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Abstract
Existing benchmarks for evaluating mathemati-
cal reasoning in large language models (LLMs)
rely primarily on competition problems, formal
proofs, or artificially challenging questions—
failing to capture the nature of mathematics en-
countered in actual research environments. We
introduce REALMATH, a novel benchmark de-
rived directly from research papers and mathe-
matical forums that assesses LLMs’ abilities on
authentic mathematical tasks. Our approach ad-
dresses three critical challenges: sourcing di-
verse research-level content, enabling reliable
automated evaluation through verifiable state-
ments, and designing a continually refreshable
dataset to mitigate contamination risks. Exper-
imental results across multiple LLMs reveal sur-
prising capabilities in handling research mathe-
matics compared to competition problems, sug-
gesting current models may already serve as
valuable assistants for working mathematicians
despite limitations on highly challenging prob-
lems.

1. Introduction
The mathematical capabilities of Large Language Models
(LLMs) have become a critical lens for assessing their rea-
soning and knowledge retention abilities. Although consid-
erable effort has been invested in evaluating LLMs in basic
mathematics (Cobbe et al., 2021; Hendrycks et al., 2021),
competition-level mathematics (Gao et al., 2024; He et al.,
2024; Sawada et al., 2024; Sun et al., 2025; Tsoukalas et al.,
2024) and formal proof generation (Yang and Deng, 2019;
Yang et al., 2023; Zheng et al., 2022), these evaluations
may not adequately reflect the potential utility of LLMs in
real-world mathematical research contexts.

1Anonymous Institution, Anonymous City, Anonymous Re-
gion, Anonymous Country. Correspondence to: Anonymous Au-
thor <anon.email@domain.com>.

Preliminary work. Under review by the International Conference
on Machine Learning (ICML). Do not distribute.

Current mathematical benchmarks fall predominantly into
three categories: (1) those derived from course materi-
als (Cobbe et al., 2021; Hendrycks et al., 2021) or compet-
itive examinations (Gao et al., 2024) (e.g., IMO or AIME)
that offer abundant problems with solutions; (2) those cen-
tered on formal theorem proving where verification can be
automated (Yang et al., 2023; Zheng et al., 2022); (3) those
designed by mathematical experts to be as challenging as
possible (Glazer et al., 2024; Phan et al., 2025). However,
these benchmarks capture only a narrow slice of mathemat-
ical practice. The mathematics encountered “in the wild”—
particularly in research settings—differs substantially from
competition problems in structure and topics, rarely relies
on formal proofs, and considers statements and results that
are not (exclusively) designed to be maximally challenging.

This disconnect raises a fundamental question:

How effective might LLMs be as assistants for practicing
mathematicians today?

To address this question, we introduce a novel benchmark
designed to evaluate LLMs on research-level mathematics
extracted directly from the literature. Constructing such a
benchmark presents three significant challenges:

First, we need to source authentic content that faithfully
represents the diversity and complexity of contemporary
mathematical research.

Second, we require a reliable method for assessing correct-
ness. Unlike competition problems with standardized solu-
tions or problems with formal proofs, research mathematics
presents evaluation difficulties: human expert validation is
resource-intensive and limits scalability, while using LLMs
as judges introduces reliability concerns.

Third, we must address test set contamination over time,
as mathematical content incorporated in benchmarks might
be absorbed into training datasets for future models. In this
paper, we present REALMATH, a math benchmark that ad-
dresses these challenges through:

1. A data pipeline that extracts verifiable mathematical
statements from research papers (e.g., arXiv) and math-
ematical forums (e.g., Stack Exchange), creating a rich
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Figure 1. LLM performance on a hard subset of REALMATH from arXiv Mathematics papers.

corpus of research-level content.

2. An evaluation methodology focused on verifiable an-
swers rather than proof assessment, allowing for auto-
mated correctness checking.

3. A continually refreshable dataset design that leverages
the vast and growing body of mathematical literature,
allowing for regular updates with new content to miti-
gate contamination concerns.

We systematically transform mathematical statements into
question-answer pairs, preserving surrounding context nec-
essary for comprehension. For example, a theorem stating
that “For n ≥ 1, the number of shallow, 123-avoiding cen-
trosymmetric permutations of length n is n2

4 + 1 when n
is even” (Archer et al., 2025) becomes a question, “What
is the number of 123-avoiding centrosymmetric permuta-
tions of length n when n is even?”, with a verifiable an-
swer, “n2

4 +1”, with relevant definitions and notation from
the source material given as context.

From approximately 9,000 mathematics-related academic
papers collected over nine months, our automated pipeline
curated 633 high-quality samples and can generate over 70
new samples each month.

Our evaluation of frontier LLMs reveals interesting pat-
terns in mathematical capabilities that differ from those
observed in other recent benchmarks. In particular, mod-
els demonstrate stronger performance on our research-
mathematics benchmark (see Figure 1) than on deliberately
challenging datasets such as math competitions or Fron-
tierMath (Glazer et al., 2024), suggesting that LLMs may
already provide valuable assistance in research contexts,
even though they cannot solve most advanced problems.

Although our approach focuses on statement verification
rather than proof generation or verification, it nonetheless
provides a valuable signal about LLMs’ potential as mathe-
matical assistants. Our findings suggest that current models
may already serve as useful tools in mathematical research
contexts, even as they continue to struggle with the most
challenging mathematical problems.

To summarize, this work makes several contributions: it es-
tablishes a new paradigm for evaluating the mathematical
capabilities of LLMs using organic research Mathematics;
it provides a sustainable methodology for benchmark cre-
ation that resists contamination; and it offers insights into
the relative strengths of current models on tasks represen-
tative of real mathematical practice.

2. Related Work
Math benchmarks sourced from exams and competi-
tions. Recent years have seen rapid progress in evaluating
LLMs on mathematical tasks. Early data sets were sourced
from school materials or entry-level math competitions
such as GSM8K (Cobbe et al., 2021), GHOSTS (Frieder
et al., 2023), or MATH (Hendrycks et al., 2021), and are
approaching saturation. In response, new benchmarks now
source questions from advanced math competitions such as
the IMO (Balunović et al., 2025; Petrov et al., 2025; Sun
et al., 2025), AIME, or the Putnam competition (Tsoukalas
et al., 2024).

Math benchmarks sourced from research experts. A
growing line of work seeks to evaluate mathematical rea-
soning on research-level questions. FrontierMath (Glazer
et al., 2024) (and part of HLE (Phan et al., 2025)) eval-
uate LLMs on extremely challenging problems crafted by
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LaTeX format Theorem filtering QA filteringLLM-generated QA Model evaluation

Figure 2. The data collection pipeline for arXiv papers. The core step is to ensure that each extracted theorem from arXiv papers has a
single, exact answer. To maintain data quality, we apply filtering mechanisms, e.g., prompting an LLM to discard trivial samples that
can be easily solved.

expert mathematicians. These benchmarks focus on a nar-
row slice of current mathematical practice (at the frontier of
human expertise), and are extremely labor-intensive to cu-
rate. To guard against test set contamination, FrontierMath
keeps the test set private, which introduces barriers to re-
producibility. In contrast, REALMATH benchmark consists
of questions spanning the full range of mathematical re-
search practice, and can be automatically refreshed as new
research is published.

