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Abstract

In this paper, we propose a generation-detection cycle
consistent (GDCC) learning framework that jointly opti-
mizes both layout-to-image (L21) generation and object de-
tection (OD) tasks in an end-to-end manner. The key of
GDCC lies in the inherent duality between the two tasks,
where L2I takes all object boxes and labels as input con-
ditions to generate images, and OD maps images back to
these layout conditions. Specifically, in GDCC, L2I gener-
ation is guided by a layout translation cycle loss, ensuring
that the layouts used to generate images align with those
predicted from the synthesized images. Similarly, OD ben-
efits from an image translation cycle loss, which enforces
consistency between the synthesized images fed into the de-
tector and those generated from predicted layouts. While
current L2I and OD tasks benefit from large-scale anno-
tated layout-image pairs, our GDCC enables more efficient
use of auto-synthesized data, thereby further enhancing
data efficiency. It is worth noting that our GDCC frame-
work is computationally efficient thanks to the perturba-
tive single-step sampling strategy and a priority timestep
re-sampling strategy during training. Besides, GDCC pre-
serves the architectures of L2I, OD models, and the gener-
ation pipeline within the framework, thus maintaining the
original inference speed. Extensive experiments demon-
strate that GDCC significantly improves the controllability
of diffusion models and the accuracy of object detectors.

1. Introduction

Recent advancements in both layout-to-image (L2I) gen-
eration [36] and object detection (OD) [20] tasks have
achieved remarkable success, largely driven by the avail-
ability of large-scale annotated datasets. Specifically, L2I
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Figure 1. Overall comparison. (a) Some works such as [33] use
a pre-trained discriminative reward model R to fine-tune the L2I
generator G. (b) Some [6, 70] show that the synthesized images
provided by a pre-trained G can improve the performance of the
object detector D. (¢) GDCC enables mutual enhancement be-
tween G and D through cycle-consistent learning. See §1.

generation methods incorporate image-based [33, 36, 79]
or prompt-based [6, 77] conditional controls into text-to-
image (T2I) diffusion models [52] to achieve more precise
control over the instance placement during image synthe-
sis. These methods train diffusion models to generate realis-
tic images from structured layouts, which include bounding
boxes and object class labels that define the spatial position-
ing and types of objects in the scene. On the other hand, OD
takes an image as input and identifies the objects within it
by predicting their bounding boxes and class labels. Cur-
rent advancements have led to significant improvements in
the precision of instance placement for L2I generation and
the prediction accuracy of OD models.

Although both L2I generation and OD have been exten-
sively studied, few have noticed the strong correlation be-
tween these two tasks, i.e., they can be viewed as inverse
tasks of each other, where L2I maps layouts to images and
OD maps images to layouts. This natural duality between
these two tasks has largely been overlooked in previous re-
search. Our key finding is that such duality can be effec-
tively leveraged to improve the performance of both tasks.
Specifically, if we map an image to its corresponding layout
using an OD model, and then map that layout back to an im-
age using an L2I model, we should ideally recover the origi-



nal image. Similarly, mapping a layout to an image and then
mapping that image back should yield the original layout.
This cycle consistency not only enforces tighter alignment
between two tasks but also provides a natural regularization
that enhances the learning processes of both tasks. More-
over, the cycle consistency allows for the use of synthetic
data, opening up possibilities for improving data efficiency.

Based on the above insight, in this paper, we are the
first to propose a generation-detection cycle consistent
(GDCC) learning framework that jointly optimizes L2I
generation and OD in an end-to-end manner. In GDCC,
consistency is maintained in two directions through two key
components: (i) the layout translation cycle loss, which
ensures consistency between the original layouts used to
generate images and those predicted from the synthesized
images, and (ii) the image translation cycle loss, which
enforces consistency between the synthesized images and
those reconstructed from the layouts predicted by the de-
tector. These two losses guide the learning process in a
cycle-consistent manner, ensuring tight alignment between
the tasks during training and fostering mutual enhancement,
which leads to more controllable diffusion models and more
accurate object detectors.

Our GDCC framework offers several key advantages.
First, GDCC enables mutual enhancement between L2I
generation and OD, setting it apart from earlier approaches
that focus on using one task to improve the other [6, 33, 70].

Such mutual enhancement results in more powerful L21
or OD models, as opposed to relying on pre-trained ones
that are not fully optimized for improving the other task
and may introduce errors during the training. Second,
GDCC shows superior data efficiency by effectively utiliz-
ing auto-synthesized layout data, a capability not achieved
by previous methods. Third, GDCC is computationally ef-
ficient in both training and inference. Our training process
is accelerated by a perturbative single-step sampling strat-
egy and a priority timestep re-sampling strategy. Fourth,
GDCC serves as a training framework that retains the orig-
inal architectures of both L2I and OD models, as well as the
generation pipeline, ensuring inference speed is maintained.
The key contributions of this paper are as follows:

* We are the first to identify the duality between L2I gen-
eration and OD, an insight that has previously been
overlooked in the literature.

