(0.7) 3.3(0.8) 24.4(6.8)

Gimb ∪ Gconf

Gimb 166.0(18.2) 11.9(11.3) 12.6(0.9) 414.0(52.6) 6.5(0.6) 2.1(0.3) 3.7(0.9) 28.8(3.1)

Gimb ∪ Gconf 158.8(8.4) 7.7(8.9) 15.4(7.8) 397.5(15.4) 6.8(1.5) 2.0(0.7) 4.4(1.4) 30.2(2.2)

Gimb ∪ Gunlbl 169.5(56.1) 4.5(1.2) 12.7(1.8) 430.4(145.0) 7.9(2.1) 2.3(0.4) 5.4(2.0) 35.1(11.3)

Gimb ∪ Gunlbl

Gimb 173.1(30.3) 3.7(0.4) 13.5(1.4) 440.0(79.3) 6.6(1.3) 1.9(0.2) 4.0(1.6) 31.1(5.8)

Gimb ∪ Gconf 174.5(9.3) 8.1(3.3) 11.9(0.9) 440.4(25.5) 7.6(2.2) 2.8(0.8) 4.5(2.0) 29.4(7.0)

Gimb ∪ Gunlbl 156.3(20.5) 8.2(2.9) 12.9(0.9) 392.3(50.6) 9.8(2.5) 3.8(1.5) 6.1(1.7) 34.8(6.8)

Complete results on the regression confidence measurements Table 10 show all comparisons689

among different confidence measurements. GRATION consistently performs best in the entire label690

range excepting dataset Plym-Density on which DROPOUT is slightly better than GRATION.691
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Table 10: Investigating the effect of regression confidence measurements (MAE ↓ and GM ↓). The
best mean is bolded.

MAE ↓ GM ↓
All Many-shot Med.-shot Few-shot All Many-shot Med.-shot Few-shot

Mol-Lipo

SIMPLE 0.481(0.010) 0.389(0.007) 0.440(0.013) 0.603(0.023) 0.297(0.014) 0.239(0.006) 0.275(0.019) 0.388(0.026)

DROPOUT 0.450(0.026) 0.365(0.031) 0.420(0.022) 0.555(0.037) 0.277(0.017) 0.230(0.020) 0.263(0.011) 0.348(0.044)

CERTI 0.452(0.011) 0.384(0.018) 0.433(0.013) 0.532(0.010) 0.276(0.009) 0.239(0.017) 0.267(0.015) 0.324(0.016)

DER 1.026(0.033) 0.604(0.035) 0.760(0.016) 1.672(0.111) 0.688(0.026) 0.417(0.016) 0.528(0.015) 1.405(0.152)

GRATION 0.448(0.006) 0.371(0.004) 0.421(0.012) 0.543(0.016) 0.270(0.002) 0.228(0.009) 0.255(0.008) 0.333(0.015)

Mol-ESOL

SIMPLE 0.499(0.016) 0.397(0.023) 0.457(0.018) 0.656(0.033) 0.290(0.017) 0.238(0.023) 0.258(0.020) 0.415(0.025)

DROPOUT 0.483(0.011) 0.381(0.027) 0.443(0.018) 0.636(0.027) 0.279(0.017) 0.220(0.019) 0.261(0.026) 0.391(0.032)

CERTI 0.487(0.030) 0.389(0.039) 0.439(0.024) 0.647(0.043) 0.274(0.018) 0.221(0.033) 0.246(0.013) 0.396(0.025)

DER 0.918(0.135) 0.776(0.086) 0.826(0.098) 1.182(0.245) 0.619(0.089) 0.525(0.074) 0.567(0.063) 0.829(0.180)

GRATION 0.475(0.014) 0.369(0.014) 0.446(0.017) 0.618(0.039) 0.267(0.012) 0.210(0.013) 0.251(0.017) 0.372(0.050)

Mol-FreeSolv

SIMPLE 0.697(0.056) 0.616(0.025) 0.663(0.033) 1.054(0.260) 0.327(0.036) 0.319(0.028) 0.297(0.017) 0.527(0.206)

DROPOUT 0.639(0.013) 0.578(0.060) 0.589(0.017) 1.005(0.140) 0.301(0.018) 0.274(0.047) 0.299(0.038) 0.433(0.040)

