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Abstract

Models that rely solely on pairwise relationships often fail to capture the complete
statistical structure of the complex multivariate data found in diverse domains,
such as socio-economic, ecological, or biomedical systems. Non-trivial dependen-
cies between groups of more than two variables can play a significant role in the
analysis and modelling of such systems, yet extracting such high-order interac-
tions from data remains challenging. Here, we introduce a hierarchy of d-order
interaction measures, increasingly inclusive of possible factorisations of the joint
probability distribution, and define non-parametric, kernel-based tests to establish
systematically the statistical significance of d-order interactions. We also establish
mathematical links with lattice theory, which elucidate the derivation of the inter-
action measures and their composite permutation tests; clarify the connection of
simplicial complexes with kernel matrix centring; and provide a means to enhance
computational efficiency. We illustrate our results numerically with validations on
synthetic data, and through an application to neuroimaging data.

1 Introduction

There is increasing evidence that pairwise relationships are insufficient to model many real world
systems [1, 2, 3]. The relevance of high-order interactions has been emphasised in many contexts,
as relationships within social [4], ecological [5, 6], and biological systems [7, 8] frequently involve
groups of three or more agents, beyond pairwise associations. Such high-order interactions can
be neither trivially represented by a linear combination of dyadic relationships, as the presence of
high-order interactions can significantly impact the dynamics on networked systems [9, 10, 11, 12,
13, 14, 15], nor can they be simply detected by joint independence tests which inherently ignore other
possible factorisations of the joint distribution.

Direct measurements of group interactions are seldom available, leading to their omission, partial
representation as projected pairwise interactions [16, 17, 18], or limited recovery through inference
methods [19, 20]. Often, only indirect measurements of underlying interactions in real-world complex
systems are available, in the form of iid or time-series data. Methods that learn high-order interactions
from time-series data have been developed [11, 21], however, their reliance on heuristic measures
makes their interpretation difficult. Alternative methods have been developed with strong foundations
in statistics [22] and information theory[23, 24, 25], however, as we show later, these are often based
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Figure 1: Factorisations of joint distributions P1···d for d = 2, 3, 4. The black dots indicate the
marginal distributions of the singletons. The line, triangular and square shapes represent the joint
distribution of two, three and four variables respectively. Different factorisations are presented
as partitions of the d variables ordered by increasing cardinality from top to bottom, so that all
the factorisations with the same number of independent blocks appear at the same level. Joint
independence considers only the top and bottom levels for each d, whilst the Lancaster interaction
considers all terms except those in the shaded region. The Streitberg interaction considers all partitions.
Hence, for d = 2, we have ∆2

IP = ∆2
LP = ∆2

SP; whereas for d = 3, we have ∆3
IP ̸= ∆3

LP = ∆3
SP,

and for d ≥ 4, we have ∆d
IP ̸= ∆d

LP ̸= ∆d
SP.

on an incomplete set of interactions and thus fail to capture all possible factorisations of the joint
probability distribution [26, 27].

Kernel-based hypothesis tests provide a non-parametric, statistically robust framework for detecting
relationships between variables from observational data. Such tests have been implemented for
pairwise [28, 29, 30, 31] and d-variate joint independence [32, 33], and proven to be effective for
non-trivial dependencies such as in the 3-way Lancaster test [34, 35]. However, to the best of our
knowledge, cases where the number of variables exceeds 3 are still unexplored.

Here, we extend the capability for detection of high-order interactions by introducing a family of
tests based on factorisations of the joint probability distribution that generalise systematically to
any order d. At the head of this family, we introduce the Streitberg interaction test, which captures
all factorisations of the joint distribution of order d. We further show that, despite the fact that the
naive extension to d ≥ 4 of the Lancaster interaction excludes some of the factorisations of the joint
distribution, not all is lost, and we detail the conclusions that can be drawn from rejecting the d-order
Lancaster interaction. Furthermore, we show that: (i) lattice theory provides a coherent theoretical
foundation for detecting high-order interactions; (ii) interaction measures can be systemically derived
from partition lattices; (iii) the corresponding Hilbert-Schmidt norm for kernel embeddings can
naturally be extracted from the product lattice; (iv) the composite permutation tests can be performed
with regard to the second level of the lattice; and (v) the lattice formulation allows us to propose a
generalised interaction measure that can be used to test whether a given factorisation can be factorised
further. Despite the inescapable combinatorial nature of testing high-order interactions, we offer
approaches to reduce the computational complexity of our d-order interaction tests informed by our
links with lattice theory. Finally, we present numerical validations of our tests on synthetic data
before applying them to real-world neuroimaging data.

2 Interaction Measures

The most basic form of interaction between variables occurs between two variables, X1 and X2, and
is often characterized by the lack of pairwise independence, i.e., the difference between the joint
distribution PX1,X2 and the product of the marginal distributions PX1 and PX2 (see Fig. 1, d = 2).
Let us consider d random variables {X1, X2, . . . , Xd} with joint distribution PX1,...,Xd =: P1···d
(for readability, hereafter we use this subscript notation). The d variables are jointly independent if
and only if P1···d can be factorised as the product of the univariate marginal distributions. Hence we
can introduce an interaction measure that vanishes only when the variables are jointly independent:

∆d
IP = P1···d −

d∏
i=1

Pi. (1)

When d > 2, however, the criterion for joint independence fails to capture high-order interactions,
since additional factorisations must be considered. For instance, if P123 could be factorised as
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P1P23 (see Fig. 1, d = 3), joint independence would be rejected, yet there is no 3-way interaction.
Instead, we seek a way of identifying high-order interactions for d variables where all lower order
independencies can be rejected.

One approach to address the shortcomings of joint independence in identifying high-order interactions
for d > 2 variables is to use a signed measure called the Lancaster interaction [34]. The Lancaster
interaction for d = 3 is defined as ∆3

LP = P123−P1P23−P2P13−P3P12+2P1P2P3. ∆3
LP vanishes

if P123 can be factorised in any way, and has been implemented as a kernel-based test statistic to
identify non-factorisable joint distributions [34, 35]. Lancaster also generalised this measure to the
multivariate case with d variables:

∆d
LP =

d∏
i=1

(P∗
i − Pi) , (2)

where P∗
iP∗

j · · ·P∗
k = Pij···k. The Lancaster interaction (2) vanishes when the joint distribution can

be factorised into jointly independent subvectors for d = 3, but it fails when d ≥ 4 [26]. Specifically,
∆4

LP does not vanish if P1234 factorises into P12P34, P13P24, or P14P23. Despite this, the Lancaster
interaction is not entirely uninformative for d ≥ 4, and in Section 4.1 we examine the necessary
conditions for it to vanish.

