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ABSTRACT

Q-learning with value function approximation may have the poor performance
because of overestimation bias and imprecise estimate. Specifically, overestima-
tion bias is from the maximum operator over noise estimate, which is exaggerated
using the estimate of a subsequent state. Inspired by the recent advance of deep
reinforcement learning and Double Q-learning, we introduce the decorrelated dou-
ble Q-learning (D2Q). Specifically, we introduce Q-value function utilizing con-
trol variates and the decorrelated regularization to reduce the correlation between
value function approximators, which can lead to less biased estimation and low
variance. The experimental results on a suite of MuJoCo continuous control tasks
demonstrate that our decorrelated double Q-learning can effectively improve the
performance.

1 INTRODUCTION

Q-learning Watkins & Dayan (1992) as a model free reinforcement learning approach has gained
popularity, especially under the advance of deep neural networks Mnih et al. (2013). In general, it
combines the neural network approximators with the actor-critic architectures Witten (1977); Konda
& Tsitsiklis (1999), which has an actor network to control how the agent behaves and a critic to
evaluate how good the action taken is.

The Deep Q-Network (DQN) algorithm Mnih et al. (2013) firstly applied the deep neural network to
approximate the action-value function in Q-learning and shown remarkably good and stable results
by introducing a target network and Experience Replay buffer to stabilize the training. Lillicrap et al.
proposes DDPG Lillicrap et al. (2015), which extends Q-learning to handle continuous action space
with target networks. Except the training stability, another issue Q-learning suffered is overestima-
tion bias, which was first investigated in Thrun & Schwartz (1993). Because of the noise in function
approximation, the maximum operator in Q-learning can lead to overestimation of state-action val-
ues. And, the overestimation property is also observed in deterministic continuous policy control
Silver & Lever (2014). In particular, with the imprecise function approximation, the maximization
of a noisy value will induce overestimation to the action value function. This inaccuracy could be
even worse (e.g. error accumulation) under temporal difference learning Sutton & Barto (1998), in
which bootstrapping method is used to update the value function using the estimate of a subsequent
state.

Given overestimation bias caused by maximum operator of noise estimate, many methods have been
proposed to address this issue. Double Q-learning van Hasselt (2010) mitigates the overestimation
effect by introducing two independently critics to estimate the maximum value of a set of stochastic
values. Averaged-DQN Anschel et al. (2017) takes the average of previously learned Q-values
estimates, which results in a more stable training procedure, as well as reduces approximation error
variance in the target values. Recently, Twin Delayed Deep Deterministic Policy Gradients (TD3)
Fujimoto et al. (2018) extends the Double Q-learning, by using the minimum of two critics to limit
the overestimated bias in actor-critic network. A soft Q-learning algorithm Haarnoja et al. (2018),
called soft actor-critic, leverages the similar strategy as TD3, while including the maximum entropy
to balance exploration and exploitation. Maxmin Q-learning Lan et al. (2020) proposes the use of
an ensembling scheme to handle overestimation bias in Q-Learning.

This work suggests an alternative solution to the overestimation phenomena, called decorrelated
double Q-learning, based on reducing the noise estimate in Q-values. On the one hand, we want
to make the two value function approximators as independent as possible to mitigate overestima-
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tion bias. On the other hand, we should reduce the variance caused by imprecise estimate. Our
decorrelated double Q-learning proposes an objective function to minimize the correlation of two
critics, and meanwhile reduces the target approximation error variance with control variate meth-
ods. Finally, we provide experimental results on MuJoCo games and show significant improvement
compared to competitive baselines.

The paper is organized as follows. In Section 2, we introduce reinforcement learning problems,
notations and two existed Q-learning variants to address overestimation bias. Then we present our
D2Q algorithm in Section 3 and also prove that in the limit, this algorithm converges to the optimal
solution. In Section 4 we show the experimental results on MuJoCo continuous control tasks, and
compare it to the current state of the art. Some related work and discussion is presented in Section
5 and finally Section 6 concludes the paper.

