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ABSTRACT

Knowledge Tracing (KT) serves as an indispensable technology in intelligent tu-
toring systems (ITS), aiming to predict learners’ future performance based on their
past interactions. Current KT models commonly use predefined knowledge con-
cept (KC) labels to improve prediction accuracy. These labels provide grouping
information about questions, allowing models to infer learners’ performance on
low-frequency questions. However, the subjectivity of human labeling may not
accurately reflect which questions share similar cognitive processes, potentially
limiting the models’ performance. To address this, we redefine KT as a problem
of learning from question groupings and introduce an adaptive framework that it-
eratively refines groupings through alternating optimization. We initiate with ran-
dom groupings and freeze them to optimize the KT model with gradient descent,
then select the loss-minimizing configuration by computing the loss for each pos-
sible reassignment of questions to different groups under continuous assignment
probabilities, repeating this process until convergence. We evaluate our approach
on real-world ITS datasets, incorporating the optimized groupings into different
KT models instead of KCs, which markedly improves model performance and
achieves state-of-the-art results. Further experiments uncover the underlying se-
mantic connections between our automatic groupings and prior KCs, revealing po-
tential similarities in cognitive mechanisms among KCs, providing new insights
and research directions for educational and cognitive sciences. Code is available
in the supplementary materials.

1 INTRODUCTION

Knowledge Tracing (KT), as a core component of intelligent tutoring systems (ITS) (Lin et al.,
2023), is essentially a sequential prediction task. It aims to predict the future performance of learners
based on their past interaction records, which involves determining whether they will answer a given
question correctly. By analyzing historical data to assess learners’ current knowledge states and
identify areas needing reinforcement, KT models support the ITS in providing targeted feedback
and adapting the learning content to the needs and preferences of each learner (Huang et al., 2019;
Liu et al., 2019), thereby promoting their progress and maximizing their potential for achievement
(Abdelrahman et al., 2023).

Early KT models (Corbett & Anderson, 1994; Cen et al., 2006; Thai-Nghe et al., 2012) typically rely
on predefined rules and fixed parameters, which fail to accurately model the complex interactions
of learners, often resulting in poor fit and weak predictive power. In recent years, the integration of
deep learning techniques such as LSTM (Piech et al., 2015; Yeung & Yeung, 2018), Transformers
(Pandey & Karypis, 2019; Ghosh et al., 2020), and GNNs (Nakagawa et al., 2019; Yang et al., 2020;
Cheng et al., 2024) has significantly enhanced the pattern recognition capabilities of KT models,
enabling them to better adapt to long learning sequences. This enhancement improves precision and
reliability, bringing KT closer to realizing its maximum potential. Subsequently, researchers have
turned to educational-psychology theories, introducing assumptions about phenomena such as learn-
ing behavior (Xu et al., 2023), memory (Zhang et al., 2017; Li et al., 2023) and forgetting (Nagatani
et al., 2019; Abdelrahman & Wang, 2022) into KT models, which leads to further improvements
in accuracy. All relevant studies reveal that the success of these models depends on high-quality
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data, especially the importance of question labels such as knowledge concepts (KCs). These KCs
are manually assigned and provide the models with reliable prior knowledge about which questions
are closely related.

Educational measurement theory (Desmarais et al., 2012; Shi et al., 2023) emphasizes that the re-
lationship between questions is intricate, as a single question may draw on multiple KCs and the
skills required to solve one question can often be applied to others. Labeling questions essentially
groups them, a process that involves considering a wide array of combinations and makes find-
ing the optimal arrangement challenging. Moreover, this process is often based on the intuition
of domain experts rather than data-driven patterns, which can introduce subjective biases and may
not accurately reflect the cognitive processes exhibited by learners in actual problem-solving situa-
tions. Consequently, the noise and inaccuracies in manually assigned labels can hinder downstream
models’ ability to learn accurate patterns, leading to newly proposed models introducing additional
parameters and adopting more complex structures.

Exploring the optimal grouping of questions is a combinatorial optimization problem with a vast
solution space. This problem is closely related to Stirling numbers (Rennie & Dobson, 1969), which
enumerate the ways to partition a set into non-empty subsets, thereby underscoring the complexity
of identifying an optimal arrangement. Given this, we believe it is unlikely that manual KC labels
would just happen to be the optimal grouping for questions, and it is highly likely that superior
groupings exist. To avoid the impracticality of exhaustive searching, a more practical approach
is to develop a data-driven and KT task-oriented adaptive grouping algorithm for questions. This
algorithm can dynamically adjust the grouping of questions to maximize the performance of KT
models on specific datasets.

Specifically, we propose an adaptive label learning method for knowledge tracing (ALL4KT), which
explores optimal question grouping through alternating minimization. We begin with a random
question assignment matrix and iteratively update the model parameters using gradient descent while
keeping the matrix fixed. Next, we refine the question grouping by simulating reassignments to
different groups and selecting the one that yields the lowest loss. To avoid greedy assignments, we
employ a relaxation strategy to transform the problem into a continuous probability space, thereby
balancing exploration and exploitation. This iterative process continues until the assignment matrix
stabilizes. Ultimately, we incorporate the grouping results into various baseline KT models and
evaluate them on four real ITS datasets. The results demonstrate that our method significantly
boosts the performance of each of the KT models and reveals the underlying relationships among
KCs through group semantic analysis.

