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Abstract

We study the problem of multiclass learning with bandit feedback in both the
ii.d. batch and adversarial online models. In the uniform learning framework,
it is well known that no hypothesis class H is learnable in either model when
the effective number of labels is unbounded. In contrast, within the universal
learning framework, recent works by [Hanneke et al.| [2025b|] and Hanneke et al.
[2025a] have established surprising exact equivalences between learnability under
bandit feedback and full supervision in both the i.i.d. batch and adversarial online
models, respectively. This raises a natural question: What happens in the non-
uniform learning framework, which lies between the uniform and universal learning
frameworks? Our contributions are twofold: (1) We provide a combinatorial
characterization of learnable hypothesis classes in both models, in the realizable
and agnostic settings, within the non-uniform learning framework. Notably, this
includes elementary and natural hypothesis classes, such as a countably infinite
collection of constant functions over some domain that is learnable in both models.
(2) We construct a hypothesis class that is non-uniformly learnable under full
supervision in the adversarial online model (and thus also in the i.i.d. batch model),
but not non-uniformly learnable under bandit feedback in the i.i.d. batch model
(and thus also not in the adversarial online model). This serves as our main
novel technical contribution that reveals a fundamental distinction between the
non-uniform and universal learning frameworks.

1 Introduction

Learnability lies at the core of learning theory. Intuitively, it explores the conditions under which
there exists an algorithm that can accurately predict unseen instances based on a finite set of examples.
To rigorously study this phenomenon, various abstract learning frameworks, including uniform,
non-uniform, and universal learning frameworks, have been proposed in the literature so far. This
manuscript focuses on the non-uniform learning framework.

The classical work of Benedek and Itai [[1988]] introduced the non-uniform learning framework.
Moreover, they gave a combinatorial characterization of non-uniform PAC learnability for the binary
classification setting. The recent contribution of [Lu|[2024] gave a combinatorial characterization of
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non-uniform online learnability also for the binary classification setting. However, many important
tasks involve a large prediction space. For instance, consider a quantum experiment with n € N
qubits, where the goal is to predict measurement outcomes, each of which can be one of 2™ possible
states. Meanwhile, many significant tasks involve bandit feedback, where the only information
that can be received is whether the prediction is correct. For example, a physicist might propose a
prediction based on a discovered law of nature and then observe only whether it holds true.

In response, we consider the framework called “Non-Uniform Multiclass Learning under Bandit
Feedback”. Roughly speaking, in this framework, a learner aims to infer an unknown hypothesis 2*
from a known hypothesis class H consisting of functions from some instance space X (e.g., space of
images) to some label space ) (e.g., categories of images), through an interaction with nature, with a
guarantee that may depend on h*.

Subsequently, we provide a more precise, yet still informal, description of the framework. In the
i.i.d. batch model, nature initially selects an unknown data distribution similar to classical multiclass
learning, but the learner does not directly observe the correct labels of the i.i.d. training examples.
Instead, during each round, the learner first receives an unlabeled example, makes a prediction for
its label, and receives bandit feedback. Despite this restriction, the goal remains the same as in
classical multiclass PAC learning, where the primary objective is to output a function that correctly
classifies most future examples generated by the same underlying data distribution. In addition, in
the adversarial online model, during each round, nature first presents an instance to the learner. Next,
the learner must predict a label for the given instance. After making a prediction, nature reveals the
bandit feedback. Crucially, this setting differs from the full supervision setting, where, at the end of
each round, the true label is revealed by nature. Again, despite this restriction, the goal remains the
same as in classical multiclass online learning, where the primary objective is to correctly predict
in most rounds. Furthermore, in the realizable setting, we assume that the data distribution or the
sequence of instance-label pairs played by the adversary is consistent with some h* € H. On the
other hand, in the agnostic setting, we do not make such an assumption. Moreover, the non-uniform
learning framework allows for error or regret bounds, possibly depending on A*, in the i.i.d. batch
and adversarial online models, respectively.

In this manuscript, our first main contribution is to algorithmically address the following question in
the non-uniform multiclass learning under bandit feedback framework across both the i.i.d. batch and
adversarial online models, in both the realizable and agnostic settings:

What is the necessary and sufficient condition for a hypothesis class H C Y% that admits
non-uniform learnability?

In particular, we provide a combinatorial characterization of hypothesis classes for which learnability
is possible. We note that, for simplicity at this stage of the introduction, several details about the
definitions in the framework have been omitted, such as the possibility of allowing randomized
learners in the adversarial online model. For more details, see Section [T.T]and Section[3]

Previous research on the problem of multiclass learning under bandit feedback mostly considered
the uniform learning framework. In essence, the uniform learning framework seeks a theoretical
guarantee that is true for all data distributions or all adversarial sequences, without any dependence on
the distribution or sequence itself. This line of study was initiated by the seminal work of|Daniely et al.
[2011]] and continued by [Erez et al.| [2024bla] in the PAC model, and by [Daniely and Helbertal [2013]],
Long| [2017], |Geneson| [2021], Raman et al.| [2023|], Hanneke and Yang|[[2023]] in the adversarial
online model. If the effective label space is infinite—that is, there exists at least one instance in
the instance space for which hypotheses in the hypothesis class can assign infinitely many distinct
labels—no deterministic online learning algorithm can guarantee a uniformly bounded number of
mistakes against the worst-case realizable adversary. To see this, consider a scenario in which the
adversary repeatedly selects the same specific instance in every round. In this case, the predictions
of the online learning algorithm can be consistently incorrect, even though a hypothesis within the
hypothesis class remains consistent with all previous feedback. In particular, this happens because the
feedback received only indicates whether the prediction was correct or not. Moreover, this conclusion
can be easily generalized to randomized algorithms as well. In addition, a similar limitation arises in
the PAC model due to the need to guess an unknown natural number while keeping the number of
guesses uniformly bounded over the choices of the target number. Notably, this limitation applies
even to elementary and natural hypothesis classes, such as a countably infinite collection of constant
functions over some domain.



The recent contributions by [Hanneke et al.| [2025b] and [Hanneke et al.|[2025a] are the only works
that diverge from the uniform learning framework by considering the universal learning framework
of [Bousquet et al.|[2021]]. This framework enables the study of theoretical guarantees that are still
true for all data distributions or all adversarial sequences, but crucially without placing a uniform
bound on the error rate in the i.i.d. batch model or regret in the adversarial online model. In particular,
the error rate may depend on the distribution itself, and the number of mistakes may depend on the
infinite sequence of instance-label pairs. These works demonstrated surprising exact equivalences
between learnability under bandit feedback and full supervision in the i.i.d. batch and adversarial
online models, respectively. As a result, it is possible to learn the hypothesis class of a countably
infinite collection of constant functions over some domain in the universal multiclass learning under
bandit feedback framework in both i.i.d. batch and adversarial online models as opposed to the
uniform learning framework.

This raises a natural question: what happens in the non-uniform learning framework, which lies
between the uniform and universal learning frameworks? In particular, in the former, learnability
is essentially impossible under bandit feedback, whereas in the latter, there is an exact equivalence
between learnability under full supervision and learnability under bandit feedback.