The desired vanishing property can be achieved by using the Streitberg interaction [26], a more general
interaction measure defined using partitions. Let D be the set of random variables {X1, X2, . . . , Xd},
and let Π(D) denote the set of all partitions of D, where a partition π is a collection of nonempty,
pairwise disjoint subsets (blocks) bj ⊆ D that cover D. Then, the Streitberg interaction measure is
defined as

∆d
SP =

∑
π∈Π(D)

(|π| − 1)! (−1)|π|−1Pπ. (3)

Here, |π| denotes the cardinality of the partition π, and Pπ =
∏r

j=1 Pbj is the corresponding
factorisation with respect to π = b1|b2| . . . |br. It has been proven that ∆d

SP = 0 if the joint
distribution can be factorised in any way, although the converse is not true in general [34].

3 Partition Lattices

The expressions of the interaction measures outlined in the previous section can be systematically
generated from partition lattices. Interestingly, this formulation also allows us to establish further
theoretical links with simplicial complexes.

Notation. A partially ordered set defined on a set S with a binary relation ≤ is a lattice L if for any
σ, π ∈ L there exists a greatest lower bound (meet) σ ∧ π and least upper bound (join) σ ∨ π [36].
We denote the maximum and minimum element of a lattice as 1̂ and 0̂. Let ∆(·) denote a real-valued
function defined on S, then the sum function f(·) is analogous to the integration of ∆(·) over the
interval [0̂, π], where π ∈ L. Then ∆(·) can be expressed as the inverse operation of f(·):

f(π) =
∑

ζ(σ, π)∆(σ), ∆(π) =
∑
σ≤π

µ(σ, π) f(σ), (4)

where the partial order is encoded by the Zeta matrix, with ζ(σ, π) = 1 if σ ≤ π and 0 otherwise. Its
inverse is the Möbius matrix with elements µ(σ, π) (for details see Section D), which can be obtained
explicitly [37].

Lattices and Interaction Measures. The construction of the interaction measures in Section 2 is
closely related to the partition lattice [26, 37]. The partition lattice is defined on the set Π(D) with
ordering given by the notion of partition refinement. A partition σ is said to refine another partition π,
denoted as σ ⪯ π, if every block of σ is fully contained within a block of π. The lattice structure thus
allows us to define the least upper bound σ ∨ π and the greatest lower bound σ ∧ π between any two
partitions σ and π. Clearly, the maximum element of the partition lattice, 1̂, corresponds to the joint
distribution, whereas the minimum element, 0̂, corresponds to the complete factorisation (Fig. 1).

Within this formalism, the interaction measures are obtained when the sum function f(.) in (4)
is the probability distribution function. It then follows that the interaction measures are obtained
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from the inverse operation. Indeed, the Streitberg interaction (3) is given by the Möbius inversion
defined over the complete partition lattice. In contrast, the Lancaster interaction is obtained when the
inversion is defined over the subset of partitions that have at most one non-singleton block, which we
denote as the Lancaster sublattice. In other words, the sum function associated with the Lancaster
interaction considers fewer interactions than the Streitberg interaction and its Möbius inversion has
correspondingly fewer terms, as seen in (2). Note that for d = 3, the full (Streitberg) lattice and
the Lancaster sublattice are the same, hence the interaction measures coincide. For d ≥ 4, however,
the Streitberg and Lancaster lattices, and consequently the corresponding interaction measures, are
different, as shown by the extra partitions with two non-singleton blocks (shaded region) in Figure 1.
Note also that joint independence considers a trivial sublattice with only two elements: 0̂ and 1̂
(for any d). The Möbius inversion on this sublattice leads to (1), which only vanishes for complete
factorisations.

Links to Simplicial Complexes. A popular representation of high-order systems in the literature
is through simplicial complexes [38]. Importantly, the simplicial complex construction can also
be understood in terms of partition lattices. In particular, the elements in a (d − 1)-simplex have
inclusion ordering and thus form a subset lattice, e.g., {X1, X2} is a subset of {X1, X2, X3}. The
subset lattice has been utilised in the understanding of information geometry [39] and solving tensor
balancing [40]. It can be shown that the deatomised sublattice (with removal of singletons) is
isomorphic to the Lancaster lattice [41]. Furthermore, the boundary matrices of a (d− 1)-simplex
appear as block matrices both in the Zeta matrix and the (inverse) Möbius matrix of the d-order
partition lattice. These are explored further in Section E in the SI.

Note that the non-singleton partitions, i.e., those that do not belong to the Lancaster sublattice, are
not in the set of simplicial complexes. Hence these blocks and their respective refinements cannot be
expressed in terms of boundary matrices. Therefore the full partition lattice and its resulting Streitberg
interaction provides more information compared with measures originating from sublattices, and
in particular the Lancaster lattice and its related simplicial complex construction [23, 24]. Whilst
simplicial complexes, and similarly the Lancaster interaction, can be recursively constructed from
lower order elements, this is not possible for the Streitberg interaction due to the partitions without
singletons, which has implications on computational efficiency (Section 5).

4 Kernel Interaction Tests

The interaction measures in Section 2 can be utilised as statistics in non-parametric tests when
embedded into reproducing kernel Hilbert spaces (RKHS). Given a symmetric, positive definite
function ki : X i ×X i → R, there is an associative RKHSHi with the reproducing kernel property.
For Xi ∈ X i, we denote ϕi(·) as the canonical map of ki(Xi, ·). The kernel mean embedding of
PXi , µPXi , satisfies EXif(Xi) =

〈
f, µPXi

〉
HS

, where HS stands for Hilbert-Schmidt. If the kernel
is characteristic, the mean embedding is injective and the norm of the signed measure is zero if
and only if the measure is zero itself [28, 34, 42]. These properties enable us to create meaningful
non-parametric tests by computing the kernel mean embedding of desired interaction measures.

In this section, we extend interaction measures for random variables to the d-variate case, and
formulate a family of interaction tests including the Streitberg interaction, the Lancaster interaction,
joint independence and a generalised interaction.

For proofs of the propositions, please see Appendix A.

4.1 Lancaster Interaction

Let us first consider the Lancaster interaction. Although it does not necessarily vanish when d ≥ 4 for
all types of factorisations due to the lack of certain partitions, here we find the necessary conditions
for the Lancaster interaction to vanish.
Proposition 1. If the joint distribution P1···d can be factorised into Pπv where πv are partitions with
at least one singleton, then ∆d

LP = 0.

Remark: Note that Pπv is a broader set of partitions compared to the set of partitions in the Lancaster
lattice, e.g., for d = 5, P12P34P5 satisfies Proposition 1, yet it is not a constituent of the Lancaster
lattice, which only consists of partitions with at most one non-singleton.
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We now define the Mixed Central Moment Operator as the kernel embedding of the Lancaster
interaction, which follows immediately from the expansion of (2) [27]:
Definition 1 (Mixed Central Moment Operator).

