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Figure 1: We leverage Gaussian Splatting as surface representation for multi-view based 3D object
detection. Top Left: Gaussians with color and coordinate. Top Right: Gaussians with color,
coordinate and surface information, but in a much fewer amount. Bottom (a-b): Object composed of
Gaussians exhibits a textured surface as opposed to the top left illustration. Bottom (c-d): However,
Gaussian splatting inherently introduces numerous outliers around the object.

ABSTRACT

Skins wrapping around our bodies, leathers covering over the sofa, sheet metal
coating the car – it suggests that objects are enclosed by a series of continuous
surfaces, which provides us with informative geometry prior for objectness deduc-
tion. In this paper, we propose Gaussian-Det which leverages Gaussian Splatting
as surface representation for multi-view based 3D object detection. Unlike existing
monocular or NeRF-based methods which depict the objects via discrete positional
data, Gaussian-Det models the objects in a continuous manner by formulating
the input Gaussians as feature descriptors on a mass of partial surfaces. Further-
more, to address the numerous outliers inherently introduced by Gaussian splatting,
we accordingly devise a Closure Inferring Module (CIM) for the comprehensive
surface-based objectness deduction. CIM firstly estimates the probabilistic feature
residuals for partial surfaces given the underdetermined nature of Gaussian Splat-
ting, which are then coalesced into a holistic representation on the overall surface
closure of the object proposal. In this way, the surface information Gaussian-Det
exploits serves as the prior on the quality and reliability of objectness and the infor-
mation basis of proposal refinement. Experiments on both synthetic and real-world
datasets demonstrate that Gaussian-Det outperforms various existing approaches,
in terms of both average precision and recall.

1 INTRODUCTION

3D object detection in indoor scenes (Dai et al., 2017; Hu et al., 2023; Rukhovich et al., 2022b)
has been a popular topic in industry and academia, fueling various applications such as robotic
navigation and augmented reality. While many works (Qi et al., 2019; Liu et al., 2021; Cheng et al.,
2021; Rukhovich et al., 2022a; Ran et al., 2022) have demonstrated the effectiveness on point cloud
data captured by expensive sensors such as lidars and depth cameras, RGB camera systems offer
a cost-effective alternative. However, the absence of depth information poses major challenges for
inferring the three-dimensional geometries of the target objects from two-dimensional visual clues.
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Figure 2: Illustration of the surface closure prior in Gaussian-Det. For 3D Gaussians within a
bounding box, those forming relatively closed surfaces (lower |Φ|) indicate an accurate detection,
and vice versa. Note that 3D Gaussians outside the bounding box are not shown for clarity.

To overcome the aforementioned ill-posedness in image-based 3D object detection, pure multi-view
based approaches (Rukhovich et al., 2022b; Tu et al., 2023) projects the features on the image plane
into a 3D volume representation. However, such projective geometry is still dominated by 2D features
which may lead to ambiguous detection results. On the other hand, recent advances in Neural Radiance
Field (NeRF) (Mildenhall et al., 2020) enjoy multi-view consensus and consistency via learning a
plenoptic mapping function. Leveraging NeRF as the 3D scene representation, NeRF-RPN (Hu et al.,
2023) consumes volumetric information extracted from NeRF and directly outputs 3D bounding
boxes through a general region proposal network (RPN). However, due to the implicit and continuous
representation of NeRF, these methods are computationally expensive to optimize. More importantly,
similar to monocular-based methods (Rukhovich et al., 2022b; Tu et al., 2023), they depend on
uniform and discrete sampling in 3D space which may lead to sub-optimal performance by failing to
capture the true objectness. In contrast, as indicated by the bottom (a-b) part of Figure 1, real-world
3D objects are usually enclosed by a series of continuous surfaces. Such surface information provides
informative visual clues for objectness deduction (Ren and Sudderth, 2018).

In this paper, we propose Gaussian-Det which exploits continuous surface representation for multi-
view based 3D object detection. Gaussian-Det leverages the recent Gaussian Splatting (Kerbl
et al., 2023) and formulates the input Gaussians into a mass of descriptors on partial surfaces. As
shown in the top part of Figure 1, even with less than a third of the number, Gaussians utilizing
surface information better demonstrate the texture information and showcase the smoothness and
continuity. While it is feasible to directly employ point cloud based detectors, they can be distracted
by numerous outliers inherently introduced by Gaussian Splatting process shown in Bottom (c-d)
part of Figure 1. Moreover, the point-based detectors regard the input Gaussians as infinitesimal
positional representations and discard the explicit depiction on continuous surface, which may lead
to sub-optimal detection proposals. To address this, we design a Closure Inferring Module (CIM) for
the comprehensive surface-based objectness deduction in Gaussian-Det. As displayed in Figure 2,
CIM is built upon the assumptive prior that, the partial surfaces in an accurately detected bounding
box can form a relatively closed surface measured by a lower flux value. Specifically, taking
the underdetermined nature of Gaussian Splatting into account, CIM firstly conducts the partial
surface inference via estimating a variational term as a probabilistic feature residual to the original
representation of partial surfaces. CIM then coalesces them into a holistic representation and uses
the flux value measures the closure of the overall proposal, serving as the prior on the quality and
reliability of objectness prediction and the information basis of proposal refinement. To validate
the effectiveness of the proposed Gaussian-Det, we have conducted experiments on both synthetic
3D-FRONT (Fu et al., 2021) and real-world ScanNet (Dai et al., 2017) datasets. The experimental
results demonstrate that Gaussian-Det outperforms various existing approaches in terms of both
average precision and recall.

2 RELATED WORK

2.1 NEURAL SCENE REPRESENTATION

In recent years, the methods of neural scene representation have presented astonishing performances
on visual computing and geometry learning. They usually take a coordinate as input and output
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corresponding scene properties, such as signed distance (Park et al., 2019; Chabra et al., 2020),
occupancy (Mescheder et al., 2019), color and density. Notably, in the scenario of multi-view
geometry reconstruction, the Neural Radiance Field (NeRF) (Mildenhall et al., 2020) learns a
plenoptic mapping from the querying coordinate and viewing direction into the point-wise radiation
and volume density. The NeRF-based scene modeling has inspired numerous extended works
spanning from low-level geometry reconstruction (Barron et al., 2021; Fridovich-Keil et al., 2022;
Wang et al., 2021) to high-level visual understanding (Zhi et al., 2021; Jeong et al., 2022; Hu et al.,
2023; Xu et al., 2023; Tian et al., 2024; Irshad et al., 2024). Since NeRF requires a massive amount
of queries during both training and inference phases, some improved representations are introduced
as proxies such as hash grids (Müller et al., 2022), tri-planes (Chen et al., 2022) and points (Xu et al.,
2022a). Among these advancements, the 3D Gaussian Splatting (3D-GS) (Kerbl et al., 2023) stands
out for its balance between quality and efficiency. 3D-GS employs a set of anisotropic Gaussians
initialized by Structure from Motion (SfM), whose amount and properties are iteratively updated
during training. Apart from the positional information as in point cloud based or NeRF-based
representation, a 3D Gaussian naturally depicts a continuous surface through its mean, covariance
parameters. Based on 3D-GS, several works have explored on 3D content generation (Tang et al.,
2024), surface reconstruction (Guédon and Lepetit, 2024), semantic segmentation (Shi et al., 2024)
and editing (Chen et al., 2024).