The non-uniform learning framework also allows one to escape the aforementioned theoretical
limitation in the uniform learning framework. To illustrate this, we again focus on the hypothesis
class of countably infinite constant functions over some domain. Suppose that we are in the adversarial
online model and in the realizable setting. Now, consider the following online learning algorithm: In
each round ¢ € N, it predicts the label ¢ until it receives feedback confirming the prediction is correct.
Once the correct label is identified, it consistently predicts that label in all subsequent rounds. This
online learning algorithm makes a finite number of mistakes, depending on h*, against any realizable
adversary. It is not hard to see that this class is non-uniform online learnable in the agnostic setting as
well as non-uniform PAC learnable in both realizable and agnostic settings. However, we construct a
hypothesis class that is non-uniformly learnable under full supervision in the adversarial online model
(and thus also in the i.i.d. batch model), but not non-uniformly learnable under bandit feedback in the
1.i.d. batch model (and thus also not in the adversarial online model). This serves as our main novel
technical contribution that reveals a fundamental distinction between the non-uniform and universal
learning frameworks.

To summarize, our main contributions in the current manuscript are as follows. Therefore, we
complete the picture of the problem of multiclass learning, which is presented in the following table.

Adversarial . .
Adversarial with Bandit | L.I.D. ;elz.elzli)acvl?th Bandit
Feedback
Littlestone bandit  Little- | finite DS | finite effecive label
. . stone  classes | Dimension space and Natarajan
Uniform classes [Daniely| - . - . .
et all POT1] [Daniely et al) | [Brukhim dimension[Daniely
i 2011] etal}[2022] | letal}2011]
countable union | countable union | countable gf;;;tezb::i tﬁl glr?ilt]e :ff_
Non- of Littlestone | of bandit Lit- | union of DS .
. fective label space
Uniform classes [Theo- | tlestone classes | classes [Theo- and Natarajan dimen-
remD.1] [Theorem[T.1Jl | rem[C.3)] sion [ Theorem|[T3]
no infinite | no infinite
Universal Littlestone Tree | Littlestone Tree | All [Hanneke | All [Blanchard et al.,
[Hanneke et al., | [Hanneke et al., | let al., [ 2021]] 2022]
2025a] 2025al]

We also provide several interesting examples that show the separations among different learning

settings:

1. We construct a hypothesis class that is non-uniformly learnable under full supervision in the
adversarial online model (and thus also in the i.i.d. batch model), but not non-uniformly

Table 1: The Learnable classes in different multiclass learning settings.




learnable under bandit feedback in the PAC model (and thus also not in the adversarial
online model), in Proposition

2. We give two examples of hypothesis classes to show other separations between uniform,
non-uniform, and universal learning frameworks for the problems of multiclass learning
under bandit feedback and full supervision Appendix

1.1 Overview of the Main Results

In the following subsection, we provide a detailed summary of the key results and findings presented
in our paper.

1.1.1 Non-Uniform Multiclass Online Learning

We define the problem as a repeated game between the learner and the adversary. At each round
t € N, the adversary selects an instance X; from an arbitrarily non-empty instance space X and a
label Y; from a possibly countably infinite non-empty label space ) ﬂ then, reveals X, to the learner.
Subsequently, the learner predicts a (potentially randomized) label Y, from ). Following this, the
learner receives feedback. If we are in the full supervision setting, the feedback is Y;; and if we are in

the bandit feedback setting, the feedback is I{Y; # Y;}, only indicating whether the prediction is
correct. Following standard learning theory conventions, we define a hypothesis class H as a set of
functions from & to ). This class is known to the learner before the game begins. For additional
details, see Section[3}

In the realizable setting, we assume that the sequence {(X¢, Y;)}$2,, chosen by the adversary, is
consistent with at least one hypothesis in . In this setting, we focus on the standard notion of the
expected number of mistakes made by the learner over time. We say that a hypothesis class H C Y
is realizable non-uniform multiclass online learnable under bandit feedback if there exists an online
learning rule A receiving bandit feedback such that for every h* € H there exists a constant ¢ € N
such that for every sequence {(X¢, Y;)}?2, consistent with A*, the online learning algorithm A only
makes ¢ number of mistakes in expectation. We have a similar definition for the full supervision
setting. See Section [3]for further details. The main result of this part is the following theorem.

Theorem 1.1. Let H C V¥ be a hypothesis class. Then, the following statements are equivalent.

* H can be represented as a countable union of hypothesis classes with finite bandit Littlestone
dimension.

* H is realizable non-uniform multiclass online learnable under bandit feedback.

To prove the upper bound of the above theorem, we design a novel online learning algorithm called
the non-uniform bandit standard optimal algorithm. Furthermore, the proof of the lower bound is
based on the original work of Benedek and Itai| [1988]]. As an immediate implication, consider the
hypothesis class of a countably infinite collection of constant functions over some domain. Indeed,
one can view each hypothesis in this class as part of the countable union of hypothesis classes with
finite bandit Littlestone dimension. Thus, this hypothesis class is realizable non-uniform multiclass
online learnable under bandit feedback. See Section [5|for further details. Notably, we also prove a
similar theorem for the full supervision setting. The proof of this theorem is based on the arguments
of the recent work of [Lu| [2024]]. See Appendix [D|for further details.

In the agnostic setting, we make no assumptions about the sequence {(X;, Y;)}$2,, chosen by the
adversary. In this setting, our focus shifts to minimizing the standard notion of expected regret, which
compares the expected number of mistakes made by the learner to those made by the best hypothesis
in the hypothesis class  over the sequence. We say that the hypothesis class H C J? is agnostic
non-uniform multiclass online learnable under bandit feedback if there exists an online learning rule
A receiving bandit feedback such that for every h* € H there exists a constant ¢ € N such that
for every T € N and every sequence {(X;,Y;)}~ ,, the online learning algorithm A has o(c T')
expected regret. We have a similar definition for the full supervision setting. See Section [3|for further
details. The main result of this part is the following theorem.

'If we consider randomized learning algorithms, the associated o-algebra is of little consequence, except that
singleton sets {y} should be measurable.



Theorem 1.2. Let H C V¥ be a hypothesis class. Then, the following statements are equivalent.

* H can be represented as a countable union of hypothesis classes with finite bandit Littlestone
dimension.

* H is agnostic non-uniform multiclass online learnable under bandit feedback.

To establish the upper bound of the above theorem, we comprise several components. First, we prove
a structural lemma for bandit Littlestone classes. Second, we adopt the technique from the original
work of Benedek and Itai [[1988]]. Third, we use an ingredient from the recent work of Raman et al.
[2023]. Finally, we employ the standard doubling trick. As an immediate implication, again consider
the hypothesis class of a countably infinite collection of constant functions over some domain. Based
on a similar argument as before, this hypothesis class is agnostic non-uniform multiclass online
learnable under bandit feedback. See Appendix[A.T|for further details, including the exact rate, which
is O(v/T). Notably, we also prove a similar theorem for the full supervision setting. The proof of
this theorem is similar to the proof of Theorem[I.2] See Appendix D] for further details.

