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Abstract

In this paper, we introduce a benchmark for001
evaluating the overall quality of emergent lan-002
guages using data-driven methods. We de-003
fine the notion of the “quality” of an emergent004
language as its similarity to human language005
within a deep learning framework. We mea-006
sure this by using the emergent language as007
pretraining data for a downstream NLP tasks008
in human language—the better the downstream009
performance, the better the emergent language.010
We package this benchmark as an easy-to-use011
Python package that only requires a text file012
of utterances from the emergent language to013
be evaluated. Finally, we empirically test the014
benchmark’s validity using human, synthetic,015
and emergent language baselines.016

1 Introduction017

Neural language models learn many things in pre-018
training, but research suggests (Artetxe et al., 2020)019
that a substantial part of that knowledge is not sim-020
ply knowledge of a particular language or domain, but021
rather knowledge of “how to language.” We currently022
teach models to “language” using vast quantities of text023
dredged from the dark recesses of the Web—text that is024
full of bias, toxicity, and potential intellectual property025
violations. Ideally, we would be able to teach models to026
“language” without such compromises through the use027
of synthetic data, but mainstream approaches to synthe-028
sizing data produce outputs that do not have the same029
structural and social properties as human language.030

Emergent communication (EC), also called emergent031
language (EL), is a potential solution to this problem032
(Yao et al., 2022; Downey et al., 2023; Mu et al., 2023).033
Emergent languages are communication systems devel-034
oped among multiple agents in a reinforcement learning035
simulation. Because the conditions under which they036
develop mirror, reductively, the conditions under which037
languages develop among humans, there is reason to038
believe that ELs will ultimately be more like human039
language than other sources of synthetic data. However,040
up to this point, there is no way of quantifying—in a041
holistic way—how much like human languages any par-042
ticular EL really is, or to what extent it may provide043
useful pretraining signals.044

Research on deep learning-based emergent commu- 045
nication has seen the introduction of many metrics to 046
measure various aspects of the language. These metrics 047
quantify notions such as compositionality (Brighton and 048
Kirby, 2006; Lazaridou et al., 2018), expressivity (Guo 049
et al., 2023), ease-of-teaching Li and Bowling (2019), 050
and zero-shot transfer Bullard et al. (2020), to name a 051
few. Despite this proliferation of metrics, emergent lan- 052
guage largely lacks evaluation metrics. An evaluation 053
metric is specifically one that measures the overall qual- 054
ity of an emergent language and not simply a particular 055
property. Thus, we introduce XferBench, a data-driven 056
benchmark for evaluating the overall quality of emer- 057
gent languages using transfer learning with deep neural 058
models. 059

Evaluation metrics are critical in gauging progress 060
in technical fields since they quantify otherwise vague 061
notions of improvement over time. Benchmarks, in 062
particular, pair evaluation metrics with specific data and 063
evaluation procedures to compare various models on 064
common ground. Benchmarks and shared tasks have 065
been critical to the development of NLP from the Penn 066
Treebank (Marcus et al., 1993) to the WMT datasets 067
(Bojar et al., 2014) to GLUE (Wang et al., 2018). 068

In the field of emergent communication specifically, 069
Yao et al. (2022) introduced the idea of using corpus 070
transfer as means of practically applying emergent com- 071
munication to deep learning-based NLP via transfer 072
learning. In corpus transfer, a language model is pre- 073
trained on a corpus of emergent language utterances 074
before being tuned on real data for a human language- 075
based downstream task. As a corollary, they suggest that 076
the effectiveness of this transfer can serve as a means of 077
evaluating the quality of the emergent in a more general 078
sense. This is based on the intuition that the more simi- 079
lar two language are, the better transfer learning works 080
from one to the other (observed in Zoph et al. (2016), 081
for example). 082

This paper takes the transfer learning-as-an- 083
evaluation metric idea from Yao et al. (2022) and ex- 084
pands it into a full benchmark, XferBench, for emergent 085
languages (illustrated in Figure 1). An evaluation met- 086
ric for emergent languages in a benchmark format is 087
the first of its kind. Additionally, XferBench is unique 088
within emergent communication for being primarily 089
data-driven instead of relying on particular handcrafted 090
algorithms for quantifying a given phenomenon. This 091
means that XferBench can be easily scaled up in the 092
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Figure 1: Illustration of the architecture of XferBench.

future as the field of emergent communication advances093
and requires expanded means of evaluating emergent094
languages. Finally, XferBench is distributed as a user-095
friendly Python package, allowing researchers from096
across the field of emergent communication to apply097
XferBench to their own work on emergent communica-098
tion.099

Contributions This paper makes the following contri-100
butions: (1) Introduces XferBench, a data-driven bench-101
mark for evaluating the overall quality of an emergent102
language, the first of its kind in emergent communica-103
tion. (2) Provides a analysis of the quality human, syn-104
thetic, and emergent language according to XferBench.105
(3) Provides an easy-to-use Python implementation of106
XferBench.107

2 Related Work108

Emergent Communication This paper is situated in109
the field of emergent communication (a.k.a. emergent110
language) which is generally covered by the review111
Lazaridou and Baroni (2020). The field centers around112
the invention of language by deep neural networks typ-113
ically using multi-agent reinforcement learning tech-114
niques. The study of emergent communication is in-115
tended to (1) shed light on the origin and nature of116
the human language (LaCroix, 2019; Moulin-Frier and117
Oudeyer, 2020; Galke et al., 2022) and (2) provide an al-118
ternative approach to problems in NLP and multi-agent119
reinforcement learning which relies on constructing lan-120
guage from the ground up and not just pre-existing (hu-121
man) languages alone (Li et al., 2020; Yao et al., 2022;122
Mu et al., 2023; Downey et al., 2023).123

Transfer Learning Transfer learning for deep neural124
networks is a key component of XferBench and follows125
in general tradition of Zoph et al. (2016). Specifically,126
this paper draws heavily from Yao et al. (2022) (see127
also Papadimitriou and Jurafsky (2020); Artetxe et al.128
(2020)) which introduce the technique of corpus trans-129
fer for emergent language, that is, pretraining a neural130
model on an emergent language corpus before tuning131
it on a downstream human language task. In particular,132
this paper takes Yao et al. (2022)’s idea of using cor-133
pus transfer as a metric and adapts it into a benchmark134
pipeline which can easily be applied to new emergent135
languages.136