2.2 INDOOR 3D OBJECT DETECTION

Indoor 3D object detection has drawn extensive attention owing to its broad applications in robotic
vision, augmented reality, etc. The techniques can be categorized according to the input modalities,
such as point cloud, gridded voxels and 2D image(s). For example, (Song and Xiao, 2016) uses a
volumetric CNN to create 3D Region Proposal Network (RPN) on a voxelized 3D scene. VoteNet (Qi
et al., 2019) directly operates on point cloud by using a PointNet++ (Qi et al., 2017b) backbone and
center voting strategy. The follow-up point-based approaches include the VoteNet-style (Cheng et al.,
2021; Liu et al., 2021) and the sparse convolution based methods (Rukhovich et al., 2022a; Wang
et al., 2022). However, the reliance on expensive lidars or depth sensors limits their applicability.
In contrast, the RGB camera systems offer a cost-effective alternative. To overcome the inherent
ill-posedness in image-based 3D object detection, ImVoxelNet (Rukhovich et al., 2022b) lifts the 2D
features into a 3D volume representation followed by a FCOS (Tian et al., 2019)-style detection head.
ImGeoNet (Tu et al., 2023) introduces an image-induced geometry-aware voxel representation for
better preservation of geometry. However, the projective geometry extracted by (Rukhovich et al.,
2022b; Tu et al., 2023) still originates from 2D features and may thus result in ambiguous detections.
On the other hand, several advances (Hu et al., 2023; Xu et al., 2023; Irshad et al., 2024) seek to
leverage the multi-view consensus and consistency of NeRF representation (Mildenhall et al., 2020)
that embeds the geometry into the voxel grids. NeRF-RPN consumes the volumetric features sampled
from NeRF and then directly regresses the bounding boxes via a generic RPN. NeRF-Det learns
a two-branch framework that simultaneously conducts geometry reconstruction and bounding box
regression. These two approaches rely on uniform and discrete sampling which may fail to capture
the true objectness in 3D scenes. In contrast, our proposed Gaussian-Det strives for representing the
targets in a continuous manner by leveraging the descriptors on partial surfaces and coalescing them
into a holistic measurement which serves as a comprehensive prior on the reliability of the deducted
objectness.

3 APPROACH

In this section, we elaborated the proposed Gaussian-Det by dividing the framework into the construc-
tion of surface-based Gaussian representation, object proposal initialization, partial surface feature
inference and holistic surface closure coalescence. The overall framework is illustrated in Figure 3.

3.1 PRELIMINARY: 3D GAUSSIAN SPLATTING

The input scene of our proposed Gaussian-Det is represented by 3D Gaussian Splatting (3D-
GS) (Kerbl et al., 2023) that are reconstructed from posed images, comprising a set of 3D Gaussian
primitives G = {gp = (µp,Σp, αp, cp)}Pp . Each 3D Gaussian gp is parameterized by a mean vector
µp ∈ R3 indicating its center, an anisotropic covariance matrix Σp ∈ R3×3, the opacity value αp ∈ R
and color cp ∈ R3. Σp is a positive semidefinite matrix and can be factorized as Σp = RpSpS

T
p R

T
p .

Rp ∈ R3×3 and Sp ∈ R3×3 refer to a diagonal size matrix diag(s1p, s
2
p, s

3
p) and a rotation matrix

converted from a unit quaternion respectively. Subsequently, the 3D Gaussians are projected onto
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Figure 3: From the original Gaussians G, we formulate surface-based Gaussian representation
Gsurf , which is firstly used to predict the initial object proposal with opener surfaces. Then the
closure inferring module, which contains partial surface feature inference and holistic surface closure
coalescence. CIM learns a informative prior on the quality of the predicted objectness, thus controlling
the support ( ) or suppression ( ) of the holistic object representation. The partial and holistic
representations are combined to estimate the refined detection result, whose degree of surface closure
is similar to that of ground truth measured by the absolute flux value |Φk|.

the image plane using known camera matrices. α-blending is executed to aggregate the overlapping
Gaussians on each pixel and compute the final color:

C =

n∑
i=1

ciαi

i−1∏
j=1

(1− αj) (1)

where n is the number of overlapping Gaussians. The attributes of gp are optimized through backward
propagation of the gradient flow. Particularly, the density (i.e., P ) of 3D Gaussians is also updated
during training via cloning and splitting for the sake of rendering quality.

3.2 SURFACE-BASED GAUSSIAN REPRESENTATION AND PROPOSAL INITIALIZATION

Compared with NeRF-based (Mildenhall et al., 2020) representation, 3D Gaussian Splatting enjoys the
real-time rendering speed owing to a specially designed rasterizer. More importantly, a 3D Gaussian
gp approximates the shape of a bell curve with depiction on a continuous surface (especially for a
flat Gaussian (Guédon and Lepetit, 2024)), as apposed to the discrete representation of infinitesimal
positional data such as point cloud (Rukhovich et al., 2022a) and uniformly sampled volumes
(Rukhovich et al., 2022b; Xu et al., 2023; Hu et al., 2023). To this end, we concentrate the Gaussian
representation onto surface-related information by formulating:

Gsurf := {gsurf
p = (xp,np, Ap)}Pp ∈ RP×7 (2)

where xp = µp, np and Ap specify the information about location, perpendicular orientation and area
respectively. The normal vector np is determined by solving the eigenvalue problem Σpnp = λnp.
Specifically, np is the eigenvector corresponding to the smallest eigenvalue. The in-ward or out-ward
orientation is determined by setting the orientation of np to align with the orientation from the center
of the object proposal to the Gaussian mean. Please refer to the Appendix pages for the derivative
process. Ap is defined as the largest cross-section area of 3D Gaussian Ellipsoid:

Ap = π
s1p · s2p · s3p

min(s1p, s
2
p, s

3
p)

(3)

The reformulated Gaussian representation Gsurf initializes the depiction on multiple partial sur-
faces. Given the huge amount of Gaussians in Gsurf , we use an off-the-shelf backbone B(·) for
simultaneously trimming them into a candidate subset and extracting their corresponding features:

Gcand,Fcand = B(Gsurf ) (4)
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where Gcand = {g1,g2, . . . ,gM} ∈ RM×7 is a subset of Gsurf and Fcand = {f1, f2, . . . , fM} ∈
RM×C denotes the corresponding feature in the latent space. From Gcand, we then accordingly
initialize the partial-aware object proposals Ppart = {p1, p2, . . . , pK} by employing a VoteNet (Qi
et al., 2019)-style head (Cheng et al., 2021) which groups Gcand in Euclidean space and predicts
the bounding boxes with a MLP-based architecture (Qi et al., 2017a). Meanwhile, the partial-aware
features of each proposal is extracted:

fpartk =Mpart(Fcand, pk) (5)

where Mpart is a querying-and-pooling function (Cheng et al., 2021) that operates around the
location of each proposal.

As mentioned above, it is feasible to directly employ point cloud based detectors (Qi et al., 2019;
Rukhovich et al., 2022a; Liu et al., 2021) and regard Gsurf as a mass of point cloud concatenated
with the corresponding feature. However, as shown in Figure 1, there still severely exists Gaussian
outliers around the object surfaces that may distract the point-based detectors. We also demon-
strate in Experiment section that this leads to incorrect objectness deduction and inferior detection
performances evaluated on Ppart.

To address this, we devise a Closure Inference Module (CIM) in Gaussian-Det responsible for
comprehensive surface-based objectness deduction in Gaussian-Det, which takes the holistic closure
measurement into account to refine the object proposals.