1.1.2 Non-Uniform Multiclass PAC Learning

Here, initially, nature selects an unknown data distribution D over X x ). Fix a sample size n € N.
Subsequently, the learner and nature interact sequentially in n rounds. In particular, during each
round ¢ € {1,2,...,n}, nature first independently samples an example (x¢,y;) ~ D and reveals x;
to the learner. The learner is then tasked with predicting g, € ) for the received instance. Upon the
learner’s prediction, nature only reveals whether the prediction is correct. Eventually, the learner must
output a function from instance space to label space that correctly classifies most future examples
generated by the same unknown data distribution. Roughly speaking this is called PAC learnability.
Again, following standard learning theory conventions, we consider a hypothesis class #, consisting
of functions mapping A" to ). We assume standard measurability assumptions on X" and C as well.
We say that a data distribution D is realizable by a hypothesis class H if there exists h* € H such
that the samples are consistent with it almost surely. For additional details, see Section 3]

Theorem 1.3. Let H C V¥ be a hypothesis class. Then, the following statements are equivalent.

* H can be represented as a countable union of hypothesis classes with finite effective label
space and finite Natarajan dimension.

* H is realizable non-uniform multiclass PAC learnable under bandit feedback.

* H is agnostic non-uniform multiclass PAC learnable under bandit feedback.

To prove the above theorem, we generalize the argument of the work of |Benedek and Itail [[1988]]
for the binary classification setting under full supervision using the results of |Daniely et al.|[2011]]
on PAC learnability under bandit feedback. As an immediate implication, consider the hypothesis
class of a countably infinite collection of constant functions over some domain. Indeed, one can view
each hypothesis in this class as part of the countable union of hypothesis classes with finite effective
label spaceE] and finite Natarajan dimension. Thus, this hypothesis class is realizable non-uniform
multiclass online learnable under bandit feedback. See SectionE]for further details. Notably, we also
prove a similar theorem for the full supervision setting. See Appendix [C|for further details.

1.1.3 Examples

We present three examples of hypothesis classes that demonstrate the separation between related
learnability notions. Formally, we have the following results.

Proposition 1.4. There exists a hypothesis class H C Y that is uniform multiclass online learnable
under full supervision, but not non-uniform multiclass PAC learnable under bandit feedback.

The above proposition reveals a fundamental distinction between the non-uniform and universal
learning frameworks, where in later we have surprising exact equivalences between multiclass
learnability under bandit feedback and full supervision. Indeed, if a hypothesis class is uniform

*The effective label sapce is the label space of one instance, that is, M, = {h(z) : h € H}. We say a concept
class H has finite effective label space, if and only if ), is finite for every z € X.



multiclass online learnable under full supervision, it is also uniform multiclass PAC learnable under
full supervision, non-uniform multiclass online learnable under full supervision, and non-uniform
multiclass PAC learnable under full supervision. In addition, if a hypothesis class is not non-uniform
multiclass PAC learnable under bandit feedback, it is not also non-uniform multiclass online learnable
under bandit feedback, uniform multiclass PAC learnable under bandit feedback, and uniform
multiclass online learnable under bandit feedback. As a result, our theorem is stated in the most
extreme case.

This serves as our main novel technical contribution. To prove it, the idea is as fol-
lows: Let X be the set of all non-empty countable sequences of distinct real numbers.
Also, let ¥ = N U {x}. In addition, let H = {hy, | hy : X — Yy €
R,Vsex hy(S) =* if y isn’t in the sequence S; otherwise h, (S) = ¢, where S[i] = y}. The cru-
cial observation that we prove is that any countable representation of this class contains a class with
infinite effective label space.

Proposition 1.5. There exists a hypothesis class H, C Y% that is universal multiclass online
learnable under bandit feedback, but not non-uniform multiclass PAC learnable under full supervision.
Also, there exists a hypothesis class Hy C Y that is non-uniform multiclass online learnable under
bandit feedback but not uniform multiclass PAC learnable under full supervision.

The above proposition demonstrates a separation between uniform, non-uniform, and universal
learning frameworks, particularly under bandit feedback and full supervision.

2 Related Work

PAC Learning. The Probably Approximately Correct (PAC) learning framework, introduced by
Valiant| [ 1984]], has been a cornerstone in the field of statistical learning theory. [Blumer et al.|[1989],
Vapnik and Chervonenkis|[2015]),|Valiant| [[1984], |Vapnikl [2006]] characterizes learnable classes within
the binary PAC learning framework in the realizable setting via a combinatorial parameter called the
VC dimension. This result was later extended to the agnostic setting by Haussler| [1992]. Since then,
PAC learning has been extensively studied in various learning theoretic settings.

Online Learning. Online learning has been a subject of study for over half a century. The seminal
work of |Littlestone| [[1988] marked the beginning of its formal exploration within the computer science
community. Since then, online learning has been studied across diverse settings, including learning
under bandit feedback |Daniely et al.[[2011]], Daniely and Helbertal| [2013]],|Long| [2017]], Geneson
[2021], Raman et al. [2023]], Hanneke and Yang| [2023]]. Additionally, it is closely linked to a wide
set of fundamental problems, such as differential privacy, as explored in|Alon et al|[2019], Bun et al.
[2020], |Alon et al.| [2022]]. Given its foundational nature, it is not surprising that online learning has
also found many practical applications.

Bandit Feedback. The bandit setting plays a pivotal role in statistical decision-making. Its conceptual
foundation was first established by [Thompson| [1933]]. Later, the field was popularized by the
mathematician and statistician Herbert Robbins, whose seminal work Robbins| [[1952]] introduced the
multi-armed bandit problem. In recent years, bandit scenarios have attracted substantial attention,
driven by foundational contributions such as|Auer et al.|[2002a/b|]. For a comprehensive review of
the literature, the reader may refer to the recent work of [Foster et al.| [2021].

Multiclass Learning. A substantial body of theoretical research has explored multiclass classification
in various frameworks, with notable contributions from Natarajan and Tadepalli|[1988]], Natarajan
[1989], Ben-David et al.|[1992]], Haussler and Long|[[1995]], Rubinstein et al.| [2006], Daniely et al.
[2011}2012]], Daniely and Shalev-Shwartz [2014]], Brukhim et al.| [2021]]. However, a combinatorial
characterization of multiclass classification within Valiant’s PAC learning framework, particularly
when the number of labels is unbounded, remained unresolved until recently, even in the realizable
setting. This gap was addressed in the seminal work of [Brukhim et al.|[2022]], which also extended to
the agnostic setting as well David et al.|[2016]. The study of multiclass classification with unbounded
label spaces is motivated by several factors. First, in multiclass settings, it is preferable for guarantees
to remain independent of the number of labels, even when finite. Second, mathematical frameworks
involving infinity mostly provide clearer insights.



3 Notations, Definitions, and Preliminaries

In this section, we provide the model setting and formal definition of the problem.