Benchmarks for theorem proving. Orthogonal to our
work are benchmarks focused on formal proof genera-
tion and machine-verifiable mathematics, such as Lean-
Dojo (Yang et al., 2023) and MiniF2F (Zheng et al., 2022).
These evaluate LLMs’ ability to produce formal proofs
within interactive theorem provers, supporting automated
verification of correctness. While such work is critical for
advancing formal methods and proof automation, it is not
representative of most mathematical research that is not
fully formalized.

Benchmarks for LLM capabilities “in the wild”. Our
work complements a growing body of research that aims
to evaluate the capabilities of LLMs on real-world tasks
rather than well-curated proxies. For example, instead of
evaluating LLMs’ coding abilities on programming com-
petitions (Huang et al., 2023), projects such as SWE-
bench (Jimenez et al., 2023), Lancer (Miserendino et al.,
2025), or BaxBench (Vero et al., 2025) focus on assessing
LLMs in real-world software engineering tasks. A similar
shift can be observed in the evaluation of cyber-offensive
capabilities of LLMs, where a number of recent bench-
marks focus on evaluating real exploit capabilities (Carlini
et al., 2025; Fang et al., 2024) rather than the ability to solve
curated capture-the-flag competitions (Shao et al., 2024).

3. Research-Level Mathematical Benchmark
3.1. Design Criteria

To ensure high quality of our collected data, we establish
the following design desiderata:

1. Real-world application focus: Our collection

methodology prioritizes mathematical problems that
genuinely represent those encountered in practical
scenarios. We source problems from academic re-
search publications (e.g., arXiv preprints), where re-
searchers tackle mathematical challenges to advance
scientific knowledge, and from educational platforms
(e.g., Mathematics Stack Exchange), where learners
engage with mathematical concepts to develop their
understanding and problem-solving capabilities. Un-
like competition-oriented benchmarks, we focus on
representative mathematical tasks encountered in ac-
tual practice, emphasizing procedural and technique-
driven aspects rather than contest-style ingenuity.

2. Automated verification: We generate constructive
problems (as in (Balunović et al., 2025)) with clear,
unambiguous verification criteria, typically problems
with a single, exact numerical or symbolic answer.
This approach excludes problems that admit multi-
ple solutions or involve qualitative assessments such
as inequalities (e.g., lower bounds, upper bounds) or
asymptotic relations, which would complicate the ver-
ification process and potentially introduce ambiguity.
This choice also means that we omit statements where
the main difficulty lies in finding a (non-constructive)
proof (e.g., if a paper has a theorem that says “P ̸=
NP”, then the interesting part is solely the proof and
not the construction of the statement itself).

3. Continuous acquisition: Leading LLMs may be
trained on internet data, so it is important to avoid
data contamination. To ensure this, we collect data
exclusively from publicly available sources such as
arXiv and StackExchange, where automatic collection
is feasible with minimal human intervention. After
each new model release, we can automatically gather
fresh data from the internet to evaluate the model, en-
suring that the evaluation set remains uncontaminated
and up-to-date.

3.2. An Automatic and Refreshable Pipeline

We present a detailed walkthrough of our data collection
pipeline in Figure 2. Throughout the remainder of this pa-
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per, we primarily use data from arXiv papers to illustrate
our methodology. A more detailed discussion of the Stack
Exchange dataset is provided in Appendix A.5. As a con-
crete example, we use a subset of 4,000 arXiv papers se-
lected from May to September 2022 to illustrate each stage
of the data collection pipeline.

Step # Usable Samples

Retrieve papers 4,000 papers
Extract LaTeX source 3,922 papers
Extract theorems 14,747 theorems
Identify constructive theorems 407 theorems
Generate question-answer (QA) pairs 401 QA pairs
Filter trivial questions 280 QA pairs

Table 1. An example of the pipeline steps and the number of us-
able samples at each stage.

Our pipeline consists of five stages:

1. Retrieve papers. We collect all mathematics-related
arXiv papers within a specified time window. This
process involves querying the arXiv API for papers
in categories such as Mathematics or Computer Sci-
ence. To illustrate, we can acquire roughly 4,000 pa-
pers from Mathematics over 5 months, from May to
September 2022.

2. Extract LaTeX source. For each paper, we down-
load and parse the original LaTeX source files to ac-
curately preserve the mathematical notation. Due to
occasional errors in the arXiv API responses or issues
with file availability (e.g., missing or corrupted LaTeX
sources), the number of successfully processed papers
is often lower than the total initially retrieved. In our
case, out of 4,000 papers, we obtained 3,922 usable
samples.

3. Identifying constructive theorems with fixed an-
swers. We use an LLM1 to identify theorems that in-
volve the construction of a single exact answer. The
LLM analyzes each extracted theorem and classifies
it based on whether it presents a clear mathematical
statement with an unambiguous result. We specif-
ically exclude theorems that involve inequalities or
those that admit multiple solutions, e.g., theorems of
the type “If condition A is satisfied, then relation B
happens” but where condition A is not the unique one
for B to happen, and relation B is not an equality or
fixed-answer numerical relation. From the 3,922 pro-
cessed papers, we extracted 407 theorems that were
classified as high-quality by our judge model, out of
14,747 theorems detected in total.

1By default, we use OpenAI’s o3-mini as the judge model.
Detailed prompts are provided in Appendix A.1.

4. Generate question-answer (QA) pairs. For each
selected theorem, we use an LLM to convert it into
a question–answer pair. LLMs will always attempt
to generate a QA pair, even if the generated ques-
tion–answer is easy to answer. For 407 theorems, we
obtained 401 QA pairs.

5. Filtering trivial questions. We also implement a
post-processing stage where an LLM reviews each
generated QA pair. This step filters out low-quality
samples, e.g., those with easily guessable answers, or
where the answer is obvious from the context fed to
the LLM (it is common, for instance, for the paper’s
introduction to state a theorem’s result informally).
Finally, we obtained 280 QA pairs that are ready for
use in the evaluation phase.

For each test sample, we provide the context (i.e.,
all relevant text preceding the theorem) along with
an LLM-generated question to frontier LLMs. A re-
sponse is considered correct only if it exactly matches
the ground truth answer. We present some detailed
examples in Figure 3.