Benchmarks Work such as Guo et al. (2023) and 137
Perkins (2022) have looked at benchmarking particular 138
aspects of emergent languages, but XferBench is the 139
first of its kind in benchmarking the overall quality of 140
an emergent language. Yao et al. (2022) also explicitly 141
provide a metric for emergent language quality, but this 142
metric is restrictive in that it can only be applied to emer- 143
gent languages derived from a model that takes images 144
(that have captions available) as input; this conflicts with 145
the design goals of XferBench discussed below. 146

Outside of emergent communication, XferBench is 147
more analogous to benchmarks for generative models 148
(e.g., Fréchet Inception Distance (Heusel et al., 2017) 149
for image generation) than more traditional NLP bench- 150
marks like GLUE (Wang et al., 2018) or SQuAD (Ra- 151
jpurkar et al., 2016). This is because emergent com- 152
munication is a generative enterprise, where one of the 153
main goals is to create samples (emergent languages) 154
which resemble a target distribution (human languages) 155
either generally or in some particular respect. Further- 156
more, metrics like FID are primarily self-supervised, 157
data-driven measures of similarity along the same vein 158
of XferBench. This is in contrast to more traditional 159
NLP benchmarks which combine data-driven methods 160
with many human judgments (i.e., through labeled ex- 161
amples). 162

3 XferBench 163

3.1 Design Goals 164

We frame the primary design goals of the benchmark as 165
three desiderata: 166

D1 Quantitatively capture a meaningful notion of the 167
overall quality of an emergent language from a 168
data-driven perspective. 169

D2 Be applicable to any emergent language, not re- 170
stricted to a specific game, environment, or agent 171
architecture. 172

D3 Be relevant and accessible to the broader EC/EL 173
community, by being: (a) easy to interpret, (b) min- 174
imally biased with regards to language typology, 175
(c) runnable with minimal coding experience, and 176
(d) runnable on modest hardware. 177

While there are other consideration in the benchmark, 178
these form the bulk of the motivation. In the following 179
paragraphs we expand upon the motivation for each 180
design goal. 181
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D1: Quantifying quality D1 is the core of what a182
benchmark seeks to do: to quantify a desirable property183
of a given system such that it can be compared directly184
to other systems (i.e., be an evaluation metric). There185
are two distinct senses in which XferBench strives to-186
wards this goal. First, XferBench measures how good187
an emergent language is from a specifically machine188
learning perspective; that is, it addresses the question,189
“How useful would this emergent language be for practi-190
cal machine learning tasks?” The second sense is more191
general: XferBench addresses the question, “How sim-192
ilar is an emergent language to human language from193
the perspective of machine learning methods?” That is,194
it uses data-driven techniques to quantify the similarity195
between emergent language and human language.196

D2: Wide applicability D2 is intended to make Xfer-197
Bench practically applicable to a wide range of EC198
research. The field of EC has an especially diverse set199
of possible approaches, environments, agents, games,200
etc. Thus, it is especially salient that the benchmark be201
designed with interoperability in mind, having minimal202
assumptions as to the nature of the EC system being203
evaluated.204

The influence of this design goal is primarily seen205
through the use of a textual corpus as the sole input to206
the benchmark: the vast majority of EC systems gener-207
ate utterances which can be represented as sequences of208
discrete tokens.1 EC presents the opportunity for much209
richer representations of its language: leveraging the210
grounded semantics of the communication, incorporat-211
ing non-verbal behavior, and even directly interacting212
with the agents themselves. Yet such richer represen-213
tations also limit the range of EC systems to which214
XferBench could apply. Even if it is possible to define215
some universal EC interface that could allow for richer216
representations, the implementation cost for each and217
every EC system to be tested is significant compared to218
the ease of producing a corpus of utterances from the219
emergent language.220

D3: Easy-to-use D3 is critical to the success of Xfer-221
Bench as a practical tool for diverse field of researchers—222
a benchmark is expressly for the broader research com-223
munity, and, as such, should be widely usable. In par-224
ticular, D3a demands that XferBench be conceptually225
simple with results that can easily be reported, com-226
pared, and incorporated into a research program. D3b is227
relevant to both aspects of D1. First, if XferBench is to228
be gauge of an EL’s practical use in machine learning, it229
should seek to use a typologically diverse set of human230
languages in the downstream tasks. Second, since Xfer-231
Bench is trying to capture a general notion of “similarity232
to human language”, it important to test this against a233
wide range of language typologies so as not to mistak-234
enly narrow the criteria for “similar to human language”.235

1In the minority case, there are EC methods which use
communication channels that are, for example, continuous
(Eloff et al., 2021) or even pictorial (Mihai and Hare, 2021).

D3c is particularly important for incorporating interdis- 236
ciplinary researchers into the field of EC who might 237
not have a background in computer programming. Fi- 238
nally, D3d ensures that XferBench is accessible not only 239
to labs and researchers with fewer financial resources 240
but also makes it much easier to incorporate into the 241
fast-paced research and development cycles prevalent 242
in contemporary ML reserach. 243

3.2 Methods 244
The following procedure describes the benchmark (il- 245
lustrated in Figure 1): 246

1. Initialize a causal language model. 247
2. Train the model on the corpus of utterances from 248

the EL being evaluated. 249
3. Re-initialize the input and output (i.e., language 250

modelling head) embedding layers; this is the 251
“base model”. 252

4. For each downstream human language: 253

(a) Train the base model on the human language 254
data. 255

(b) Evaluate the cross-entropy on a held-out test 256
set of the human language. 257

5. Average the cross-entropies across the downstream 258
human languages; this is the corpus’s score on the 259
benchmark (lower is better). 260

The structure of the benchmark is derived from the cor- 261
pus transfer method presented in Yao et al. (2022). 262

Task For XferBench’s evaluation task, we choose 263
causal language modeling for a few different reasons. 264
In principle, language modeling is a component of a 265
wide variety of NLP tasks, especially generative tasks; 266
the prevalence of language modeling is in line with the 267
benchmark providing a very general notion of quality 268
that will be familiar to anyone acquainted with NLP. 269
On a practical level, language modeling is easy to ac- 270
quire data for—especially helpful for evaluating against 271
low-resource languages—and there are fewer hyperpa- 272
rameters and confounding variables compared to other 273
downstream tasks like machine translation or question- 274
answering. The main limitation from using language 275
modeling is that it itself is not a widespread downstream 276
task and so cannot guarantee direct correlation with met- 277
rics on more concrete downstream tasks (e.g., accuracy 278
on a QA task). 279

For the pretraining task we also use causal language 280
modeling. Due to requiring a wide applicability across 281
emergent languages (Design Goal 2), we select causal 282
language modeling for our pretraining task since it re- 283
quires only a corpus without any additional annotations 284
or stipulations. 285