2 RELATED WORK

Most KT research is conducted on the basis of KCs (Lu et al., 2022; Zhang et al., 2025), which effec-
tively reflect the characteristics of real-world educational content (Zanellati et al., 2024). Piech et al.
(2015) introduced DKT, pioneering the use of deep neural networks in KT by directly employing
KCs instead of questions. By leveraging the strengths of deep learning, DKT achieved significant
improvements over early methods that relied on predefined rules and fixed parameters (Corbett &
Anderson, 1994; Cen et al., 2006; Thai-Nghe et al., 2012). DKVMN (Zhang et al., 2017) maps
KC labels to static keys and dynamic values using a dynamic key-value memory network, effec-
tively modeling learners’ mastery of knowledge concepts. Subsequent research (Zhou et al., 2025;
Wang et al., 2025) has advanced the utilization of KC labels by integrating various educational
psychology theories, enhancing model performance. For instance, AKT (Ghosh et al., 2020) com-
bines the Rasch model with attention mechanisms to capture relationships between questions and
strengthen the modeling of time-sensitive learning behaviors. ReKT (Shen et al., 2024), inspired by
the decision-making processes of human teachers, proposes a lightweight forget-response-update
framework that utilizes KC labels to guide knowledge state updates. UKT (Cheng et al., 2025)
introduces uncertainty modeling, FlucKT (Hou et al., 2025) focuses on short-term cognitive fluc-
tuations, and LefoKT (Bai et al., 2025) incorporates relative forgetting attention. These methods
deepen the utilization of KC labels from different perspectives, driving KT research towards greater
precision and interpretability.

Although modeling focused on KCs has become a consensus in KT, the reliability of KC labels of-
ten depends on expert annotation, which can introduce errors and inconsistencies. Some questions
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involve multiple overlapping or implicit KCs, and overly fine-grained labels may lead to data spar-
sity, while overly broad labels may not accurately capture nuanced cognitive demands. These issues
highlight the limitations of relying solely on KC labels for KT and emphasize the need for more
robust and flexible methods to complement their use.

3 PROPOSED METHOD

3.1 PROBLEM FORMULATION

The ITS encompasses several entities (Liu et al., 2023a), including a set of learners represented
by U and a set of questions represented by Q. For any learner u ∈ U , their answer sequence
is represented as Su ≜

{
(q

(u)
i , r

(u)
i )
}
Tu
i=1, where q

(u)
i ∈ Q denotes the question encountered by

learner u during the i-th attempt. r
(u)
i ∈ {0, 1} indicates the learner’s response to the ques-

tion, where 0 means incorrect and 1 means correct. Tu ∈ Z+ represents the number of attempts
made by the learner, which is also the total number of time steps. The historical records of
learner u prior to the t-th attempt can be denoted as Su,<t. The probability of learner u answer-
ing the t-th question correctly is expressed as r̂

(u)
t ≜ P

(
r
(u)
t = 1 | Su,<t, q

(u)
t

)
. Given a dataset

D ⊆ {(u, q, r, t) | u ∈ U , q ∈ Q, r ∈ {0, 1}, t ∈ Z+}, a flattened representation of all historical
data, we have

D =
⋃
u∈U

Tu⋃
t=1

{
(u, q

(u)
t , r

(u)
t , t)

}
.

Questions, often grouped based on KCs, endow the model with richer semantic information, partic-
ularly when data are sparse. We denote the set of question groups as G, and introduce the question
assignment matrix Z ∈ {0, 1}|Q|×|G|, where Zq,g = 1 indicates that question q is assigned to group
g. For all q ∈ Q, it holds that

∑
g∈G Zq,g = 1. Given a KT model with all trainable parameters

denoted by θ ∈ Θ, The expression for the probability that learner u answers question q correctly at
time t is

pu,q,t(θ,Z) ≜ P(r = 1 | Su,<t, q,θ,Z).

Thus, we can intuitively define the cross-entropy loss function for a single sample as

ℓu,q,t(θ,Z) = −r ln pu,q,t(θ,Z)− (1− r) ln(1− pu,q,t(θ,Z)).

Our ultimate goal is to minimize the overall cross-entropy loss by optimizing the question assign-
ment matrix Z and the model parameters θ, which can be formulated as

min
Z,θ

L(θ,Z) =
∑

(u,q,r,t)∈D

ℓu,q,t(θ,Z).

Obviously, model parameters θ are continuous and differentiable, while the matrix Z comprises
discrete variables, which requires searching for the optimal solution in a discrete space. For the
former, the gradient descent method can be employed, while for the latter, it is an NP-complete
problem. Finding the optimal Z is particularly challenging, as this problem often has multiple
local optima. A common strategy is to use alternating optimization (Bezdek & Hathaway, 2003),
iteratively refining the solution to get closer to the optimum.