This pipeline ensures that our benchmark remains current,
uncontaminated, and representative of real mathematical
challenges faced in research. By automating the collec-
tion process, we can continuously refresh the dataset with
new mathematical problems as they emerge in the research
community.

Discussion on label noise. The two primary sources of
noise in our data pipeline are: (1) the inherent quality of
the source materials; and (2) the reliability of using LLMs
to evaluate and transform mathematical content. Samples
from Mathematics Stack Exchange, in particular, tend to
be of lower quality: Questions are often poorly formulated,
contain mathematical inaccuracies, or lack answers on the
forum. As a result, obtaining high-quality samples from
this source requires filtering through a much larger volume
of user-submitted content. Additionally, our pipeline relies
on LLMs to assess the quality of extracted theorems and
generate QA pairs. Thus, any limitations or biases in the
LLM’s evaluation capabilities may introduce further inac-
curacies into the dataset.

Overall, our pipeline yields more than 94% high-quality
samples from arXiv papers, without relying on any hu-
man annotation. For example, in the Mathematics cate-
gory, we processed more than 9,000 papers and extracted
633 theorems that were classified as high-quality by our
judge model. We then manually reviewed each sample and
found that approximately 6% did not meet our quality cri-
teria; these were filtered out. These results suggest that our
pipeline can reliably produce high-quality data with min-
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Theorem to QA Conversion

Original Theorem Generated QA Pair

(Theorem 1.1 in (Bhowmik and Barman, 2024)) Let q =
p2t, where p ≡ 3 (mod 4) is a prime and t is a pos-
itive integer. Then, the number of cliques of order 3
in the Peisert graph P ∗(q) is given by k3(P

∗(q)) =
q(q−1)(q−5)

48 .

Q: Let q = p2t, where p ≡ 3 (mod 4). What
is the number of cliques of order 3 in the Peisert
graph P ∗(q), expressed as a function of q?

A: q(q−1)(q−5)
48

(Theorem 22 in (Vishnyakova and Borovoi, 2024))
The automorphism φα ◦ (Φ,∧d(Φ)), where α ∈ C∗,
can be lifted to the Π-symmetric super-Grassmannian
ΠGr2k,k, where k ≥ 2, if and only if α = ±i.

Q: Determine the value(s) of α ∈ C∗ for which
the automorphism φα ◦ (Φ,∧d(Φ)) can be lifted
to the super-Grassmannian ΠGr2k,k for k ≥ 2.

A: α = ±i

Filtered Out Examples

Example 1: Let X be a uniformly convex Banach space. Then Γ(X) < 1
2 .

➤ LLMs may respond with weaker but still valid bounds (e.g., Γ(X) < 1), which are not equivalent. Stronger
answers (e.g., < 0.4) require more advanced verification from the judge model.

Example 2: For any convex body K in Rn, there exists Φ ∈ GL(n) such that:

S(ΦK)n

|ΦK|n−1
≤ S(∆n)n

|∆n|n−1
=

n3n/2(n+ 1)(n+1)/2

n!
.

➤ This is a non-constructive existence theorem. It cannot be converted into a fixed-answer QA that could easily
be verified by an LLM judge.

Figure 3. Illustration of the theorem-to-QA conversion process and samples that are filtered out. The top panel shows examples of high-
quality question-answer pairs generated from mathematical theorems that contain fixed, verifiable answers. The bottom panel provides
examples of theorems that were filtered out due to ambiguity or the lack of a fixed answer.

imal human intervention, even when working with imper-
fect real-world sources (see Appendix A.3).

Although our data construction inherently assumes that the
mathematical theorems sourced from arXiv papers are cor-
rect, this is, of course, not guaranteed. ArXiv papers have
not necessarily been peer-reviewed, and errors or ambigu-
ous claims may be present.2 On the one hand, incorrect
statements could produce some noise in our results (which
we hypothesize to be small). On the other hand, we view
possible ambiguities in statements or notation as beneficial,
since it is truly representative of mathematics “in the wild”,
compared to the more polished and vetted content found in
formal competition settings.

2An alternative would be to limit the pipeline to peer-reviewed
sources, but this would significantly reduce the diversity and cov-
erage of available material.

4. Experiments
4.1. Experimental Setup

We use the data pipeline described in Section 3 (and
Appendix A) to extract over 1,200 QA pairs from
three data sources, Math.arXiv, CS.arXiv, and
Math.StackExchange (see Table 2 for summary
statistics). We then evaluated multiple frontier models—
OpenAI o3 and o4-mini, Claude 3.7 Sonnet, Gemini 2.5
Pro, Grok-3, and DeepSeek-R1—across these datasets. For
comparison, we also include several earlier models, such as
GPT-4o mini, Claude 3.5 Sonnet, and LLaMA-3.1-405B.

The input format varies slightly across datasets to match
their structure. For CS.arXiv and Math.arXiv, each
model receives the LLM-generated question along with the
full relevant context preceding the target theorem, typically
spanning from the introduction up to (but excluding) the
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Table 2. Frontier LLMs achieve strong performance at answering mathematical questions extracted from research papers and math
forums. See Figure 4 and Appendix B.2 for a more fine-grained evaluation based on the estimated difficulty of questions.

Dataset o3 o4 mini
Gemini
2.5-pro

Deepseek
R1 Grok 3

Claude
3.7-Sonnet

Claude
3.5-Sonnet

Llama
3.1-405B

GPT
4o-mini

Math.arXiv 49.1 43.4 32.5 30.5 29.5 34.1 18.3 16.4 12.5

CS.arXiv 44.1 42.3 25.2 31.5 25.2 31.5 16.2 15.3 7.2

Math.StackExchange 70.7 70.8 60.9 62.2 54.8 61.1 37.6 32.1 40.8

Table 3. Summary of final datasets used for evaluation.
Dataset Time Span # QA pairs

Math.arXiv
05/2022 – 09/2022
12/2024 – 03/2025 633

CS.arXiv 05/2022 – 10/2023 111

Math.StackExchange 04/2024 – 03/2025 542

theorem itself. In contrast, for Math.StackExchange,
the input consists solely of the LLM-generated question,
reflecting the format of the original forum posts.

4.2. Main Experimental Results

Results on frontier LLMs. Table 2 highlights the per-
formance of the wide range of LLMs that we tested
on our three datasets. The ten models under anal-
ysis show variation in accuracy, with o3 and o4-
mini leading on all datasets. More specifically, o3
achieved the highest accuracy on both CS.arXiv and
Math.arXiv, whereas o4-mini slightly outperformed it
on the Math.StackExchange samples. Other mod-
els, such as Deepseek-R1 and Gemini-2.5-pro, showed
mid-tier performance, with accuracy percentages rang-
ing between 25.6% – 32.5% on the arXiv datasets, com-
pared to higher accuracy levels of 60.9% – 62.2% on
Math.StackExchange.