3.3 CLOSURE INFERENCE MODULE FOR PROPOSAL REFINEMENT

As illustrated in the bottom part of Figure 3, the Closure Inference Module (CIM) consists of
two stages: Given the underdetermined nature of 3D Gaussian Splatting, CIM firstly enhances
the representation of partial surfaces via variationally estimating the probabilistic feature residuals.
Subsequently, under the assumption that the higher degree of surface closure indicates a more
accurate detection (and vice versa), CIM seeks to a holistic surface closure coalescence, serving as an
informative prior on the quality of the predicted objectness.

Partial Surface Inference: In Gaussian Splatting, inferring local surface features for spatial points
is underdetermined due to the supervision from 2D signals, leading to unstructured outliers (Guédon
and Lepetit, 2024) with unreliable local surface descriptors. To this end, we model such randomness
in CIM by incorporating a variational term FV into the candidate features Fcand, establishing a
probabilistic feature residual:

Fcand ← Fcand + αFV (6)

where α is a weight hyper-parameter (in practice we set α = 0.1). The randomness is modeled by
assuming FV can be sampled from pθ(FV ) = N(FV ;0, I). To fit the posterior log qϕ(FV |Fcand)
and likelihood pθ(Fcand|FV ) parameterized by ϕ and θ respectively, the following evidence lower
bound (ELBO) is optimized for the residual estimation(Kingma and Welling, 2014):

Lres = Lµg,σg(Fcand) = Eq(FV |Fcand)[log p(Fcand|FV )]−KL(q(FV |Fcand)||p(FV )) (7)

By modeling the variational term, CIM explicitly represents this uncertainty, thereby better describing
the distribution of local surface features.

Holistic Surface Closure Coalescence: The partial surfaces are then coalesced into a holistic
representation by CIM. Specifically, as illustrated in Figure 2, CIM leverages a key geometric
property that the partial surfaces corresponding to an object can approximate a closed surface. As
formulated by Theorem 1 (see Appendix for proof), this property can be mathematically expressed
that the net flux ϕ of a constant vector field through a closed surface is zero.
Theorem 1. Given a constant vector field T and a closed surface S, the flux Φ of the vector field T
through the closed surface S, also expressed as the surface integral of the T over S is zero:

Φ =

‹

S

T · ndS = 0 (8)

In CIM, we utilize this theorem by computing the flux of a pre-set constant vector field over the partial
surfaces enclosed by an object proposal. The closer the total flux is to zero, the better the surfaces
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form a closed object, suggesting a higher-quality detection. To practically implement this concept for
the k-th object proposal, CIM computes the estimated flux Φ̂k numerically using quadrature:

Φ̂k =
∑

gi∈Gcand
k

T · niAi, where Gcand
k = {gi | i ∈ Ik} ∈ RNk×7 (9)

where Ik is a set containing the indices of the candidate Gaussians within the proposal pk. Nk is the
number of candidate Gaussians within pk. Without loss of generality, we set T as ( 1√

3
, 1√

3
, 1√

3
).

With the estimated flux as the quantitative measurement of surface closure, CIM then formulate the
geometrically coalesced representation as:

fholk = Sk · Mhol(Fcand, pk), where Sk = exp(−γk|Φ̂k|) (10)

where Fcand is the enhanced feature with the probabilistic residual in Eqn.(6). γk is a flexibility
coefficient mapped from FV through a MLP and sigmoid activation function. Mhol is another
querying-and-pooling function sharing the same architecture withMpart. Sk serves as the closure
weight parameter which controls the support (|Φ̂k| ↓, Sk ↑) or suppression (|Φ̂k| ↑, Sk ↓) of fholk .

We finally formulate the refined proposal feature which comprehensively combines the information
on partial-aware surfaces and holistic closure-based measurement on objectness as:

ffinalk := [fpartk ||fholk ] (11)

where [·||·] denotes the concatenation along the feature dimension. ffinalk is used for proposal
refinement by estimating a parameter offset to the original proposals through a stacked MLP:

prefinedk = pk +MLP (ffinalk ) (12)

Given the final refined object proposals prefinedk , the overall loss function is computed as:

L({pgtk }, {pk}, {p
refined
k }) = λresLres + λpredL2({pgtk }, {pk})

+ λrefineL2({pgtk }, {p
refined
k })

(13)

where {pgtk } and L2 denote the ground truth bounding boxes and L2 norm loss function. λres, λpred

and λrefine are pre-set weight hyper-parameter.

4 EXPERIMENTS

We validate the proposed Gaussian-Det by conducting benchmark experiments on both synthetic and
real-world datasets on 3D object detection. We then validate the design choices via ablation studies.

4.1 EXPERIMENTAL SETTINGS AND IMPLEMENTATION DETAILS

We experimented Gaussian-Det on the officially-released benchmark by (Hu et al., 2023) which
contain both the synthetic 3D-FRONT (Fu et al., 2021) and the real-world ScanNet (Dai et al., 2017)
datasets. We faithfully followed (Hu et al., 2023) to take the posed images as input. The camera
poses in the datasets released by (Hu et al., 2023) were estimated via Structure from Motion (SfM)
which used the groundtruth point cloud as initialization.

The synthetic 3D-FRONT (Fu et al., 2021) dataset is featured with its large-scale room layouts and
textured furniture models. The dataset contains 159 usable rooms that are manually selected, cleaned
and rendered by (Hu et al., 2023). The indoor scenes are densely annotated with oriented bounding
boxes. We follow (Hu et al., 2023) to remove the annotations of construction objects such as ceilings
and floors, and merge the components that belong to the same object instance into a whole. Please
refer to the Appendix pages for illustrative examples of this dataset.

The real-world ScanNet (Dai et al., 2017) dataset consists of complex and challenging scenes captured
by Structure Sensor in an ego-centric manner. We followed (Hu et al., 2023) to uniformly divide
the frames into 100 bins and choose the sharpest one in each bin measured by Laplacian variance.
Experiments were done on the 90 scenes that are randomly selected by (Hu et al., 2023).

For the input Gaussians G, we used the official implementation of 3D-GS (Kerbl et al., 2023) equipped
with the SuGaR regularization (Guédon and Lepetit, 2024), which takes 30,000 training iterations.

6
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Table 1: Quantitative results on the 3D-FRONT and ScanNet datasets. †: we report the results
of NeRF-MAE which involves the pre-training on 3D-FRONT and two other exterior databases,
including HM3D (Ramakrishnan et al., 2021) and Hypersim (Roberts et al., 2021).

Methods 3D-FRONT ScanNet

AR25 AR50 AP25 AP50 AR25 AR50 AP25 AP50

ImVoxelNet(Rukhovich et al., 2022b) 88.3 71.5 86.1 66.4 51.7 20.2 37.3 9.8
NeRF-RPN (Hu et al., 2023) 96.3 69.9 85.2 59.9 89.2 42.9 55.5 18.4
NeRF-MAE† (Irshad et al., 2024) 97.2 74.5 85.3 63.0 92.0 39.5 57.1 17.0

G-VoteNet (Qi et al., 2019) 81.5 61.6 73.0 49.6 78.5 34.2 66.8 18.2
G-GroupFree (Liu et al., 2021) 84.9 63.7 72.1 45.1 75.2 37.6 60.1 20.4
G-FCAF3D (Rukhovich et al., 2022a) 89.1 56.9 73.1 35.2 90.2 42.4 63.7 18.5
G-BRNet (Xu et al., 2022b) 89.7 75.3 88.2 71.0 71.1 32.2 63.1 19.3

Gaussian-Det (Ours) 97.9 82.3 96.7 77.7 87.3 43.0 71.7 24.5

2D Reference Ground Truth Ours (Gaussian-Det) NeRF-RPN G-FCAF3D

Figure 4: Qualitative Results on 3D-FRONT (top two rows) and ScanNet (bottom two rows). We
visualize each bounding box with a unique color for clear illustration.