2 BACKGROUND

In this section, we introduce the reinforcement learning problems and Q-learning, as well as notions
that will be used in the following sections.

2.1 PROBLEM SETTING AND NOTATIONS

We consider the model-free reinforcement learning problem (i.e. optimal policy existed) with se-
quential interactions between an agent and its environment Sutton & Barto (1998) in order to maxi-
mize a cumulative return. At every time step t, the agent selects an action at in the state st according
its policy and receives a scalar reward rt(st, at), and then transit to the next state st+1. The problem
is modeled as Markov decision process (MDP) with tuple: (S,A, p(s0), p(st+1|st, at), r(st, at), γ).
Here, S and A indicate the state and action space respectively, p(s0) is the initial state distribution.
p(st+1|st, at) is the state transition probability to st+1 given the current state st and action at,
r(st, at) is reward from the environment after the agent taking action at in state st and γ is discount
factor, which is necessary to decay the future rewards ensuring finite returns. We model the agent’s
behavior with πθ(a|s), which is a parametric distribution from a neural network.

Suppose we have the finite length trajectory while the agent interacting with the environment. The
return under the policy π for a trajectory τ = (st, at)

T
t=0

J(θ) = Eτ∼πθ(τ)[r(τ)] = Eτ∼πθ(τ)[R
T
0 ]

= Eτ∼πθ(τ)[
T∑
t=0

γtr(st, at)] (1)

where πθ(τ) denotes the distribution of trajectories,
p(τ) = π(s0, a0, s1, ..., sT , aT )

= p(s0)

T∏
t=0

πθ(at|st)p(st+1|st, at) (2)

The goal of reinforcement learning is to learn a policy π which can maximize the expected returns

θ = arg max
θ

J(θ) = arg maxEτ∼πθ(τ)[R
T
0 ] (3)

The action-value function describes what the expected return of the agent is in state s and action a
under the policy π. The advantage of action value function is to make actions explicit, so we can
select actions even in the model-free environment. After taking an action at in state st and thereafter
following policy π, the action value function is formatted as:

Qπ(st, at) = Esi∼pπ,ai∼π[Rt|st, at] = Esi∼pπ,ai∼π[

T∑
i=t

γ(i−t)r(si, ai)|st, at] (4)

To get the optimal value function, we can use the maximum over actions, denoted as Q∗(st, at) =
maxπ Q

π(st, at), and the corresponding optimal policy π can be easily derived by π∗(s) ∈
arg maxat Q

∗(st, at).
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2.2 Q-LEARNING

Q-learning, as an off-policy RL algorithm, has been extensively studied since it was proposed
Watkins & Dayan (1992). Suppose we use neural network parametrized by θQ to approximate
Q-value in the continuous environment. To update Q-value function, we minimize the follow loss:

L(θQ) = Esi∼pπ,ai∼π[(Q(st, at; θ
Q)− yt)2] (5)

where yt = r(st, at) + γmaxat+1
Q(st+1, at+1; θQ) is from Bellman equation, and its action at+1

is taken from frozen policy network (actor) to stabilizing the learning. In actor-critic methods, the
policy π : S 7→ A, known as the actor with parameters θπ , can be updated through the chain rule in
the deterministic policy gradient algorithm Silver & Lever (2014)

∇J(θπ) = Es∼pπ [∇aQ(s, a; θQ)|a=π(s;θπ)∇θπ (π(s; θπ))] (6)

where Q(s, a) is the expected return while taking action a in state s, and following π after.

One issue has attracted great attention is overestimation bias, which may exacerbate the situation
into a more significant bias over the following updates if left unchecked. Moreover, an inaccurate
value estimate may lead to poor policy updates. To address it, Double Q-learning van Hasselt (2010)
use two independent critics q1(st, at) and q2(st, at), where policy selection uses a different critic
network than value estimation

q1(st, at) = r(st, at) + γq2(st+1, arg max
at+1

q1(st+1, at+1; θq1); θq2)

q2(st, at) = r(st, at) + γq1(st+1, arg max
at+1

q2(st+1, at+1; θq2); θq1)

Recently, TD3 Fujimoto et al. (2018) uses the similar two q-value functions, but taking the minimum
of them below:

yt = r(st, at) + γmin
(
q1(st+1, π(st+1)), q2(st+1, π(st+1))

)
(7)

Then the same square loss in Eq. 5 can be used to learn model parameters.