We acknowledge that our full benchmark comes with rel-
atively high initial performance, which may raise ques-
tions about its durability. In fact, a common trend in
recent benchmarks has been to design problems that are
as challenging as possible, resulting in near-zero perfor-
mance (Glazer et al., 2024; Phan et al., 2025). However,
since our benchmark aims to track performance on real,
organic mathematical research tasks, we do not view this
as an issue. While some benchmarks track LLMs’ nascent
ability to solve (a few) of the most challenging math prob-
lems, performance increases on REALMATH may be more
indicative of the utility of LLMs on common mathematical
research tasks. Nevertheless, in the following experiment,
we also show that the difficulty of questions in our datasets
is highly nonhomogeneous and that there is a “hard” subset

on which current LLMs perform much worse.

Breakdown by difficulty levels. We analyze model per-
formance across questions of varying difficulty levels. To
determine these difficulty levels, we evaluated how older,
weaker models performed on the dataset samples. Based on
their performance, we categorized the samples into differ-
ent difficulty levels, as detailed in Appendix B.2. As shown
in Figure 4, accuracy consistently declines as question dif-
ficulty increases. For example, the top-performing model,
o3, achieves 97.5% accuracy on easy questions, dropping
to 81.4% on medium questions and further to just 27.9% on
hard questions. A similar downward trend is observed for
Gemini-2.5-Pro and DeepSeek-R1. This pattern highlights
the significant challenge current models face in handling
more complex and research-level mathematics.

Performance analysis across research subcategories.
The datasets we collect consist of mathematical problems
in a wide variety of subjects. Using human-reported cate-
gories (arXiv categories, or StackExchange tags), we can
get a more granular evaluation of LLMs’ capabilities in
specific areas. Table 4 in Appendix B.4 shows the break-
down of categories for the Math.arXiv dataset, with a
predominance of samples from Number Theory (math.NT)
and Combinatorics (math.CO), each comprising more than
20% of the dataset size. This distribution is consistent with
other recent benchmarks, e.g., MathConstruct (Balunović
et al., 2025) and FrontierMath (Glazer et al., 2024), and
stems from a combination of factors (see Figure 9 in Ap-
pendix A.4): (1) a high number of papers on the topic; (2)
a higher number of theorems per paper on average; (3) a
higher fraction of constructive theorems with a fixed an-
swer.

To illustrate LLM performance on Math.arXiv, Figure 5
shows the accuracy per category for two of the best models
on this dataset, o3 and Gemini 2.5-pro. For o3, the subcat-
egories with the highest accuracy are Representation The-
ory (math.RT), Number Theory (math.NT) and Analysis of
PDEs (math.AP), each obtaining more than 60% accuracy.
The subcategories with the poorest performance are Op-
timization and Control (math.OC), Discrete Mathematics
(cs.DM) and Machine Learning (cs.LG), with the last hav-
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Figure 4. (a) Accuracy of the best-performing models across different difficulty levels of Math.arXiv and (b) distribution of difficulty
levels on Math.arXiv. More details and results in Appendix B.2.
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Figure 5. Evaluation of model performance on the Math.arXiv dataset across domain-specific and temporal dimensions. Left: Ac-
curacy across mathematical domains for two models, showing significant variation by topic. Right: Accuracy of GPT-4o-mini, Llama-
3.1-405B, and Claude-3.5-Sonnet on questions published before vs. after their training cutoff.

ing only 23.8% accuracy.

However, this capability profile is not uniform across
models. Gemini 2.5-pro performs best on Machine
Learning (cs.LG), Optimization and Control (math.OC)
and Probability (math.PR), and worst on Combinatorics
(math.CO), Representation Theory (math.RT), and Group
Theory (math.GR).

Overall, we observe that o3 performs well on highly theo-
retical tasks, such as the ones from Representation Theory,
whereas Gemini 2.5-pro is best in domains with more prac-
tical applicability, such as in machine learning.

4.3. Additional Analysis

Analyzing LLM’s mistakes. To better assess model
performance, we introduce a pipeline that compares the
LLMs’ output with a human-authored solution, taken from
the original paper or verified StackExchange answer. These

Reasoning
Error
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Misunderstanding

Missed
Insight

Incomplete or
Unclear Answer

Calculation
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Invalid
Approach

Question
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Notation
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0
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Figure 6. Error types for o3, Gemini 2.5-pro and DeepSeek R1 on
the Math.arXiv dataset.

are provided to the judge model o3-mini, which evaluates
whether the LLMs’ reasoning aligns with the human solu-
tion. Common failures include arithmetic errors, incorrect
arguments, missing critical insights, or logical inconsisten-
cies. In Figure 6 we show the error breakdown for o3,
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Question 1: Let F be an n × m Ferrers dia-
gram with m ≥ n, and let 1 ≤ d ≤ n be
an integer. Assume that the pair (F , d) is MDS-
constructible and let κ = κ(F , d). What is the
value of limq→+∞ δq(F , κ, d)?

Question 2: Given parameters σ2
1 , σ2

2 ,
and c ≤ c(σ2

1 , σ
2
2), what is the value of

limn→∞
Cs(σ

2
1 ,σ

2
2 ,c

√
n,n)

n expressed in terms
of σ2

1 , σ2
2 , and c?

Question 3: What is the value of

limodd k→∞
α(f{(k+1)/2},k)
ρ(f{(k+1)/2},k)

?

Figure 7. Questions solvable by LLMs without any context. Inter-
estingly, LLMs can infer the meaning of Cs in Question 2 and of
α, ρ, f in Question 3. Appendix B.5 contains examples of ques-
tions LLMs cannot solve without context.

Gemini 2.5-pro and DeepSeek R1 on the Math.arXiv
dataset. The majority of errors come from flawed reason-
ing, followed by conceptual misunderstanding and missed
insights. This suggests that even the best-performing mod-
els struggle with multistep logical coherence in a solution.

How important is a theorem’s context? Recall that for
questions in Math.arXiv and CS.arXiv, we provide
the LLM with the full context of the theorem, namely
the entire research paper preceding the theorem statement.
This context may be critical to understanding the notation
and statement of the theorem. However, surprisingly, we
find that LLMs still perform rather well even when this con-
text is omitted. This suggests that many theorems use con-
cepts or notation that can be understood or inferred in iso-
lation. For example, in the CS.arXiv dataset, the o4-mini
model achieves an accuracy of 21.6% despite the absence
of any context (compared to 42.3% when the full context
is provided). We present some examples of questions solv-
able without context in Figure 7.

Measuring the impact of data contamination. One of
the core features of REALMATH is that it can be con-
tinuously updated with new organic samples, keeping the
benchmark up to date with contemporary mathematics and
preventing data contamination. This characteristic dis-
tinguishes REALMATH from other research-level bench-
marks, which either require extensive manual curation by
experts (Glazer et al., 2024; Phan et al., 2025), or which can
only be extended by a few new samples per year (Balunović
et al., 2025; Sun et al., 2025).