PAC Learning. In this paper, we investigate the PAC learning with bandit feedback, which is
defined in the work of Daniely et al.|[2011]], in a non-uniform setting. Formally, X’ is a non-empty
instance space and ) is a non-empty label space. H C Y is the hypothesis class, which is a
non-empty set of functions from A" to V. In this paper, we focus on learning under the 0-1 loss. In
other words, the loss function is I[y # y’] defined in ) x Y and I[] is the indicator function. For
a distribution D over X x ), we define the error of a concept h with respect to the distribution
D as errp(h) = Pr(, ,)plh(z) # y]. We also denote errp(H) = infey Mp(h). A learning
algorithm A under this setting is a function A : U3 ; (X x V)™ — Y. It takes multiple samples,
i.i.d. sampled from distribution D, S,,,, then outputs a concept h. For the PAC learning with bandit
feedback version, we first generate multiple samples, i.i.d. sampled from distribution D, then the
learner sees the instance sequence without labels and makes a prediction for each instance. After
that, whether this prediction is correct is sent to the learner as feedback. Then the learner can use that
information to output the concept h. To unify the definitions, we also use .S, to stand for the samples
and feedback in the bandit feedback setting.

If there is a concept h € H, such that errp(h) = 0, we say the distribution D is realizable by H.
Then we can define the non-uniform PAC learnability as follows.

Definition 3.1 (Non-Uniform PAC Learnability). If for every h* € H, there is a number m(h*, ¢, ),
such that for every m > m(h*,¢,d), we have Prg_pm[errp(A(Sy)) > €] < 6. We say H is
non-uniform (e, §)-PAC learnable.

Then similarly, for the agnostic case,

Definition 3.2 (Agnostic Non-Uniform PAC Learnability). If for every h* € H,
there is a number m(h*,€,d), such that for every m > m(h*€d), we have
Prg, ~pmlerrp(A(Sy)) > errp(H) + €] < 6. We say H is agnostic non-uniform (e, §)-PAC
learnable.

Online Learning. In this paper, we investigate multiclass online learning in a non-uniform setting.
Here, the definition of X', )’ and H keeps the same as previous. We also focus on the 0-1 loss in this
setting. X = {X}}+en is a sequence of instances and Y = {Y; }+¢n is a sequence of labels.

Online learning is a sequential game between the learner and the adversary. In round ¢, the adversary
reveals an instance X; to the learner and the learner makes a prediction Y; based on the history
(X<i—1,Y<i-1) = {(Xi,Y) }i<i—1, where Y is the feedback given to the learner. After that,

the adversary gives the learner feedback Y, of its prediction, which may be used to inform future
predictions. In this paper, we focus on two types of feedback: full supervision and bandit feedback.
In the full supervision setting, the learner receives the true label Y; of the instance X; and incurs a

loss I [Yt #* }A/t} . In the bandit feedback setting, the learner only receives the loss I [Y} * fft} and
does not observe the true label Y;.
In the realizable setting, the adversary chooses a concept h* € H, which is unknown to the learner,

and generates the labels Y; = h*(X}). The learner aims to minimize the cumulative number of
mistakes,

S

A(h*, X, T) ZH{Yt b Xt)] .
t=1
We use M (h*, X) to stand for Ma (h*, X, 00).
Unlike the classic online learning problem, we aim to build a mistake bound for each concept instead
of a uniform mistake bound for the whole concept class. Formally speaking,

Definition 3.3 (Non-uniform Online Learnability.). We say a concept class # is non-uniform online
learnable in the realizable setting, if there exists an online learning algorithm A, such that

3Im : H — N,Vh* € H,VX,Ma (h*, X) < m(h*).

In the agnostic setting, we release the restriction that the adversary chooses a target concept from the
concept class. Instead, the adversary can choose any sequence of labels Y € V°°. In this case, we



use the notion of regret to measure the performance of the learner. The regret of the learner compared
to a concept h* is defined as the difference between the total loss of the learner and the total loss of
the function h*. Formally speaking,

regret, (h*, X,Y,T) := E ZH{Yt ” Yt] ~ ST (X0) £ Vi)

t=1 t=1

Remark. Here the expectation is taken over the randomness of the learner. We do not need to
consider the randomized learner for the realizable cases.

Then, we can define online learnability in the agnostic setting as follows.

Definition 3.4 (Agnostic Non-Uniform Online Learnability.). We say a concept class H is agnostic
non-uniform online learnable, if there exists an online learning algorithm A, such that

Im :H xN—= N m(h*,T) = o(T),
Vh* € H,VX, and VY, regret, (R*, X, Y, T) < m(h*,T).

‘We then introduce several useful combinatorial dimensions to describe our characterization.

3.1 Combinatorial Complexity Parameters

In this paper, we define H|s = {(y1,-.-,yn) : Fh € H,Vi < n,y; = h(x;)}, where S =
(1‘1,...,.’1,‘”).

Definition 3.5 (Pseudo-cube[Brukhim et al., [2022]]). A class H C Y% is called a pseudo-cube of
dimension d if it is non-empty, finite and for every h € H and i € [d], there is an i-neighbor g € H
of h (i.e., g(4) # h(i) and g(j) = h(j) for all j # 7).

Definition 3.6 (DS dimension [Daniely and Shalev-Shwartz, 2014]]). We say that S € X™ is D.S-
shattered by H C Y if H|s contains an n-dimensional pseudo-cube. The DS dimension dpg(H)
is the maximum size of a DS-shattered sequence.

Definition 3.7 (Natarajan dimension [Natarajan| [1989]]). We say that S € X™ is N-shattered by
H C Y7 if there exist £, g : [n] — ) such that for every i € [n] we have f(i) # g(i), and

Hls 2 {f(1),9(1)} x {f(2),9(2)} x ... x{f(n),g(n)}.

The Natarajan dimension d () is the maximum size of an N-shattered sequence.

Definition 3.8 (Multiclass Littlestone Tree and Littlestone Dimension [Daniely et al., 2011[). A
multiclass Littlestone tree for a concept class H is a perfect binary tree with depth d < co. The
internal nodes of that tree are labeled with elements of X" and the edges connecting a node and its two
children are labeled by two different labels from )/, so that each finite path emanating from the root
is consistent with a concept i € H. (Meaning that for each non-leaf node on the path, the concept i
labels the corresponding element of A" with the label of the edge the path follows from that node.)

We say the Littlestone dimension of a concept class H, Ldim(#) = d, if there exists a multiclass
Littlestone tree of depth d shattered by #, but there is no multiclass Littlestone tree of depth d + 1
shattered by H.

Definition 3.9 (Bandit Littlestone Tree and Bandit Littlestone Dimension [Daniely et al.l 2011]).
A bandit Littlestone tree (BL-tree for brevity) for a concept class H is a perfect tree 7', with depth
d < oo. The internal nodes of that tree are labeled with elements of &’ and the edges connecting a
node and its children are labeled with elements of ), without repetition. By saying a tree “perfect”,
we mean that for every element y € ), there exists an edge labeled y. We say that a BL tree T is
shattered by a concept class #, if for every path P from the root to any leaf of T, there exists a
concept h € H such that for every internal node v in P, h(z,) is not equal to the label of the edge
connecting v and its child.