3 DECORRELATED DOUBLE Q-LEARNING

In this section, we present Decorrelated Double Q-learning (D2Q) for continuous action control with
attempt to address overestimation bias. Similar to Double Q-learning, we use two q-value functions
to approximate Q(st, at). Our main contribution is to borrow the idea from control variates to
decorrelate these two value functions, which can further reduce the overestimation risk.

3.1 Q-VALUE FUNCTION

Suppose we have two approximators q1(st, at) and q2(st, at), D2Q uses the weighted difference
of double q-value functions to approximate the action-value function at (st, at). Thus, we define
Q-value as following:

Q(st, at) = q1(st, at)− β
(
q2(st, at)− E(q2(st, at))

)
(8)

where q2(st, at)−E(q2(st, at)) is to model the noise in state st and action at, and β is the correlation
coefficient of q1(st, at) and q2(st, at). To understand the expectation E(q2(st, at)), it is the average
over all possible runs. Thus, the weighted difference between q1(st, at) and q2(st, at) attempts to
reduce the variance and remove the noise effects in Q-learning.

To update q1 and q2, we minimize the following loss:

L(θQ) = Esi∼pπ,ai∼π[(q1(st, at; θ
q1)− yt)2] + Esi∼pπ,ai∼π[(q2(st, at; θ

q2)− yt)2]

+ λEsi∼pπ,ai∼π[corr(q1(st, at; θ
q1), q2(st, at; θ

q2))]2 (9)

where θQ = {θq1 , θq2}, and yt can be defined as

yt = r(st, at) + γQ(st+1, at+1) (10)

3



Under review as a conference paper at ICLR 2021

where Q(st+1, at+1) is the action-value function defined in Eq. 8 to decorrelate q1(st+1, at+1) and
q2(st+1, at+1), which are both from the frozen target networks. In addition, we want these two q-
value functions as independent as possible. Thus, we introduce corr(q1(st, at; θ

q1), q2(st, at; θ
q1)),

which measures similarity between these two q-value approximators. In the experiment, our method
using Eq. 10 can get good results on Halfcheetah, but it did not perform well on other MuJoCo
tasks.

To stabilize the target value, we take the minimum of Q(st+1, at+1) and q2(st+1, at+1) in Eq. 10
as TD3 Fujimoto et al. (2018). Then, it gives the target update of D2Q algorithm below

yt = r(st, at) + γmin(Q(st+1, at+1), q2(st+1, at+1)) (11)

And the action at+1 is from policy at+1 = π(st+1; θπ), which can take a similar policy gradient
as in Eq. 6. Our D2Q leverages the parametric actor-critic algorithm, which maintains two q-value
approixmators and a single actor. Thus, the loss in Eq. 9 tries to minimize the three terms below, as

corr(q1(st, at; θ
q1), q2(st, at; θ

q2))→ 0

q1(st, at; θ
q1)→ yt

q2(st, at; θ
q2)→ yt

At each time step, we update the pair of critics towards the minimum target value in Eq. 11, while
reducing the correlation between them. The purposes that we introduce control variate q2(st, at)
are following: (1) Since we use q2(st, at)− E(q2(st, at)) to model noise, if there is no noise, such
that q2(st, at) − E(q2(st, at)) = 0, then we have yt = r(st, at) + min(Qπ(st, at), q2(st, at)) =
r(st, at) + min(q1(st, at), q2(st, at)) via Eq. 11, which is exactly the same as TD3. (2) In fact,
because of the noise in value estimate, we have q2(st, at) − E(q2(st, at)) 6= 0. The purpose we
introduce q2(st, at) is to mitigate overestimate bias in Q-learning. The control variate introduced by
q2(st, at) will reduce the variance of Q(st, at) to stabilize the learning of value function.