To test for data contamination, we split the Math.arXiv

dataset into two batches, according to the cutoff dates
of GPT-4o-mini, Llama-3.1-405B, and Claude-3.5-Sonnet.
Figure 5 shows the accuracy for papers published before
and after the respective cutoff dates (i.e., papers from 2022
vs. 2025). Interestingly, we find that models perform better
on newer samples from 2025 than on older samples from
2022. One explanation could be that mathematical research
became significantly easier (at least for LLMs) from 2022
to 2025, which seems unlikely. Rather, we believe a likely
explanation is that current LLMs have been trained on a
large amount of math data collected close to their cutoff
date, and thus that LLMs may be more familiar with the
type of topics studied in current math research.

We note that a nice application of REALMATH would be to
study the evolution of mathematical research (and LLMs’
performance) over time, an analysis which we leave for fu-
ture work.

Fine-tuning impact analysis. To evaluate whether
REALMATH can be used to improve mathematical capabil-
ities of LLMs, we fine-tuned GPT-4o-mini on 500 random
samples from the Math.arXiv dataset and evaluated its
performance on the remaining 133 samples. Surprisingly,
fine-tuning did not lead to an improvement in accuracy
(see Appendix B.1 for more details). This suggests that the
benchmark’s difficulty does not stem from questions being
out-of-distribution for current LLMs. Rather, current mod-
els appear to lack the specialized mathematical knowledge
or skills necessary to solve certain problems, and these can-
not be effectively acquired through simple fine-tuning.

5. Conclusion
Our work introduces REALMATH, a novel bench-
mark for evaluating LLMs in research-level mathemat-
ics. We show that current frontier models demon-
strate surprisingly strong capabilities in research math-
ematics, with leading models achieving accuracy rates
of 43–49% on Math.arXiv papers and up to 70% on
Math.StackExchange questions. This suggests that
these models may already serve as valuable assistants in
mathematical research contexts, even as they continue to
struggle with the most challenging problems.

A core feature of REALMATH is that it is not a fixed
benchmark, but rather a refreshable data collection pipeline
that reflects current mathematical practice while protecting
against data contamination. We believe REALMATH can
serve as a valuable tool for both evaluating and improving
LLMs’ mathematical capabilities. Its design aligns with the
actual needs of mathematicians, helping advance AI assis-
tants for research. As models improve on our benchmark,
LLMs may see broader use as collaborative tools in math-
ematical research and education.
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A. Data Collection and Evaluation
A.1. Prompts for Judge Models

We used the following two system prompts fed to an LLM (o3-mini) for: (1) filtering theorems in order to retain only the
ones with unique answers; (2) generating high-quality question-answer pairs from theorems.

1 SYSTEM_PROMPT_THEOREM = r"""
2 You are an expert in mathematics and computer science. Your task is to verify if a theorem

has a single, numerical answer, easy to be verified. The theorems should be at least
graduate level.

3

4 The theorems should have a fixed numerical answer, not an approximation. Some common
examples:

5 - Necessary and Sufficient Conditions: e.g., "X holds if and only if condition A holds"
only when at least one of A and X is specific, numerical quantity. We want results of
the form "If condition A holds, then condition X holds" ONLY WHEN X is a NUMERICAL
VALUE. We don’t want "if some conditions are met, then the quantity satisfies a
particular equation, then we can get X" when X is not a strict numerical value
relation, because this does not have fixed unique solutions. Please be very strict
about these rules!

6 - Existence and Uniqueness Theorems: e.g., "There exists a unique X that satisfies A.",
but we don’t want "There exists an X that satisfies A", because the latter is not a
fixed unique solution.

7 - Exact Formula Calculations: e.g., "The answer of formula (1) is 10", or "The solution
for formula (1) is X", then both are fixed unique solutions.

8 - Unique Maximum/Minimum Points: e.g., "The maximum value of function f is 10 at point x
=1", but we don’t want "The maximum value of function f is at least 10", because the
latter is not a fixed unique solution.

9 - Exact Complexity Results in Computational Complexity: e.g., "The time complexity of
algorithm A is exactly $\Theta(n^2)$" (not $\Omega(n^2)$ or $O(n^2)$, because big-O
and big-omega are not exact).

10 - Explicit number of solutions of an equation: e.g. "X has a unique solution y \in Y" is
accepted even if the numerical value of the number of solutions is not specified
because it can trivially be deduced that the number of solutions is 1, which is a
fixed answer. We also accept "If X, there are no solutions y \in Y" (implies 0
solutions). BUT we DON’T WANT the previous examples if the set Y in which we look for
answers is not clear.

11 - Equality of two numerical equations: e.g., \sum_{k=1}^n k^2 = \frac{n(n-1)}{2} because
we can assume the numerical fixed answer to be the difference of the 2 which is 0. You
MUST include these equalities even if $n$ is not fixed but rather a variable. You

MUST also include equations of the form "limit of f(n) = integral of g(x)"
12

13 Some examples of theorems that we don’t want:
14 - We DON’T want the theorems that contain if and only if when neither of the sides is

numerical ($x \in T$ does not represent a numerical value), e.g. "A graph is bipartite
if and only if it contains no cycles of odd length."

15 - We DON’T want theorems of the type "A holds if and only if there exists x such that X(x)
holds", but we DO WANT "A holds if and only if for all x, X(x) holds", where X(x) is

a fixed numerical value.
16 - We DON’T want the theorems that have any approximations, or any inequalities, or any

other non-deterministic statement. e.g. The theorems for which the main result
involves the Big-O notation, or where the main result proven in the theorem is that a
certain relation holds "if and only if n \geq x or n \leq y" MUST be rejected. We DO
NOT consider any theorems where the answer is not an equality or a fixed answer, i.e.
results of the type "n \geq 5" should NOT be considered, so just SKIP these types of
theorems.

17 - We DON’T want the theorems that state "X $\in$ complexity class Y" since Y can belong to
a bigger complexity class Z, so the answer is not unique.

18 - We DON’T want the theorems that state "X is isomorphic or homomorphic with Y", e.g.,
Chinese Remainder Theorem.

19

20

21 Important guidelines:
22 - if you cannot find a single, definitive answer, you should return an empty result
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23 - please be very strict about the theorem, if there is any ambiguity, you should return a
"false"

24 - Respond only in the specified JSON format
25

26 return in this exact JSON format:
27 {
28 "single_unique_answer": "true" if the theorem has a single, definitive answer,

otherwise "false"
29 "explanation": "explanation of if this theorem has a single, definitive answer,

otherwise an empty string",
30 }
31 """

1 SYSTEM_PROMPT_GENERATE_QA = r"""
2 You are a skilled problem setter for graduate-level mathematics and theoretical computer

science. You are provided with a set of theorems (called theorems_dataset), each of
which has already been verified to contain a single, definitive, and numerical answer.