* Inspired by the task duality, we propose a generation-
detection cycle consistent (GDCC) framework that
jointly optimizes both tasks in an end-to-end manner
and enables mutual enhancement between them.

* Our GDCC demonstrates both data and computational
efficiency by allowing for the use of auto-synthesized
data and incorporating a perturbative single-step sam-
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pling strategy along with a priority timestep re-
sampling strategy to accelerate training.

Extensive experimental results confirm that GDCC es-
tablishes new benchmarks in both L2I generation and OD.
For L2I generation, it achieves up to a 2.1% FID improve-
ment over baseline L2I methods, and shows a 2.3% in-
crease in YOLO score, indicating superior alignment be-
tween generated images and conditional layouts. For OD,
GDCC achieves up to a 1.2% end-to-end improvement in
AP, further validating the mutual enhancement between two
tasks. With the incorporation of additional auto-synthesized
training data, GDCC further achieves a 2.8% gain in detec-
tor mAP and a 3.0% enhancement in generator FID. These
results confirm the effectiveness of our cycle-consistent
framework in improving the controllability of diffusion
models for image synthesis and the accuracy of detectors.

2. Related Work

Diffusion Models. Diffusion probabilistic models, first in-
troduced in [57], have witnessed significant advancements
both theoretically [13, 24, 31] and methodologically [25,
58, 59] in recent years. Latent Diffusion Model [52] further
reduces computational costs by applying the diffusion pro-
cess in the latent feature space rather than the pixel space.
Due to their exceptional sample quality, diffusion models
have set new standards across various benchmarks [11, 65,
75], including image editing [2, 22, 29, 40, 45], image-to-
image transformation [32, 54, 64], and text-to-image (T2I)
generation [16, 46, 47, 49, 50, 52, 55, 69]. Recent layout-
to-image (L2I) studies seek to achieve more precise con-
trol over instance placement by extending pre-trained T21I
models with layout conditions such as bounding boxes and
object labels. Early approaches [27, 36, 60, 62, 76, 80] re-
lied on a closed-set vocabulary from training labels (e.g.,
COCO [3]) without using text prompts. With the emergence
of image-text models such as CLIP [48], open-vocabulary
methods became feasible [6, 7, 9, 10, 70, 72, 77, 82]. These
methods incorporate layout information as text embeddings
into pre-trained T2I diffusion models [52] to achieve more
precise control over instance positioning.

In this paper, we boost L2I generation performance from
a new perspective by proposing a cycle-consistent learning
framework to achieve mutual benefits with OD, which nat-
urally performs the inverse mapping of L2I from images to
layouts. Our framework is computationally efficient thanks
to the perturbative single-step sampling strategy and a pri-
ority timestep re-sampling strategy, while maintaining the
same inference cost as the original L2I and OD models.
L2I Generation and OD. Several works have involved both
L2I and OD tasks, but primarily use one to enhance the
other. For example, ControlNet++ [33] uses pre-trained dis-
criminative reward models to fine-tune controllable diffu-



sion models. However, these reward models are constrained
by their original training data and struggle to adapt to the
styles of synthesized images, which hinders their ability
to provide more accurate feedback signals for training L2I
models. On the other hand, methods [6, 61, 81] explore
using synthetic data from diffusion models to improve ob-
ject detection and segmentation. GeoDiffusion [6] demon-
strates that OD can benefit from high-quality synthesized
data generated by L2I models. DetDiffusion [70] lever-
ages perceptive models (e.g., semantic segmentation) to en-
hance generation controllability and improve downstream
OD performance, but introduces an extra perceptual model
and lacks end-to-end joint optimization between the L2I and
OD models. Despite these advances, the potential of tun-
ing L2I models to generate samples specifically designed to
boost OD performance remains underexplored.

This paper, for the first time, fully recognizes the duality
between L2I and OD tasks and proposes a unified frame-
work GDCC that enables mutual enhancement between the
two tasks. Furthermore, in addition to leveraging large-
scale paired layout-image data, our framework can utilize
synthetic layout data, resulting in superior data efficiency.