Md = (−1)n−1(n− 1)E

[
d∏

i=1

ϕi

]
+

∑
πℓ ̸=0̂

(−1)|πℓ|−1 E

[∏
s

ϕs

]∏
j

E
[
ϕj

]
, (5)

where πℓ are the set of partitions with at most one non-singleton (i.e., those that belong to the
Lancaster lattice), s are the singletons, and j runs over variables in the non-singleton block.
Proposition 2. By rearranging, the Mixed Central Moment Operator can be simplified to:

Md = E

{
d∏

i=1

[
ϕi − E[ϕi]

]}
. (6)

Remark: This simplification transparently re-expresses the operator as a central moment, instead of
the complex sum of moments in (5). The simplification eliminates all partitions except 1̂.

We now define the entries in matrix Ki
ab = ki(xi

a, x
i
b) for iid samples xi

a and xi
b where 1 ≤ a, b ≤ n

and K̃i = HKiH where H = I − 1
n11

⊤ is the centring matrix. The norm of the embedding above
can serve as a test statistic. The estimator of the test statistic is derived as the V-statistic:
Proposition 3 (Lancaster interaction estimator.).

||M̂d||2HS =
1

n2

n∑
a=1

n∑
b=1

d∏
i=1

K̃i
ab, (7)

4.2 Streitberg Interaction

Similarly we define the Mixed Cumulant operator in terms of kernel embeddings from the Streitberg
interaction as:
Definition 2 (Mixed Cumulant operator).

Kd =
∑

π∈Π(D)

(|π| − 1)!(−1)|π|−1
∏
b∈π

E

{∏
i∈b

ϕi

}
, (8)

where i is an element in block b of partition π in partition lattice Π(D).

This operator can be simplified in a similar way:
Proposition 4.

Kd =
∑

πs∈Π(D)

(|πs| − 1)!(−1)|πs|−1
∏
b∈πs

E

{∏
i∈b

[
ϕi − E[ϕi]

]}
, (9)

where πs are the partitions with no singletons in partition lattice Π(D).

Remark: Note that partitions with singletons are eliminated after centring, and the remaining partitions
without singletons form an upper semi-lattice. The relationship between the Mixed Cumulant operator
and the Mixed Central Moment operator is given by:
Lemma 1. The Mixed Cumulant operator is equal to the sum of Mixed Central Moment Operator
products associated with partitions with no singletons denoted as πs [27]:

Kd =
∑

πs∈Π(D)

(|πs| − 1)!(−1)|πs|−1
∏
b∈πs

Mb. (10)

Remark: When d = 2, 3, Kd andMd are identical, which further confirms the moment-cumulant
relationship.

Remark: From the partition lattice, {0̂, 1̂} ⊆ πℓ ⊆ π, where πℓ is the set of partitions in the Lancaster
lattice, and π is the full set in the Streitberg interaction. When d = 2, we have {0̂, 1̂} = πℓ = π, and
when d = 3, we have {0̂, 1̂} ⊂ πℓ = π.

The estimation using a V-statistic for the norm of the Streitberg interaction is given by:
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Proposition 5 (Streitberg interaction estimator).

||K̂d||2HS =
∑

πs,π′
s∈Π(D)

(|πs| − 1)!(|π′
s| − 1)!(−1)|πs|+|π′

s| 1

n|πs|+|π′
s|

∑
{bi}

∑
{b′i}

d∏
i=1

K̃i
bi,b′i

, (11)

where 1 ≤ bi, b
′
i ≤ n and |{bi}| = |πs|, |{b′i}| = |π′

s|. i.e. indices bi = bj if i, j are in the same
block in πs similarly for b′i. The sets of indices {bi}, {b′i} are disjoint. An example for d = 4 is given
in the SI.

Norms and the Product Lattice. The test statistics of the interaction measures, i.e., the norm of the
interaction operators, can also be directly obtained from the Möbius inversion of the Cartesian product
of the upper semilattice, thus avoiding the need to compute the square of the operator. The Cartesian
product of two lattices with product ordering is also a lattice [43]. The elements in the Cartesian
product are analogous to the inner products of kernel embeddings in the estimators. Therefore, the
coefficients can be computed directly from the product lattice, as shown in Appendix B.

4.3 Description of the Statistical Tests

The Streitberg interaction test involves rejecting the null hypothesis that the joint distribution can be
factorised in some way, which occurs when ∆d

SP ̸= 0. Similarly, for the Lancaster interaction test,
we reject the null hypothesis that the joint distribution can be factorised into partitions with at least
one singleton by checking ∆d

LP ̸= 0. Both null hypotheses consist of multiple sub-hypotheses, and
an example for d = 3 is discussed in Ref. [34, 35]. Importantly, the number of sub-hypotheses to be
tested is related to factorisations with only two blocks, i.e., those that form the second level from the
top in the partition lattice (see Figure 1). In the case of rejecting some but not all the sub-hypotheses,
please see Appendix C for the discussion.

To test each sub-hypothesis P1···d = PbPb′ , for efficiency we fix the observations of the variables in
the largest block, and permute the observations of the remaining variables in the other block to induce
the independence structure in the null distribution. We then use the Monte-Carlo approximation to
compute the p-value [32], and apply a simple correction[35] generalised to d variables to correct for
multiple hypothesis testing. Finally, we reject the composite null hypothesis if all corresponding
sub-hypotheses are rejected. To achieve this, we employ the permutation test outlined in Algorithm 1.

Algorithm 1 Permutation test for the interaction measures

test-statistic← ||K̂d||2
(K̃1,...,K̃d)

for i ∈ {π} (here π = b|b′) do
initialise empty P -dimensional vector T
for p = 1 : P do

for j = 1 : d do
if j ∈ argmin

x∈{b,b′}
(|x|) then

K̃j ← K̃j
(s) {kernel matrices after random permutations on the observations of Xj}

T [p]← ||K̂d||2
(K̃1,...,K̃d)

tmp← #{p ∈ {1, . . . , P}|T[p] ≥ test-statistic}
pval← (tmp + 1)/(P + 1){Monte-Carlo approximation [32]}
if pval > α then

reject← 0 {‘simple correction’ [35]}
break

reject← 1
return reject

By rejecting the null hypothesis of the Streitberg interaction test, it follows that we reject the null
hypothesis of the Lancaster interaction test, as well as the null hypothesis of joint independence. The
set of sub-hypotheses in joint independence is a subset of the set in the Lancaster interaction test,
which is in turn a subset of the set in the Streitberg interaction test. The number of sub-hypotheses for
an interaction measure is equal to the number of elements on the second level of the respective lattice.
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For Streitberg interaction, this number is (2d−1 − 1) as follows from the full partition lattice; for
Lancaster interaction, this number is d due to the reduced Lancaster lattice; for joint independence
the number of sub-hypotheses stays fixed as the corresponding 2-element lattice always contains
precisely one element, i.e., 0̂ corresponding to P1 · · ·Pd.