CERTI 0.654(0.049) 0.589(0.046) 0.611(0.053) 0.999(0.130) 0.326(0.038) 0.332(0.040) 0.292(0.044) 0.485(0.095)

DER 1.483(0.174) 1.180(0.162) 1.450(0.188) 2.480(0.373) 0.949(0.131) 0.856(0.159) 0.883(0.183) 1.828(0.386)

GRATION 0.604(0.020) 0.557(0.037) 0.560(0.029) 0.903(0.055) 0.293(0.024) 0.307(0.050) 0.260(0.018) 0.416(0.080)

Plym-Melting

SIMPLE 43.0(2.9) 32.6(0.5) 32.4(0.3) 61.2(8.2) 23.5(1.5) 18.9(0.5) 15.7(0.8) 40.2(7.1)

DROPOUT 40.6(0.7) 32.9(0.7) 31.5(1.7) 55.0(1.1) 22.1(0.5) 19.2(1.0) 15.9(0.9) 33.0(1.7)

CERTI 40.7(0.8) 31.6(1.5) 30.0(1.7) 57.5(1.4) 22.0(1.5) 18.9(1.4) 14.6(1.7) 35.3(2.2)

DER 70.7(12.1) 36.5(1.3) 60.6(19.5) 110.6(18.4) 47.3(10.7) 24.6(1.3) 44.5(21.1) 95.0(20.8)

GRATION 40.3(1.0) 32.5(1.4) 31.3(1.1) 54.7(1.8) 21.7(1.1) 18.2(1.0) 15.2(1.0) 33.9(2.2)

Plym-Density

SIMPLE 63.9(6.4) 50.6(4.2) 46.0(3.0) 91.0(14.6) 34.1(4.4) 28.3(3.6) 26.5(2.9) 50.9(11.8)

DROPOUT 55.4(1.5) 50.2(2.0) 45.3(2.9) 68.7(3.9) 28.1(3.6) 24.9(1.1) 24.8(4.3) 35.3(7.1)

(scaled:×1, 000)
CERTI 56.7(3.0) 49.8(4.6) 45.4(1.1) 72.6(8.0) 28.6(1.9) 26.1(1.8) 24.1(0.7) 36.3(6.7)

DER 252.4(85.7) 227.2(104.2) 219.6(81.4) 302.9(74.0) 165.3(68.8) 162.5(94.8) 139.8(60.4) 201.6(45.4)

GRATION 55.9(4.8) 50.4(10.0) 44.3(3.1) 70.8(4.0) 29.1(3.6) 29.4(9.0) 23.2(2.6) 35.9(3.9)

Plym-Oxygen

SIMPLE 170.2(6.2) 8.7(8.4) 26.5(28.4) 419.3(31.4) 7.2(0.5) 2.3(0.2) 4.8(1.2) 29.8(0.8)

DROPOUT 168.7(7.4) 7.5(4.3) 14.1(3.5) 424.3(20.9) 7.3(1.6) 2.4(0.8) 4.3(1.5) 30.4(3.2)

CERTI 181.9(21.2) 4.9(1.6) 12.4(1.1) 462.5(56.9) 8.3(1.5) 2.4(0.6) 5.4(1.7) 38.5(3.6)

DER 247.0(24.9) 26.1(10.9) 24.4(8.1) 604.3(61.8) 25.0(8.9) 15.5(8.2) 15.3(6.3) 58.6(7.4)

GRATION 168.4(22.4) 7.0(6.4) 14.8(4.3) 423.7(52.7) 7.0(1.4) 2.1(0.5) 4.4(1.6) 31.7(5.9)

21


	Introduction
	Related Work
	Imbalanced Learning
	Semi-supervised Learning
	Molecular Graph Property Prediction

	Problem Definition
	Proposed Framework
	Theoretical Motivation for the Iteratively Balancing Self-Training Framework
	Balancing with Confidently Predicted Labels
	Graph regression with confidence
	Reverse sampling

	Balancing with Augmentation via Label-Anchored Mixup
	Optimization

	Experiments
	Experimental Settings
	RQ1: Effectiveness on Regression Prediction
	RQ2: Ablation Studies on Framework Design

	Conclusions
	Related Work
	Proofs of Theoretical Motivations
	Existing Theorems
	Proof of theorem 4.1

	Experiments
	Dataset Details
	Implementation Details
	Additional Experimental Results
	Complete Ablation Studies and Sensitivity Analysis