Data The data for the transfer learning targets (viz. 286
human languages) comes from Wikipedia dumps (Foun- 287
dation) (under the GFDL and CC-BY-SA 3.0 License) 288
hosted by Hugging Face2. This dataset provides a 289

2
https://huggingface.co/datasets/wikimedia/wikipe

dia/tree/97323c5edeffcf4bd6786b4ed0788c84abd24b03
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diverse set of languages each with sufficient amounts290
of data. For our downstream human languages, we use291
the same 10 languages presented in Yao et al. (2022),292
namely: Basque, Danish, Finnish, Hebrew, Indonesian,293
Japanese, Kazakh, Persian, Romanian, and Urdu. Hav-294
ing a variety of languages reduces the likelihood that295
XferBench will be biased toward specific typologies of296
human language (Design Goal 3b).297

We use 15 and 2 million (106) tokens for the pretrain-298
ing and fine tuning phases, respectively following Yao299
et al. (2022). Datasets are always repeated or truncated300
to fit the required size so that the number of training301
steps stays constant.302

Tokenization For tokenization we use byte pair en-303
coding (BPE) (Gage, 1994) with a vocabulary size of304
30 000 for all human languages. Using BPE across all305
human languages is done primarily to simplify the im-306
plementation and keep tokenization methods consistent307
across all of the selected human languages. Emergent308
languages are generally considered to be pre-tokenized309
since most communication channels consist of one-hot310
vectors; thus, no additional tokenization or preprocess-311
ing is applied.3312

Model For our model, we use a small configuration of313
GPT-2 (Radford et al., 2019), similar to that used in Yao314
et al. (2022): 6 attention heads, 6 layers, context length315
of 256, and hidden size of 768 with the remainder of316
the model parameters being the same as the defaults in317
the Hugging Face Transformers implementation.4 This318
yields 65 million parameters in total. We kept the model319
on the smaller size to better suit it for the generally small320
amounts of data emergent languages corpora provide as321
well as to be more accessible (Design Goal 3d). Further322
details are listed in Appendix A.1.323

Metric Given the use of language modeling for our324
evaluation task, we use token-level cross-entropy as the325
evaluation metric on the downstream task. This is a very326
common metric, making the outputs easy to interpret327
(Design Goal 3a). Although perplexity is more common328
as an evaluation of language models, the exponential na-329
ture of perplexity leads to more circuitous analyses and330
interpretation in our case, whereas cross-entropy is com-331
paratively linear and additive (loosely speaking).5 For332
the final score of the benchmark, we take the arithmetic333
mean of the cross-entropy across the 10 downstream334
human languages. That is, we define the benchmark’s335

3Whether the tokens of an EL should be treated as words or
subword units is an open question, although tokens as words
is more common (but see Ueda et al. (2023) for tokens as sub-
word units). Practically speaking, many emergent languages
are small enough that applying a 30 000-item BPE model
would severely reduce the corpus size.

4
https://huggingface.co/docs/transformers/v4.36.1

/en/model_doc/gpt2#transformers.GPT2Config
5For example, it would make more sense to use log scales

and geometric means to average and compare perplexities, but
this would just be reverting back to cross-entropy!

score for a given source language s as as hs: 336

hs = mean
t∈T

(hs,t) (1) 337

where hs,t is the test cross-entropy of a model trained 338
on source language s and finetuned and tested on target 339
language t; T is the set of target languages. Since the 340
score is based on cross-entropy, a lower score means 341
better performance. 342

3.3 Implementation 343
XferBench is implemented as a small Python code- 344
base which relies primarily on Hugging Face Trans- 345
formers (Wolf et al., 2019) (Apache-2.0 license) 346
and PyTorch (Paszke et al., 2019) (BSD-3-Clause 347
license) libraries. To run the benchmark, all that 348
is required is to install the environment with ei- 349
ther pip or conda, and run python -m xferbench 350
path/to/corpus.jsonl (Design Goal 3c). The in- 351
put corpus is simply formatted as a newline-separated 352
list of integer arrays, specifically in the JSON Lines for- 353
mat (see Appendix B for an example); a Hugging Face 354
dataset (backed by Apache Arrow) can also be used for 355
larger input corpora. The script executes all of the steps 356
of the benchmark and yields a single floating point num- 357
ber which is that corpus’s score on XferBench. Finer- 358
grained functionalities are available and documented in 359
the codebase. The benchmark takes about 5.5 hours to 360
run on an NVIDIA GeForce RTX 2080 Ti: 90 minutes 361
to train the base model and 30 minutes for tuning and 362
testing on each of the target languages (Design Goal 363
3d). 364

The implementation is available at https://ex 365
ample.com/benchmark-repo under the MIT 366
license (not published during review process; see sup- 367
plementary materials for code). 368

4 Experiments 369

4.1 Procedures 370
XferBench The causal language modeling experiment 371
is simply running XferBench as described in Section 3.2 372
on the reference and emergent languages discussed in 373
Sections 4.2 and 4.3. 374

Machine translation The machine translation experi- 375
ment is structured similarly to XferBench except with 376
the downstream task being English-to-French transla- 377
tion (using the WMT 2014 dataset (Bojar et al., 2014)). 378
The primary purpose of this experiment is to determine 379
how well XferBench correlates with a more concrete 380
downstream task (especially one that incorporates lan- 381
guage modeling). We choose this language pair in part 382
to gauge the relative differences between the task lan- 383
guages and the baseline human languages (in contrast 384
to XferBench which we want to be largely agnostic 385
to human languages). Looking at our reference hu- 386
man languages, we have: French, the target language 387
itself; Spanish, closely related to French; Russian and 388
Hindi, distantly related to French; and Chinese, Korean 389
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and Arabic, not related to French. Instead of using a390
GPT-2–based model, we use a BART-based model since391
MT is a conditional generation task (see Appendix A.2392
for details). The pretraining dataset size is increased393
to 100 million due to the increased difficulty of this394
task compared to language modeling. We evaluate the395
translation performance with chrF (Popović, 2015) and396
BLEU (Papineni et al., 2002) using the default Hugging397
Face Evaluate metrics (derived from sacreBLEU (Post,398
2018)). Evaluation is performed with beam sizes of 1,399
3, and 5, and the resulting values are averaged.400