Cycle-Consistent Learning. Cycle-consistent learning is
a technique that leverages cyclic transformations to regu-
larize the training process, ensuring that the data or tasks
remain aligned when converted back and forth between rep-
resentations. It can be applied within a single task through
sample cycling, such as object tracking [43, 67, 71], tem-
poral representation learning [14], visual acoustic match-
ing [44], and image generation [8, 30, 33, 37, 74, 83]. It has
also been shown to improve model performance across re-
lated tasks such as question answering v.s. question genera-
tion [34, 56, 63], captioning v.s. grounding [18, 68], vision-
language navigation v.s. instruction generation [66], efc.

In this paper, we explore the uncharted potential of cycle-
consistent learning between L2I generation and OD tasks,
wherein the correlation and inherent duality have long been
overlooked. These two tasks are seamlessly integrated into
an end-to-end cycle-consistent learning framework, where
their symmetrical structures provide informative feedback
signals that enhance each other. Moreover, our framework
allows for the usage of synthetic layout data, leading to su-
perior data efficiency.

3. Methodology

In §3.1, we first introduce the preliminaries of diffusion-
based L2I generation and OD. We then explore the inherent
duality between these two tasks and show how GDCC uti-
lizes cycle consistency to achieve mutual improvement
(§3.2.1). Finally, we show GDCC (§3.2.2) and GDCC with
extra auto-synthesized data (§3.2.3).
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3.1. Preliminary

Diffusion-based L2I Generation. Diffusion models
(DMs) [11, 13, 25], functioning by progressively transform-
ing an initial random noise distribution into a coherent im-
age, have arisen as renowned T2I generation methods. DMs
define a T'-step Markovian diffusion forward process to add
Gaussian noise € into input image xg:

x, = Vauzo + V1 - aue, 6]

where x; is the perturbed image, ¢ is the timestep, &y =
Hi:o ag, and oy = 1 — 34 is a differentiable function of ¢
determined by the denoising sampler.

Diffusion-based L2I generation introduces additional
control over DMs by incorporating layout conditions.
Given a text prompt y and a layout condition [, the train-
ing loss can be formulated as:

e~N(0,1),

2

2
27

Lim = Et,mo,y,l,erw./\/((),l) HE — € (t’ T, Y, l) ’

where €y is the noise predictor realized as a U-Net [53].

During the sampling stage of L2I generation, the denois-
ing process progressively eliminates the noise estimated by
the diffusion model from a randomly sampled noise to pre-
dict the final image. Given noise €, conditional text y, and
layout [, the sampling process can be simplified to:

msyn:gT(t,e’y,l)7 ENN(OaI)a

syn ¢ RHXWX?)

3)

where represents the synthesized image,
and GT denotes an L2I generator that performs 7" denois-
ing steps. The layout I = {(b,,c,)}_; € RN¥X5 con-
sists of NV bounding boxes, where each bounding box b,, =
[Zn,1, Yn,1, Tn,2, Yn,2) defines the spatial location of object
n, and ¢, € C denotes its corresponding semantic class.
Object Detection. This task aims to train a detector D(+) to
identify and localize objects within an image by predicting
bounding boxes and their corresponding class labels:

l=D(z), 4)

where z € RP*W>3 denotes the input image, and 1

{(bn, cn)}ﬁil € RV is the N’ predicted layouts for the
N objects in the image.

3.2. Generation-Detection Cycle-Consistent Learn-
ing Framework

3.2.1. Task Duality and Cycle-Consistency

From §3.1, it becomes evident that L2I and OD can be
viewed as inverse tasks of each other, where the input and
output of L2I generation correspond to the output and input
of OD, respectively.

Though largely overlooked in previous research, such
task duality can be effectively leveraged to improve both
tasks through cycle consistency learning.



Specifically, if a layout is mapped to an image using an
L2I generator G, and then mapped back to a layout using an
object detector D, the process should recover the original
layout. This forces consistency in what we term a layout
translation cycle, ensuring more precise and realistic im-
age generation that faithfully reflects input layouts.

Similarly, mapping an image to a layout and then back
again should ideally recover the original image. This en-
sures consistency in an image translation cycle, which en-
hances its ability to accurately predict layouts from images.

These two cycle-consistent learning processes improve
both G and D in an end-to-end manner, with each receiving
feedback from the other.

In the following, we will present GDCC (§3.2.2) and
GDCC with extra auto-synthesized data (§3.2.3).

3.2.2. GDCC

In the paired data setting, each image xy € is
annotated with a structured layout I € RV*® that includes
bounding boxes and class labels for the objects in the im-
age. The framework is shown in Fig. 2. Below, we detail
the learning process of GDCC in this context.

Layout Translation Cycle.

As discussed in §3.2.1, in this process, G is optimized
to minimize the discrepancy between the predicted and the
original input layouts to achieve more precise and realistic
image generation that faithfully reflects the input layout.