The bandit Littlestone dimension of a concept class H, BLdim(H) = d, if there exists a bandit
Littlestone tree of depth d for H, but there is no bandit Littlestone tree of depth d 4 1 for H.

If a concept class ‘H has a finite (bandit) Littlestone dimension, we call it a (bandit) Littlestone class.



4 PAC Learning

In this section, we investigate the non-uniform PAC multiclass learning with bandit feedback. Basi-
cally, we combine the tools from the work of Benedek and Itai [[1988]] and the work of [Daniely et al.
[2011]] to get a non-uniform PAC learner for the bandit feedback setting.

First, we show a property of the Natarajan dimension and the size of the effective label space. The
proof appears in Appendix [A]

Lemma 4.1. If H, has the size of effective label space ki and d(H1) = dy, and Hs has the size of
effective label space ks and dn(Hz) = da. Let H = Hi U Ho, the size of the effective label space of
H is at most ky + ko and dn(H) < (dy + d2)? + 1.

To prove the main theorem in this section, we need the following result from Daniely et al.| [2011]].

Theorem 4.2 ([Daniely et al., 2011]). Let H C Y% be a hypothesis class. H is uniformly PAC
learnable with bandit feedback, if and only if H has finite Natarajan dimension and finite size of
effective label space. More specifically, if the size of the effective label space of H. is k. Then,

dy(H)logk-In(3) +1n(3;)> and m(e.5) = O (k dN(H)logk—i—ln((l;)).

y(6,0) =0 | k
my (€, 9) < c 2
Here, mj (¢, d) is the number of samples required for the realizable case, and mj (€, 0) is the number
of samples required for the agnostic case.

Proof of Theorem[I.3] In this proof, we provide a way to transform a uniform PAC learning algorithm
to a non-uniform PAC learning algorithm. As this method can be used to realizable algorithms and
agnostic algorithms, we use the realizable case as an example in the proof.

First, we show that if H is non-uniform PAC learnable, /{ can be represented as a countable union of
hypothesis classes with finite effective label space and Natarajan dimension. By definition, for every
h* € H, there is a number m(h*, €, §), such that if we have more than that number of samples, we
can learn that concept. Therefore, by taking € = 13—0 and 6 = ﬁ, we can set the following concept
classes: 1 ]
Hi={h":m(h", 355: 100) =4

For every 4, we know that there is a learning algorithm which only takes finite samples and can learn
h € H; with e = 15 and 0 = 155. Due to Theorem 4.2, we know H; has finite Natarajan dimension
and finite size of effective label space. And also we know that for every i € H, there is an ¢, h € H,,
thus, H = U2 H;.

Then we show how to non-uniformly learn a concept class H if it is a countable union of hypothesis
classes with finite effective label space and Natarajan dimension. Assume H = J; #;. Due to
Lemma we assume the size of effective label space of | J]_, H; is k; and dn (J]_, Hi) = d;.
Then we describe the non-uniform learning algorithm. If we are given m samples, compute the
largest j, such that m > k; - j(d;logk; - In j + In j), then we run the uniform learner on | J!_; H;
with m samples, if there is a concept consistent with all samples, output it. Otherwise, output a
prescribed concept hg.

Then we show the algorithm works. For every concept h* € H, we know there is a j such that h* €
H ;. According to the algorithm above, we have m(h*, ¢, ) = O(k;s - j'(d; logkj - Inj’ +Inj")),
where j' = maxj, 1, 5. O
5 Adversarial Online Learning

In this section, we investigate the non-uniform online multiclass learning in the realizable setting.
By using the generic non-uniform learning algorithm and the bandit standard optimal algorithm
(BSOA) from the work of [Daniely et al.| [2011]], we prove that a concept class H is non-uniform
online learnable if and only if it can be represented as a countable union of bandit Littlestone classes.

Proof of Theorem[I.1| We first prove that if H can be represented as a countable union of bandit
Littlestone classes, then H is non-uniform online learnable with bandit feedback by using the



Algorithm 1 Generic Non-uniform Online Learning Algorithm

1: Input: A concept class H = |J,,cn+ Hn With d,, = BLdim(#,,) < oo, Vn € N,

2: Initialize a BSOA A, for each bandit Littlestone class #,,, and number of mistakes for each
algorithm e,, = 0.

3: fort=1,2,...do

4:  Receive instance X;.

5:  Compute J; = argmin,{e,, + n}.

6

7

Predict Yt as A j,.
Receive feedback I [Yf #* Yf] .

g: if]I[Yt £ Y;} — 1 then

9: ey, =ej, + 1.
10:  end if
11: end for

following generic non-uniform online learning algorithm (Algorithm[I)). Recall the result from the
work of |Daniely et al[[2011] that if a concept class H has BLdim(#) = d, the BSOA has a mistake
bound of d. Then we can prove that Algorithm 1| has a mistake bound of m(h*) is O((k + dj)?),
if h* € Hj, and BLdim(H,) = di. Notice that for all ¢, J; + e;, < k + dj. Also, notice that the
number of mistakes made by AlgorithmI]is equal to the sum of the number of mistakes made by each
A,,. That is,

oo k+dyg oo
Ma(R', X) =Y ei= Y eit Y. e < (k+di)?+0=(k+dy)
i=1 i=1 i=k+de+1

We then prove that if H is non-uniform online learnable with bandit feedback, then # can be
represented as a countable union of bandit Littlestone classes. Because # is non-uniform online
learnable with bandit feedback, there exists an online learning algorithm A such that for all h* € H,
Ma (h*, X)) < m(h*). Then we can define H,, = {h € H : m(h) = n}. Because H is non-uniform
online learnable with bandit feedback, we know that for every h € H, m(h) is finite, and we can
assume that the learning algorithm is A. Thus, H = |,y Hn. We then prove that H,, is a bandit
Littlestone class. In order to do this, we need the result from the work of [Daniely et al.| [2011]]
that any deterministic algorithm makes at least BLdim(?) mistakes against the worst adversary for
concept class H. Notice that for any concept h* € H,,, A can learn it with at most n mistakes, thus,
BLdim(#,,) < n. Therefore, #,, is a bandit Littlestone class. O

We provide the results for the agnostic setting, which is more technical in Appendix [A]

6 Conclusion, Discussion, and Future Directions

In this paper, we study the fundamental problem of multiclass learning under bandit feedback when
the number of labels can be unbounded within the non-uniform learning framework in both PAC
and online models, in the realizable and the agnostic settings. We have shown a first theoretical
result in this context, stating that PAC learnability is possible if and only if the hypothesis class can
be represented as a countable union of classes with finite effective label space and finite Natarajan
dimension, and online learnability is possible if and only if the hypothesis class can be represented as
a countable union of classes with finite bandit Littlestone dimension. This includes elementary and
natural hypothesis classes, such as the class of a countably infinite collection of constant functions
over some domain, which is not learnable in the uniform learning framework. In addition, we
provide a construction of a hypothesis class that is uniform online learnable under full supervision
but not non-uniform PAC learnable under bandit feedback. This implies a key distinction between
the non-uniform and universal learning frameworks.