3.2 ALTERNATING MINIMIZATION

Alternating minimization is a common algorithm for multivariable optimization problems that works
by iteratively fixing some variables and optimizing the remaining ones to progressively explore the
optimal solution. The iterative process in our problem can be summarized as fixing the question
assignment matrix Z to update the parameters θ of the KT model and then fixing the parameters θ
to update Z. The initialization of Z involves randomly assigning each question q ∈ Q to a group
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label gq from the set of group indices {1, 2, . . . , |G|}, with the initial assignment matrix Z(0) defined
as follows:
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Figure 1: We utilize the i-th grouping information to relabel
questions in the original dataset, replacing KCs to train a KT
model until convergence, and then reassign each question to
different groups to compute the loss matrix via the KT model.
Subsequently, we apply relaxation operation to the loss matrix
to derive a probability matrix, and finally select the highest-
probability group for each question as the (i + 1)-th round of
grouping.

Z(0)
q,g =

{
1, g = gq,

0, otherwise.

Subsequently, during the iterative
process, the current question as-
signment matrix Z(i) is treated
as a constant, reducing the origi-
nal problem to a conventional KT
training task involving only the
optimizable continuous variables
θ:

θ(i+1) = argmin
θ∈Θ

L(θ,Z(i)).

The problem can be solved us-
ing any KT model, such as DKT,
in conjunction with any gradient-
based optimization algorithm, like
Adam (Kingma & Ba, 2015). In
practice, we sample learners in

batches and perform forward and backward propagation to update the parameters, thereby obtaining
the updated θ(i+1). Then, by fixing θ(i+1), we compute the potential loss for each question q when
assigned to any group g ∈ G, as follows:

L(i+1)
q,g =

∑
(u,q,r,t)∈D

ℓu,q,t
(
θ(i+1), Z(i)[Z(i)

q,g←1]
)
,

We can assess the impact of different combinations on the global loss by locally substituting the as-
sociation between question q and group g in the matrix Z(i). L(i+1)

q,g is regarded as the cost of placing
question q into group g, and the loss matrix Li+1 is constructed by calculating the corresponding
losses for all q ∈ Q and g ∈ G. Ultimately, the allocation is obtained through argmin hardening:

Z(i+1)
q,g = I

{
g = argmin

g′
L(i+1)
q,g′

}
,

where I{·} is the indicator function, taking the value 1 if the condition is met and 0 otherwise. As
analyzed in Appendix A.1, by fixing Z(i), the model is trained to ensure that there exists at least
one set of θ(i+1) such that L(θ(i+1),Z(i)) ≤ L(θ(i),Z(i)). Subsequently, by fixing θ(i+1), we
can obtain a set of Z(i+1) such that L(θ(i+1),Z(i+1)) ≤ L(θ(i+1),Z(i)). Therefore, the sequence
{L(θ(i),Z(i))}∞i=0 theoretically satisfies

L(θ(i+1),Z(i+1)) ≤ L(θ(i),Z(i)),

with the loss function having a lower bound of 0. Consequently, the sequence converges to a limit
(Z∗,θ∗) such that L(θ∗,Z∗) ≤ L(θ,Z∗), L(θ∗,Z∗) ≤ L(θ∗,Z). In practice, the algorithm
terminates and outputs (Z∗,θ∗) if Z(i+1) = Z(i) or the iteration count i ≥ Imax, and while it does
not guarantee finding the global optimum, it offers a practical and efficient approach to iteratively
approximate the optimal solution.
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3.3 ASSIGNMENT RELAXATION

Although alternating minimization can theoretically iteratively approximate the optimal solution,
the hard assignment based on the loss matrix L is essentially a greedy strategy that may quickly
converge to local optima or cause oscillations during the iterative process (Barik et al., 2025), result-
ing in an imbalance in the grouping, where some groups become too large while others remain too
small. Inspired by the optimal transport problem (Cuturi, 2013; Pham et al., 2020), we propose a
soft assignment strategy based on probabilistic representation, where questions are treated as supply
points and groups as demand points, with questions needing to be assigned to groups. This approach
balances the distribution of questions across different groups while ensuring that the overall assign-
ment adheres to the constraints of supply and demand. Specifically, we transform the loss matrix
L into a non-negative probability matrix P, where each element Pq,g represents the probability of
assigning question q to group g. Our goal is to find an scheme that minimizes the total allocation
cost, specifically to obtain P⋆ such that

P⋆ = arg min
P∈∆
⟨P,L⟩+ λ ·KL(P∥R),

where ⟨·, ·⟩ denotes the matrix inner product, reflecting the total cost of the assignment scheme.
KL(P∥R) is the Kullback-Leibler divergence, measuring the difference between P and the prior
distribution R, with the purpose of making the final assignment as close to the prior as possible.
Here, each row Rq of the prior matrix R ∈ ∆ is defined as the initial probability distribution for
question q. Setting Rq,g = 1/|G| expresses a uniform, unbiased assumption, meaning each question
has an equal chance of being assigned to any group. The temperature coefficient λ determines the
balance between trusting the cost and trusting the prior, where a larger λ increases the KL term’s
penalty, making the probability assignment P⋆ closer to a uniform distribution for smoother, more
exploratory assignments, while a smaller λ makes the cost term dominant, causing P⋆ to become
sharper and approach hard assignments. As derived in Appendix A.2, the closed-form solution can
be written as

P⋆ = diag(u)Kdiag(v), Kq,g = e−Lq,g/λ Rq,g,

where u and v are obtained through Sinkhorn row and column normalization iterations to ensure
that the sum of each row and column is 1. We initialize u = 1|Q| and v = 1|G|. Then, we iteratively
update u← 1|Q|/(K ·v), v← 1|G|/(K

⊤ ·u), until convergence. Substituting these expressions
into the formula yields P⋆, and the allocation rule is given as follows:

Z(i+1)
q,g = I

{
g = argmax

g′
P

(i+1)
q,g′

}
.