We present three settings for this experiment. The401
first is Full which tunes on 50 million source tokens at402
a higher learning rate (1 · 10−4 for training and 2 · 10−4403
for the AdamW optimizer (Kingma and Ba, 2015)),404
which we found empirically to lead to the best perfor-405
mance. The second is Frozen, in which we use the same406
configuration as Full but freeze all but the embedding407
layers before tuning the model for translation (as in Pa-408
padimitriou and Jurafsky (2020); Artetxe et al. (2020)).409
Finally, we also present Reduced which uses a smaller410
tuning dataset of 10 million tokens and lower learning411
learning (2 · 10−5); the lower rate helped the random412
baselines converge better as well as showed better dis-413
tinction between languages.414

4.2 Reference languages415
The following reference languages serve as a way to416
contextualize the results of XferBench as well as to417
validate that it is capturing some notion of the quality418
of the emergent languages (cf. Section 4.4).419

Human languages For our baseline line human lan-420
guages, we selected French, Spanish, Russian, Chi-421
nese, Korean, Arabic, and Hindi.6 Like the evaluation422
languages, the data is derived from Wikipedia articles423
(same source as the target languages).424

Synthetic languages For synthetic languages, we fol-425
low Yao et al. (2022) and use “Zipfian parentheses”426
from Papadimitriou and Jurafsky (2020). This synthetic427
dataset—referred to as Paren, real—is hierarchically428
balanced “parentheses” where each parenthesis is the429
token ID sampled from the unigram distribution of a hu-430
man language (hence “Zipfian”). This datasets mimics431
both the unigram distribution of a human language as432
well as the basic recursive hierarchical structure. This433
yields a reasonably strong yet simple baseline for syn-434
thetic data.435

We also test a fully synthetic dataset (Paren, synth)436
which uses the same hierarchical parenthesis genera-437
tion script from Papadimitriou and Jurafsky (2020), re-438
placing the data-derived unigram distribution with Zipf–439
Mandelbrot distribution:440

f(wi) =
1

(i+ β)
α (2)441

6The main reason for choosing the high-resource language
is due to the higher data requirements of machine translation
experiment discussed below.

Setting Observ. |V | |M | |C|
Disc, small one-hot 6 11 700
Disc, large one-hot 100 31 100M
Recon, large one-hot 100 31 31M
Mu+, CUB embed 20 10 1.3M
Mu+, SW embed 14 7 1.2M
Yao+ embed 4028 15 43M

Table 1: Summary of key hyperparameters in the tested
emergent languages. Observations are either one-hot
vectors or embeddings. |V |, |M |, and |C| refer to the
vocabulary, message, and corpus size respectively.

where f(wi) is non-normalized probability weight of 442
word w with 1-based index (rank) i, α = 1, β = 2.7 443
(Mandelbrot et al., 1953; Piantadosi, 2014). 444

Random baselines We use two random baselines. 445
The first is simply a uniform unigram distribution across 446
the whole vocabulary with no additional structure (re- 447
ferred to as Random). This baseline sheds light on 448
whether the optimization itself, no matter training data, 449
primes the network in some way for transfer learning. 450
The second “random” baseline is no pretraining at all 451
(No pretrain); that is, a network which has been freshly 452
initialized at the tuning stage. This baseline helps estab- 453
lish whether the pretraining on other languages has any 454
impact beyond the tuning data in isolation. 455

4.3 Emergent languages 456

We present a summary of the key hyperparameters of 457
emergent languages in Table 1. The emergent language 458
corpora below come from reproductions from existing 459
codebases with the exception of Yao et al. (2022), whose 460
emergent language corpus is available for download. 461
Emergent languages which have a corpus size smaller 462
than the required size are simply repeated and shuffled 463
as many times as necessary so that the model receives 464
the same number of optimization steps. 465

Generic signalling game The first set of emergent 466
languages we test are generic versions of the of the sig- 467
nalling game (reference game) as implemented in EGG 468
(Kharitonov et al., 2019) (MIT license). These games 469
use one-hot vectors to represent attribute–value observa- 470
tions, that is, observations are elements of the set V |A| 471
where V is the set of values and |A| is the number of at- 472
tributes. The signalling game is one of the simplest and 473
most used games in emergent communication research. 474

The first two language are Disc, small and Disc, large 475
which are two configurations of the discrimination ver- 476
sion of the signalling game. Here, the sender makes an 477
observation and sends a message; then, the receiver must 478
select the corresponding observation from a small set of 479
potential observations (like a multiple-choice question). 480
The small configuration consists of 4 attributes and 4 481
values with a small vocabulary size and medium mes- 482
sage length; this setting is intended to represent a toy 483
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environment that one might find in an emergent com-484
munication paper. The large configuration consists of485
12 attributes and 8 values with a larger vocabulary and486
longer message length. Both environments show 5 dis-487
tractor observations to the receiver (i.e., 6-way multiple488
choice). Both settings converge to a success rate >95%489
compared to a random baseline of 17%.490

The Recon, large environment is based on the recon-491
struction version of the signalling game. In this version,492
the receiver does not make any observations and in-493
stead must recreate the sender’s observation based on494
the message alone (similar to an autoencoder). The ob-495
servation space has 8 attributes and 8 values with other496
settings identical to that of Disc, large. Since the recon-497
struction game considerably harder, the game does not498
converge but does reach an overall accuracy of 0.014%499
and per-attribute accuracy of 24% compared to a ran-500
dom baseline of 0.0000060% and 13% random baseline,501
respectively. For details, see Appendix A.3.502

Mu and Goodman (2021) present the second pair503
of emergent languages which we test XferBench on504
(code under MIT license). The emergent communica-505
tion game is also a discriminative signalling game but506
with (1) richer observations and (2) more abstract in-507
formation needing to be communicated. In one setting,508
the observations are images from ShapeWorld (Kuhnle509
and Copestake, 2017) (Mu+, SW), a synthetic data of510
various geometric shapes, and the other setting is CUB511
(Wah et al., 2011) (Mu+, CUB) which contains labeled512
images of birds; both settings encode features with a513
CNN which is the passed to the sender and receiver. In514
the basic discriminative game, the observation made by515
the sender is the exact same one seen by the receiver.516
Mu and Goodman (2021) instead uses a “concept game”517
where the sender must communicate some abstract con-518
cept shared by a set of input images which the receiver519
will then have to a pick out from a different set of im-520
ages, some sharing the same concept (e.g., isolating the521
concept of “triangle” or “bird size”). The ShapeWorld522
and CUB games had test accuracies of 71% and 66%523
respectively compared to a random baseline of 50%,524
comparable to the reported values in the paper. All525
messages were taken from observations seen in training.526