Convergence analysis: we claim that our D2Q algorithm is to converge the optimal in the finite
MDP settings. There is existed theorem in Jaakkola et al. (1994), given the random process {∆t}
taking value in Rn and defined as

∆t+1(st, at) = (1− αt(st, at))∆t(st, at) + αt(st, at)Ft(st, at) (12)

Then ∆t converges to zero with probability 1 under the following assumptions:

1. 0 < αt < 1,
∑
t αt(x) =∞ and

∑
t α

2
t (x) <∞

2. ||E[Ft(x)|Ft]||W ≤ γ||∆t||W + ct with 0 < γ < 1 and ct
p→ 0 = 1

3. var[Ft(x)|Ft] ≤ C(1 + ||∆t||2W ) for C > 0

where Ft is a sequence of increasing σ-field such that αt(st, at) and ∆t are Ft measurable for
t = 1, 2, ....

Based on the theorem above, we provide sketch of proof which borrows heavily from the proof
of convergence of Double Q-learning and TD3 as below: Firstly, the learning rate αt satisfies the
condition 1. Secondly, variance of r(st, at) is limit, so condition 3 holds. Finally, we will prove that
condition 2 holds below.

∆t+1(st, at) = (1− αt(st, at))(Q(st, at)−Q∗(st, at))
+ αt(st, at)

(
rt + γmin(Q(st, at), q2(st, at))−Q∗(st, at)

)
= (1− αt(st, at))∆t(st, at) + αt(st, at)Ft(st, at) (13)

where Ft(st, at) is defined as:

Ft(st, at) = rt + γmin(Q(st, at), q2(st, at))−Q∗(st, at)
= rt + γmin(Q(st, at), q2(st, at))−Q∗(st, at) + γQ(st, at)− γQ(st, at)

= rt + γQ(st, at)−Q∗(st, at) + γmin(Q(st, at), q2(st, at))− γQ(st, at)

= FQt (st, at) + ct (14)
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Since we have E[FQt (st, at)|Ft] ≤ γ||∆t|| under Q-learning, so the condition 2 holds. Then we
need to prove ct = min(Q(st, at), q2(st, at))−Q(st, at) converges to 0 with probability 1.

min(Q(st, at), q2(st, at))−Q(st, at)

= min(Q(st, at), q2(st, at))− q2(st, at) + q2(st, at)−Q(st, at)

= min(Q(st, at)− q2(st, at), 0)− (Q(st, at)− q2(st, at))

= min(q1(st, at)− q2(st, at)− β(q2(st, at)− E(q2(st, at))), 0)

+ q1(st, at)− q2(st, at)− β(q2(st, at)− E(q2(st, at))) (15)

Suppose there exists very small δ1 and δ2, such that |q1(st, at)− q2(st, at)| ≤ δ1 and |q2(st, at)−
E(q2(st, at))| ≤ δ2, then we have

min(Q(st, at), q2(st, at))−Q(st, at)

≤2(|q1(st, at)− q2(st, at)|+ β|q2(st, at)− E(q2(st, at))|)
=2(δ1 + βδ2) < 4δ (16)

where δ = max(δ1, δ2). Note that ∃δ1, |q1(st, at) − q2(st, at)| ≤ δ1 holds because ∆t(q1, q2) =
|q1(st, at) − q2(st, at)| converges to zero. According Eq. 9, both q1(st, at) and q2(st, at) are
updated with following

qt+1(st, at) = qt(st, at) + αt(st, at)(yt − qt(st, at)) (17)

Then we have ∆t+1(q1, q2) = ∆t(q1, q2) − αt(st, at)∆t(q1, q2) = (1 − αt(st, at))∆t(q1, q2)
converges to 0 as the learning rate satisfies 0 < αt(st, at) < 1.