3.4 ALGORITHMIC COMPLEXITY

To comprehensively evaluate the feasibility of the proposed method in practical applications, we an-
alyze the time complexity of each component in the alternating minimization process and conclude
with an overall complexity assessment. Let Tavg denote the average length of the answer sequences
across all learners, D the dimension of the KT hidden state vector, E the number of epochs for
KT model training, S the number of Sinkhorn iterations, and Imax the maximum number of itera-
tions for alternating minimization. According to the analysis in Appendix A.3, after executing Imax

iterations, the overall complexity is given by

O

Imax ·

E · |U| · Tavg ·D2︸ ︷︷ ︸
Model Training

+ |G| · |U| · Tavg ·D2︸ ︷︷ ︸
Loss Matrix Computation

+ S · |Q| · |G|︸ ︷︷ ︸
Sinkhorn Optimization


 .

The product |U| · T , representing the number of interaction records in the data, is typically large,
making model training and loss matrix computation the most significant factors in the overall pro-
cess. When the number of groups |G| is small, the primary performance concern is training the KT
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model; however, with a large |G|, the time needed for grouping questions can significantly hinder
performance. The complexities of Sinkhorn optimization and hard assignment are relatively low and
typically do not pose a performance bottleneck.

4 EXPERIMENTS

4.1 EXPERIMENTAL SETTING

Datasets. We evaluate our model on four benchmark datasets: ASSIST20091 and AS-
SIST20122, collected from the ASSISTments platform (Feng et al., 2009) during the
2009–2010 and 2012–2013 school years, respectively, and Algebra2005 and Bridge2006,

Table 1: Statistics of all datasets.
Datasets Learners Questions KCs/Groups Interactions

ASSIST2009 4,029 16,888 110/137 325,515
ASSIST2012 28,118 53,084 265/265 2,710,913
Algebra2005 574 17,2994 113/436 606,401
Bridge2006 1,146 129,255 494/564 1,817,018

originating from the KDD Cup 2010 EDM
Challenge 3 (Stamper et al., 2010). Each
dataset contains fields for learners, ques-
tions, KCs, and interactions, with statis-
tics shown in the following table. In many
datasets, a question may correspond to
multiple KCs, and the number of these default groups is also detailed in the table (Note that the
groups here are the default grouping caused by the KCs, not the groups set by our method).

Baselines. We compare our model against several state-of-the-art baselines, including DKT (Piech
et al., 2015), DKVMN (Zhang et al., 2017), AKT (Ghosh et al., 2020), SimpleKT (Liu et al., 2023b),
ReKT (Shen et al., 2024), UKT (Cheng et al., 2025), FlucKT (Hou et al., 2025), and LefoKT (Bai
et al., 2025) (the codes for these baselines are sourced from Liu et al. (2022)). For detailed informa-
tion on these baselines, see Appendix A.4.

Hyperparameter Settings. We conduct extensive grid search experiments, using powers of 2 as the
metric, to adapt our hyperparameters to different datasets. We set the model dimension D to 128.
For the number of clusters, we assign 16 clusters for ASSIST2009 and Algebra2005, 128 clusters for
ASSIST2012, and 512 clusters for Bridge2006. The λ parameter is tuned to 4 for ASSIST2009, 16
for ASSIST2012, 128 for Algebra2005, and 32 for Bridge2006. The number of Sinkhorn iterations
S is set to 10, while the maximum number of iterations Imax in alternating minimization is set to 30.
The learning rate is configured as 1e-3, and the batch size is set to 40.

Evaluation Metrics. We conduct experiments using five-fold cross-validation to calculate the Area
Under the Curve (AUC), Accuracy (ACC), and Root Mean Squared Error (RMSE) for each model
on each dataset. The probability matrix P is computed using only the training set data, and the
model performance is ultimately evaluated on the test data.

Experimental Environment. Our experiments are carried out on a server equipped with an Intel
Xeon Platinum 8358P CPU, 128GB of RAM, and an NVIDIA RTX A6000 GPU, which provides
robust computational power for training KT models. The software environment includes Ubuntu
20.04 LTS as the operating system, Python 3.8, and PyTorch 1.12.0, ensuring a stable and efficient
platform for implementing and testing our models.

4.2 EXPERIMENTAL RESULTS

To demonstrate the superiority of our method in enhancing KT through automated question group-
ings rather than predefined KC labeling, we conduct extensive experiments on four benchmark
datasets, comparing it with eight baseline methods. Each model is evaluated in three modes: us-
ing only question information (Q), combining question and KC information (KC), and replacing KC
with our automated groupings (Ours).