Remark: Although our focus is on composite interaction tests to unveil high-order interactions by
leveraging the vanishing of Streitberg and/or Lancaster interactions, these measures are also valuable
to test other lower-order independence hypotheses wherein factorisations can also lead to vanishing
interaction measures. For example, both Lancaster and Streitberg statistics can be implemented to
test for joint independence (as shown in Section 6), and for marginal independence.

4.4 Generalised Interaction Measure

The measures described so far are only able to handle interactions within one group of variables. But
what if we are interested in knowing whether a factorisation (e.g., P12P34) factorises further? To
answer this, we can simply formulate an interaction measure based on a partition [44]. Because an
interval of a lattice L is a subset of the form [σ, π] = {x | σ ≤ x ≤ π} and is also a lattice [43], the
interval lattice can be used to produce generalised interactions for multiple groups of variables:
Definition 3 (General interaction operator).

∆πs

S P =
∑
σ≤πs

m(σ, πs)Pσ =
∏
b∈πs

∆b
SP, (12)

where πs are the partitions with no singletons, m are the Möbius coefficients, and b are the blocks in
the partition πs.

Here, we only consider blocks of size at least 2, since a factorisation cannot not be defined for
singletons. It is then clear that ∆πs

S P = 0 if any ∆b
SP is zero, and the rejection statement on each

group will be dependent on their own vanishing conditions. This provides a general framework
to detect interactions within blocks of variables. The corresponding kernel-based tests can be
constructed by estimating the norm of ∆πs

S P. In fact, the generalised Streitberg interaction measure
can be expressed in terms of ordinary Streitberg interaction measures defined in Section 4.2 [44]:

∆πs

S P =
∑

σ∨πs=1̂

∏
b∈σ

∆b
SP. (13)

5 Computational Considerations

The time complexity of computing the Lancaster interaction estimator is O(dn2), where d is the
order of interaction and n is the number of samples. This follows immediately after centring the
kernel matrices, since 1̂ is the only partition with no singletons. In contrast, the Streitberg interaction
has a larger number of partitions, given by the Bell number, Bd [45]. However, by simplifying the
computation through centring, we can reduce this to the number of partitions with no singletons,
given by Fd [46]. While this number is still combinatorial, it is significantly smaller compared to Bd

(see Table 1 in Appendix G).

The resulting estimator of the Streitberg interaction criterion then consists of Fd inner products. The
summation indices of the inner products come from both partitions and are at most d (when d is even)
or d−1 (when d is odd). Whilst the summations can be contracted, the choice of contraction ordering
plays a crucial role in the time complexity [47, 48, 49]. By computing the summations related to one
partition in parallel, since the index sets from πs and π′

s are disjoint, the overall complexity can be
reduced toO(nmin(|πs|,|π′

s|)+1) (see Table 2 in Appendix 5). For example, the inner product between
the kernel embeddings for P1234 and P12P34 is 1

n3

∑
i

∑
j

∑
k K

1
ijK

2
ijK

3
ikK

4
ik, but an improved

contraction ordering is 1
n3

∑
i[
∑

j K
1
ijK

2
ij ][

∑
k K

3
ikK

4
ik].

The time complexity of the Streitberg interaction estimator can be further reduced in a recursive
setting. Specifically, if πs ∨ π′

s ≺ 1̂, then the associative inner product can be expressed as a product
of independent sums that can be found in lower order interactions. For example, ⟨µP12P34 , µP12P34⟩
can be decomposed as ⟨µP12

, µP12
⟩ ⟨µP34

, µP34
⟩ which would have already been computed for the

pairwise interactions of {X1, X2} and {X3, X4}. This means that if one has already computed
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P12P345P1P2345
a b c d

Figure 2: High-order tests on synthetic data. (a) dHSIC is unable to detect the marginal P1P2345

factorisation. (b) Only the Streitberg test is able to capture the factorisation without singletons
P12P345. (c) Testing joint independence of a 5-way XOR example, Lancaster and Streitberg tests
achieve higher power than dHSIC for the same number of samples (n=80). Only by increasing the
number of samples to n=1000 does dHSIC display comparable power. (d) The modified dHSIC test
requires substantially more samples than the Streitberg test to display comparable power when testing
all sub-hypotheses of the interaction in the XOR example.

the inner products of d − 2 variables (incremental by 2 since the smallest block is at least size 2),
then the only remaining inner products to compute are between those embeddings associated with
partitions πs and π′

s such that πs ∨ π′
s = 1̂. In other words, the computation of inner products for

high-order interactions can be reduced to the computation of lower order interactions, as long as the
corresponding partitions can be joined to form a partition of all d variables. For further discussions
on computational complexity, see Appendix G.

6 Experiments

We first validate our family of d-order interaction tests (in particular, d = 5) on synthetic datasets with
ground truth interactions, and then investigate their application to a neuroimaging dataset. Unless
stated otherwise, the significance level is set to α = 0.05, sample size to n = 80, and we use Gaussian
kernels with the median heuristic as the bandwidth.

Synthetic Experiments: Multivariate Gaussians. We first compare results from apply-
ing the dHSIC test (developed solely to detect joint independence) [32], and the Lancaster
and Streitberg interaction tests to five-variable multivariate Gaussian distributions N (µ,Σ)
with mean µ and covariance Σ. For the first example, µ = [0, 0, 0, 0, 0] and Σ1 =
[[1, 0, 0, 0, 0], [0, 1, β, β, β], [0, β, 1, β, β], [0, β, β, 1, β], [0, β, β, β, 1]] where 0 ≤ β ≤ 1 defines the
interaction strength between variables and consequently P12345 = P1P2345. For the second example,
we have the same µ and Σ2 = [[1, β, 0, 0, 0], [β, 1, 0, 0, 0], [0, 0, 1, β, β], [0, 0, β, 1, β], [0, 0, β, β, 1]]
and hence P12345 = P12P345.

Figure 2(a-b) shows that dHSIC fails to capture the partial factorisation of the joint distribution
in both cases. Whilst the Lancaster interaction test is able to detect the factorisation in the first
experiment (Figure 2(a)), it fails on the second experiment where the factorisation contains no
singletons (Figure 2(b)). The Streitberg interaction test is the only one that detects both factorisations.

Synthetic Experiments: 5-Way XOR Gate. Next, we investigate the power of the tests using
a data set constructed using an XOR gate. We generate n samples of V,W,X, Y, Z

i.i.d.∼ U(0, 4),
Z:i = (V:i +W:i +X:i + Y:i) mod 4 and Zi+1:n ∼ U(0, 4)) (where the samples [i+ 1 : n] act as
noise). We then gradually increase the interaction proportion, 0 ≤ i/n ≤ 1. By construction, this
dataset does not contain pairwise, 3-way or 4-way interactions, and the 5-way interaction becomes
increasingly easier to detect as i/n approaches 1.