Yao et al. (2022) present a standard discrimination527
game which uses natural images (Conceptual Captions528
(Sharma et al., 2018) (images only)) as inputs to the529
sender and receiver (code unlicensed but distributed on530
GitHub with paper). The accuracy for the particular531
emergent language corpus is not reported in the paper,532
but comparable experiments from the paper would sug-533
gest that it converged to an accuracy of >90% compared534
to a baseline of 0.4% (i.e., 255 distractors).535

4.4 Hypotheses536
The following hypotheses are directly relate to deter-537
mining whether or not XferBench is quantifying some538
meaningful notion of the quality of a language (i.e.,539
Design Goal 1).540

(H1) Human languages will perform best, followed 541
by the synthetic and emergent languages, followed by 542
the random baselines. 543

(H2) Human languages will have similar performance 544
on XferBench (also key for Design Goal 3b); the intu- 545
ition here is that human languages share deep structural 546
similarities. This hypothesis is supported, in part, by 547
Artetxe et al. (2020). For the MT experiment, we ex- 548
pect to see the following order of performance based on 549
language relatedness: {French}, {Spanish}, {Russian, 550
Hindi}, {Chinese, Korean, Arabic}. 551

(H3) Languages with a larger vocabulary, longer mes- 552
sage length, and larger corpora will perform better. In 553
particular, we expect Disc, large will perform better than 554
Disc, small since the former is a more “complex” ver- 555
sion of the latter. This hypothesis (for vocabulary size 556
and message length) is supported by some experiments 557
in Yao et al. (2022, app. B.4). 558

(H4) XferBench will correlate well with scores on 559
the machine translation task (i.e., cross-entropy will 560
correlate negatively with chrF). 561

5 Results 562

5.1 XferBench 563

In Figure 2 we show the results of the benchmark (i.e., 564
causal language modeling) on the various baselines. 565
Each mean is displayed with error bars showing the 566
95% confidence interval of mean as calculated with 567
bootstrapping (details in Appendix E). For reference, 568
the cross-entropies range from about 5.2 to 5.5 corre- 569
sponding to perplexities of 180 to 240. 570

The human languages show the best score (lowest 571
cross-entropy) on the benchmark with Chinese, Ko- 572
rean, and Arabic performing the best in one cluster 573
and French, Spanish, Russian, and Hindi performing 574
slightly worse in their own cluster (based on confidence 575
intervals). The synthetic and emergent languages all 576
show similar performance with only small variations 577
with the exception of the Disc, large language which is 578
better than the rest of the emergent languages but still 579
worse than the human languages. Finally, the random 580
baselines perform worse than the rest of the tested lan- 581
guages. No pretrain’s performance is worse than the 582
cluster of synthetic and emergent languages but better 583
than the fully random language (Random). 584

5.2 Machine Translation 585

The chrF scores of the machine translation experiment 586
are given in Table 2 (BLEU scores in Appendix D.1). 587
Additionally, we give Pearson correlation coefficients 588
between each setting and the scores generated by Xfer- 589
Bench (scatter plots shown in Appendix D.3). In all 590
settings, we see that XferBench is strongly correlated 591
with the results of the machine translation experiment. 592

For the Full setting, the results are somewhat incon- 593
clusive. Human languages perform the best and simi- 594
larly to each other. Paren, real, Paren, syn, Disc, large, 595
and Mu+, CUB all match the performance of human 596
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Figure 2: Average cross-entropy on target language datasets for each source language. Lower is better. Error bars
represent 95% confidence intervals.

Source Full Frozen Reduced

French 47.8 31.4 35.8
Spanish 48.0 27.9 34.8
Russian 47.6 29.0 37.2
Chinese 47.5 22.2 35.2
Korean 47.7 23.3 35.6
Arabic 47.8 27.6 36.6
Hindi 47.5 26.0 31.7
Paren, real 47.5 10.5 35.0
Paren, synth 48.2 12.0 34.3
Disc, large 47.7 24.7 30.7
Disc, small 14.3 16.2 17.3
Rec, large 22.5 18.4 25.4
Yao+ 4.0 20.1 25.6
Mu+, SW 3.3 18.4 23.3
Mu+, CUB 47.6 21.6 24.6
Random 1.8 3.0 19.7
No pretrain 11.4 4.3 28.1

Correl. with
XferBench

−0.75 −0.84 −0.79

Table 2: chrF scores across three English-to-French
machine translation settings. Correlation measured with
the Pearson correlation coefficient.

languages as well. The rest of the language perform597
significantly worse than the aforementioned languages,598
especially Yao+ and Mu+, SW (see Appendix F for sam-599
ple outputs). In the case of Random, the training loss600
did not decrease during training likely due to the high601
learning rate.602

In Frozen, we see the best correlation with the hy-603
pothesis regarding human languages (as well as with604
XferBench itself). Disc, large performs comparably to605
the worst human languages and better than the rest of the606
languages. The remainder of the synthetic and emergent607
languages perform worse than the human languages but608
better than the random baselines.609

Finally, Reduced (i.e., lower learning rate and tuning610
data) displays better separation than Full, but not as sig-611

nificant as Frozen. Human languages still perform the 612
best, although they are matched by the Paren languages. 613
Disc, large underperforms the human languages but still 614
outperforms all other emergent languages. All emergent 615
languages, apart from Disc., large underperform the 616
No pretrain baseline. The better half of languages per- 617
formed better (compared to themselves) with a higher 618
learning rate while the lower half performed better with 619
a reduced learning rate. 620

6 Discussion 621

6.1 Experiments 622

The basic ordering of the language by XferBench fol- 623
lows basic a priori assumptions: random baselines pre- 624
train the worst, human languages perform the best, and 625
emergent and synthetic languages are bounded above 626
and below by these (supporting Hypothesis 1). Human 627
languages cluster together in XferBench although there 628
is still variation with non-overlapping confidence inter- 629
vals (partially supporting Hypothesis 2). 630

Intra-EL differences Generally speaking, there is 631
very little variation shown by XferBench on the emer- 632
gent languages; nevertheless, we can still draw a hand- 633
ful of conclusions. First, Disc, large outperforms Disc, 634
small while sharing the same codebase, task, etc. and 635
differing only in message length, vocabulary size, obser- 636
vation space, and corpus size (supporting Hypothesis 3). 637
This result matches the trend seen in Yao et al. (2022) 638
that larger vocabularies and message lengths in an emer- 639
gent language lead to better performance on downstream 640
data. On the other hand, Disc, small performs similarly 641
to other languages with larger vocabularies and longer 642
message lengths (contradicting Hypothesis 3). 643