As illustrated in Table 2, models leveraging KCs consistently outperform those relying solely on
question IDs across all datasets, emphasizing the significant contribution of KCs to improving KT

1https://sites.google.com/site/assistmentsdata/home/assistment-2009-2010-data/skill-builder-data-2009-
2010

2https://sites.google.com/site/assistmentsdata/home/2012-13-school-data-with-affect
3https://pslcdatashop.web.cmu.edu/KDDCup/

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Results of the main experiments.
Model ASSIST2009 ASSIST2012 Algebra2005 Bridge2006

AUC ACC RMSE AUC ACC RMSE AUC ACC RMSE AUC ACC RMSE

DKT
Q 0.7475 0.7177 0.4320 0.7318 0.7344 0.4240 0.7449 0.8052 0.4109 0.7422 0.8325 0.3568

KC 0.8263 0.7740 0.3909 0.7388 0.7355 0.4233 0.8250 0.8160 0.3626 0.7966 0.8487 0.3349
Ours 0.8551 0.7943 0.3778 0.7854 0.7599 0.4050 0.9169 0.8641 0.3104 0.8479 0.8541 0.3220

DKVMN
Q 0.7381 0.7082 0.4487 0.7222 0.7319 0.4266 0.7687 0.7977 0.3851 0.7586 0.8402 0.3460

KC 0.8178 0.7718 0.3956 0.7356 0.7347 0.4232 0.8227 0.8149 0.3634 0.7879 0.8467 0.3371
Ours 0.8577 0.7976 0.3762 0.7853 0.7607 0.4047 0.9146 0.8620 0.3122 0.8510 0.8547 0.3208

AKT
Q 0.7744 0.7395 0.4220 0.7197 0.7287 0.4289 0.7926 0.8020 0.3768 0.7646 0.8398 0.3457

KC 0.8263 0.7738 0.3945 0.7753 0.7553 0.4094 0.8328 0.8190 0.3597 0.8084 0.8505 0.3316
Ours 0.8642 0.7998 0.3721 0.7851 0.7604 0.4050 0.9151 0.8625 0.3116 0.8488 0.8545 0.3216

SimpleKT
Q 0.8086 0.7685 0.4008 0.7280 0.7339 0.4252 0.8155 0.8120 0.3669 0.7917 0.8474 0.3362

KC 0.8275 0.7761 0.3953 0.7794 0.7575 0.4074 0.8386 0.8232 0.3560 0.8153 0.8526 0.3289
Ours 0.8596 0.7940 0.3756 0.7857 0.7608 0.4047 0.9141 0.8615 0.3124 0.8520 0.8562 0.3200

ReKT
Q 0.8332 0.7754 0.3898 0.7663 0.7518 0.4118 0.8047 0.8107 0.3701 0.7870 0.8446 0.3386

KC 0.8488 0.7882 0.3803 0.7824 0.7595 0.4056 0.8379 0.8234 0.3560 0.8152 0.8528 0.3288
Ours 0.8679 0.7993 0.3690 0.7870 0.7611 0.4042 0.9168 0.8645 0.3095 0.8477 0.8544 0.3219

UKT
Q 0.8278 0.7735 0.3927 0.7539 0.7446 0.4169 0.7962 0.8057 0.3745 0.7848 0.8436 0.3395

KC 0.8427 0.7826 0.3860 0.7790 0.7571 0.4075 0.8399 0.8234 0.3554 0.8136 0.8514 0.3296
Ours 0.8619 0.7977 0.3741 0.7862 0.7606 0.4047 0.9148 0.8625 0.3115 0.8481 0.8545 0.3219

FlucKT
Q 0.8185 0.7694 0.3986 0.7594 0.7479 0.4145 0.7952 0.8066 0.3749 0.7864 0.8442 0.3391

KC 0.8431 0.7873 0.3851 0.7850 0.7607 0.4048 0.8380 0.8201 0.3577 0.8146 0.8525 0.3289
Ours 0.8587 0.7971 0.3759 0.7863 0.7610 0.4047 0.9143 0.8615 0.3124 0.8480 0.8536 0.3226

LefoKT
Q 0.8175 0.7684 0.4028 0.7590 0.7481 0.4148 0.7954 0.8051 0.3751 0.7868 0.8440 0.3391

KC 0.8358 0.7800 0.3890 0.7835 0.7601 0.4055 0.8372 0.8209 0.3575 0.8154 0.8526 0.3287
Ours 0.8669 0.8014 0.3703 0.7870 0.7615 0.4042 0.9163 0.8638 0.3103 0.8518 0.8553 0.3205

performance by offering more comprehensive and informative data for precise predictions. More-
over, by replacing predefined KC labels with our automated groupings, all models achieve fur-
ther performance improvements and surpass current state-of-the-art methods on all datasets, thereby
demonstrating that our data-driven method produces more meaningful question groupings compared
to KC labels. Notably, even earlier KT models like DKT and DKVMN, when enhanced with our
method, outperform advanced models like ReKT and FlucKT, even though these advanced models
have more complex structures. This observation suggests that the performance improvement in KT
models may depend less on structural complexity and more on the quality and representation of the
data. Rather than focusing on developing intricate model architectures, we should prioritize enhanc-
ing the quality of KT data, as this not only saves effort on complex model design but also offers
exceptional flexibility and ease of integration, making it a practical solution for various educational
applications in real-world settings.