3

4 Your task is to convert each verified theorem into a precise **question-answer (QA) pair
**. MAKE SURE TO NOT MENTION THE ANSWER TO THE QUESTION IN THE QUESTION ITSELF.

5

6 Your outputs must follow these rules:
7 1. The **question** should be a well-posed mathematical or theoretical problem that is **

clearly understandable to a graduate-level student**. Do not ask questions that are
easy to answer without any mathematical reasoning or easy to guess the answer. **You
must never begin your question with "Prove that"**

8 2. The **question must be solvable in principle with a unique numerical or mathematical
answer**, based solely on the information in the theorem.

9 3. The **answer** must be:
10 - Strictly and uniquely determined.
11 - Expressed as a number, closed-form expression, formula.
12 4. DO NOT introduce extra assumptions or background. Use only what is stated or implied

clearly by the theorem.
13 5. If a question naturally follows the structure of an identity (e.g., "What is the sum of

...?"), frame it that way.
14 6. All QA pairs must reflect **the exact scope of the theorem**. Do not generalize, weaken

, or strengthen its claim.
15 7. DO NOT generate a QA pair if the theorem is ambiguous. DO NOT generate a QA pair for

theorems where the main result to be proven is an inequality or a Big-O notation. We
MUST NOT include any kind of inequalities, questions about the lower/upper bounds, or
any asymptotic running time of algorithms, i.e. do not generate QA pairs for theorems
where the main result is of the type "n \geq 5".

16 8. DO NOT include in the question the answer to it, e.g. if a theorem states "The limit of
X is equal to Y," where Y is an expression of some parameters defined earlier in the
theorem, phrase the question in the manner "What is the limit of X in terms of the
given parameters?", with the associated answer "The limit of X is Y". DO NOT formulate
questions in the form "Prove the following relation..." since the answer will be

already included in the question. Moreover, if the main result of the theorem inquires
about the value of a parameter for which a relation holds, do not mention this result
in the question itself but rather ask "What is the value of the parameter for which

the relation holds?".
17 9. If you have a theorem where it says that a certain equation has a certain number of

solutions (single/unique solution, no solutions, an infinity of solutions, etc.) but
the acutal value of the solution is not given, consider the Question-Answer pair to be
of the form "What is the number of solutions to this equation?", i.e. even if the

theorem does not have an explicit numerical expression for the answer, you can
consider it to be a theorem with a fixed-answer, where the fixed-answer is the number
of solutions of the equation. However, if the numerical or closed-form of the solution
is mentioned in the theorem statement, it is preferred to formulate the question to

be "What is the solution to the following equation...?" rather than to inquire about
the number of solutions.

18 10. For theorems of the form "X has a certain property if and only if Y has a certain
property", pose the question in such a way so that the answer is the side of the "if
and only if" statement which indicates a clear, numerical expression and not an
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abstract definition, i.e. if a theorem states "X is Pareto optimal if and only if \Phi
(X) = 0", consider the question to be "If X is Pareto optimal, what is the value of \
Phi(X)?" and the answer to be "\Phi(X) = 0", since the relation \Phi(X) = 0 is a
numerical one, whereas the other part of the "if and only if statement", namely "X is
Pareto optimal" is an abstract property. Hence, you must NOT consider the question to
be "How is X if \Phi(X) = 0?" since the answer "X is Pareto optimal" is not a unique
one.

19 11. For theorems of the form "The following identity holds: X = Y", if the identity has
both X and Y as mathematical expressions that are neither closed-form, nor fixed
numerical values (i.e. if we have equality between two sums with complex formulas
rather than an equality of the type "X=5"), do not ask the question "What is the value
of X?" and the answer to be "Y", since Y might not be the unique answer to the

question. Rather, you must formulate the question to be "What is the value of X-Y?"
and the fixed, clear answer to be "X-Y = 0". In this pool of theorems with this
explicit QA pair, do not consider theorems where X is assumed to be a limit and Y the
value of the limit, since this case should be treated as in Condition 8.

20 12. For theorems of the form "The following identity holds: X = Y + ct", if the identity
has both X and Y as mathematical expressions that are neither closed-form, nor fixed
numerical values, you should ask the question "What is the value of X - Y?" and the
answer should be "ct" and not "What is the value of X - Y -ct?"

21 13. For theorems of the form "If X holds, then Y", formulate the QA pair to inquire about
what happens with Y when relation X holds, and not under what conditions Y holds (
since the condition X might not be unique if the theorem is not of the form if and
only if).

22 14. DO NOT generate a QA pair for theorems where the main result is the belonging to a
complexity class.

23 15. If the theorem states a result of the type "Y = |X|", where |X| indicates the
cardinality of the set X, formulate the question to be "What is the cardinality of X
in terms of ...?" and the answer to be "Y", but not the other way around, i.e. DO NOT
state "What is the value of Y?" and the answer to be "cardinality of X", since it does
not make sense from a logical point of view to phrase the question about a numerical

quantity rather than about the characteristic of a set that you must determine.
24

25 Return your output strictly in the following JSON format:
26 {
27 "question": "Clearly stated, unique-answer question derived from the theorem. if the

theorem is not good, return an empty string",
28 "answer": "The single, unique, exact answer derived from the theorem. if the theorem

is not good, return an empty string",
29 "is_good_theorem": "true" if the theorem is good, otherwise "false"
30 }
31 """

A.2. Prompts for Evaluation Model

We used the following system prompt and user prompt fed to GPT 4o for evaluating whether an LLM’s answer to a
mathematical question is correct or not.

1 system_prompt = r"""You are an expert mathematician tasked with evaluating the correctness
of an answer to a mathematical question. Compare the generated answer to the ground

truth answer and determine whether the generated answer is mathematically correct and
equivalent to the ground truth.

2

3 Please be very strict and rigorous in your evaluation, mark the answer as incorrect even
if it is 80% or 90% correct. Ensure the generated answer can be directly rendered in
standard LaTeX without requiring custom command definitions. Be precise and focus on
mathematical correctness, not formatting or style differences. Your evaluation should
be fair and consider that the same mathematical content can be expressed in different
ways."""

4

5 user_prompt = f"""QUESTION: {question} GROUND TRUTH ANSWER: {ground_truth} GENERATED
ANSWER: {final_answer} Carefully evaluate whether the generated answer is
mathematically correct and equivalent to the ground truth. Your response should only

13
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Figure 8. Samples eliminated in the final manual review phase from each category.

contain a JSON object with the following fields:
6 {{
7 "is_correct": boolean,
8 "explanation": "A concise explanation of why the answer is correct or incorrect, in a

clean LaTeX format"
9 }}

10 where is_correct is true if the answer is mathematically correct and equivalent to the
ground truth, and false if it isn’t.