Given that the joint distribution in this example cannot be factorised, all tests should reject joint
independence. We show in Figure 2(c), that the rejection rates of joint independence for Streitberg
and Lancaster approach one as the interaction level increases for a small number of samples (n = 80),
whereas dHSIC displays low power for the same number of samples. Only by increasing the number
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n.s.n.s. n.s. n.s. n.s.

Figure 3: Concentration of high-order interactions in brain resting state networks. The per-
centage of rejected null hypotheses for d-order (d = 2, 3, 4, 5) interaction tests, when the d regions
are selected within each of seven brain resting state networks (RSNs) or drawn at random across
the brain. For each order d, we carry out Fisher-exact tests for over-representation for each RSN vs.
random. All Fisher tests are significant (p-value< 0.05) except where shown as (n.s.). Abbreviations
for RSNs: DMN: default mode network, SOM: somatomotor, VIS: visual, SAL: salience, DAN:
dorsal attention network, FPN: frontoparietal network, LIM: limbic.

of samples to n = 1000 do we observe comparable performance for dHSIC. To test for 5-way
interactions in the XOR data set, we omit the Lancaster test which cannot detect factorisations into
non-singletons. We thus compare the Streitberg interaction test with a modified dHSIC [34, 35]
that tests each individual sub-hypothesis (e.g., when testing (X,Y ) ⊥⊥ (Z,W ) it is sufficient to
treat (X,Y ) and (Z,W ) as single variables and perform joint independence tests for two variables).
We find again that the modified dHSIC requires a much larger sample size to achieve comparable
performance to that of the Streitberg interaction test (Fig. 2(d)).

To investigate how the test power degrades when the sample size is decreased, we performed further
experiments in Fig 8 in Appendix F. In all cases, we find that the performance of dHSIC degrades
faster than that of Lancaster and Streitberg, i.e., the dHSIC null rejection rate decays substantially
faster than that of Lancaster and Streitberg as the sample size decreases.

Neuroimaging Dataset. As a proof of concept of applications to real data, we apply the Streitberg
interaction test to detect high-order interactions in brain activity data. The dataset consists of resting-
state fMRI data from 50 unrelated subjects part of the Human Connectome Project [50, 51]. For
each subject, the data consists of 100 time series capturing the activity of each of the regions in
the Schaefer brain atlas [52]. Importantly, these 100 regions can be divided in 7 groups called
‘Resting State Networks’ (RSN) [53]. Experimental evidence has shown that regions within the same
RSN perform similar functions [52], so we hypothesised that high-order interactions would be more
probable within RSNs.

To avoid dealing with issues of non-stationarity in the time-series data, we first take temporal averages
to obtain the mean activity per region and subject (see Appendix H for preprocessing steps). We then
perform the Streitberg interaction test to sets of brain regions that are either taken from within the
same RSN or sampled at random from the whole brain. In each case, we sample 500 sets of regions
or take all possible combinations, whichever is lowest.

The results in Figure 3 align with our general hypothesis: 2-, 3-, 4- and 5-way interactions are
significantly more common among regions belonging to the same RSN as compared to random sets
of regions, confirming that our interaction test can successfully detect high-order interactions in
real-world data. Notably, our results show a larger percentage of 2-way interactions in the SOM and
VIS compared to regions such as the FPN or DAN, suggesting that there is increased redundancy
in the system relative to these other regions. The SOM and VIS are structurally coupled, modular
sensorimotor processing regions, that benefit from information redundancy to increase robustness.
Moreover, the proportion of high-order interactions (3-, 4- and 5-way) to 2-way interactions is larger
in SOM and VIS compared to FPN or DAN, potentially reflecting the differing balance of redundancy
and synergy in these brain regions [54]. Additional analyses are shown in Appendix H, but the
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neuroscience implications of these results, including observed variation across regions, will be the
object of future work.

7 Discussion

In this work, we have established formal connections between lattice theory and a family of high-order
interaction measures based on factorisations of the joint probability distribution. The link to lattice
theory facilitates the derivation and interpretation of the measures; highlights the connection to
simplicial complexes and other sublattices; and helps formulate the associated permutation tests more
efficiently. We have shown empirically that the Lancaster test statistic is a good substitute for dHSIC
to test for joint and marginal independence, whilst the Streitberg test statistic is able to better capture
all factorisations of the joint distribution. Our work offers a rigorous and systematic approach for the
reconstruction of high-order systems, but has some limitations. The computation of the Streitberg
interaction estimator can be expensive and although we have proposed strategies to bring down the
time complexity, the number of terms remains combinatorial (see Appendix G for discussions on
practical limitations). In addition, our theoretical results rely on iid data, a strong assumption in
many real-world applications. This leaves several open directions. In particular, future work will
investigate whether the null distribution of ∆d

SP can be jointly approximated without the need for
sub-hypotheses, thus reducing computational cost; how it can be accurately approximated when the
data has temporal dependence; and what role high-order interactions may play in causal discovery.
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Appendix to “Interaction Measures, Partition Lattices and Kernel Tests for
High-Order Interactions”

A Proofs

A.1 Proof of Proposition 1

First we prove the following:

Lemma 2. If P1···d = PiP1···i−1,i+1···d for arbitrary i, then ∆d
LP = 0

Proof. Without loss of generality let i = 1. To simplify the notation, we adopt a shorthand convention
for expression partitions. For example, a partition {{X1, X3}, {X2}, {X4}} can be written as 13|2|4.
We denote the partition 1|23 · · · d as π. Notice that the factorisation only consists of an extraction of
a singleton, i.e. factorise one variable out of the joint distribution. The Möbius coefficients [41] for
the partial partition lattice above are,

µ(σ, 1̂) =

{
(−1)d−1(d− 1) if σ = 0̂

(−1)|σ|−1 otherwise
.

The partial partition lattice is constructed as

123 · · · d
1|23 · · · d 2|13 · · · d 3|12 · · · d ...

1|2|3 · · · d 1|3|2 · · · d . . . 2|3|1 · · · d ...

...
1|2|3| · · · |d

Given P1···d = P1P2···d, the partial partition lattice associated with Lancaster interaction collapses
into the following:

1|23 · · · d
1|23 · · · d 2|1|3 · · · d 3|1|2 · · · d ...

1|2|3 · · · d 1|3|2 · · · d . . . 2|3|1| · · · d ...

...
1|2|3| · · · |d

If a partition σ is not a refinement of π, then it will be transformed to σ ∧ π, a partition one level
down the lattice (as shown in the lattice above), e.g., let σ be 2|13 · · · d, then σ ∧ π is be 2|1|3 · · · d.
When σ is a refinement of π, then σ ∧ π = σ.