3.2 CORRELATION COEFFICIENT

The purpose we introduce corr(q1(st, at), q2(st, at)) in Eq. 9 is to reduce the correlation between
two value approximators q1 and q2. In other words, we hope q1(st, at) and q2(st, at) to be as
independent as possible. In this paper, we define corr(q1, q2) as:

corr(q1(st, at), q2(st, at)) = cosine(fq1(st, at), fq2(st, at))

where cosine(a, b) is the cosine similarity between two vectors a and b. fq(st, at) is the vector
representation of the last hidden layer in the value approximator q(st, at). In other words, we
constrain the hidden representation learned from q1(st, at) and q2(st, at) in the loss function, with
attempt to make them independent.

According to control variates, the optimal β in Eq. 8 is:

β =
cov(q1(st, at), q2(st, at))

var(q1(st, at))

where cov is the symbol of covariance, and var represents variance. Considering it is difficult to
estimate β in continuous action space, we take an approximation here. In addition, to reduce the
number of hyper parameters, we set β = corr(q1(st, at), q2(st, at)) in Eq. 8 to approximate the
correlation coefficient of q1(st, at) and q2(st, at) since it is hard to get covariance in the continuous
action space.

3.3 ALGORITHM

We summarize our approach in Algorithm. 1. Similar to Double Q-learning, we use the target
networks with a slow updating rate to keep stability under temporal difference learning. Our con-
tributions are two folder: (1) introduce the loss to minimize the correlation between two critics,
which can make q1(st, at) and q2(st, at) as random as possible, and then effectively reduce the
overestimation risk; (2) add control variates to reduce variance in the learning procedure.

4 EXPERIMENTAL RESULTS

In this section, we evaluate our method on the suite of MuJoCo continuous control tasks. We down-
loaded the OpenAI Gym environment, and used the MuJoCo v2 version of all tasks to test our
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Algorithm 1 Decorrelated Double Q-learning
Initialize a pair of critic networks q1(s, a; θq1), q2(s, a; θq2) and actor π(s; θπ) with weights θQ =
{θq1 , θq2} and θπ

Initialize corresponding target networks for both critics and actor θQ′ and θπ ′;
Initialize the total number of episodes N , batch size and the replay buffer R
Initialize the coefficient λ in Eq. 9
Initialize the updating rate τ for target networks
for episode = 1 to N do

Receive initial observation state s0 from the environment
for t = 0 to T do

Select action according to at = π(st; θ
π) + ε, ε ∼ N (0, σ)

Execute action at and receive reward rt, done, and further observe new state st+1

Push the tuple (st, at, rt, done, st+1) into R
//sample from replay buffer
Sample a batch of D = (st, at, rt, done, st+1) from R
at+1 = π(st+1; θπ) + ε with clip, ε ∼ N (0, σ̃)
Compute Q(st, at) with target critic networks according to Eq. 8
Compute target value yt via Eq. 11
Update critics q1 and q2 by minimizing L(θQ) in Eq. 9
Update actor a = π(s; θπ) by maximizing Q(st, at) value in Eq. 8

end for
Update the target critics θQ′ = (1− τ)θQ

′
+ τθQ

Update the target actor θπ ′ = (1− τ)θπ ′ + τθπ

end for
Return parameters θ = {θQ, θπ}.

method. We compared our approach against the state of the art off-policy continuous control algo-
rithms, including DDPG, SAC and TD3. Since SAC requires the well-tuned hyperparameters to get
the maximum reward across different tasks, we used the existed results from its training logs pub-
lished by its authors. To obtain consistent results, we use the author’s implementation for TD3 and
DDPG. In practice, while we minimize the loss in Eq. 9, we constrain β ∈ (0, 1). In addition, we
add Gaussian noise to action selected by the target policy in Eq. 11. Specifically, the target policy
adds noise as at+1 = π(st+1; θπ) + ε, where ε = clip(N (0, σ),−c, c) with c = 0.5.