We excluded the Gaussians outside the room cuboid defined by (Hu et al., 2023) and filtered out
Gaussians with opacity value lower than 0.3. Note that such a combined implementation (Kerbl et al.,
2023; Guédon and Lepetit, 2024) aims at decent 2D rendering results. The issue of outlier Gaussians
around the 3D objects still severely exists as shown in Figure 1. We employed PointNet++ (Qi
et al., 2017b) as the backbone B. We used a single NVIDIA RTX A6000 48GB GPU for both
training and evaluation. The total training epochs of detection is 50 for both 3D-FRONT and ScanNet.
The evaluation metrics are mainly average recall (AR) and average precision (AP), thresholded
by IoU value at both 0.25 and 0.5. Please refer to the Appendix pages for the details on model
hyper-parameters.

From the statistical results (see Appendix) of our reconstructed 3D Gaussians on two datasets, we
observe that the majority of flux values are clustered near zero. This indicates that most objects
contain a higher degree of surface closure and our assumption is applicable to the employed datasets.

4.2 MAIN RESULTS

Compared Methods: We have summarized the quantitative results on 3D-FRONT and ScanNet in
Table 1. For the comparison with the pure multi-view based methods, we follow (Irshad et al., 2024) to
include ImVoxelNet (Rukhovich et al., 2022b), NeRF-RPN (Hu et al., 2023) and NeRF-MAE (Irshad
et al., 2024) in Table 1. ImVoxelNet directly extracts 3D volumetric features projected from 2D image
planes. The NeRF-based methods (Hu et al., 2023; Irshad et al., 2024) apply 3D convolutions on
the uniformly sampled points in the radiance fields. Note that NeRF-MAE includes the pre-training
on extra datasets. Moreover, to demonstrate the effectiveness of Gaussian-Det more intuitively, we
experimented on the point cloud based detectors (Qi et al., 2019; Liu et al., 2021; Rukhovich et al.,
2022a; Cheng et al., 2021) (prefixed by “G-”) which merely contains the backbone and detection
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Figure 6: Illustration on the detected objects and the surface closure calculated from the 3D Gaussians
within each estimated bounding boxes, measured by the absolute flux values (in square decimetre).

heads in Section 3.2. The upper part of Table 1 are cited from (Irshad et al., 2024), for which we have
provided a more in-depth comparison in the Appendix pages.

Analysis on Quantitative Results: The observation from Table 1 is two-fold. Firstly, the point
cloud based methods are able to achieve comparable performances compared with previous multi-
view (Rukhovich et al., 2022b) or state-of-the-art NeRF-based (Irshad et al., 2024; Hu et al., 2023)
approaches. This suggests the potential of Gaussian Splatting as an explicit input modality for
3D object detection. Secondly, except for AR thresholded by 0.25 on ScanNet, we can see that
Gaussian-Det precedes all the compared methods on all evaluation metrics, especially on AP which is
more widely-used in 3D object detection. For example, on 3D-FRONT evaluated by AP25, Gaussian-
Det outperforms the second-best G-BRNet (Cheng et al., 2021) by a significant margin of +8.5%.
Although ScanNet is a challenging dataset for its lower image quality and diverse layouts, our
Gaussian-Det still achieves the state-of-the-art average precisions (+4.9% on AP25 and +4.1% on
AP50). This indicates that Gaussian-Det better leverages the surface-based information inherently
condensed in Gaussians. By coalescing partial surfaces into object-wise and closure-aware holistic
representations, Gaussian-Det better perceives the quality and reliability of the object proposals,
thereby providing favourable information basis for proposal refinement.

Qualitative Results: As for illustrative comparison, we firstly display the qualitative comparisons
in Figure 4, where we set the 2D rendered results of the input Gaussians as visual reference. We
can see that compared with ground truth bounding boxes, Gaussian-Det is capable of preventing
redundant object predictions that are potentially caused by outliers, leading to higher detection
accuracy. Figure 6 provides a more in-depth visualization on the discriminative objectness deduction
of Gaussian-Det. For each detected bounding box, we have marked the corresponding flux value
computed in Eqn. (9) that measures the surface closure. Predictions whose absolute flux values are
larger or less than one are marked with blue or red respectively. We can see that in the presented
examples, a favourable detection well corresponds to a relatively higher degree of closure (lower
absolute value of flux). With the holistic surface coalescence by CIM, Gaussian-Det is aware of the
reliability of proposals and able to refine them for higher accuracy. Please refer to the Appendix
pages for more qualitative results under challenging scenarios.

Ground Truth Ours (Gaussian-Det)

Figure 5: Failure case on occluded objects.

Failure Case: We then present the failure case
by Gaussian-Det in Figure 5. Despite focus-
ing on more informative surface representations,
Gaussian-Det may still struggle at handling de-
tecting the object with severe occlusion, which
is an inherent challenge for current multi-view
based 3D object detectors. Moreover, since the
surfaces of the objectness that contains jointed
objects can also be regarded as closed, Gaussian-
Det may mistake them as a whole. Please refer to the Appendix for more failure cases.

4.3 ABLATION STUDIES AND ANALYSIS

To evaluate the effectiveness of the design choices and the components in our framework, we
conducted five groups of ablational experiments on the 3D-FRONT dataset. The performances
evaluated by average precision (AP) are summarized in Table 2.

(1)-(2) Discarded or Naive Holistic Surface Coalescence: The trial (1) aims at experimenting
with information on partial surfaces only. This is achieved by concatenating two copies of fpartk in
Eqn. (11). In trial (2), the partial surfaces are coalesced without any consideration on the closure
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properties of objects. This is achieved by setting the closure score Sk = 1 for all object proposals.
By comparing (1), (2) and (6), we can see that the coalescence into holistic surface representation is
necessary (+0.7% on AP25 and +1.1% on AP50) despite its naive implementation in (2). The closure-
based measurement augments the proposal representation with prior on the reliability information,
which furtherly enhances the detection accuracy sizably and is reflected by the performance gains
(+3.2% on AP25 and +2.7% on AP50).

Table 2: Quantitative results of ablation studies on 3D-FRONT.

AP25 AP50

(1) Discard the Holistic Surface Coalescence 92.8 73.9
(2) Naive Holistic Surface Coalescence 93.5 75.0
(3) Deterministic Partial Surface Representation 95.7 74.7
(4) No Flexibility in Closure Measurement 96.4 76.2
(5) Alternative Surface Orientation 96.2 75.7
(6) The Full Framework 96.7 77.7

(3) Deterministic Partial Sur-
face Representation: In
Gaussian-Det, the feature repre-
sentation of the trimmed Gaus-
sian candidates are supplemented
with a probabilistic residual in
Eqn. (6). Here we ignored the
variational inference of Fcand by
setting λres = 0. We can see that
the deterministic partial surface representation in (3) is hampered by the under-determined nature of
Gaussian Splatting, which leads to inferior performances (-1.0% on AP25 and -3.0% on AP50).