At this point, we outline a suggestion for future research. We believe exploring alternative forms of
feedback beyond bandit feedback in multiclass learning within the non-uniform learning framework
is an avenue for future research. Do we have such a difference between uniform, non-uniform, and
universal learning frameworks in any of them?
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In the abstract and introduction, we claim that we provide a combinatorial
characterization of learnable hypothesis classes in both models, in the realizable and agnostic
settings, within the non-uniform learning framework, and we construct some examples of
concept classes showing separations. We prove these results in the subsequent sections.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: This is discussed in Section[6]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

¢ The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]

Justification: We make all of the assumptions clear in Section[3] Also, the paper contains
complete proof in the subsequent sections.

Guidelines:

The answer NA means that the paper does not include theoretical results.

All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

All assumptions should be clearly stated or referenced in the statement of any theorems.
The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [NA]

Justification: This paper is purely theoretical.

Guidelines:

The answer NA means that the paper does not include experiments.

If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

15



Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]
Justification: This paper is purely theoretical.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]
Justification: This paper is purely theoretical.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]
Justification: This paper is purely theoretical.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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8.

10.

* The assumptions made should be given (e.g., Normally distributed errors).

« It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]
Justification: This paper is purely theoretical.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: We have reviewed the NeurIPS Code of Ethics and ensured that our paper
conforms, in every respect, with the NeurIPS Code of Ethics. We have also made sure to
preserve anonymity.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: As this paper is completely theoretical in nature, there does not seem to be any
societal impact of the work performed.

Guidelines:

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: This paper is theoretical and poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: This paper does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We only use LLM for writing, and editing purposes.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Remaining Proofs

Proof of Lemma[d.1] First, it is obvious that the size of the effective label space of H is smaller
than or equal to k; + ko, because otherwise, there is a function h € H and a instance x such that
h(z) # h/(z) for every h' € Hy and b/ € Hs. Here is an obvious contradiction.

Then we prove the statement about Natarajan dimension by contradiction. Suppose dy(H) >
(dy + d2)? + 1. Thus, we have a sequence S = (z1,z2, ... s T(dy 4dg)2+15 T(dy +ds)2+2) that is N-
shattered by . Therefore, there are at least 2(d1+d2)*+2 different label sequences in the intersection
of H|s and {yf, 51} x {88, 53} % .. X {Yly, 4 ap)2100 Yay +dp)22)> Where 3 # yi for all i.

((d1+d2)2+2
<d

However, there are at most :

) different label sequences in the intersection of H1|gs and

2 .
{02yt < Y8, yad X oo X Y01, L )2 120 Y{dy +.dp)2 42} and there are at most ((d1+§d§2) +2) different
label sequences in the intersection of Ha|s and {y, yi } x{y9, ya} x. . .x{y?d1+d2)2+2, y(1d1+d2)2+2}.

Notice that (45 +2) 4 (B H02)°2) < ((d) 4 dy)? +2) + ((dy +da)? +2)% < 2242,

>d1 2
Therefore, it is a contradiction. O]

A.1 Agnostic Setting

In this section, we discuss the result for the agnostic setting. We use the uniform online multiclass
learning algorithm with bandit feedback from the work of Raman et al.|/[2023]] to design a non-uniform
online learning algorithm with bandit feedback. We then prove that a concept class # is non-uniform
online learnable in the agnostic setting if and only if it can be represented as a countable union of
bandit Littlestone classes. Formally,

Theorem A.1. The following two statements are equivalent:
* ‘H is non-uniform online learnable with bandit feedback in the agnostic setting.
* ‘H can be represented as a countable union of bandit Littlestone classes.

In order to prove this theorem, we need the following theorem from the work of Raman et al.| [[2023]:

Theorem A.2 ([Raman et al.,2023]], Theorem 2). For any H C VX, there exists an agnostic online
learner whose expected regret, under bandit feedback, is at most

8+/Ldim(H)BLdim(H)T log T .

To simplify this upper bound, we want to show Ldim(#) < BLdim(%) for all #. This is true
because we can transfer a Littlestone tree to a bandit Littlestone tree using the following method. For
each node v in the Littlestone tree, if its two children are v; and vo and the label of the two edges
are y; and y9, we can create a node v in the bandit Littlestone tree and then add nodes v, for every
y € Y and label edge (v, v,) with y. Then we label v,, = v and v,, = v, for other y € Y, we
label v, = v1. Then we can prove that this bandit Littlestone tree can be shattered by #. Thus, we
have Ldim(#) < BLdim(#) for all #. Therefore, the regret bound for the agnostic online learner
with bandit feedback is upper bounded by 8BLdim(#)+/T logT'.

Then we need the following lemma:
Lemma A.3. IfBLdim(Hl) = dl, BLdim(Hg) = d2, BLdim(”Hl U 7‘[2) S d1 + d2 + 2.

Proof. Suppose for sake of contradiction that BLdim(H; U Ha) > dy + da + 3. Then there exists a
bandit Littlestone tree T" of depth d; + do + 3 that can be shattered by 1 U Ho. Then consider all
subtrees at depth d; + 1, all of those subtrees have depth dy + 2. Then because the bandit Littlestone
dimension of H5 is ds, the version space at the root of the subtree must contain some h € H;.
Therefore, the subtree from the root to every node at the depth d; + 1 can be shattered by H;, which
contradicts the fact that BLdim(?{1) = d;. That finishes the proof. O

Then we can use the above lemmas and theorems to prove Theorem

Proof of Theorem[A. I} We first show that if 7{ can be represented as a countable union of bandit
Littlestone classes, then H is non-uniform online learnable with bandit feedback in the agnostic
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setting. First, as H can be represented as a countable union of bandit Littlestone classes, we can
represent it as the following way: H = |J;—, H;, such that BLdim(Uf:1 H;) < k. Then we can
use the doubling trick to handle the changing time horizon. Set 7}, = Z?Il 27=1  then run the
non-uniform online learning algorithm with bandit feedback in the agnostic setting with reference
concept class Ule ‘H; in the time slot [Tk, Ty41].

Then we analyze this algorithm A, notice that for every h*, there is a k, such that h* € Hy. In
the meanwhile, by using Theorem[A.2] we can get a regret bound for each time slot. Thus, we can
compute the regret of the algorithm as follows:

regret, (R*, X, Y, T)
T T

—E|> 0|V £ Yi| - DIk (X) £ Vi)
t=1 t=1
log T Tjt1 Tjt1
=S E| Y IViAv] - > I ) £
j=1 t=T;+1 t=T;+1
[log T'] Tjt1 .
ST+ > E| Y IV A Y] - 1°(X0) £ Vi)
j=k t=T;+1
T A
+E[ Y IAY]-I0(X) £V
t=T\10g ) +1
[log T'] J
<Te+ Y 8BLdim<U ”Hi> V21
j=Fk i=1
llog T]+1

+8BLdim | | i |\ (7 —2U087))log(T— 200571
=1

[log T']

=T+ Y 8j\/j2
j=k

+ 8(L10g TJ + 1)\/(T — QUOgTJ)log(T _ 2[10gTJ)

< Ty +8(|log T)) % V2Uoe TI+1 4 8([log T| + 1) VT
< Ty +8(|logT| +1)3VT

Notice that T}, is a constant related to h*, thus, we have m(h*, T) = O(\/T log® T)), which is o(T).
Therefore, this algorithm is a non-uniform online learning algorithm with bandit feedback in the
agnostic setting.