Second, it seems that the underlying complexity of 644
the emergent communication game does not directly 645
correlate with XferBench score: the abstract visual rea- 646
soning of Mu+, SW and Mu+, CUB does not lead to it 647
outperform Disc, small. Additionally, the richer observa- 648
tions (i.e., image embeddings) of Mu+, CUB and Yao+ 649
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also do not, by their mere presence, confer an advantage650
to the emergent language with respect to XferBench.651

Finally, Disc, large and Recon, large both share hy-652
perparameters in terms of the vocabulary size, message653
length, and corpus size, yet Disc, large shows signifi-654
cantly better performance on XferBench. This indicates655
that XferBench is not solely concerned with surface-656
level features as the nature of the game (e.g., discrimi-657
nation versus reconstruction, success rate) is relevant as658
well.659

Correlation with MT The results from the machine660
translation experiment show strong, though not perfect,661
(negative) correlation with XferBench (supporting Hy-662
pothesis 4). For example, in all cases, Disc, large out-663
performs all other emergent languages. This strongly664
supports the notion that XferBench performance is pre-665
dictive of downstream performance on more concrete666
NLP tasks.667

The results from the Full setting of the MT experi-668
ment do show some correlation with XferBench but fail669
to show expected trends in other ways. For example,670
there is no clear ordering among the human languages671
(e.g., French does not outperform Arabic). Addition-672
ally Yao+ and Mu+, SW drastically underperform the673
other emergent languages and the No pretrain baseline.674
We suspect that these aberrations from expected results675
come in part due to the high learning rate which cause676
unstable training or generation. On the other hand, the677
Frozen setting gives us the clearest ordering of human678
languages that matches with a priori expectations; this679
setting also has the strongest correlation with XferBench680
scores. The Reduced setting shows better correlation681
than Full but is not as clear as Frozen.682

Random baselines In all of our experiments, the pre-683
training on random tokens (Random) performed notably684
worse than not pretraining at all (No pretrain), suggest-685
ing that ill-conditioning the neural network can be a686
significant hindrance to performing well on XferBench.687
This is important to note in light of the fact that a per-688
fectly one-to-one compositional language describing689
uniformly sampled attribute–value vectors would yield690
a corpus with a uniformly random unigram distribution.691
This is to say, a fully compositional language, which is692
often seen as desirable in emergent communication re-693
search, could make for a very poor source of pretraining694
data as shown by Random’s performance on XferBench.695

This fact along with the observations about sensitiv-696
ity to learning rate indicates that performance on Xfer-697
Bench is not simply a function of the particular features698
of the emergent language in relation to the downstream699
human languages but also a function of the dynamics700
of optimization (i.e., priming the model to adapt well).701
Although this increases the difficulty of developing and702
interpreting a tool like XferBench, it is almost an un-703
avoidable part of deep learning methods.704

6.2 Future work 705

We identify three main directions for future work with 706
XferBench. The first direction is determining what Xfer- 707
Bench is measuring and how its scores correlate with 708
the different factors of emergent languages. Yao et al. 709
(2022, app. B.4) pursued this on a small scale with fac- 710
tors like vocabulary size and message length, but there 711
exist a host of other factors worth exploring: speaker 712
model size, game design, language entropy, observation 713
modality, etc. 714

The second direction is more extensively investi- 715
gating the correlation of XferBench with downstream 716
tasks. We would expect that tasks that rely heav- 717
ily on a language model—such as automatic speech 718
recognition, abstractive summarization, and generative 719
question-answering—to correlate well with XferBench. 720
On the other hand, tasks that are more focused on 721
classification—such as named entity recognition, senti- 722
ment analysis, and multiple choice question-answering— 723
might not correlate as well. 724

Finally, XferBench would benefit greatly from im- 725
proved compute efficiency. For example, if the results 726
of XferBench could be replicated with a fraction of the 727
training steps, it could (1) allow for a larger number of 728
downstream languages to be tested which would reduce 729
the size of the confidence intervals, allowing more more 730
precise scoring. And (2), it would open the door to us- 731
ing larger models which would better capture the deeper 732
structures of language and likely correlate better with 733
realistic downstream tasks. 734

7 Conclusion 735

In this paper we have introduced XferBench, a first- 736
of-its-kind benchmark for evaluating the quality of an 737
emergent language corpus based on its transfer learn- 738
ing performance on human languages. This approach 739
to evaluating emergent language scales with data and 740
compute as opposed to requiring increasingly complex 741
handcrafted rules to measure the desirable qualities of 742
emergent language. We provide empirical results of 743
XferBench across human, synthetic, and emergent lan- 744
guages and demonstrate that these results correlate with 745
downstream performance on a machine translation task. 746
XferBench is implemented as an easy-to-use Python 747
package that will permit researchers in the field to easily 748
apply XferBench to new emergent languages. 749

8 Limitations 750

The first limitation of XferBench is that it relies on a 751
restricted interface with the emergent communication 752
system. With emergent communication we have ac- 753
cess not only to the grounding of all of the utterances 754
of the emergent language but also full access to the 755
agents themselves. Language is fundamentally a con- 756
textual phenomenon, so only a small part of it can be 757
understood from looking at corpora in isolation. Thus, 758
although XferBench is much more broadly applicable 759
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because of this restricted interface, it is also quite lim-760
ited in what it can detect from a theoretical point of761
view.762

The other set of limitations we will discuss have to do763
with the model and data size. First, the model and data764
size (60M parameters and 15M tokens) are quite small765
by contemporary standards, limiting the direct applica-766
bility of results from XferBench to relevant downstream767
tasks involving large language models, for example. On768
the other hand, scaling up the models, data, and methods769
of XferBench comes with its own difficulties. First, it770
would start to bias the benchmark towards high-resource771
languages, as only those could provide the necessary772
data to accommodate larger models. Second, it would773
make XferBench, which is already relatively slow as a774
metric (6 GPU-hours) even slower. This would decrease775
the speed of the iterative design process of emergent776
communication systems and, thus, the utility of the met-777
ric as a whole.778
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transformers/v4.36.1/en//model_doc/g983
pt2#transformers.GPT2Config.984

• Model: GPT-2985
• Tokenizer: Byte pair encoding986
• Hidden size: 768 (default)987
• Vocabulary size: 30 000988
• Context length: 256989
• Number of layers: 6990
• Number of attention heads: 6991
• Learning rate: 1 · 10−4992
• Optimizer: AdamW993
• Weight decay: 0.01994
• Learning rate schedule: linear (to 0)995
• Batch size: 32996
• Train dataset size: 15 · 106 tokens997
• Train epochs: 5998
• Tune dataset size: 2 · 106 tokens999
• Train epochs: 101000