4.3 HYPERPARAMETER ANALYSIS

To gain deeper insights into how different hyperparameters affect the grouping results, we conduct
a series of experiments focusing mainly on two core hyperparameters: the number of groups |G|,
which determines the granularity of question partitioning, and the temperature λ, which governs the
sharpness of the assignment distribution.

Number of Groups (             )2log 

ASSIST2009

2log Temperature Coefficient (           )

ASSIST2012

Number of Groups (             )2log 

2log Temperature Coefficient (           )

Algebra2005

Number of Groups (             )2log 

2log Temperature Coefficient (           )

Bridge2006

Number of Groups (             )2log 

2log Temperature Coefficient (           )

AUC

ACC

AUC

ACC

AUC

ACC

AUC

ACC

AUC

ACC

AUC

ACC

AUC

ACC

AUC

ACC

Figure 2: The impact of hyperparameter |G| and λ on the experimental results.

On most datasets, as |G| increases, the predictive metric rises sharply at first. The model’s perfor-
mance improves significantly as more groups provide greater flexibility to capture question similar-
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ities. However, after reaching a plateau around |G| = 24, further increases in |G| yield diminishing
returns and can even be detrimental. This is likely because very small groups fail to accumulate suf-
ficient student-question interactions to stabilize parameter estimates. Notably, ASSIST2009, with
a relatively small question pool of approximately 17K unique questions, shows a pronounced drop
in performance when |G| becomes excessively large. An overly large |G| creates numerous near-
empty groups with unreliable statistics, leading to rapid overfitting. Regarding the temperature λ,
the performance demonstrates a clear trend of first increasing and then decreasing. When λ is small,
the assignment distribution approaches a one-hot format, causing the model to behave like a hard
grouping algorithm and losing the benefits of probabilistic smoothing. As λ increases, the distri-
bution becomes more uniform. While this initially enhances generalization by sharing statistical
strength across similar questions, excessive values of λ erase the useful preference for low-cost
groups and introduce noise, ultimately degrading performance. The optimal λ strikes a balance,
providing just the right amount of softness for the best generalization.

4.4 ITERATION ANALYSIS

To better understand how our method iterates and evolves in performance, we conduct a detailed
analysis on the ASSIST2009 dataset, where we perform experiments using optimal configurations
and record all intermediate results from the alternating minimization process. For rounds 0 to 15,
we visualize the question groupings with Sankey diagrams, which track group size and evolution,
illustrating how each group transforms from one round to the next. Additionally, we input results
from each iteration into the KT model, completing the training-to-testing process and outputting the
AUC. We also calculate the normalized mutual information (NMI) between successive rounds to
reflect the grouping similarity.
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Figure 3: Iteration progress from round 0 to 15 with 16 groups
on the ASSIST2009 dataset.

As shown in Figure 3, in the
initial state, we randomly assign
groups for each question, maintain-
ing a relatively even distribution
across them. In the early itera-
tions, the AUC increases rapidly,
while the NMI remains low, indi-
cating significant fluctuations in the
groupings. However, as the itera-
tions progress, the AUC gains slow
down, and the NMI rises, stabiliz-
ing around 0.7. From round 10 on-
ward, the groupings start to stabi-

lize, ultimately resulting in groups of varying sizes. The experimental results indicate that the algo-
rithm is capable of finding a stable grouping method throughout the iterations, which suggests the
presence of an inherent structure within the data that our approach effectively captures.

4.5 ROBUSTNESS ANALYSIS

In KT tasks, the prediction accuracy of questions is significantly influenced by their frequency in the
dataset. For questions that appear infrequently, models often lack sufficient training data, leading
to unstable predictions that can be either too high or too low, presenting randomness. To verify
whether our proposed automatic grouping method enhances the robustness of KT models, we con-
duct experiments on the ASSIST2009, comparing two approaches: one model is trained solely on
the original data and is called the basic method, while the other is trained with grouping information
and is termed our method. We plot Figure 4 with the frequency of question occurrences on the x-axis
and evaluation metrics on the y-axis to compare and analyze the prediction performance of the two
methods.

As shown in Figure 4, the frequency distribution of questions in the ASSIST2009 follows a long-
tail pattern, with the majority of questions appearing fewer than 140 times, while the number of
questions decreases as frequency increases. The distribution of the basic model for low-frequency
questions is relatively dispersed, indicating significant variability in prediction stability. In contrast,
our method yields a more concentrated distribution, demonstrating greater consistency and robust-
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ness. This suggests that the automatic grouping method effectively compensates for the prediction
instability caused by data scarcity by providing associations between questions.

Frequency of the Question

A
C

C

Basic Method Our MethodBasic Method Our Method

Frequency of the Question

A
U

C

Frequency of the Question

R
M

SE

Basic Method Our Method

Figure 4: Comparative Analysis of Robustness: Our Method vs. Basic Method.