Then we need to prove that if H cannot be represented as a countable union of bandit Littlestone
classes, no non-uniform online learning algorithm with bandit feedback can learn # in the agnostic
setting. It is equivalent to prove that if H cannot be represented as a countable union of bandit
Littlestone classes, no non-uniform online learning algorithm with bandit feedback can learn H with
a o(T') mistake bound, that is, for all h* € H, m(h*,T) = o(T). We prove the contrapositive of
this statement. In other words, if there is a non-uniform online learner A for a concept class H with
mistake bound o(T"), H can be represented as a countable union of bandit Littlestone classes. By
definition, we define

H; = {h € 1 :VX,VT > i,EMa(h, X,T)] <

w| N

}.

Notice that i € Nand H = |J;-, H;. Define C; = sup, [{h(z) : h € H;}|. Then refer to the
Lemma 18 in the work of [Raman et al.|[2023] and notice that we have E[M4a (h, X, T)] < Z for all
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T > iand all X. Thus, by taking 7' = ¢, we have the following two inequalities:

1 C;—1

~ >

37 2

i _ BLdim(7,)
3~ 4Cz log Cz

Therefore, we have BLdim(#;) < % log(%), which is finite. So, H; is a bandit Littlestone
class for all 7, which implies that H can be represented as a countable union of bandit Littlestone
classes. That finishes the proof. O

B Examples

In this section, we provide three examples of hypothesis classes revealing separations between related
learnability notions. The main innovation is constructing the first example. The second example is
based on the work of [Bousquet et al.|[2021]]. Also, the third example uses ideas from the second
example.

Proposition B.1 (Non-Uniform Multiclass Online Learnable but not Non-Uniform Multiclass
PAC Learnable under Bandit Feedback). There exists a hypothesis class H C VX such that can
be represented as a countable union of classes with finite Littlestone dimension, but cannot be
represented as a countable union of classes with finite effective label space.

Proof. Let X be the set of all non-empty countable sequences of distinct real numbers. Also,
let Y = NU {x}. In addition, let H = {hy | hy : X = YV, y € R, Vsexhy(S) =
* if y isn’t in the sequence S; otherwise h,(S) = i, where S; = y}. First, we claim that
cannot be represented as a countable union of classes with finite effective label space. Suppose by
contradiction that H = U2, H; such that for every ¢« € N, we have: the effective label space of
‘H; is finite. Then, there exists ¢* € N such that |#;«| = co. This is because # is uncountable as
R is uncountable. Now, we claim that the effective label space of H;- is infinite. To see this, let
H ={hs,lzy,...} € H; such that H' is countable. Based on that, let S” = (21, 22, ...). Then,
observe that the set {y | y € R, Jpepr h(S’) = y} is infinite. As a result, we should have: the
effective label space of #H,;« is infinite. This is a contradiction. Second, we claim that Ldim(H) = 1.
To show this, we prove that the following online learning algorithm makes at most one mistake
against any realizable adversary. The algorithm predicts % until the first mistake, after which there is
only one concept consistent with the true label. This is because if the mistake was made on (.5, 7),
then the target function is h,, where z = S;. This finishes the proof. O

Proposition B.2 (Universal Multiclass Online Learnable under Bandit Feedback but not Non-Uni-
form Multiclass PAC Learnable). There exists a hypothesis class H C V¥ such that it does not have
an infinite Littlestone tree, but cannot be represented as a countable union of classes with finite VC
dimension.

Proof. Let X = {S | S CR,|S| < oo}. Also, let Y = {0, 1}. In addition, let H = {hy | hy : X —
Y,y € R, Vsexr hy(S) = Iy € S]}. First, we claim that  cannot be represented as a countable
union of classes with finite VC dimension. Suppose by contradiction that H = U2, H; such that
for every i € N, we have: VC(H') < oo. Then, there exists i* € N such that |#;«| = co. This is
because H is uncountable as R is uncountable. Now, we claim that VC(H;+ ) = oc. This is because
the dual class of H;« is the class of all finite subsets of an uncountable set. In particular, note that
for every hypothesis class H' C {0,1}*", we have: VC(H') < oo if and only if VC*(#) < oc.
This is a contradiction. Second, we claim that A does not have an infinite Littlestone tree. This is
because once we fix aroot S € X of a Littlestone tree, the class {h | h € H, h(S) = 1} is finite, so
the corresponding subtree must also be finite. This finishes the proof. O

Proposition B.3 (Non-Uniform Multiclass Online Learnable under Bandit Feedback but not Uniform
Multiclass PAC Learnable). There exists a hypothesis class H C Y such that it can be represented
as a countable union of classes with finite bandit Littlestone dimension, but VC(H) = oo.
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Proof. Let X = {S | S CN,|S| < oo}. Also, let Y = {0, 1}. In addition, let H = {hy | hy : ¥ —
Y.y € N,Vsexr hy(S) = Iy € S]}. First, we claim that VC(#H) = oo. This is because the dual
class of H is the class of all finite subsets of N. In particular, note that for every hypothesis class
H' C {0,1}*', we have: VC(H') < oo if and only if VC*(H’) < co. Second, we claim that H
can be represented as a countable union of classes with finite bandit Littlestone dimension. This is
because H is countable. In particular, note that each single hypothesis has both Littlestone dimension
and bandit Littlestone dimension equal to zero. This finishes the proof. O

We note that, above, we use VC*(.) as the dual VC dimension. We refer the readers to the work of
Assouad|[[1983]] for the proof of the result that we used.

C Non-Uniform Multiclass PAC Learning

In this section, we investigate the non-uniform PAC multiclass learning. Basically, we combine
the tools from the work of Benedek and Itai|[1988|] and the work of Brukhim et al.| [2022] to get a
non-uniform PAC learner.

First, we have the following property of the DS dimension.
Lemma C.1. IdeS(H1) =d;, dDS(HQ) = da, dps(Hl @] Hg) <dy+ds+ 1

Proof. We can prove this by contradiction. Suppose dps(H1 U Ha) > di + da + 2. We have
S ={x1,...,%4,+d,+2}, such that H|g contains a d; + ds + 2-dimension pseudo-cube. Without
loss of generality, assume S; = {1, ..., 24, } such that H;|s, contains a d;-dimension pseudo-cube.
However, forany i = d;+1,...,d1+do+2,1let S| = S1U{x;}, then H; |Si does not contain a d; +1
pseudo-cube. Therefore, for all h € 1, they all agrees on the label of Sa = {4, +1,...dy+da+2]-
However, #|g, contains a da + 2 dimension pseudo-cube. Therefore, Ha|s, = Hl|s, \ Hilss»
which must contains a ds + 1-dimension pseudo cube. Here is a contradiction, and that finishes the
proof. O

In order to prove the main theorem in this section, Theorem[I.3] We need the following results about
the uniform PAC learnability with bandit feedback.