A.2 Machine translation1001
For values not listed, see Hugging Face Transformers’1002
defaults at https://huggingface.co/docs/1003
transformers/v4.36.1/en/model_doc/ba1004
rt#transformers.BartConfig. The following1005
is for the Full setting.1006

• Model: BART1007
• Training objective: text infilling only (see note1008

below)1009
• Tokenizer: Byte pair encoding1010
• Hidden size: 5121011
• Vocabulary size: 30 0001012
• Context length: 5121013
• Number of encoder layers: 61014
• Number of decoder layers: 61015
• Number of encoder attention heads: 81016
• Number of decoder attention heads: 81017
• Encoder feedforward dimension: 20481018
• Decoder feedforward dimension: 20481019
• Train learning rate: 1 · 10−41020
• Tune learning rate: 2 · 10−41021
• Optimizer: AdamW1022
• Weight decay: 0.011023
• Learning rate schedule: linear (to 0)1024
• Batch size: 321025
• Train dataset size: 100 · 106 tokens1026
• Train epochs: 51027
• Tune dataset size: 50 · 106 tokens1028
• Train epochs: 31029
• Test beam size: 1, 3, 5 (final metric averaged across1030

each size)1031
• Test context size: 1281032

The objective used to pretrain BART was text infilling1033
only; we cannot use the sentence permutation objective1034
because we do not know a priori what constitutes a1035
sentence in an emergent language, hence we do not use1036
it for any settings. For the Frozen setting, all is as above,1037
but all non-embedding layers are frozen for the duration1038
of tuning. For the Reduced setting, all is as above except1039
for the following:1040

• Tune learning rate: 1 · 10−51041
• Tune dataset size: 10 · 1061042

A.3 Generic signalling game 1043
We use the following hyperparameters for the Disc, 1044
small emergent language. 1045

• Game (from EGG): 1046
egg.zoo.basic_games.play 1047

• Message optimization: Gumbel-softmax (as op- 1048
posed to REINFORCE) 1049

• Game type: discrimination 1050
• Number of attributes: 4 1051
• Number of values: 4 1052
• Number of distractors: 5 1053
• Vocabulary size: 6 1054
• Max message length: 10 1055
• Number of examples: 32 768 1056
• Batch size; 1024 1057
• Number of epochs: 10 1058
• Sender hidden size: 256 1059
• Receiver hidden size: 512 1060
• Sender embedding size: 32 1061
• Receiver embedding size: 32 1062
• Sender network type: GRU 1063
• Receiver network type: GRU 1064
• Learning rate: 0.001 1065

The Disc, large setting uses the same hyperparameters 1066
as above with the exception of the following. 1067

• Number of attributes: 12 1068
• Number of values: 8 1069
• Number of distractors: 5 1070
• Number of examples: 3.5 · 106 1071
• Max message length: 30 1072
• Vocabulary size: 100 1073
• Number of epochs: 100 1074

The Recon, large setting is as in Disc, large with the 1075
following changes. 1076

• Game type: reconstruction 1077
• Number of attributes: 8 1078
• Number of distractors: N/A 1079
• Number of examples: 1 · 106 1080
• Number of epochs: 10 1081

B Example of benchmark input format 1082
The input format for the benchmark is simple: integer 1083
arrays in a JSON format separated by newlines (i.e., 1084
JSON Lines, JSONL, *.jsonl). The following is an 1085
example of file contents in this format: 1086

[3, 1, 4, 1, 5, 9, 2] 1087
[6, 5, 3, 5, 8, 9, 7, 9, 3] 1088
[2, 3, 8, 4] 1089
[6, 2, 6, 4, 3, 3] 1090
[8, 3, 2, 7, 9, 5, 0, 2, 8, 8, 4] 1091

C Computing resources used 1092

See Table 3 for rough estimates of the compute used 1093
in writing this paper. Most experiments were run on a 1094
shared cluster comprising approximately 150 NVIDIA 1095
A6000 (or comparable) GPUs. 1096
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Item Base GH n items Total

XferBench 6 45 270
MT 8 50 400
Other experiments 2 50 100

Total 770

Table 3: Estimate of compute used for this paper in
GPU-hours (specifically NVIDIA RTX 2080 Ti–hours).

Source Full Frozen Reduced

French 12.93 5.33 6.61
Spanish 13.32 4.52 6.35
Russian 12.93 4.37 7.02
Chinese 12.71 3.04 6.03
Korean 12.83 2.95 6.36
Arabic 13.12 4.16 6.74
Hindi 12.72 3.20 5.24
Paren, real 12.60 0.65 6.26
Paren, synth 13.19 0.82 6.15
Disc, large 12.93 2.08 4.44
Disc, small 0.17 0.19 0.38
Rec, large 1.92 0.86 2.50
Yao+ 0.01 1.04 2.57
Mu+, SW 0.00 1.05 1.86
Mu+, CUB 12.71 1.45 2.35
Random 0.00 0.00 1.02
No pretrain 0.10 0.06 3.43

Table 4: BLEU scores for machine translation experi-
ment.

D Additional results 1097

D.1 BLEU scores for machine translation 1098

See Table 4. 1099

D.2 Raw cross-entropies on XferBench 1100

See Table 5. 1101

D.3 Scatter plots for XferBench and MT 1102
See Figure 3. 1103

E Cross-entropy confidence interval 1104

computation 1105
Let s ∈ S and t ∈ T represent source and target 1106
languages, respectively. hs,t represents the test cross- 1107
entropy of a model pretrained on s and evaluated on t. 1108
As sated in Equation (1), the score on XferBench is the 1109
mean cross-entropy across all target languages: 1110

hs = mean
t′∈T

(hs,t′) . (3) 1111

We would like to calculate a confidence interval (i.e., h−
s 1112

and h+
s ) for a source language’s mean cross-entropy us- 1113

ing the different cross-entropies on the target languages 1114
(i.e., hs,t for t ∈ T ), yet these samples are not i.i.d., 1115
since the mean of cross-entropy each target language 1116
can vary. Thus, if we would like to use bootstrapping to 1117
calculate confidence intervals, we must first normalize 1118
the cross-entropies. Let ĥs,t be the normalized score: 1119