Specifically, given an L2I generation model G and the
layout input I € RN*5, a conditionally synthesized images
x?" € RF>XW>3 can be obtained as follows:

" =G (t,€,y,1). (&)

Next, a pre-trained object detector D is employed to map
x)"" back into the layout space:

[=D(x (©6)

where a score threshold sy is applied to filter the predicted
bounding boxes, leading to a more stable training process.
The layout translation cycle loss Li,yourc is then com-
puted by measuring the similarity between the input layout
l and its dual layout [eRN>5;

£1ay0utTC = Lbbox (l7 0
= ﬁreg ( {bn}2[=1 ; {Bn}ﬁil)
+ Ecls({cn}nNzly {én}g:1 )7

where N’ is the number of detected objects and the bound-
ing box loss Lyyox consists of a smooth L1 loss Ly, for
regression and a cross-entropy loss £ for classification.

Perturbative Single-step Sampling. The 7'-step samplings
process to generate " in Eq. (5) is time-consuming and
requires gradient storage at each timestep to facilitate back-
propagation, which reduces the efficiency of layout transla-

tion cycle. Inspired by [33], we implement a perturbative

RHXWXS

syn
Ty

)
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single-step denoising strategy to accelerate the L2I process.

Instead of generating =" from Gaussian noise, we obtain
pert

a special noise x; by perturbing image x with a small

noise € for t < tthre diffusion steps, where ty is a hyper-

parameter that constrains € to be relatively small:

=Vagxg + V1 — a€p. (3
We then perform a single-step denoising process on " to
achieve L2I generation and obtain "
g _ 2l VT —arep(t— 12"y, 1)
z" =
VO )

=G(t,zi" y,1),

where G denotes the L2I generator that performs perturba-
tive single-step denoising, which is guided by the diffusion
model loss Lgy, defined in Eq.(2).

In summary, the total loss for training G in the layout
transition cycle for the paired data setting is defined as fol-
lows:

Egen = {

Here, A, adjusts the weight of the layout translation cycle
loss Liayourrc, and tyre denotes a threshold beyond which
Liayouttc 18 no longer applied, as the noise introduced in the
perturbative single-step sampling process becomes too large
to yield desired 20" and " for consistency learning.
Image Translation Cycle.

As discussed in §3.2.1, in this process, D is optimized to
minimize the difference between the predicted and original
images, thereby improving its ability to accurately predict
layouts.

Formally, the layout I obtained from & (cf., Eq. (6))
can be remap to image space by G, resultmg in ;" €
RIXW>3 " The image translation cycle 10ss Lipggerc iS

(cf

if ¢ S tthre
otherwise

»Cdm + A1 . ElayoutTC

Lo (10)

then computed by evaluating the similarity between ;"
Eq.(9)) and 3"

Limgerc = |G (t, 27", 4,1) = G(t, 2™y, 1) 3

:Mﬁm—ﬁiaqawmeWJT
. [wperl . meg t mpert,y,D /\/>||2

(V1= an)/a)lles(t, 2zt y.1)

- Eg(t wperl7y7 )||2

1)
We obtain ﬁimageTC = Et,mo,y,l,ewN(O,l) ||€9 (tv wgenv Yy, l) -
€o(t, ', y,1)||2 by omitting the scaling factor. As seen,
with the above perturbative single-step denoising strategy,
the image translation cycle only requires to compute the
noise predicted by the U-Net denoiser € at timestep ¢ dur-
ing two generation forward translations, which significantly

improves the efficiency of GDCC.
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Figure 2. GDCC framework in paired data setting. The L2I generator G maps from the layout space to the image space, while the object
detector D performs the inverse mapping. Given a paired data with an input image @ and its corresponding layout I, G is trained with the
layout translation cycle loss Liayourc and the diffusion model loss Lqm, and D is trained with the image translation cycle 1oss Limagerc and

the prediction loss Lpreq. See §3.2.2 for details.

To maintain the performance of D on real-world data,
we make full use of the paired data by predicting the layout
lpred € RV from image @, and minimizing the predic-
tion loss between Il,cq and the annotated layout I, defined
a8 Lpred = Lobox (I, Lprea), during the training of D. In sum-
mary, the total loss for training D in the image translation
cycle in paired data setting is as follows:

ACdet = {

Similar to Eq. (10), A2 is the weight of Lipagerc. Image
translation cycle is performed within ¢, timesteps to fulfill
the constraint of the perturbative single-step denoising.
Priority Timestep Re-Sampling. In the process of pertur-
bative single-step sampling, the ¢y, value is supposed to
be small to ensure that €y remains relatively constrained.
However, the traditional uniform sampling strategy leads to
a low cycle reward probability (i.e., tnre/tmax), resulting in
slow convergence. Thus, we introduce the re-weighting fac-
tor w to increase the reward probability from tire/tmax tO
W * lihre /tmax- The re-weighted timestep sampling probabil-
ity Preweight (t) for each interval is given by:

Epred + A ‘CimageTC
»Cpred

ift S tthre

. 12
otherwise (12)

if t S tthre
otherwise

w * tlhre /tmax

(13)
1—w=x tthre/tmax

Preweight (t) = {

When ¢ < iy, the layout and image translation cycle
losses, as defined in Eq. (10) and (12), are triggered. The
effectiveness of this re-sampling strategy is demonstrated
by the results shown in Table 5b. The re-sampling strategy
increases the reward frequency, simultaneously regulating
the balance between the reward and the original loss terms
(i.e., Lqm and Lyreq). An appropriately chosen w enhances
reward training efficiency, achieving superior results within
a fraction of the original training time.
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3.2.3. GDCC with Extra Auto-Synthesized Data

In this section, we explore GDCC learning with extra auto-
synthesized data. In addition to leveraging large-scale an-
notated layout-image pairs to achieve mutual improvement
of the L2I generator and object detector, GDCC also facili-
tates more efficient use of annotation-free auto-synthesized
data, thereby further enhancing data efficiency.

To generate additional synthetic layouts, we employ Vi-
sorGPT [73], a recently developed generative model pre-
trained on COCO [38] that autonomously samples layouts
based on its learned visual priors. Specifically, we first input
the class names and the corresponding number of instances
from each image in the training set into VisorGPT to sam-
ple synthetic layouts I%" € RV*5, Second, the synthetic
layouts are fed into the generator G to obtain correspond-
ing generated synthetic images " € RE*WX3_ Third,
to construct an augmented training set S"V, we incorpo-
rate the synthetic data S*¥" into the original training set S:
S"™ = S U SY". Experimental results are presented in
Table 3. As shown, incorporating additional synthetic data
further enhances the performance, demonstrating the data
efficiency of GDCC and the great potential of leveraging
synthetic data to improve both the generator and detector.

4. Experiments

4.1. Experimental Setup

Following [6], we train and evaluate the models on the
COCO [3, 38] and Nulmages [4] datasets. For L2I gen-
eration models, fidelity is evaluated using Frechet Inception
Distance (FID) [23] and YOLO score [36], while trainabil-
ity is measured by re-training object detection (OD) models
on the synthetic and real data using Average Precision (AP).
For OD models, detection fine-tuning performance is as-
sessed using AP. Related details are shown in Appendix §B.

Training. We fine-tune the pre-trained generators i.e.,
GeoDiffusion [6] and ControlNet [79], and a object detector,



Method |Res. [Epoch|[FID || mAP 1 AP, 1 AP75 1

LostGAN [60] cev o 200 |42.55] 9.1 153 9.8
LAMA [36] iceva 200 [31.12| 134 19.7 149
CAL2IM [21] cver> 200 |25.95| 10.0 149 11.1
Taming [27] [ArXiv 21] 128 |33.68 - - -
TwFA [76] (cver 2 9562 300 |22.15] - 282  20.1
Frido [15] (anaras 200 |37.14] 17.2 - -
L.Diffusion® [82] ccver s 180 [22.65| 149 275 149
DetDiffusion? [70] cver 60 [19.28| 29.8 38.6 34.1
* GeoDiffusion [6] icioa| | 60 [20.16] 29.1 389 33.6
+ plain fine-tuning 2 120.13| 293 39.0 339
+ GDCC 2 [18.02| 314 412 364
RGCOT [77] [CVPR 23 100 (29.69| 18.8 33.5 19.7
L.Diffuse’ [9] i 60 [22.20| 11.4 23.1 10.1
GLIGEN [35] cver s 86 [21.04| 224 36.5 24.1
~ ControlNet [79] ncev2u[5122] 60 [28.14| 252 467 227
+ plain fine-tuning 2 |28.06| 254 46.7 23.0
+ GDCC 2 12638 27.0 479 242
" GeoDiffusion [6] e | 60 |18.89] 30.6 41.7 356
+ plain fine-tuning 2 |18.78| 309 419 357
+ GDCC 2 |17.15| 326 43.6 38.0

Table 1. Quantitative results of generation fidelity on COCO
2017 [38]. GDCC is fine-tuned for 2 epochs on pre-trained L2I
methods. “plain fine-tuning” refers to continuing training L2I
model for same extra epochs as GDCC. T: re-implementation
from GeoDiffusion [6]. *: with additional mask annotations.
YOLO score is reported as AP metrics. See §4.2 for details.

i.e., Faster R-CNN [51] for a few more epochs. For GeoD-
iffusion, experiments on both COCO [3, 38] and Nulm-
ages [4] are performed. In this process, only the U-Net
denoiser parameters are updated, while all other parameters
remain fixed. GeoDiffusion is fine-tuned for 2 epochs on
COCO-Stuff and 3 epochs on Nulmages, which is remark-
ably efficient. For ControlNet, we finetune the pretrained
ControlNet using GDCC for 2 epochs by updating only the
ControlNet-specific parameters and keep all others frozen.
Related details are shown in Appendix §B.