4.6 GROUPS SEMANTIC ANALYSIS

To analyze the potential semantic meaning of question groups and explore their feasibility in guiding
real-world KCs’ labeling, we construct a similarity matrix between groups and KCs using the group-
question and KC-question relationship matrices and then derive an association matrix of KCs in the
ASSIST2009 dataset. After applying a fixed threshold to eliminate edges with low relevance, we
visualize the relationships in Figures 5 (a) and (b) and summarize the semantic labels of several
typical groups in Figure 5 (c).

We identified seven distinct semantic themes, such as ”Numbers & Proportional Reasoning,” and
”Algebra & Functions,” among others. These themes illustrate how specific KCs can enhance KT
modeling when they interact, highlighting the interconnected nature of learners’ cognitive processes.
Notably, we found unexpected groupings, like ”Percent Of” and ”Prime Number,” which suggest
potential hidden cognitive links that merit further investigation. Conversely, closely related concepts
such as ”Translations,” ”Reflection,” and ”Rotations” did not cluster together, indicating the presence
of different cognitive mechanisms. Overall, our findings offer valuable insights for education and
cognitive science, providing a data-driven method to uncover complex relationships between KCs.
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Figure 5: Semantic analysis of groups and KCs.

5 CONCLUSION

In this work, we propose an adaptive label learning method for KT that iteratively refines question
groupings through alternating optimization. Motivated by the limitations of manually annotated KC
labels, our approach initializes with random groupings and alternates between optimizing the KT
model parameters and updating the question groupings. By employing the relaxation operation to
balance exploration and exploitation, we achieve a stable and effective grouping scheme that sig-
nificantly improves the performance of various KT models. Comprehensive experiments on four
real-world datasets demonstrate that our method outperforms existing baseline models, achieving
state-of-the-art results. Furthermore, our approach reveals underlying semantic connections be-
tween automatic groupings and prior KCs, providing new insights into the cognitive mechanisms
of learning. We believe this work offers a robust and flexible alternative to traditional KC labels,
serving as a strong foundation for future KT research.
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A APPENDIX

A.1 ANALYSIS OF MONOTONIC LOSS REDUCTION

Given an iteration index i. The parameter space Θ is the continuous space of all trainable parameters
of the KT model. Fix Z = Z(i). The loss function

LZ(i)(θ) ≜ L(θ,Z(i))

depends only on the model parameters θ, and LZ(i) is continuously differentiable over the parameter
space Θ ⊆ Rd. Let the current parameters be θ(i). Applying any descent-type optimization strategy
to LZ(i) (such as gradient descent with an appropriate step size, Adam (Kingma & Ba, 2015), etc.),
the update rule ensures that

LZ(i)(θ(i+1)) ≤ LZ(i)(θ(i)),

where θ(i+1) is the output of the algorithm. If the optimizer has converged to a local minimum,
we can directly take θ(i+1) = θ(i), in which case equality holds. Therefore, there always exists a
parameter θ(i+1) satisfying

L(θ(i+1),Z(i)) ≤ L(θ(i),Z(i)).

Fix θ = θ(i+1). Define the loss function as f(Z) ≜ L(θ(i+1),Z). The update rule for Z is given
by:

Z(i+1)
q,g = I

{
g = argmin

g′
L(i+1)
q,g′

}
.
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By construction, Z(i+1) is chosen such that for each question q, it is assigned to the group g that
minimizes the cost L(i+1)

q,g . This means that for each q, Z(i+1)
q,g = 1 if g = argming′ L(i+1)

q,g′ and 0
otherwise. For the previous Z(i), the loss is defined as:

f(Z(i)) = L(i+1).

For the updated Z(i+1), the loss is:

f(Z(i+1)) = L(i+1) +
∑
q∈Q

(L(i+1)

q,argming′ L
(i+1)

q,g′
− L(i+1)).

Here, for each question q, the loss difference L(i+1)

q,argming′ L
(i+1)

q,g′
−L(i+1) is independently minimized

by selecting the optimal group g. This independence allows us to directly sum these differences over
all q ∈ Q, resulting in the total loss for Z(i+1). Therefore,

f(Z(i))− f(Z(i+1)) =
∑
q∈Q

(L(i+1) − L(i+1)

q,argming′ L
(i+1)

q,g′
) ≥ 0.

This is because for any q,
L(i+1) − L(i+1)

q,argming′ L
(i+1)

q,g′
≥ 0.

Thus,
f(Z(i+1)) ≤ f(Z(i)),

which implies
L(θ(i+1),Z(i+1)) ≤ L(θ(i+1),Z(i)).

In summary, by the update rule for Z, which assigns each question to the group that minimizes the
cost, we ensure that the loss does not increase. This guarantees that the sequence of losses is non-
increasing, leading to convergence. This analysis provides a practical approach to understanding the
convergence behavior of the alternating minimization process in our problem.