ĥs,t =
hs,t − means′∈S (hs′,t)

stdevs′∈S (hs′,t)
. (4) 1120

Given the normalized scores, we can now bootstrap in 1121
order to compute confidence intervals for ĥs (i.e., in the 1122
normalized space).7 Let ĥ+

s and ĥ−
s be the upper and 1123

lower bounds of the confidence interval computed using 1124
bootstrapping in the normalized space. We can now 1125
translate these back into the raw cross-entropy space 1126
using the means and standard deviations from before: 1127

h+
s = ĥ+

s · stdev
s′∈S

(hs′,t) + mean
s′∈S

(hs′,t) (5) 1128

h−
s = ĥ−

s · stdev
s′∈S

(hs′,t) + mean
s′∈S

(hs′,t) . (6) 1129

F Error analysis 1130
In the Full setting of the machine translation task, the 1131
Yao+ and Mu+, SW settings perform worse than ex- 1132
pected (a priori and compared to the other results in 1133
the setting). Validation loss converged while chrF and 1134
BLEU scores remained near zero. We provide a couple 1135
examples (taken from the predefined test set of WMT 1136
2014) of model output to provide some insight into the 1137
reason for this. No post processing used, generation 1138
is capped at 50 tokens, and “\u0000” represent single 1139
non-printable characters. 1140

7This is not intended to be statistically rigorous. Our cross-
entropies are unlikely to be normally distributed, but this still
be helpful for generally gauging uncertainty.
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Source Danish Basque Persian Finnish Hebrew Indonesian Japanese Kazakh Romanian Urdu

French 4.93 6.03 5.04 5.62 5.48 4.87 5.23 5.46 5.15 4.43
Spanish 4.92 6.06 5.03 5.61 5.47 4.82 5.25 5.46 5.12 4.42
Russian 4.94 6.04 5.04 5.65 5.48 4.88 5.27 5.48 5.14 4.45
Chinese 4.89 6.02 5.01 5.58 5.43 4.76 5.18 5.44 5.12 4.39
Korean 4.89 6.01 5.02 5.57 5.44 4.78 5.20 5.45 5.12 4.38
Arabic 4.90 6.02 5.02 5.59 5.45 4.81 5.22 5.44 5.13 4.40
Hindi 4.94 6.06 5.08 5.65 5.47 4.83 5.29 5.52 5.20 4.46
Paren, real 5.07 6.11 5.11 5.75 5.59 5.06 5.38 5.57 5.22 4.56
Paren, synth 5.08 6.13 5.14 5.74 5.58 5.09 5.43 5.58 5.26 4.57
Disc, large 5.00 6.06 5.11 5.71 5.52 4.92 5.34 5.56 5.25 4.49
Disc, small 5.09 6.06 5.17 5.80 5.59 5.05 5.41 5.65 5.31 4.56
Rec, large 5.09 6.06 5.16 5.79 5.57 5.04 5.41 5.64 5.30 4.55
Yao+ 5.07 6.03 5.17 5.79 5.56 5.03 5.41 5.65 5.31 4.56
Mu+, SW 5.09 6.10 5.18 5.80 5.58 5.05 5.42 5.65 5.33 4.58
Mu+, CUB 5.08 6.06 5.18 5.79 5.58 5.05 5.42 5.65 5.32 4.56
Random 5.23 6.17 5.31 5.92 5.71 5.22 5.55 5.76 5.45 4.72
No pretrain 5.17 6.10 5.23 5.85 5.66 5.14 5.47 5.68 5.38 4.65

Table 5: Cross-entropies across all source and target languages.
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Figure 3: Scatter plots showing XferBench score versus machine translation score.
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Example 1 Input: “And while Congress can’t agree1141
on whether to proceed, several states are not waiting.”1142

Reference: “Et tandis que les membres du Congrès1143
n’arrivent pas à se mettre d’accord pour savoir s’il faut1144
continuer, plusieurs États n’ont pas attendu.”1145

[Model pretrained on] French: “#Et alors que le Con-1146
grès ne peut pas convenir de poursuivre, plusieurs États1147
ne sont pas en attente. » (traduction libre) Le Parlement1148
européen. Le Parlement européen est d’avis que le Par-1149
lement européen doit être en mesure de faire preuve#”1150

Disc, large: “#Et bien que le Congrès ne puisse1151
pas convenir de la marche à suivre, plusieurs États ne1152
sont pas en attente.\u2028\u2028[Traduit par la Rédac-1153
tion]\u2028(Traduit par la Rédaction)\u2028(Tra#”1154

Yao+: “#Annexe II, par.\xa02.2.2.2.2.2.2.2.2.2.2.2.2.1155
2.2.2.2.2.2.2.2.#”1156

Mu+, SW: “#Annexe II.\xa0\xa0: Appendice I.\xa0I.1157
\xa0I.\xa0I.\xa0I.\xa0I.\xa0I.\xa0I.\xa0I.\xa0I.\xa0I.1158
\xa0I.\xa0I.\xa0I#”1159

Example 2 Input: “This really is a must for our na-1160
tion.”1161

Reference: “Cela est vraiment indispensable pour1162
notre nation.”1163

French: “#C’est vraiment une nécessité pour notre1164
nation. Nous devons y parvenir. Nous devons y par-1165
venir. Nous devons y parvenir. Nous devons y parvenir.1166
Nous devons y parvenir. Nous devons y parvenir. Nous1167
devons y parvenir. Nous devons y#”1168

Disc, large: “#C’est vraiment un devoir pour1169
notre nation. C’est un devoir.\u2028\u2028(...)\u20281170
\u2028(...)\u2028(...)\u2028(...)\u2028(...)\u2028(...)1171
\u2028(...)\u2028(#”1172

Yao+: “#Annexe II, par.\xa02.2.2.2.2.2.2.2.2.2.2.2.2.1173
2.2.2.2.2.2.2.2.#”1174

Mu+, SW: “#Annexe II.\xa0\xa0: Appendice I.\xa0I.1175
\xa0I.\xa0I.\xa0I.\xa0I.\xa0I.\xa0I.\xa0I.\xa0I.\xa0I.1176
\xa0I.\xa0I.\xa0I#”1177

Discussion Although all of the models have trouble1178
terminating properly, the French and Disc, large models1179
(which have high chrF scores) clearly condition their1180
generation on the text, whereas Yao+ and Mu+, SW give1181
the same output regardless of the input. Although this1182
is unexpected, we can see in the Full setting in Figure 31183
that there is sharp drop off between high-performing1184
and low-performing languages. We suspect that the1185
higher learning rate during tuning caused this bimodal1186
distribution of results and is at least in part responsible1187
for the poor performance Yao+ and Mu+, SW models1188
on the MT experiment’s Full setting.1189
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