11 """

A.3. Manual Review

For the datasets we analyze in Section 4, we rely on a human-based review to ensure the quality of the samples. As
noted in Section 3.2, for Math.arXiv we removed 5.2% bad samples, whereas for CS.arXiv we discarded 7.5%
samples. Figure 8 shows the percentages of manually discarded items that fall into each category (35 samples in total for
Math.arXiv and 9 samples for CS.arXiv). These samples were either theorems or QA pairs that did not have a unique
answer but which LLMs failed to filter out in the previous stages of the automated pipeline.

A.4. Category Distribution Across Construction Stages

Questions in our datasets are grouped into human-labeled categories based on their domain (e.g., arXiv paper categories).
Figure 9 shows how category distribution shifts throughout the dataset construction stages. Combinatorics (math.CO)
becomes increasingly dominant in later stages, as these papers tend to contain a large number of theorems, many of which
are well-suited for the Q&A format.

A.5. Pipeline for Mathematics Stack Exchange

The pipeline we describe in Section 3 is designed for arXiv papers. To retrieve and process samples from Mathematics
Stack Exchange, we need to adapt some steps. We first queried the corresponding API to retrieve users’ questions with
tags such as [limits], [definite-integrals], [integration]—which were expected to have a clear numerical answer—as well
as the top-ranked answer, if available. We extracted the HTML-formatted text and used an LLM to process the user’s post
into a statement and proof format, mirroring the theorems extracted from arXiv papers. We then applied a manual filtering
step to ensure statements have a fixed answer and that the answer is indeed correct (for this, we checked cited sources, as
well as the top-rated answer posted by other users). Finally, we fed the formulated theorem to an LLM to generate a QA
pair and filter trivial samples.
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Figure 9. Category distribution across different stages of dataset construction for Math.arXiv (05/2022 – 09/2022). The x-axis shows
subject categories (e.g., math.CO, math.NT, etc.), and the y-axis represents the percentage of the dataset each category comprises.
Notably, combinatorics (math.CO) becomes increasingly dominant in later stages, particularly in the final Q&A dataset.

A.6. Optional LaTeX Conversion

To improve human readability of our datasets, we incorporated a LaTeX formatting step where we ask a LLM to convert
each theorem into a self-contained and valid LaTeX code (this requires, for example, the expansion of any macros). We
verified that this step does not negatively impact the language model’s ability to formulate a QA pair or filter out low-quality
samples.

B. Additional Results
B.1. Finetuning

In Figure 10, we use OpenAI’s fine-tuning service to fine-tune GPT-4o-mini on our dataset. We present the detailed
training and test loss in Figure 11. To ensure reliability, we repeat the evaluation five times and report the mean and
standard deviation of the results. Surprisingly, we observe no statistically significant improvement.

Figure 11 shows the training and testing loss curves for OpenAI fine-tuning. The training loss decreases rapidly and
remains consistently low, indicating that the model is fitting the training data well. On the other hand, the testing loss
exhibits a fluctuating behavior and increases over time compared to the beginning. This pattern may justify the failure of
generalization of the model and further reinforces the idea that fine-tuning does not lead to improved performance.
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Figure 10. Accuracy of original vs. fine-tuned GPT-4o-mini on Math.arXiv.

Figure 11. Training (green) and testing (purple) loss curves from the OpenAI fine-tuning service. Fine-tuning on our dataset does not
show a clear improvement.

B.2. Difficulty Levels

We assessed the difficulty level of the samples in the datasets by using older, weaker models and checking their performance
on the samples. More specifically, we evaluated the performance of four older models from distinct families—Qwen3-
235B, Claude 3.5 Haiku, GPT-3.5 Turbo and Llama 3.3-70B.

Samples in the Hard category are the ones which have not been answered correctly by any of the aforementioned models,
whereas samples in the Medium and Easy categories are the ones which have been answered correctly by less than 50% of
the LLMs (i.e. 1-2 out of 4), and more than 50% of the models (i.e. 3-4 out of 4), respectively.

Figure 12 depicts the distribution of samples across categories in the CS.arXiv data collection, with 69.4% of the samples
being considered Hard. This distribution suggests that indeed our dataset reflects a hardness level appropriate for the
research communities.

Moreover, we show the accuracy per category for some of the best-performing models—o3, DeepSeek-R1, Gemini-2.5-
Pro—on CS.arXiv. Each of the three LLMs (except o3) has accuracy level decreasing substantially as the difficulty level
increases, e.g., DeepSeek-R1 has 100% accuracy on Easy samples and only 11.7% accuracy on Hard samples. This is an
expected pattern which reinforces the correct assessment of our samples in these three categories.

The higher accuracy of o3 on Medium samples when compared to that of Easy samples—75% versus 71.4%—does not
necessarily imply an abnormal behavior and can be justified by the difference in the number of samples from these two
categories, where we have 18% of the samples considered Medium difficulty and only 12.6% of them labeled as Easy. Es-
pecially for the Hard category, we spot a discrepance between the relatively high accuracy of o3, namely 31.2%, compared
to DeepSeek-R1 and Gemini-2.5-Pro, who both achieve less than 12% accuracy.
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Figure 12. Accuracy across different difficulty levels for best-performing models on CS.arXiv.

Along the same line of thought, Figure 13 shows the distribution for the Math.StackExchange dataset. We remark
that the distribution for this dataset is more spread, with the Medium difficulty questions being the ones that occur the most,
as opposed to the Math.arXiv and CS.arXiv distributions, where the questions were dominantly classified as Hard.
This reflects the nature of Math.StackExchange, which focuses on clarifications of undergraduate and graduate-level
concepts and computations, rather than innovative, research-level inquiries.
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Figure 13. Accuracy across different difficulty levels for best-performing models on math.stackExchange.
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B.3. Performance Across Categories

We have assessed the performance of the models on each subcategory (for CS.arXiv) and on each tag (for
Math.StackExchange) in order to understand whether some models perform particularly well on a certain category
of questions. In Figure 14, we show the accuracies of o3 and Gemini-2.5-Pro.

On one hand, we remark for CS.arXiv that, with the exception of Logic in Computer Science (cs.LO), where the models
have identical accuracies, o3 outperforms Gemini-2.5-Pro in every category. On the other hand, an important feature
that can be observed in Figure 14(a) is that o3 is better at solving questions from applied categories such as Discrete
Mathematics (cs.DM) and Machine Learning (cs.LG), while Gemini-2.5-Pro gets its highest accuracies on theoretical
topics such as Computational Complexity (cs.CC) and Information Theory (cs.IT). This is consistent with the behavior that
these two LLMs have for the Math.arXiv dataset.