(4) No Flexibility in Closure Measurement: The trial cancels the allowance for the potential
truncation in indoor scenes. We empirically set γk = 0.5 for all object proposals. It can be seen
that despite the failure case in Figure 5, a learnable γk endows the closure measurement with the
consideration on flexible cases such as truncations and occlusions. Improvements on both AP25

(+0.3%) and AP50 (+1.5%) can be observed.

(5) Alternative Surface Orientation: By default we set the np of a partial surface by solving the
eigenvalue problem and determine its in-ward or out-ward by setting the orientation of np to align
with the orientation from the center of the object proposal to the Gaussian mean. An alternative
way is to determine orientation following (Ran et al., 2022). We experimented on two different
implementation of closure scores. As it influences the surface-based Gaussian representation as well
as the closure computation, a sizable drops on AP50 (-2.0%) can be observed in Table 2.

Please refer to the Appendix pages for additional ablational experiments, including the choices of
hyper-parameters, Gaussian Splatting representation and the comparison on learning curves before
and after incorporating the probabilistic feature residual.

Model Efficiency: As shown in Table 3, Gaussian-Det exhibits remarkable inference speed at 33.3
FPS, which is an order of magnitude faster than both NeRF-RPN and NeRF-MAE. Additionally,
our model size is substantially smaller at 24.0MB, less than 8% of NeRF-RPN size and 4% of
NeRF-MAE. These results indicate that our Gaussian-Det demonstrates significant improvements in
detection accuracy while maintaining real-time processing speed and favourable model compactness.

Detecting with Noised Poses: To furtherly validate on inferring the objectness from low-quality
data, we experimented on adding normally distributed perturbations with the mean of 0 and variance
of 0.07 to camera extrinsics when reconstructing them. The corresponding quantitative results are
shown in Table 5. We can see that with noised poses, Gaussian-Det showcases less precision decline
on both AP and AR, which verifies the effectiveness of Gaussian-Det against either inherent outlier
3D Gaussians or low-quality input poses. Please refer to the Appendix for qualitative comparisons.

Efficacy on 3D Instance Segmentation: We have further validated the generality of our proposed
method on the task of open-vocabulary 3D instance segmentation. On the Gaussian-Grouping
baseline (Ye et al., 2024), we incorporated the estimation of surface closure as a prior on the
reliability of the object instance, thus supporting or suppressing the segmented results. From the
results in Table 6, we can see that leveraging the surface closure provides informative prior on
objectness deduction and largely enhances the performances of instance segmentation in 3D scenes.
The rendering results of qualitative examples containing multiple object instances are shown in
Figure 7. It can be seen that the incorporation of the prior of surface closure contributes to fewer
noisy predictions off the table. Moreover, it substantially speeds up the training period and saves the
GPU memory footprint (see Appendix) compared with the baseline method.

Comparison with Point-based Partial Surface Modeling: It is worth mentioning that RepSurf (Ran
et al., 2022), a point cloud based convolutional operator, also considers the surface structure within
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Table 3: Comparison on model efficiency.
Method FPS Model Size

NeRF-RPN (Hu et al., 2023) 1.51 312.7MB
NeRF-MAE (Irshad et al., 2024) 1.11 604.2MB

Gaussian-Det (Ours) 33.3 24.0MB

Table 4: Comparison with RepSurf.
Method AP25 AP50

G-BRNet (Xu et al., 2022b) 63.1 19.3
+ RepSurf-U (Ran et al., 2022) 47.7 19.7

Gaussian-Det (Ours) 71.7 24.5

Table 5: Comparison under the setting of adding
noises to camera poses.

Methods Noised Poses AR25 AP25

G-BRNet (Cheng et al., 2021) 89.7 88.2
G-BRNet (Cheng et al., 2021) ✓ 74.3 (-15.4) 67.6 (-20.6)

Gaussian-Det (Ours) 97.9 96.7
Gaussian-Det (Ours) ✓ 86.8 (-11.1) 81.5 (-15.2)

Table 6: Comparison on 3D instance seg-
mentation.

Methods mIoU mBIoU

DEVA (Cheng et al., 2023) 46.2 45.1
LERF (Kerr et al., 2023) 33.5 30.6
SA3D (Cen et al., 2023) 24.9 23.8

LangSplat (Qin et al., 2024) 52.8 50.5
Gaussian-Grouping (Ye et al., 2024) 69.7 67.9

Gaussian-Grouping + Ours 76.5 (+6.8) 73.3 (+5.4)

Figure 7: Rendered qualitative results of open-vocabulary 3D instance segmentation.

local regions. We accordingly replaced the backbone of G-BRNet (Cheng et al., 2021) with the
umbrella variant of RepSurf. The results on ScanNet are shown in Table 4. RepSurf is prone to be
severely distracted by the outlier Gaussians since it only considers the very local surfaces, which
harms the detection quality drastically (-15.34% on AP25). Secondly, merely focusing on the very
local (umbrella-shaped in this case) surface while ignoring the holistic surface modeling leads to
sub-optimal results (-4.8% on AP50). This indicates that the comprehensive surface modeling strategy
enables Gaussian-Det to better capture the intricate geometry of objects, thereby contributing to a
sizably improved 3D detection accuracy. Such awareness of holistic surface representation is essential
to prevent the distraction by outliers.

5 CONCLUSION

In this paper, we present Gaussian-Det for multi-view 3D object detection. Gaussian-Det leverages
Gaussian Splatting and exploits the continuous surface representation. To overcome the numerous
outliers inherently introduced by the data modality, we devise a Closure Inferring Module (CIM) for
comprehensive surface-based objectness deduction. CIM learns the probabilistic feature residual for
partial surfaces and coalesces them into holistic representation on closure measurement, thereby serv-
ing as a prior on proposal reliability. Experimental results on both synthetic and real-world datasets
validate the superiority of our Gaussian-Det over various existing mult-view based approaches.

Broader Impact: The proposed method utilizes continuous surface representations to enhance the
applications like augmented reality and robotic navigation. While it offers cost-effective solutions
via the use of RGB cameras instead of expensive lidar systems, it is largely affected by the quality
of input data and may struggle at handling occluded objects. It also raises privacy concerns due to
the demand for surveillance devices. To mitigate these issues, the adoption of ethical guidelines is
crucial to ensure responsible use and maintain the reliability of the technology.

Limitations: Gaussian-Det may be struggling to handle occlusion scenes (as shown in Figure 5),
which is an inherent challenge in the setting of multi-view 3D object detection. Specifically, the
detectors are unaware of the appearances and detailed geometries of the occluded part, thereby further
worsening the inherent ill-posedness of 3D perception given 2D images.

Future Works: Since the degree of surface closure of the objectness that contains joint objects
is also relatively high, such scenarios might be challenging for Gaussian-Det. Future work can
incorporate the color information to discriminate the objects and calculate the flux values separately.
In addition, the exploration of large-scale datasets on autonomous driving is a promising practice.

10



540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

J. T. Barron, B. Mildenhall, M. Tancik, P. Hedman, R. Martin-Brualla, and P. P. Srinivasan. Mip-nerf:
A multiscale representation for anti-aliasing neural radiance fields. In ICCV, pages 5855–5864,
2021.

Y. Bengio, A. Courville, and P. Vincent. Representation learning: A review and new perspectives.
T-PAMI, 35(8):1798–1828, 2013.

J. Cen, Z. Zhou, J. Fang, W. Shen, L. Xie, D. Jiang, X. Zhang, Q. Tian, et al. Segment anything in 3d
with nerfs. NeurIPS, 36:25971–25990, 2023.