The transformed partitions will be cancelled out with the refinements of π due to the fact that all
partitions are counted exactly once and the partitions at two consecutive levels have alternating signs.
On the (d− 1) level of the lattice, exactly (n− 1) partitions are not refinement of π which are just
enough to cancel out (n− 1) number of 0̂ at the bottom level.

When P1···d = Pπs
where πs only contains non-singleton blocks, the Lancaster interaction

∆d
LP =

∏
b∈πs

∆b
LP,

which is not necessarily zero unlike the Streitberg interaction. It will be zero, however, if any of the
∆b

LP is zero. If we factorise one singleton out of an arbitrary block b, πs will be a partition with
one singleton block and hence ∆b

LP = 0 by Lemma 2 above and so does ∆d
LP . Obviously if more

singletons are factorised out, ∆d
LP will remain zero.

14



A.2 Proof of Proposition 2

Notice that this simplified Mixed Central Moment operator expression resembles the original Lan-
caster interaction in Equation (2) using the unique ‘∗ notation’. Notice that the resulting terms after
expanding Equation (2) are distinctive with coefficient (−1)|πl|−1 depending on the except we have
multiple occurrences of 0̂. This is due to the fact that P∗

i is the same as P∗
i . For example, when d = 4,

instead of direct product of the marginals P1P2P3P4 that accounts for 0̂, there are also four other
terms P∗

1P2P3P4, P1P∗
2P3P4, P1P2P∗

3P4, P1P2P3P∗
4 that are also equal to 0̂. Note that these terms

have different signs comparing with P1P2P3P4 because of P∗
i and therefore result in (−1)d−1(d− 1)

in the Möbius function.

A.3 Proof of Proposition 3

Computed immediately from the estimated norm of Mixed Central Moment operator, the Lancaster
interaction estimator is

||M̂d||2HS =

〈
1

n

n∑
a=1

d∏
i=1

ϕ̃i(xi
a),

1

n

n∑
b=1

d∏
i=1

ϕ̃i(xi
b)

〉

=
1

n2

∑
a=1

∑
b=1

d∏
i=1

〈
ϕ̃i(xi

a), ϕ̃
i(xi

b)
〉

=
1

n2

n∑
a=1

n∑
b=1

d∏
i=1

K̃i
ab,

where ϕ̃(·) = ϕ(·)− E[ϕ(·)].

A.4 Proof of Proposition 4

This can be completed by manual expansion and then equating the terms. Alternatively we can prove
it more easily by the relationship of Lancaster interaction and Streitberg interaction in Lemma 1.

Mb = E

{∏
i∈b

[
ϕi − E[ϕi]

]}
Kd =

∑
πs∈Π(D)

(|πs| − 1)!(−1)|πs|−1
∏
b∈πs

Mb

=
∑

πs∈Π(D)

(|πs| − 1)!(−1)|πs|−1
∏
b∈πs

E

{∏
i∈b

[
ϕi − E[ϕi]

]}
.

A.5 Proof of Proposition 5

Similar to the norm of the Mixed Central Moment operator, the norm of Mixed Cumulant operator
can be obtained by simply squaring. Note that this can be computed directly using the product lattice
discussed in Section 4.2.

||K̂d||2HS

=

〈∑
πs

(|πs| − 1)!(−1)|πs|−1 1

n|πs|

∑
{bi}

d∏
i=1

ϕ̃i(xi
bi),

∑
π′
s

(|π′
s| − 1)!(−1)|π

′
s|−1 1

n|π′
s|

∑
{b′i}

d∏
i=1

ϕ̃i(xi
b′i
)

〉

=
∑
πs,π′

s

(|πs| − 1)!(|π′
s| − 1)!(−1)(|πs|−1)+(|πs|−1) 1

n|πs|+|π′
s|

〈∑
{bi}

d∏
i=1

ϕ̃i(xi
bi),

∑
{b′i}

d∏
i=1

ϕ̃i(xi
b′i
)

〉

=
∑
πs,π′

s

(|πs| − 1)!(|π′
s| − 1)!(−1)|πs|+|πs| 1

n|πs|+|π′
s|

∑
{bi}

∑
{b′i}

d∏
i=1

K̃i
bi,b′i
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B Product Lattice

The partition lattice is reduced to an upper semilattice after centring. When d = 4, the reduced lattice
only contains P1234, P12P34, P13P24 and P14P23 which are the 4 partitions with no singletons. Given
the two arbitrary lattices L and L′, the product lattice formulated using the Cartesian product of S×S′

with product order can be defined. Given two elements (σ, σ′), (π, π′) ∈ L× L′, (σ, σ′) ≤ (π, π′) if
and only if σ ≤ π and σ′ ≤ π′. In our case specifically, L and L′ are the identical reduced partition
lattices of d variables after centring, and the elements in the product lattice are analogous to the inner
products when computing the kernel-based estimator. Below we show the product lattice at d = 4.
Therefore, it can be utilised to directly compute the coefficients of the estimator in Proposition 5.
Note that the order within each element is not particularly informative in this case as the kernel
matrices are symmetric.

Product lattice

d = 4

Figure 4: Product lattice for d = 4. The two lines and squares represent the non-singleton
factorisations with two blocks and one block. Dark green and dark red highlight the elements in L,
whilst light green and light red are used for the elements in L′.

The resulting estimator using centred kernels when d = 4 is

||K̂4||2HS =
1

n2

∑
ij

K̃1
ijK̃

2
ijK̃

3
ijK̃

4
ij

− 2

n3

∑
ijk

K̃1
ijK̃

2
ijK̃

3
ikK̃

4
ik −

2

n3

∑
ijk

K̃1
ijK̃

2
ikK̃

3
ijK̃

4
ik −

2

n3

∑
ijk

K̃1
ijK̃

2
ikK̃

3
ikK̃

4
ij

+
1

n4

∑
ijkl

K̃1
ijK̃

2
ijK̃

3
klK̃

4
kl +

1

n4

∑
ijkl

K̃1
ijK̃

2
klK̃

3
ijK̃

4
kl +

1

n4

∑
ijkl

K̃1
ijK̃

2
klK̃

3
klK̃

4
ij

− 2

n4

∑
ijkl

K̃1
ijK̃

2
ilK̃

3
kjK̃

4
kl −

2

n4

∑
ijkl

K̃1
ijK̃

2
ilK̃

3
klK̃

4
kj −

2

n4

∑
ijkl

K̃1
ijK̃

2
klK̃

3
ilK̃

4
kj

Notice that a few terms are summed up twice. This is due to the symmetry in the product lattice we
described above.

C Composite Null Hypothesis

The permutation test strategy we propose for Streitberg interaction and Lancaster interaction is
carried out via multiple sub-hypotheses, and the rejection of the interaction is confirmed once all the
sub-hypotheses are rejected. Instead of having to consider all possible factorisations (Bd) for the
sub-hypotheses, by considering the lattice structure we only need to perform (2d−1 − 1) sub-tests
of factorisations corresponding to the 2nd level of the partition lattice, since all other sub-tests are
consequences of these.