Faster R-CNN [51], pre-trained separately on the COCO
2017 and the Nulmages training sets, is employed for the
respective datasets. A score threshold s = 0.5 is used to
filter the predicted bounding boxes. Each filtered bounding
box is assigned to a ground truth box with an Intersection
over Union (IoU) of at least 0.5, or classified as background.
Testing. Our GDCC framework preserves the original ar-
chitectures of all the L2I and OD models, as well as the
layout encoding approach of L2I models, ensuring that the
inference speed of each model remains unchanged.

Following GeoDiffusion [6], fidelity is assessed using a
Mask R-CNN [20] pre-trained on the Nulmages training set
for Nulmages dataset [4]. A YOLOv4 [1] model pre-trained
on COCO 2017 training set is used to derive YOLO score.
The pre-trained detector first performs inference on the gen-
erated images, and the resulting predictions are then com-
pared with the corresponding ground truth annotations. FID
is achieved by computing the similarity between generated
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Method | mAP 1 [APs; 1 AP75 1{AP™ 1 AP' ¢
— Detection Fine-tuning —
Faster R-CNN [51] s 15 37.3 58.2 40.8 | 40.7 482
+ plain fine-tuning [37.5 102| 58.4 409 | 40.8 484
+GDCC |385+12| 587 422 | 41.7 494
— Generation Trainability —
L.Diffusion [82] cvrr2s [36.5 108 57.0 395 | 39.7 475
L.Diffuse [9] ixxv25 36.610.7| 57.4  39.5 | 400 474
GLIGEN [35] icver23 |36.8 10.5] 57.6 39.9 40.3 479
ControlNet [79] iccvay |36.9 104 | 57.8  39.6 | 40.4 49.0
* GeoDiffusion [6] e |38.411.1| 58.5 424 | 421 503
+ plain fine-tuning [38.5 11.2| 58.6 424 | 422 50.3
+GDCC [39.011.7| 589 43.1 | 42.6 50.7

Table 2. Quantitative results of detection fine-tuning and gen-
eration trainability on COCO 2017 [38]. Detection fine-tuning
refers to fine-tuning the detector for 2 epochs during the training
of GDCC, while generative trainability denotes the re-training of
the detector on generated and real samples. “plain fine-tuning”
refers to continuing training OD or L2I model for the same extra
epochs as GDCC. A Faster R-CNN pre-trained on COCO 2017 is
employed as the baseline. Detectors are evaluated on COCO 2017
validation set after training. The input resolution is set to 800 x456
following [6]. See §4.2 for details.

Setting # Training| Generation | Generation Fidelity Detection
Data |Trainability 1 |FID | YOLO score T‘ Score 1
Baseline 75k 37.3 20.16 29.1 37.3
Coreal | 75k | 390  [18.02 314 | 385
real+syn.| 75k+75k 39.6 17.54 32.0 38.9
real+syn. | 75k+150k 40.1 17.16 32.5 39.2

Table 3. Quantitative results of using extra auto-synthesized
training data on COCO 2017 [38]. “syn.” denotes synthetic lay-
outs and corresponding images generated by GDCC. The “Base-
line” for Detection Score and Generation Trainability is a Faster
R-CNN [51] pre-trained on COCO 2017, while the “Baseline” for
Generation Fidelity is GeoDiffusion [6]. See §3.2.3 and §4.2.

and real samples following [6, 36]. To assess the trainabil-
ity, we augment the original training data with generated
images and their corresponding layouts, creating a unified
dataset. We subsequently train Faster R-CNN [51] on this
unified dataset using the standard 1x schedule. Related de-
tails are shown in Appendix §C.

4.2. Quantitative Results

Generation Fidelity on COCO 2017 [38]. For generation
fidelity, as shown in Table 1, GDCC learning framework
significantly improves existing L2I generation methods in
terms of both image fidelity, as measured by FID, and con-
trol fidelity, as evaluated by YOLO score, by a large degree.