R. Chabra, J. E. Lenssen, E. Ilg, T. Schmidt, J. Straub, S. Lovegrove, and R. Newcombe. Deep local
shapes: Learning local sdf priors for detailed 3d reconstruction. In ECCV, pages 608–625, 2020.

A. Chen, Z. Xu, A. Geiger, J. Yu, and H. Su. Tensorf: Tensorial radiance fields. In ECCV, pages
333–350, 2022.

Y. Chen, Z. Chen, C. Zhang, F. Wang, X. Yang, Y. Wang, Z. Cai, L. Yang, H. Liu, and G. Lin.
Gaussianeditor: Swift and controllable 3d editing with gaussian splatting. In CVPR, pages
21476–21485, 2024.

B. Cheng, L. Sheng, S. Shi, M. Yang, and D. Xu. Back-tracing representative points for voting-based
3d object detection in point clouds. In CVPR, pages 8963–8972, 2021.

H. K. Cheng, S. W. Oh, B. Price, A. Schwing, and J.-Y. Lee. Tracking anything with decoupled video
segmentation. In ICCV, pages 1316–1326, 2023.

A. Dai, A. X. Chang, M. Savva, M. Halber, T. Funkhouser, and M. Nießner. Scannet: Richly-annotated
3d reconstructions of indoor scenes. In CVPR, pages 2432–2443, 2017.

S. Fridovich-Keil, A. Yu, M. Tancik, Q. Chen, B. Recht, and A. Kanazawa. Plenoxels: Radiance
fields without neural networks. In CVPR, pages 5501–5510, 2022.

H. Fu, B. Cai, L. Gao, L.-X. Zhang, J. Wang, C. Li, Q. Zeng, C. Sun, R. Jia, B. Zhao, et al. 3d-front:
3d furnished rooms with layouts and semantics. In ICCV, pages 10933–10942, 2021.

A. Guédon and V. Lepetit. Sugar: Surface-aligned gaussian splatting for efficient 3d mesh reconstruc-
tion and high-quality mesh rendering. In CVPR, pages 5354–5363, 2024.

B. Hu, J. Huang, Y. Liu, Y.-W. Tai, and C.-K. Tang. Nerf-rpn: A general framework for object
detection in nerfs. In CVPR, pages 23528–23538, 2023.

M. Z. Irshad, S. Zakharov, V. Guizilini, A. Gaidon, Z. Kira, and R. Ambrus. Nerf-mae: Masked
autoencoders for self-supervised 3d representation learning for neural radiance fields. In ECCV,
2024.

Y. Jeong, S. Shin, J. Lee, C. Choy, A. Anandkumar, M. Cho, and J. Park. Perfception: Perception
using radiance fields. In NeurIPS, pages 26105–26121, 2022.

B. Kerbl, G. Kopanas, T. Leimkühler, and G. Drettakis. 3d gaussian splatting for real-time radiance
field rendering. TOG, 42(4):1–14, 2023.

J. Kerr, C. M. Kim, K. Goldberg, A. Kanazawa, and M. Tancik. Lerf: Language embedded radiance
fields. In ICCV, pages 19729–19739, 2023.

D. P. Kingma and M. Welling. Auto-encoding variational bayes. In ICLR, 2014.

Z. Liu, Z. Zhang, Y. Cao, H. Hu, and X. Tong. Group-free 3d object detection via transformers. In
ICCV, pages 2949–2958, 2021.

L. Mescheder, M. Oechsle, M. Niemeyer, S. Nowozin, and A. Geiger. Occupancy networks: Learning
3d reconstruction in function space. In CVPR, pages 4460–4470, 2019.

B. Mildenhall, P. P. Srinivasan, M. Tancik, J. T. Barron, R. Ramamoorthi, and R. Ng. Nerf: Repre-
senting scenes as neural radiance fields for view synthesis. In ECCV, pages 405–421, 2020.

11



594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

T. Müller, A. Evans, C. Schied, and A. Keller. Instant neural graphics primitives with a multiresolution
hash encoding. TOG, 41(4):1–15, 2022.

J. J. Park, P. Florence, J. Straub, R. Newcombe, and S. Lovegrove. Deepsdf: Learning continuous
signed distance functions for shape representation. In CVPR, pages 165–174, 2019.

C. R. Qi, H. Su, K. Mo, and L. J. Guibas. Pointnet: Deep learning on point sets for 3d classification
and segmentation. In CVPR, pages 652–660, 2017a.

C. R. Qi, L. Yi, H. Su, and L. J. Guibas. Pointnet++: Deep hierarchical feature learning on point sets
in a metric space. In NeurIPS, pages 5099–5108, 2017b.

C. R. Qi, O. Litany, K. He, and L. J. Guibas. Deep hough voting for 3d object detection in point
clouds. In ICCV, pages 9277–9286, 2019.

M. Qin, W. Li, J. Zhou, H. Wang, and H. Pfister. Langsplat: 3d language gaussian splatting. In CVPR,
pages 20051–20060, 2024.

S. K. Ramakrishnan, A. Gokaslan, E. Wijmans, O. Maksymets, A. Clegg, J. M. Turner, E. Under-
sander, W. Galuba, A. Westbury, A. X. Chang, M. Savva, Y. Zhao, and D. Batra. Habitat-matterport
3d dataset (HM3d): 1000 large-scale 3d environments for embodied AI. In NeurIPS, 2021.

H. Ran, J. Liu, and C. Wang. Surface representation for point clouds. In CVPR, pages 18942–18952,
2022.

Z. Ren and E. B. Sudderth. 3d object detection with latent support surfaces. In CVPR, pages 937–946,
2018.

M. Roberts, J. Ramapuram, A. Ranjan, A. Kumar, M. A. Bautista, N. Paczan, R. Webb, and J. M.
Susskind. Hypersim: A photorealistic synthetic dataset for holistic indoor scene understanding. In
ICCV, pages 10912–10922, 2021.

D. Rukhovich, A. Vorontsova, and A. Konushin. Fcaf3d: fully convolutional anchor-free 3d object
detection. In ECCV, pages 477–493, 2022a.

D. Rukhovich, A. Vorontsova, and A. Konushin. Imvoxelnet: Image to voxels projection for
monocular and multi-view general-purpose 3d object detection. In WACV, pages 2397–2406,
2022b.

J.-C. Shi, M. Wang, H.-B. Duan, and S.-H. Guan. Language embedded 3d gaussians for open-
vocabulary scene understanding. In CVPR, 2024.

S. Song and J. Xiao. Deep sliding shapes for amodal 3d object detection in rgb-d images. In CVPR,
pages 808–816, 2016.

J. Tang, J. Ren, H. Zhou, Z. Liu, and G. Zeng. Dreamgaussian: Generative gaussian splatting for
efficient 3d content creation. In ICLR, 2024.

F. Tian, Y. Duan, A. Wang, J. Guo, and S. Du. Semantic Flow: Learning semantic fields of dynamic
scenes from monocular videos. In ICLR, 2024.

Z. Tian, C. Shen, H. Chen, and T. He. Fcos: Fully convolutional one-stage object detection. In ICCV,
pages 9627–9636, 2019.

T. Tu, S.-P. Chuang, Y.-L. Liu, C. Sun, K. Zhang, D. Roy, C.-H. Kuo, and M. Sun. Imgeonet:
Image-induced geometry-aware voxel representation for multi-view 3d object detection. In ICCV,
pages 6996–7007, 2023.