Without other specification, we use the same parameters below for all environments. The deep
architecture for both actor and critic uses the same networks as TD3 Fujimoto et al. (2018), with
hidden layers [400, 300, 300]. Note that the actor adds the noise N (0, 0.1) to its action space to
enhance exploration and the critic networks have two Q-functions q1(s, a) and q2(s, a). The mini-
batch size is 100, and both network parameters are updated with Adam using the learning rate 10−3.
In addition, we also use target networks including the pair of critics and a single actor to improve
the performance as in DDPG and TD3. The target policy is smoothed by adding Gaussian noise
N (0, 0.2) as in TD3, and both target networks are updated with τ = 0.005. We set the balance
weight λ = 2 for all tasks except Walker2d which we set λ = 10. In addition, the off-policy
algorithm uses the replay buffer R with size 106 for all experiments.

We run each task for 1 million time steps and evaluate it every 5000 time steps with no exploration
noise. We repeat each task 5 times with random seeds and get its mean and standard deviation
respectively. And we report our evaluation results by averaging the returns with window size 10.
The evaluation curves are shown in Figures 1, 2 and 3. Our D2Q consistently achieves much bet-
ter performance than TD3 on most continuous control tasks, including InvertedDoublePendulum,
Walker2d, Ant, Halfcheetah and Hopper environments. Other methods such as TD3 perform well
on one task Reacher, but perform poorly on other tasks compared to our algorithm.

We also evaluated our approach on high dimensional continuous action space task. The Humanoid-
v2 has 376 dimensional state space and 17 dimensional action space. In the task, we set the learning
rate on Humanoid to be 3 × 10−4, and compared to DDPG and TD3. The result in Figure 1(b)
demonstrates that our performance on this task is on a par with TD3.
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(a) Reacher (b) Humanoid

Figure 1: The learning curves with exploration noise on Reacher and Humanoid environments. The
shaded region represents the standard deviation of the average evaluation over nearby windows with
size 10. On the MuJoCo tasks, our D2Q algorithm yields competitive results, compared to TD3 and
DDPG.
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(a) InvertedDoublePendulum Walker2d

Figure 2: The learning curves with exploration noise on the InvertedDoublePendulum and Walker2d
environments. The shaded region represents the standard deviation of the average evaluation over
nearby windows with size 10. Our D2Q algorithm yields competitive results, compared to TD3 and
DDPG.
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Figure 3: The learning curves with exploration noise on the Ant, Halfcheetah and Hopper environ-
ments. The shaded region represents the standard deviation of the average evaluation over nearby
windows with size 10. Our D2Q algorithm yields significantly better results, compared to TD3 and
DDPG.

The quantitative results over 5 trials are presented in Table 1. Compared to SAC Haarnoja et al.
(2018), our approach shows better performance with lower variance given the same size of training
samples. It demonstrates that our approach can yield competitive results, compared to TD3 and
DDPG. Specifically, our D2Q method outperforms all other algorithms with much low variance on
Ant, HalfCheetah, InvertedDoublePendulum and Walker2d. In the Hopper task, our method achieve
maximum reward competitive with the best methods such as TD3, with comparable variance.

5 RELATED WORK

Q-learning can suffer overestimation bias because it uses the maximum to estimate the maximum
expected value. To address the overestimation issue Thrun & Schwartz (1993) in Q-learning, many
approaches have been proposed to avoid the maximization operator of a noisy value estimate. De-
layed Q-learning Strehl et al. (2006) tries to find ε-optimal policy, which determines how frequent to
update state-action function. However, it can suffer from overestimation bias, although it guarantees
to converge in polynomial time. Double Q-learning van Hasselt (2010) introduces two indepen-
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Table 1: Comparison of Max Average Return over 5 trials of 1 million samples. The maximum
value is marked bold for each task. ± corresponds to a single standard deviation over trials.