At a 256 x 256 input resolution, for the GeoDiffu-
sion [6] method, our GDCC framework achieves improve-
ments of 2.3%/2.3%/2.8% in mAP, mAPs5q, and mAP7s5,
reaching 31.4%/41.2%/36.4%, even surpassing the perfor-
mance of original GeoDiffusion at a 512 x 512 resolu-
tion. Additionally, GDCC achieves a 2.14% improvement
in FID. It is worth noting that, despite DetDiffusion [70]
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“GeoDiffusion [6] 1C1k 24 | T 64 | 958 [31.8 629 287|270 53.8[21.2 182460  GeoDiffusion [6] iy 3837114
+ plain fine-tuning 3 9.32 |32.0 63.1 28.8 |27.1 54.1| 21.4 18.3 46.0 + plain fine-tuning |38.3 1 1.4
+ GDCC 3 7.97 [33.6 64.7 30.7 | 28.6 55.9| 29.5 20.2 47.6 +GDCC (389 12,0

Table 4. Quantitative results of generation fidelity (left), detection fine-tuning, and generation trainability (right) on Nulmages[4].
GDCC is fune-tuned for 3 epochs on pre-trained L2I and OD models. “plain fine-tuning” refers to continuing training OD or L2I model
for the same extra epochs as GDCC. “ped.” denotes pedestrian. For generation fidelity, YOLO score is reported as AP metrics. See §4.2.

Layout Ground Truth

GeoDiffusion

GeoDiffusion + GDCC

Figure 3. Generation visual results on COCO 2017 [38]. GDCC is fine-tuned on pre-trained GeoDiffusion [6] for 2 epochs. For fair
comparisons, same seed is employed for sampling. See §4.3 for details. For more visualizations, please refer to Appendix §F-G.

employing additional and detailed mask annotations for
supervision while GDCC only uses bounding box label,
our method still outperforms it. For a 512 x 512 input,
GDCC also achieves 2.0%/1.9%/2.4% mAP and 1.74%
FID enhancement compared with initial model, demon-
strating the state-of-the-art performance in L2I generation
realm. Based on the classic controllable generator Control-
Net [79], GDCC also achieves notable enhancements.

The enhanced FID and YOLO score achieved with
GDCC demonstrate its effectiveness. GDCC not only
enables precise layout control in generation but also en-
hances quality of the generated images, improving their
resemblance to real-world data. Additionally, the im-
provements across different controllable generation meth-
ods demonstrate that GDCC is not dependent on any spe-
cific approach, highlighting its robustness and extensibility.
Furthermore, compared with plain fine-tuning with same
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epochs, GDCC achieves significant improvement.

Detection Performance and Generation Trainability on
COCO 2017 [38]. A Faster R-CNN detector [51] trained
on the COCO 2017 training set is employed for detection
fine-tuning. To begin with, we set the performance of the
detector on COCO 2017 validation set as our baseline.

As can be seen in Table 2, fine-tuning the detector at
GDCC training process in an end-to-end manner leads to
performance improvements with 1.2% on the validation
set. For the first time, we demonstrate that the L2I gen-
eration model can be advantageous to the object detector
during training in an end-to-end manner, while previous
works [6, 70] only use generated images to re-train the de-
tector in the data augmentation manner. To make a com-
parison of generation trainability, we also re-train the de-
tector with generated and real data with ImageNet [12] pre-
trained weights. As shown, GeoDiffusion fine-tuned with



(o DSetection Generation Fidelity ¢ w‘Epoch‘Hours‘mAP T‘FID 1 o e petecﬁon Score.T Generation Fidelity
core t |FID | YOLOscore T o o 2 1.9 | 37.5 {20.13 original / fine-tuning|FID | YOLO score 1

Baseline 37.3  |20.16 29.1 50 0 2 2.4 | 37.6 |19.57  Faster R-CNN [51]| 37.3/385+12 |18.02 31.4

+ Lim 37.3  ]20.13 29.3 50 0| 6 7.2 | 385 |18.11 Mask R-CNN [20]| 38.2/ 40.0 tos8 |17.86 31.6

o 7+7£§en7 N §77.77 B 187.9% L 739.9 503 2 2.5 | 38.0 [18.98 Cascade R-CNN [5]| 40.3/ 413110 |17.64 31.8

+ Lpred 37.5 |20.16 29.1 50 6| 2 2.6 | 38.5 |18.02 YOLOX-S [17]| 40.5/ 41.8+13 |[17.60 319

+ Let 38.0 19.28 29.9 50 9| 2 2.7 | 38.3 |18.85 DINO [78]| 49.0/ 50.1 1 1.1 17.12 325

~ +GDCC | 385 [18.02 314 1006 2 | 29 | 379 |19.29 CO-DETR [84]| 520/ 529109 |1693 328

(a) essential components

(b) reward strategy

(c) different detectors

Table 5. A set of ablative experiments on COCO 2017 [38]. GeoDiffusion [6] pre-trained on COCO [3, 38] is employed as L2I baseline.
L2I and detection models are fine-tuned for 2 epochs. In (c), “fine-tuning” indicates optimizing the detector using GDCC. See §4.4.