H. Wang, S. Dong, S. Shi, A. Li, J. Li, Z. Li, L. Wang, et al. Cagroup3d: Class-aware grouping for
3d object detection on point clouds. In NeurIPS, pages 29975–29988, 2022.

P. Wang, L. Liu, Y. Liu, C. Theobalt, T. Komura, and W. Wang. Neus: Learning neural implicit
surfaces by volume rendering for multi-view reconstruction. In NeurIPS, pages 27171–27183,
2021.

12



648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

C. Xu, B. Wu, J. Hou, S. Tsai, R. Li, J. Wang, W. Zhan, Z. He, P. Vajda, K. Keutzer, and M. Tomizuka.
Nerf-det: Learning geometry-aware volumetric representation for multi-view 3d object detection.
In ICCV, pages 23320–23330, 2023.

Q. Xu, Z. Xu, J. Philip, S. Bi, Z. Shu, K. Sunkavalli, and U. Neumann. Point-nerf: Point-based neural
radiance fields. In CVPR, pages 5438–5448, 2022a.

X. Xu, Y. Wang, Y. Zheng, Y. Rao, J. Lu, and J. Zhou. Back to reality: Weakly-supervised 3d object
detection with shape-guided label enhancement. In CVPR, pages 8438–8447, 2022b.

M. Ye, M. Danelljan, F. Yu, and L. Ke. Gaussian grouping: Segment and edit anything in 3d scenes.
In ECCV, pages 162–179, 2024.

S. Zhi, T. Laidlow, S. Leutenegger, and A. J. Davison. In-place scene labelling and understanding
with implicit scene representation. In ICCV, pages 15838–15847, 2021.

13



702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A ADDITIONAL DETAILS ON THE DATASETS

A.1 DATASET OVERVIEW

In Figure 8, we visualize the scenes in the 3D-FRONT dataset with ground-truth bounding boxes.
Each column shows two different views of the same scene. A total of 159 usable rooms are manually
selected, cleaned, and rendered to ensure have high quality for scene reconstruction and object
detection, as done by NeRF-RPN (Hu et al., 2023).

Figure 8: Snapshots of scenes in 3D-FRONT and the corresponding 3D bounding box annotations.

A.2 STATISTICAL DETAILS

In Figure 9, we have illustrated the statistics on the surface closure of two datasets measured by
|Φ|. The bar charts show that the majority of the flux values are clustered near zero, which indicates
that most objects in both datasets contain a higher degree of surface closure and our assumption is
applicable to the employed datasets.
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Figure 9: Statistics on surface closure of two datasets (Fu et al., 2021; Dai et al., 2017). Most objects
in both datasets contain a higher degree of surface closure. The statistics are collected from our
reconstructed 3D Gaussians via 3DGS+SuGAR.

B ADDITIONAL TECHNICAL DETAILS

B.1 MORE DETAILS ON NETWORK ARCHITECTURE

For corresponding feature F cand generation, we use the same PointNet++ backbone in VoteNet (Qi
et al., 2019), which is the backbone B in Eqn. 4. Specifically, it has four set abstraction (SA) layers
and two feature propagation/upsampling (FP) layers. SA layers sub-sample the input to 2048, 1024,
512 and 256 Gaussians respectively. The two FP layers up-sample the 4th SA layer’s output back to
1024 Gaussians with 256-dim features and 3D coordinates.

The querying-and-pooling function in Eqn. 5 and Eqn. 10 has the output size of 128. Therefore, fpart

and fhol have the same feature channels of 128 and ffinal has the channel of 256.

The stacked MLP for proposal refinement in Eqn. 12 has output size of 128, 128, 9. In these
9 channels, the first two are for objectness classification, the following one is for heading angle
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refinement and the last six are for offsets refinement. The initial proposal has the same shape with
refined proposal and is generated in the same way.

For the point cloud based methods, the original 3D Gaussians G = {gp = (µp,Σp, αp, cp)}Pp
(generated by 3DGS+SuGAR) were used as the input, where the Gaussian center µp was regarded as
the input point-wise coordinate. Σp, αp, cp were concatenated and regarded as the input point-wise
features. Except for the first layer whose input dimension was modified to fit the input Gaussians,
we faithfully followed the network and training configurations of the point cloud based methods (Qi
et al., 2019; Liu et al., 2021; Rukhovich et al., 2022a; Xu et al., 2022b) we compared with.

B.2 DETAILS ON CALCULATING SURFACE NORMAL

We provide details of calculating surface normal, which is determined by solving the eigenvalue
problem:

Σpnp = λnp (14)
where Σp = RpSpS

T
p R

T
p . Then we made identical deformation to both sides of the equation.

RpSpS
T
p R

T
p np = λnp

ST
p R

T
p RpSpS

T
p R

T
p np = λST

p R
T
p np

(15)

We set ST
p R

T
p n = x. As Rp is a rotation matrix, we get RT

p Rp = 1. Then:

ST
p Spx = λx (16)

The solution is x0 = [1, 0, 0]T ,x1 = [0, 1, 0]T ,x2 = [0, 0, 1]T . Therefore:

np,i = RpS
−1
p xi, i = 0, 1, 2 (17)

We define eigenvector with smallest eigenvalue as the Surface Normal np. The defination is
consistent with (Guédon and Lepetit, 2024). However, np is unoriented, meaning it can point either
inside or outside. Therefore, we determine the surface normal direction by considering the object
center (in practice, we use proposal center). To elaborate, the orientation of surface normal will align
with the orientation pointing from the object center to the Gaussian center. An alternative strategy is
to follow (Ran et al., 2022) to determine the orientation. Specifically, we ensure that the first element
of the normal vector is non-negative. Then we determine the orientation using an instance-level
random inversion with p = 50%. Ablation study in Table 2 shows that the result of strategy of (Ran
et al., 2022) is lower than the aforementioned strategy.

B.3 MORE DETAILS ON TRAINING

In training stage, we optimize the residue loss by maximizing the evidence lower bound.

Lres = Lµg,σg(Fcand) = Eq(FV |Fcand)[log p(Fcand|FV )]−KL(q(FV |Fcand)||p(FV )) (18)
After applying the reparameterization trick (Bengio et al., 2013), the total variational loss can be
reduced to:

Lres = ≈
1

M

M∑
i=1

log pθ(Fcand|FV )

+
1

2M

M∑
i=1

C∑
j=1

(
1 + log

(
(σ(j)

gi
)2
)
− (µ(j)

gi
)2 − (σ(j)

gi
)2
)

≜ Lrec + Lappr

(19)

where C refers to channel and M refers to the number of candidate Gaussians. Lrec refers to
reconstruction loss and Lappr refers to Gaussian approximation loss. During training we implement
square difference for simplicity.

B.4 PROOF OF THEOREM 1
Theorem 1 is a special case of Gauss’ Flux Theorem by setting T as any constant vector field:‹

S

T · ndS =

˚

V

∇ ·TdV
∇·T=0
= 0 (20)
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C ADDITIONAL ABLATION EXPERIMENTS AND ANALYSIS

C.1 HYPER-PARAMETER SETUP

Table 7: The hyper-parameter setup in Gaussian-Det.

Name Description Value

λres Weight of Lres 1
λpred Weight of Lpred 1
λrefine Weight of Lrefine 1

α Residue weight 0.1
δ Threshold of grouping the Gaussians 0.2
P The number of input Gaussians 40000
M The number of candidate Gaussians Gcand 1024
C Channel of candidate feature Fcand 256

We summarize the hyper-parameters used in Table 7. These include hyper-parameters for loss
function, grouping threshold, input and network setup. We have also tried different choices of λres.
We choose λres = 1 as the default setting.