In the case of rejecting the Streitberg interaction, it won’t necessarily be the case that all sub-
hypotheses are rejected, allowing us to derive a more detailed understanding of how the joint
distribution is factorised. For example, in the 7 sub-hypotheses for the Streitberg interaction when
d = 4, there is a clear difference between the number of rejections when the ground truth factorisations
are P1P234 or P1P2P34. The former results in 6 rejections while the latter results in only 4 rejections
because P1P2P34 is the mutual refinement of P12P34, P1P234 and P2P134. Hence, even though the
vanishing conditions of Streitberg interaction are not ‘if and only if’, we can still narrow down the
range of the possible ground truth factorisations using the rejected sub-hypotheses.
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The operations can be easily explained using the lattice. Before performing any sub-test, Π(D)
is the space of all possible ground truth factorisation. Whenever we reject a sub-hypothesis, the
refinements of the associated partition π gets eliminated. For example, if we reject P1P234, then we
also automatically reject P1P2P34, P1P3P24, P1P4P23 and P1P2P3P4. In other words, partitions in
the interval lattice [0̂, π] are eliminated. The remaining partitions until there are no further rejections
are the only possible choices and also form a lattice. Again we illustrate this idea using the partition
lattice of 4 variables (see Figure 5).

a b

Figure 5: Remaining factorisations with partial rejection of sub-hypotheses for d = 4. The greyed
out partitions represent the eliminated factorisations due to the rejections in the sub-tests. A dashed
line between two partitions indicates the refinement ordering (only shown for those not rejected).
(a) In the case that 4 of the sub-hypotheses are rejected, all of their refinements are automatically
eliminated. The remaining elements form an interval lattice and is isomorphic to the partition lattice
of 3 variables. (b) If 6 of the sub-hypotheses can be rejected, the ground truth can only be either the
factorisation remaining or non-factorisable. Similarly this is isomorphic to the partition lattice of two
variables.

Remark: The simplification of the operators (computation of the test statistics) can be reflected in
a collapsed partition lattice without singletons. However, one should not confuse this with the full
lattice that is associated with the test procedures, i.e. one should always consider the full partition
lattice to figure out the possible configurations of the ground truth factorisation based on what
we outlined above. The two lattices have the same form however they have completely different
implications. The lattice corresponding to test procedures can only be reduced as a result of the
rejections. For example, 7 sub-tests are needed instead of just 3 tests that involve the factorisations
without singletons when d = 4.

D Möbius Inversion

Instead of deriving the Möbius function as the inverse of the Zeta function, it can also be computed
using the expression below [37],

µ(σ, π) =


1 if σ = π

−
∑

σ≤ρ<π µ(σ, σ) if σ < π

0 otherwise
.

We can check the validity of this formula by computing the Möbius on the trivial partition lattice
associated with joint independence, which contains two elements, 0̂ and 1̂,

µ(1̂, 1̂) = 1

µ(0̂, 1̂) = −µ(1̂, 1̂) = −1,

hence

∆d
IP = µ(1̂, 1̂)P1···d + µ(0̂, 1̂)

d∏
i=1

Pi

= P1···d −
d∏

i=1

Pi.
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E Links to Simplicial Complexes

A k-simplex θ is a set of k+1 vertices θ = [p0, ..., pk], i.e., a 1-simplex is a line, a 2-simplex is a
triangle, 3-simplex is a tetrahedron, etc. A simplicial complex Θ is a collection of simplices that
satisfy two conditions: (i) if θ ∈ Θ, then all the sub-simplices v ⊂ θ built from subsets of θ are also
contained in Θ; and (ii) the non-empty intersection of two simplices θ1, θ2 ∈ Θ is a sub-simplex
of both θ1 and θ2. The first condition makes the inclusion ordering in the subset lattice natural for
simplicial complexes.

Below we have the Zeta matrix in Figure 6 and Möbius matrix in Figure 7 to illustrate that the
boundary operators (with no directionality) of (d-1)-simplex can be founded as block matrices within
them. The subset lattice doesn’t include the non-simplicial terms and we have shown numerically
that these terms are essentially in the synthetic experiment when P1234 = P12P34.

Figure 6: Zeta matrix for the partition lattice of 4 variables. Singletons in the partial factorisations
are omitted for simplicity. The matrix can be decomposed into small blocks which correspond to the
boundary operators in 3-simplex. Here the two red blocks represent the Edge-to-Face operator and
Face-to-Tetrahedron operator. The blue block corresponds to the non-simplicials, partitions with no
singletons.

Figure 7: Möbius matrix for the partition lattice of 4 variables. Comparing with the
Zeta matrix above we see that the block structure is preserved. Each block can be ob-
tained using the Möbius inversion on the incidence matrix of its own partially ordered set,
e.g. {12|34, 13|24, 14|23, 12|3|4, 13|2|4, 14|2|3, 23|1|4, 24|1|3, 34|1|2} forms a partially ordered
set. The values are always −1 since the partially order set only contains the elements from two
neighbouring levels.
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F Interplay of Test Power and Sample Size

To explore the effect of the different sample size on test power, we have performed four experiments,
each with three interaction strengths, to show how a decrease in the sample size affects the null
rejection rate (Fig 8). In all cases, the Lancaster and Streitberg tests are able to accurately detect higher
order interactions with as low as 50-100 samples (depending on the interaction proportion/strength),
whilst dHSIC requires substantially more samples. This provides further experimental evidence that
the proposed Streitberg interaction test has superior sensitivity, as compared to dHSIC, in detecting
higher order interactions.
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Figure 8: Decay of accuracy rates as the sample size is decreased in the XOR example. Inde-
pendence tests (first and third columns); interaction tests (second and fourth columns). In all cases,
dHSIC degrades substantially faster than Lancaster and Streitberg.

G Computational Complexity and Practical Limitations

G.1 Computational Complexity

The original time complexity for computing the Streitberg interaction estimator is O(B2
dn

2d) where
Bd is the Bell number, which represents the number of partitions in a set of cardinality d. Hence B2

d
is the number of terms in the Streitberg interaction estimator. For fixed number of samples n, our
lattice formulation allows us to reduce the number of terms in the mixed cumulant operator from
Bd to Fd. Table 1 illustrates this reduction in the number of terms before and after eliminating the
partitions with singletons. After this reduction, the complexity becomes O(F 2

dn
2d).

Table 1: Number of terms in the test statistics before/after eliminating the partitions with singletons.