GDCC achieves 1.7%/0.7%/2.3% AP improvement over
the baseline, demonstrating superior generation trainability.
Generation Fidelity on Nulmages [4]. To illustrate the
generalizability of GDCC with respect to dataset, more
experiments are conducted on Nulmages. As presented
in Table 4, GDCC outperforms all baselines significantly
in FID and YOLO score after three epochs of fine-tuning.
Detection Performance and Generation Trainability on
Nulmages [4]. As can be seen in Table 4, GDCC achieves
improvement on Nulmages validation set after fine-tuning
Faster-RCNN which is pre-trained on training set. In a
data augmentation manner, GDCC demonstrates an accu-
racy improvement of 2.0% compared to the baseline.
Performance of Using Extra Auto-Synthesized Data on
COCO 2017 [38]. Table I, 2 use original paired COCO
data, while Table 3 explores the use of synthetic data. As
shown, using extra annotation-free auto-synthesized data
boosts the performance of both generator and detector. As
more synthetic data is incorporated, the performance fur-
ther improves, highlighting the great potential of leveraging
synthetic data. With the usage of 150k synthetic layouts and
images, the detector mAP improves by 2.8% through aug-
mentation and 1.9% in an end-to-end manner, respectively,
while the generator FID achieves a 3.0% gain.

4.3. Qualitative Results

Fig. 3 shows representative generation visual results on
COCO 2017, with the same random seed used during sam-
pling to ensure fair comparison. L2I model [6] demon-
strates stronger layout controllability (1st and 2nd columns)
and superior image fidelity (2nd column) after fine-tuning
with GDCC. More generation and detection visualizations
are shown in Appendix §F and §G, respectively.

4.4. Diagnostic Experiments

To gain more insights into GDCC, we conduct a set of ab-
lative studies on COCO 2017 [38] using GeoDiffusion [6].
Essential Components. As shown in Table5a, the diffusion
training loss Ly (¢f. Eq.(2)) and the prediction 10ss Lpreq
lead to a slight improvement in generation fidelity and de-
tection score, respectively, due to more iterations on train-
ing samples. When fine-tuning the generator with Lgeq (cf.
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Eq.(10)) which contains both Ly, and layout translation cy-
cle loss Liayourrc (cf. Eq.(7)), there is a significant improve-
ment in generation fidelity. Similarity, Lge (cf. Eq. (12))
with image translation cycle loss Limagerc (cf. Eq.(11)) fur-
ther improve detector’s performance. GDCC, fine-tuning
both the generator and detector in an end-to-end manner,
achieves superior performance compared with each individ-
ual component. This indicates the duality of two tasks, and
GDCC facilitates mutual enhancement during iterations.
Reward Strategy. A small ¢y, facilitates the cycle reward
process, while w not only increases the frequency of the cy-
cle reward but also controls the balance between the cycle
reward and the original Lgy or Lpeg. We aim to identify
an appropriate value for w while constraining £,.q within a
small range to ensure both the effectiveness and efficiency
of the algorithm. Setting e = O indicates that only Ly
and Lpq are active. Table 5b shows that: (i) a proper w en-
hances reward training efficiency, achieving better results
in only 36% of training time without w; (ii) a large ¢y in-
troduces noise into the reward process.

Different Detectors. GDCC is a general training frame-
work independent of the generators and detectors. In our
main experiments, we use Faster R-CNN [51] as the de-
fault detector. To evaluate the generalization ability of
GDCC, we conduct experiments using different detectors.
As shown in Table 5c, GDCC consistently improves both
detection and generation scores across all tested detectors.

5. Conclusion

In this paper, we propose GDCC, an end-to-end frame-
work that jointly optimizes L2I generation and OD tasks.
By exploring the inherent duality between these two tasks,
GDCC facilitates mutual enhancement of L2I and OD mod-
els through the layout and image translation cycle losses.
Additionally, GDCC allows for more efficient use of auto-
synthesized data, further enhancing data efficiency. No-
tably, our GDCC is computationally efficient thanks to the
perturbative single-step sampling and priority timestep re-
sampling strategies during training, while maintaining the
same inference cost as the original L2I and OD models.
Experiments confirm that GDCC improves both the con-
trollability of L2I models and accuracy of OD.
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