Table 8: Experimental results of parameter settings on Gaussian-Det. λres = 0 denotes deterministic
partial surface representation in ablation study. Performances of detection on 3D-FRONT are reported.

λres Is Default AP25 AP50

0 95.7 74.7
0.1 95.5 76.1
0.5 96.2 76.6
1 ✓ 96.7 77.7
2 96.2 75.7

We have also collected the statistics before and after removing FV and illustrated the learning curve
in Figure 10. We can observe that the probabilistic feature residual term contributed to a slightly
faster initial convergence and less fluctuation throughout the training process. This suggests that
Gaussian-Det with FV is more stable during training.

C.2 IMPACTS OF FV ON THE TRAINING PROCESS

0 5000 10000 15000 20000 25000 30000 35000 40000
Iteration

0
5

10
15
20
25
30
40

Lo
ss

Learning Curve Comparison

w./ FV

w./o. FV

Figure 10: Training curves before and after removing FV .

C.3 ANALYSIS ON UNDERLYING GAUSSIAN REPRESENTATION

To investigate how the underlying Gaussian representation, we have experimented on the ablation
study you mentioned by detecting from 3G Gaussians that were reconstructed via the original
3DGS (Kerbl et al., 2023) algorithm.

The quantitative results are displayed in Table B. While the detection accuracies drop with the input
of lower quality 3D Gaussians, they still outnumber all the compared methods in Table 9 which
consume higher-quality 3D Gaussians that were reconstructed via 3DGS+SuGaR.

D ADDITIONAL VISULIZATION RESULTS
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Table 9: Quantitative results on the Gaussian representation.

Methods 3D-FRONT ScanNet

AP25 AP50 AP25 AP50

Gaussian-Det (3DGS+SuGaR) 96.7 77.7 71.7 24.5
Gaussian-Det (3DGS) 94.8 74.3 68.9 22.0

D.1 ADDITIONAL QUALITATIVE RESULTS ON ABLATION STUDIES

In Figure 11, we have accordingly illustrated the qualitative comparisons of the ablation studies
on different components (see Figure 11 in the Appendix of the revised manuscript). It can be
seen that either discarding the holistic surface coalescence or using the deterministic partial surface
representation leads to sub-optimal visual results, such as inaccurate sizes and locations.

Figure 11: Additional qualitative results on ablation studies.

Example 1 Example 2 Example 3

Figure 12: Detection results (upper) under challenging scenarios and corresponding ground-truths
(bottom).

D.2 ADDITIONAL QUALITATIVE RESULTS UNDER CHALLENGING SCENARIOS

Apart from the failure case in Figure 5, we illustrate another case in Example 1, Figure 12 where
Gaussian-Det successfully detects the occluded object. In this example, Gaussian-Det benefits from
the prior that the objectness contains a high degree of surface closure (|Φ| = 0.074), thereby tackling
the occlusion caused by the sofa (|Φ| = 0.025).

On the other hand, for those challenging objects with higher that take up a small proportion, we
have illustrated similar cases of ScanNet in Example 2&3 of Figure 12. In Example 2, a bookshelf
(|Φ| = 0.833) is close to a suitcase and two walls. In Example 3, a desk (|Φ| = 0.380) and two
garbage bins (|Φ| = 0.556, 0.218) are tightly positioned to each other and are against a wall. The
absolute flux values (|Φ) of these exemplified objects are relatively higher due to less exposure to
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camera shooting. While our assumption is weaker in these examples, our Gaussian-Det is still able to
detect the target objects.

In Figure 13, we have included more qualitative results on occlusions, where the compared methods
predict inaccurate sizes or locations.

Figure 13: Additional qualitative results on challenging cases and comparisons with other methods.

Another challenging scenario is detecting from low-quality 3D Gaussians that are reconstructed from
images with noised poses. From Figure 14, we can see that Gaussian-Det is still capable of detecting
the target objects, especially the table which is visually blurred after rendering.

2D Reference Ground Truth Gaussian-Det (Ours) G-BRNet

Figure 14: Qualitative results on low-quality Gaussians reconstructed from images with noised poses.

D.3 ADDITIONAL FAILURE CASES

Ground-truth Ground-truthGaussian-Det (Ours) Gaussian-Det (Ours)

Figure 15: Additional failure cases.

Apart from the example provided, we have further presented more failure cases in Figure 15. Since the
surfaces of the objectness that contains jointed objects can also be regarded as closed, Gaussian-Det
may mistake them as a whole. Future researches can focus on incorporating the color information to
discriminate joint objects.

E ADDITIONAL QUANTITATIVE RESULTS

E.1 DETAILED COMPARISON WITH NERF-RPN AND NERF-MAE
In Table 10, we report all the available officially-reported results of NeRF-RPN and NeRF-MAE
for a thorough comparison with Gaussian-Det. The checkmark indicates that NeRF-MAE employs
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Table 10: Detailed quantitative comparison on 3D-FRONT and ScanNet.

Reference Methods Pretrained 3D-FRONT ScanNet

AR25 AR50 AP25 AP50 AR25 AR50 AP25 AP50

(Hu et al., 2023)

NeRF-RPN (AB, VGG19) 97.8 76.5 65.9 43.2 88.7 42.4 40.7 14.4
NeRF-RPN (AB, R50) 96.3 70.6 65.7 45.1 86.2 32.0 34.4 9.0
NeRF-RPN (AB, Swin-S) 98.5 63.2 51.8 26.2 93.6 44.3 38.7 12.9
NeRF-RPN (AF, VGG19) 96.3 69.9 85.2 59.9 89.2 42.9 55.5 18.4
NeRF-RPN (AF, R50) 95.6 67.7 83.9 55.6 91.6 35.5 55.7 16.1
NeRF-RPN (AF, Swin-S) 96.3 62.5 78.7 41.0 90.6 39.9 57.5 20.5

(Irshad et al., 2024)

NeRF-RPN 96.3 69.9 85.2 59.9 89.2 42.9 55.5 18.4
NeRF-MAE (F3D) ✓ 96.2 67.5 78.0 54.3 89.7 36.1 51.0 14.5
NeRF-MAE (F3D, Aug) ✓ 96.3 74.3 83.0 59.1 90.5 39.1 54.3 15.5
NeRF-MAE (F3D&HM3D&HS, Aug) ✓ 97.2 74.5 85.3 63.0 92.0 39.5 57.1 17.0

Gaussian-Det (Ours) 97.9 82.3 96.7 77.7 87.3 43.0 71.7 24.5

Table 11: Comparison of model efficiency on the task of 3D instance segmentation.

Methods Training Time GPU Memory

Gaussian-Grouping (Ye et al., 2024) 1.33h 35.8GB
Gaussian-Grouping + Ours 0.65h 12.8GB

self-supervised pre-training before finetuning on the downstream detection task. F3D, HM3D and
HS refer to the 3D-FRONT, HM3D and Hypersim datasets for self-supervised pre-training. Aug.
indicates augmentations done during pre-training. Note that without pre-training on exterior databases,
Gaussian-Det still outperforms variants of both NeRF-RPN and NeRF-MAE on most evaluation
metrics.

E.2 MODEL EFFICIENCY ON 3D INSTANCE SEGMENTATION

Apart from the quantitative results in Table 6, we have additional measured model efficiency in
Table 11. We can see that leveraging the surface closure can substantially speed up the training period
and significantly save the GPU memory footprint.
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