For the Math.StackExchange dataset in Figure 14(b) we observe as well that o3 outperforms Gemini-2.5.-Pro in each
category. Moreover, the two LLMs follow a similar trend in the sense that their accuracy level per subcategory can be
roughly ordered in the same hierarchy structure. Both models perform best on Limits, suggesting this is a relatively easier
category where they can get fixed numerical answers correctly with high probability—more than 80%—, whereas their
performance decreases on more advanced topics such as Complex Analysis.
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Figure 14. Performance across different math domains in (a) CS.arXiv and (b) Math.StackExchange.
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B.4. Category Distribution of Questions

This subsection provides the statistics of how samples are distributed according to subdomains for each of the three datasets
under consideration, clearly presented in the subsequent three tables. The subdomains are a good indicator for highlight-
ing which mathematical domains are best for retrieving theorems along with question-answer pairs with a fixed, unique
numerical answer or closed-form expression.

An interesting observation is that Combinatorics (math.CO) is among the top frequent domains for both Math.arXiv
and CS.arXiv data collections. This suggests that problems in combinatorics are not only well-represented but also more
likely to have fixed-answer solutions which satisfy our benchmarking criteria and make the automated evaluation process
easy to be verified.

Category arXiv Tag Percentage (%)

Combinatorics math.CO 28.89
Number Theory math.NT 10.16
Algebraic Geometry math.AG 5.19
Probability math.PR 3.16
Geometric Topology math.GT 4.51
Group Theory math.GR 3.16
Information Theory math.IT 7.22
Optimization and Control math.OC 3.61
Discrete Mathematics cs.DM 4.51
Analysis of PDEs math.AP 1.13
Commutative Algebra math.AC 1.35
Machine Learning cs.LG 3.16
Representation Theory math.RT 1.35
Mathematical Physics math.MP 0.68
Rings and Algebras math.RA 1.35
Symplectic Geometry math.SG 3.61
Functional Analysis math.FA 2.93
Classical Analysis and ODEs math.CA 2.48
Differential Geometry math.DG 1.58
Complex Variables math.CV 1.58

Table 4. Percentage distribution of the top 20 most represented arXiv categories in the Math.arXiv (05/2022 – 09/2022) dataset.
Categories are not mutually exclusive; papers with multiple tags are counted under each corresponding category. The predominance
of questions in combinatorics and number theory is consistent with other recent math benchmarks (e.g., (Balunović et al., 2025; Mis-
erendino et al., 2025)) and likely reflects an abundance of constructive statements in these topics.
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Category arXiv Tag Percentage (%)

Information Theory cs.IT 49.55
Combinatorics math.CO 36.04
Data Structures and Algorithms cs.DS 29.73
Discrete Mathematics cs.DM 18.92
Computational Complexity cs.CC 17.12
Machine Learning cs.LG 10.81
Cryptography and Security cs.CR 8.11
Logic in Computer Science cs.LO 7.21
Computer Science and Game Theory cs.GT 3.60
Optimization and Control math.OC 3.60
Formal Languages and Automata Theory cs.FL 2.70
Logic math.LO 2.70
Databases cs.DB 1.80
Algebraic Geometry math.AG 1.80
Neural and Evolutionary Computing cs.NE 1.80
Commutative Algebra math.AC 1.80
Distributed, Parallel, and Cluster Computing cs.DC 1.80
Systems and Control cs.SY 0.90
Multiagent Systems cs.MA 0.90
Artificial Intelligence cs.AI 0.90
Information Retrieval cs.IR 0.90
Networking and Internet Architecture cs.NI 0.90
Numerical Analysis cs.NA 0.90
Rings and Algebras math.RA 0.90
Probability math.PR 0.90

Table 5. Percentage distribution of arXiv categories in the CS.arXiv dataset. Categories are not mutually exclusive; papers with
multiple tags are counted under each corresponding category.
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Category Percentage (%)

Integration 53.32
Limits 43.91
Calculus 33.76
Definite Integrals 25.09
Real Analysis 21.77
Sequences and Series 12.73
Complex Analysis 6.27
Analysis 5.72
Improper Integrals 5.35
Solution Verification 5.35
Multivariable Calculus 4.43
Derivatives 4.43
Limits Without Lhopital 4.06
Closed Form 3.32
Trigonometry 2.95
Convergence Divergence 2.77
Probability 2.77
Special Functions 2.77
Trigonometric Integrals 2.58
Contour Integration 2.03
Measure Theory 2.03
Indefinite Integrals 2.03
Complex Integration 1.85
Gamma Function 1.85
Epsilon Delta 1.66
Asymptotics 1.66

Table 6. Percentage distribution of the top 26 most represented tags in the Math.stackExchange dataset. Categories are not mutu-
ally exclusive; questions with multiple tags are counted under each corresponding category.
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B.5. How Context Improves LLM Performance on Mathematical Problems

Figure 15 depicts some examples of questions from CS.arXiv dataset which are correctly solved if the relevant context
is provided to the language model, but which are not answered properly when context is not provided.

Based on a manual verification of the samples, we observed that not providing context negatively impacts models in two
directions:

• LLMs cannot answer the question since they do not understand the notations of certain quantities, which are only
explained in the paper. In these cases, the context is crucial for the LLM since otherwise it either attempts to guess
what a notation means, or they simply do not try to answer and specify that the quantities are not known to it.

• LLMs cannot answer the question because it is considered hard if we do not provide context. This situation comprises
cases where the context presents some intermediate results or examples of proofs which are used for building up
the current theorem or for its proof. Feeding the context to the language model improves its approach into correctly
proving the question.

Question 1: For r ≥ 5, what is the value of gcover(BF(r)) expressed in terms of r?

➤ LLMs fail to correctly respond because the notation for the quantity gcover(BF(r)) is ambiguous without prior
definition.

Question 2: What is the expression for the zero-rate error exponent E(1)(0) in terms of a maximization over
q ∈ P(X ) and the function dB(x, x

′, P )?

➤ LLMs do not have knowledge of the function dB(x, x
′, P ) or the set P(X ) if the context is not provided.

Question 3: Let n > 1 be an integer and let A ⊆ Zn
2 be a maximal anticode of diameter one. What is the

maximum possible number of codewords in A?

➤ The LLM knows what an anticode represents, but the question is too hard to be answered correctly.

Question 4: Consider the complete bipartite graph Km,n with parameters satisfying m < n, n even, and (m +
n)|mn. What is the ATN of Km,n?

➤ The notion of ATN (Alon-Tarsi Number) is a common abreviation for language models, but the difficulty of the
question is too high for them to respond correctly.

Figure 15. Examples of questions in our CS.arXiv dataset that are not solvable by LLMs without the necessary context, but which
become solvable when the context is given.
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