Theorem C.2 ([Brukhim et al., 2022]). Let H C Y be a hypothesis class. H is uniformly PAC
learnable, if and only if H has finite DS dimension.

Then we have the main theorem here.

Theorem C.3. The following three statements are equivalent:

* H can be represented as a countable union of hypothesis classes whose DS dimension is
finite.

* H is non-uniform PAC learnable in the realizable setting.

* ‘H is non-uniform PAC learnable in the agnostic setting.

Recall the proof of Theorem[I.3] we only need Lemma|C.1} and the rest of the proof is exactly the
same.

D Non-Uniform Multiclass Adversarial Online Learning

In this section, we provide the results for non-uniform multiclass online learning with full supervision.
The results here are new, but can easily be obtained by extending the methods in the work of |Lu
[2024].

D.1 Realizable Setting
In the realizable setting, a concept class H is non-uniformly online learnable, if and only if H is a

countable union of Littlestone classes. The proof extends the algorithm from the work of |Lu|[2024]]
to a multiclass setting. Formally,

24



Theorem D.1. The following two statements are equivalent:
* ‘H is non-uniform online learnable with full supervision.
* H can be represented as a countable union of Littlestone classes.
Proof. We first prove that if H can be represented as a countable union of Littlestone classes, then

‘H is non-uniform online learnable with full supervision by using the following non-uniform online
learning algorithm (Algorithm [2). Recall that the SOA algorithm has a mistake bound of d for a

Algorithm 2 Non-uniform Online Learning Algorithm with Full Supervision

1: Input: A concept class H = J, o+ Hn With d,, = BLdim(#,,) < oo, Vn € N*.
2: Initialize an SOA A,, for each bandit Littlestone class H,,, and number of mistakes for each
algorithm e,, = 0.

3: fort=1,2,...do

4:  Receive instance X;.

5:  Compute J; = argmin,{e, + n}.
6:  Predict Yf as Aj,.

7:  Receive true label Y;.

8: forn=1,2,...do

9: if The prediction of A, is not equal to Y; then
10: en =€n+ 1.

11: end if

12:  end for

13: end for

Littlestone class H with Ldim(#) = d. Then if the target concept h* € Hj,, where Ldim(H) = dy.
Then notice that for all ¢, we have J; < dj, + k. Thus, the algorithm will stick to the A after at most
(di + k)? rounds and will make no more mistakes. So we have m(h*) < (dj + k)? and that finishes
the proof of the first part.

Then we prove that if H is non-uniform online learnable with full supervision, then A can be
represented as a countable union of Littlestone classes. Because H is non-uniform online learn-
able with full supervision, there exists an online learning algorithm A such that for all h* € H,
Ma (h*, X) < m(h*). Then we can define
Hy, ={h € H:m(h) =n}.

Because H is non-uniform online learnable with full supervision, we know that for every h € H,
m(h) is finite, and we can assume that the learning algorithm is A. Thus, H = (J,,c+ Hn. We then
prove that #H,, is a Littlestone class. In order to do this, we need the result from the work of |Daniely
et al.| [2011] that any deterministic algorithm makes at least Ldim(?) mistakes against the worst
adversary for concept class H. Notice that for any concept h* € H,,, A can learn it with at most n
mistakes, thus, Ldim(?,,) < n. Therefore, H,, is a Littlestone class. That finishes the proof. O

D.2 Agnostic Setting

In the agnostic setting, a concept class H is non-uniformly online learnable, if and only if # is a
countable union of Littlestone classes. We use the doubling trick on the uniform online learning
algorithm to show this result. Formally,

Theorem D.2. The following two statements are equivalent:
* H is non-uniform online learnable with full supervision in the agnostic setting.
* H can be represented as a countable union of Littlestone classes.

In order to prove this theorem, we need the uniform online learning algorithm in the agnostic setting
and the following theorem from the work of [Hanneke et al.|[2023]].

Theorem D.3 ([Hanneke et al., 2023]], Theorem 4). For any concept class H and T > 2Ldim(H),
we have an agnostic online learning algorithm, whose regret is at most

O(v/Ldim(H)T logT).
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We can use the doubling trick and the uniform online learning algorithm above to design the non-
uniform online learning algorithm. To do this, we need to notice that the property of having a
finite Littlestone dimension is closed under finite union. This is true due to the same reasoning as
Lemma[A.3] Then we can prove Theorem|[D.2]

Proof. We first show that if H can be represented as a countable union of Littlestone classes, H is
non-uniform online learnable in the agnostic setting. Because # can be represented as a countable

union of Littlestone classes, we can write H = |J;-, H,;, such that Ldim(Uf=1 Hi) < k. Let
T, = Z?:l 2/~ Run the uniform agnostic online learning algorithm on Ule H; in time slot
[Tk + 1, Txy1], we restart the algorithm at time T}, + 1 for every k.

Notice that for every h*, there is a k such that h* € Hy, and use Theorem [D.3| we can analyze the
regret of the algorithm above:

T T

SOV Av] - Yot (x) £ Vi)

t=1 t=1

regret, (h*, X,Y,T) =E

log T Tj+1 . Tj41
=Y E| Y afiAw] - > Iw(x) £V
j=1 t=T;+1 t=T;+1
[log T Titr T .
ST+ Y E| M IV AR (X) £YI[+E| Y IV £ Y] -1R%(X0) £ Vi)
j=k t=T;+1 t=Tjog ) +1

[logT| j llog T]+1

<Tp+ Z c Ldim(U ’Hi> j29 4+ ¢ |Ldim U H; | (T = 200 T)) log(T — 2LosT])
Jj=k i=1 i—1
[log T

ST+ S V2l +e([log T + 1)1/ (T — 2l 7))
j=k

< Ty +c(|logT| +1)2°VT
This inequality holds for some constant c. Thus, we notice that m(h*, T) = T} + c¢(log T)*V/T,
which is o(T'). Therefore, this is a non-uniform agnostic online learning algorithm.

To prove the necessity, it is equivalent to show that if there is a non-uniform online learner A can
learn a concept class H with expected mistake bound m(h,T') = o(T'), H can be represented as a
countable union of Littlestone classes.

By definition, we define
T
H; ={h e H : VX, VT >i,EMa(h, X,T)] < §}'

Notice that € N and H = Uf; H;. Referring to the work of [Ben-David et al.|[2009]], we know
there exists a sequence X, such that E[Ma (h, X, T)] > Ld'mf(%) for all algorithm A. Then we take

T = i, we can get % > Ld‘mfm) Thus, Ldim(#;) < %, which is finite. So, H; is a Littlestone class
for all 7, which implies that H can be represented as a countable union of Littlestone classes. That
finishes the proof. O
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