No. of variables 4 5 6 7 8
Streitberg⇒(centred) 15⇒(4) 52⇒(11) 203⇒(41) 877⇒(162) 4140⇒(715)
Lancaster⇒(centred) 12⇒(1) 27⇒(1) 58⇒(1) 121⇒(1) 248⇒(1)

For fixed d, we can further optimise the time complexity by optimal contraction ordering, using the
fact that two index sets are disjoint, such that O(n2d) becomes O(nmin(|πs|,|π′

s|)+1). This reduction
for different d can be found in Table 2.
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Table 2: Time complexity for d-order interaction estimators.

d-order dHSIC Lancaster⇒(optimised) Streitberg⇒(optimised)
2-way O(n2) O(n2) O(n2)
3-way O(n2) O(n2) O(n2)
4-way O(n2) O(n8)⇒O(n2) O(n8)⇒O(n3)
5-way O(n2) O(n10)⇒O(n2) O(n10)⇒O(n3)

Similarly, the time complexity for computing the d-order Lancaster interaction estimator naïvely is
O(2d+1n2d). By centring, i.e. eliminating the partitions with singletons, the only element left is 1̂.
Therefore the Lancaster interaction estimator can be computed in O(dn2).

G.2 Practical Considerations

The problem of detecting d-order interactions among a group of e variables is combinatorial, as
it entails checking groups of d variables chosen from the e variables. Clearly, such combinatorial
problems become infeasible as e and/or d become large. Recent work on real data from various
application areas has focused on revealing any interactions beyond pairwise, i.e., d > 2. It has been
shown that interactions with d = 3, 4 already make a significant difference to the analysis of network
structure and network dynamics [2, 21, 55], highlighting the potential benefits to be gained from tests
that detect high order interactions.

Many well-recognised and widely used theoretical approaches only have closed forms for d =
3 [56, 57], and cannot be generalised to arbitrary d, since the number of terms in those approaches is
related to the Dedekind number which becomes rapidly intractable [58]. In contrast, here we show
that the Streitberg interaction can be explicitly defined for any d, and we have devised theoretical and
computational strategies to reduce its computational cost via the lattice theory formulation.

In the case where high order interactions for a range of d are of interest, it is possible to discount the
computation of certain high order interactions when some lower-order interactions are present. If
all the lower order interactions are absent, then testing the d-order interaction is the same as testing
the joint independence for d variables. For example when d = 3 and all pairwise interactions are
absent, then testing the Streitberg interaction reduces to testing joint independence of 3 variables.
More generally, if we test the interactions bottom-up, i.e., recursively from the lower orders upwards,
the expression for Streitberg becomes simpler whenever there is a lower-order independence. The
simplification is possible because the Streitberg interaction can be rewritten as the sum of the
differences between a factorisation and the product of the marginals due to the fact that the sum of
Möbius coefficients is zero. Hence the presence of a lower order independence allows us to simplify
the d-order interaction formula.

Alternatively, there are also cost-reducing simplifications if we do the tests top-down (i.e. starting
from order d downwards), although the problem still remains combinatorial. If there are partial
rejections for some tests involved in the d-order Streitberg test, we can narrow down the possible
choices of the factorisation (as discussed in Appendix C). This allows us to eliminate the lower order
factorisations that fall in the lattice branches of the rejected second level factorisations, thus reducing
the total tests needed for the factorisation of the d-variables. Further simplifications are achieved by
accounting for overlaps of the lattice branches.

All these observations can be taken into account in the construction of hypergraph representations, as
further discussed below in Appendix H.

H Neuroimaging Data

H.1 Preprocessing

Preprocessing of neuroimaging data was performed following Luppi et al. [54]. We summarise the
key steps here, and refer interested readers to the original paper for further details.

We started from the ‘minimally preprocessed’ release of the fMRI data from the Human Connectome
Project [50, 51]. This data was preprocessed with bias field correction, functional realignment, motion
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correction and spatial normalization to Montreal Neurological Institute (MNI-152) standard space
with 2 mm of isotropic resampling resolution. We then removed the first ten points in the time series
to avoid transient effects introduced by the scanner. Finally, we further denoised the data with the
anatomical CompCor method, which involves regressing out potential noise confounds (specifically,
five principal components of white matter activity, five principal components of cerebrospinal
fluid activity, and 12 motion parameters including head translation, rotation, and their temporal
derivatives). All preprocessing steps were performed using the CONN toolbox (https://www.
nitrc.org/projects/conn/), version 17f58. The resulting volume was parcellated according
to the Schaefer-100 atlas [52] by spatially averaging across all voxels in the same region for each
timestep.

Table 3: Time taken for experiments in Figure 3.

SOM VIS SAL DAN DMN FPN LIM Random
2-way 1s 2s 1s 2s 2s 2s 1s 12s
3-way 12s 18s 7 13s 8s 8s 1s 13s
4-way 5m36s 5m 2m44s 2m31s 2m 2m10s 1s 2m41s
5-way 2h18m24s 1h30m9s 1h3m 54m40s 1h12m4s 27m16s 2s 29m

We report the computational time for all fMRI experiments in Table 3. All experiments carried out on
a 2015 iMac with 4 GHz Quad-Core Intel Core i7 processor and 32 GB 1867 MHz DDR3 memory.

H.2 Analysis of Simple Hypergraphs

As an illustration of future lines of work, we hierarchically constructed hypergraphs from the identified
d-order interactions. Specifically, individual regions are nodes and the high-order interactions are
used to define hyperedges, incrementally including the interactions of increasing order. The resulting
hypergraphs integrate information across orders of interaction, and can be analysed by computing
structural properties of hypergraphs. As an example, we show the degree assortativity of the different
hypergraphs in Fig 9. We find that almost all RSNs display a negative degree assortativity (but much
less so than random), and only FPN shows positive degree assortativity for higher order hypergraphs.
Future analyses of these hypergraphs will study the links between high-order interactions in brain
activity and different functional areas.

Figure 9: Hypergraph analysis of the neuroimaging data. Percentage of high-order interactions
in RSNs (left) and degree assortativity of hypergraphs constructed from the high-order interactions
detected (right).

H.3 Alternative Hypergraphs: Emergent and Redundant High-Order Interactions

To interpret the presence of lower order interactions in larger cliques, one can alternatively build a
hypergraph as follows: i) If a d-order hyperedge is detected and none of the lower order (d− 1)-order
hyperedges are present then we say that this d-order hyperedge reflects a purely synergistic (or
emergent) interaction between the d variables; ii) if the d-order and all the lower order interactions are
present, then we say that the d-order interaction is purely redundant (and corresponds to a simplicial
complex construction); iii) if some, but not all, lower order interactions are present (e.g., for 4
variables, only the 4-way interaction and one 3-way interaction are present), then both synergy and
redundancy are present in this group of variables. Such a construction could offer an alternative,
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statistically-motivated approach to computing synergy and redundancy, an important current topic of
research in computational neuroscience, and its representation through hypergraphs.

I Code

This code for performing the interaction tests and the synthetic experiments is provided
in this anonymous Github repository https://github.com/barahona-research-group/
streitberg-interaction.git.
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