A.2 DERIVATION OF THE SINKHORN CLOSED-FORM SOLUTION

Consider the optimization problem

P⋆ = arg min
P∈∆
⟨P,L⟩+ λ ·KL(P∥R),

where we introduce the multipliers α ∈ R|Q| for the row sum constraints. The corresponding
Lagrangian function is

F(P,α) = ⟨P,L⟩+ λ
∑
q,g

Pq,g

(
ln

Pq,g

Rq,g
− 1

)
+α⊤ (P · 1|G| − 1|Q|

)
.

Taking the derivative with respect to Pq,g and setting it to zero, we have

∂L
∂Pq,g

= Lq,g + λ ln
Pq,g

Rq,g
+ αq = 0,

which yields

Pq,g = Rq,g exp

(
−Lq,g + αq

λ

)
.

Since ∑
g

Pq,g =
∑
g

Rq,g exp

(
−Lq,g + αq

λ

)
= 1,
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we define

Kq,g = Rq,g exp

(
−Lq,g

λ

)
, uq = exp

(
−αq

λ

)
.

Thus, the compact form of the above equation can be written as
P = diag(u) ·K, diag(u) ·K · 1|G| = 1|Q|.

To further enforce column sum normalization, i.e., P⊤1|Q| = 1|G|, we introduce a second set of
multipliers β and define

vg = exp

(
−βg

λ

)
,

resulting in
P = diag(u) ·K · diag(v).

The pair (u,v) is then updated via the Sinkhorn iteration

uq ←

(∑
g

Kq,gvg

)−1

, vg ←

(∑
q

uqKq,g

)−1

,

alternating until both P1 = 1 and P⊤1 = 1 hold. The final converged solution is

P⋆ = diag(u) ·K · diag(v), Kq,g = Rq,g exp

(
−Lq,g

λ

)
.

A.3 DETAILED ANALYSIS OF ALGORITHMIC COMPLEXITY

In the first stage of alternating minimization, we fix the question assignment matrix Z and perform
a full model training for the continuous variable θ. Assuming we use mini-batch gradient descent
with a batch size of B, the time complexity for one forward and backward pass is approximately

O(B · Tavg ·D2),

where D2 arises from the multiplication of hidden states and weight matrices in structures such as
RNN/LSTM/Transformer. Training one epoch requires iterating over |U| samples, with a total of
|U|/B batches. Therefore, the overall complexity for one θ update stage is

O
(
E · |U|

B
·B · Tavg ·D2

)
= O

(
E · |U| · Tavg ·D2

)
.

In the second stage, we need to compute the potential loss Lq,g for each question q and each group
g, i.e., construct the loss matrix L. Calculating the loss for the same g across all q involves one
forward pass, with a time complexity of approximately O(|U| · Tavg · D2). Therefore, the overall
complexity for constructing the entire loss matrix is

O
(
|G| · |U| · Tavg ·D2

)
.

In the Sinkhorn iteration, G ∈ R|Q|×|G|. The complexity of each iteration is O(|Q| · |G|). If the
iteration converges after S rounds, the total complexity is

O(S · |Q| · |G|).
Since S is typically small, this part of the overhead is relatively low. Obtaining the hard assignment
Z from the probability matrix P via argmax requires comparing |G| values for each row, with a
time complexity of

O(|Q| · |G|),
which is negligible in the overall overhead.

In one outer iteration of alternating minimization, the main overhead comes from the model training
stage and the loss matrix computation stage. Therefore, the total complexity for a single iteration is

O
(
E · |U| · Tavg ·D2 + |G| · |U| · Tavg ·D2 + S · |Q| · |G|

)
.

After executing Imax iterations, the overall complexity is
O
(
Imax ·

[
E · |U| · Tavg ·D2 + |G| · |U| · Tavg ·D2 + S · |Q| · |G|

])
.

14



756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

A.4 DETAILED INTRODUCTION FOR BASELINE METHODS

We provide a comprehensive overview of the baseline methods used for comparison in our experi-
ments. These methods are widely recognized in the field of KT and serve as a solid foundation for
evaluating the performance of our proposed model. The selected baselines include:

DKT (Piech et al., 2015) is the first deep learning-based KT model that employs an LSTM layer to
encode students’ knowledge states for predicting their future responses.

DKVMN (Zhang et al., 2017) introduces a dynamic key-value memory network to model the rela-
tionships between concepts and directly output a student’s mastery level of each concept.

AKT (Ghosh et al., 2020) couples attention-based neural networks with cognitive and psychometric
models, offering a balance between flexibility and interpretability in KT.

SimpleKT (Liu et al., 2023b) provides a lightweight yet effective baseline for KT using the Rasch
model to explicitly capture question-specific variations and dot-product attention for time-aware
information.

ReKT (Shen et al., 2024) proposes a Forget-Response-Update (FRU) framework inspired by human
cognitive development models, achieving high performance with minimal computational resources.

UKT (Cheng et al., 2025) introduces stochastic embeddings and a Wasserstein self-attention mech-
anism to model uncertainty in student interactions and enhance robustness.

FlucKT (Hou et al., 2025) enhances attention mechanisms by integrating causal convolution and
kernelized bias to better capture short-term cognitive fluctuations.

LefoKT (Bai et al., 2025) introduces relative forgetting attention to decouple forgetting patterns
from problem relevance, improving attention-based models’ capability to handle continuous forget-
ting processes.
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