Environments Methods
D2Q TD3 SAC DDPG PPO

HalfCheetah 9958.3± 935.70 9636.95± 859.06 8895.96± 3316.5 8577.29 1795.43
Hopper 3364.34± 583.72 3223.75± 514.2 2100.67± 1051.6 2020.46 2164.70

Walker2d 4727.20± 444.71 4582.82± 525.60 3475.15± 1508.71 1843.85 3317.69
Ant 5264.69± 632.90 4373.44± 1000.33 3250.49± 1157.94 1005.30 1082.20

Reacher −3.78± 0.32 −3.6± 0.56 NA -6.51 -6.18
InvPendulum 1000± 0.0 1000± 0.0 NA 1000 1000

InvDoublePendulum 9200.6± 186.22 8911.04± 750.58 NA 7741.28± 2195.87 8977.94

dently trained critics to mitigate the overestimation effect. Averaged-DQN Anschel et al. (2017)
takes the average of previously learned Q-values estimates, which results in a more stable training
procedure, as well as reduces approximation error variance in the target values. A clipped Double Q-
learning called TD3 Fujimoto et al. (2018) extends the deterministic policy gradient Silver & Lever
(2014); Lillicrap et al. (2015) to address overestimation bias. In particular, TD3 uses the minimum
of two independent critics to approximate the value function suffering from overestimation. Soft
actor critic Haarnoja et al. (2018) takes a similar approach as TD3, but with better exploration with
maximum entropy method. Maxmin Q-learning Lan et al. (2020) extends Double Q-learning and
TD3 to multiple critics to handle overestimation bias and variance.

Another side effect of consistent overestimation Thrun & Schwartz (1993) in Q-learning is that the
accumulated error of temporal difference Sutton & Barto (1998) can cause high variance. To reduce
the variance, there are two popular approaches: baseline and actor-critic methods Witten (1977);
Konda & Tsitsiklis (1999). In policy gradient, we can minus baseline in Q-value function to reduce
variance without bias. Further, the advantage actor-critic (A2C) Mnih et al. (2016) introduces the
average value to each state, and leverages the difference between value function and the average to
update the policy parameters. Schulman et al proposed the generalized advantage value estimation
Schulman et al. (2016), which considered the whole episode with an exponentially-weighted esti-
mator of the advantage function that is analogous to TD(λ) to substantially reduce the variance of
policy gradient estimates at the cost of some bias.

From another point of view, baseline and actor-critic methods can be categories into control variate
methods Greensmith et al. (2001). Greensmith et al. analyze the two additive control variate meth-
ods theoretically including baseline and actor-critic method to reduce the variance of performance
gradient estimates in reinforcement learning problems. Interpolated policy gradient (IPG) Gu et al.
(2017) based on control variate methods merges on- and off-policy updates to reduce variance for
deep reinforcement learning. Motivated by the Stein’s identity, Liu et al. introduce more flexible
and general action-dependent baseline functions Liu et al. (2018) by extending the previous control
variate methods used in REINFORCE and advantage actor-critic. In this paper, we present a novel
variant of Double Q-learning to constrain possible overestimation. We limit the correlation between
the pair of q-value functions, and also introduce the control variates to reduce variance and improve
performance.

6 CONCLUSION

In this paper, we propose the Decorrelated Double Q-learning approach for off-policy value-based
reinforcement learning. We use a pair of critics for value estimate, but we introduce a regulariza-
tion term into the loss function to decorrelate these two approixmators. While minimizing the loss
function, it constrains the two q-value functions to be as independent as possible. In addition, con-
sidering the overestimation derived from the maximum operator over positive noise, we leverage
control variates to reduce variance and stabilize the learning procedure. The experimental results on
a suite of challenging tasks in the continuous control environment demonstrate our approach yields
on par or better performance than competitive baselines. Although we leverage control variates in
our q-value function, we approximate the correlation coefficient with a simple strategy based on
the similarity of these two q-functions. In the future work, we will consider a better estimation of
correlation coefficient in control variate method.
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A APPENDIX

We add additional experiments on how our model will perform by varying λ in this Appendix. We
set λ = [1, 2, 5, 10] respectively to run 1 Million steps and evaluate its performance every 5000
steps, while keeping all other parameters same.
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Figure 4: The figures show how our method will perform while adjusting parameter λ. The shaded
region represents the standard deviation of the average evaluation over nearby windows with size
10.
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