
Published as a conference paper at ICLR 2025

ASSEMBLEFLOW: RIGID FLOW MATCHING WITH INER-
TIAL FRAMES FOR MOLECULAR ASSEMBLY

Hongyu Guo
National Research Council Canada
University of Ottawa
hongyu.guo@uottawa.ca

Yoshua Bengio
Mila - Québec AI Institute
Université de Montréal
CIFAR AI Chair
yoshua.bengio@mila.ca

Shengchao Liu
Université de Montréal
shengchao.liu@umontreal.ca

ABSTRACT

Molecular assembly, where a cluster of rigid molecules aggregated into strongly
correlated forms, is fundamental to determining the properties of materials. How-
ever, traditional numerical methods for simulating this process are computationally
expensive, and existing generative models on material generation overlook the
rigidity inherent in molecular structures, leading to unwanted distortions and in-
valid internal structures in molecules. To address this, we introduce AssembleFlow.
AssembleFlow leverages inertial frames to establish reference coordinate systems at
the molecular level for tracking the orientation and motion of molecules within the
cluster. It further decomposes molecular SE(3) transformations into translations in
R3 and rotations in SO(3), enabling explicit enforcement of both translational and
rotational rigidity during each generation step within the flow matching framework.
This decomposition also empowers distinct probability paths for each transforma-
tion group, effectively allowing for the separate learning of their velocity functions:
the former, moving in Euclidean space, uses linear interpolation (LERP), while the
latter, evolving in spherical space, employs spherical linear interpolation (SLERP)
with a closed-form solution. Empirical validation on the benchmarking data COD-
Cluster17 shows that AssembleFlow significantly outperforms six competitive deep
learning baselines by at least 45% in assembly matching scores while maintaining
100% molecular integrity. Also, it matches the assembly performance of a widely
used domain-specific simulation tool while reducing computational cost by 25-fold.

1 INTRODUCTION

Figure 1: Illustration of the assembly of a cluster of three
molecules transitioning from a weakly correlated structure
(left) to a strongly correlated crystal structure (right). A
key challenge for existing generative models in material
generation is preserving the rigidity of each molecule
throughout this transformation in 3D space.

Deep learning methods have been revolution-
izing scientific research across various do-
mains, enabling breakthroughs in fields such
as drug discovery (Yu et al., 2024), material
science (Merchant et al., 2023), and molecular
design (Loeffler et al., 2024). For instance,
protein folding systems have demonstrated un-
precedented accuracy and creativity in design-
ing protein structures (Jumper et al., 2021;
Baek et al., 2021), driving innovation in drug
discovery. These advancements underscore
the transformative potential of machine learn-
ing in tackling complex scientific problems.

Molecular assemble or crystallization is one such complex process where rigid molecules transition
from a weakly correlated arrangement to a highly ordered, strongly correlated structure. During this

1

Published as a conference paper at ICLR 2025

Figure 2: (a, b): The molecule’s center of mass (CoM) is used as the reference point for translation and
interpolation in Euclidean space. (c, d): An inertial frame serves as the reference coordinate system, tracking
rigid molecular rotation—where rotation operations are implemented using quaternion representation—and
enabling interpolation in spherical space.

process, each molecule is approximated to maintain its shape and structure unchanged as it moves
in the 3D space, as illustrated in Figure 1. Crystallization plays a pivotal role in determining the
physical properties of materials, including their mechanical strength, electrical conductivity, and
thermal stability (Porter et al., 2009; Carter & Norton, 2013), making it a key process in material
science (Ashby & Jones, 2012), pharmaceuticals (Hilfiker, 2006), and nanotechnology (Gonsalves
et al., 2000). For example, the crystalline form of a drug can affect its solubility and bioavailabil-
ity (Byrn et al., 1999; Healy et al., 2017); Similarly, precise control over molecular arrangements is
key to optimizing the electronic and catalytic performance of organic semiconductors, polymers, and
molecular catalysts (Saparov & Mitzi, 2016).

Traditional numerical methods have long been employed to simulate the crystallization pro-
cess (Martínez et al., 2009; Van Der Spoel et al., 2005), but they are often computationally expensive
and inefficient, limiting their scalability and practical use in large-scale applications. On the other
hand, despite the importance of crystallization, existing machine learning methods struggle to capture
the physical constraints critical to this process. A major limitation is the failure to account for the
inherent rigidity of molecular structures during crystallization (Liu et al., 2024c), often leading to un-
wanted distortions and invalid internal structures, i.e., non-rigid molecules. In an assembly, molecules
must retain their rigid atomic structures, as this rigidity is essential for producing meaningful packing
arrangements. However, current generative models for molecular crystallization treat molecules as
flexible entities (Liu et al., 2024c), resulting in physically unrealistic packing structures and atomic
arrangements, failing to retain individual molecule’s structure intact.

To address these limitations, we introduce AssembleFlow, a novel framework specifically designed to
incorporate the rigid body constraints inherent in molecular assembly or crystallization. As illustrated
in Figure 2, AssembleFlow leverages inertial frames to establish reference coordinate systems for
assembling molecules. Because SE(3) is the semi-direct product of the rotation group SO(3) and the
translation group R3, we can further decompose the group SE(3) transformations into translations
in R3 (Figure 2 (a, b)) and rotations in SO(3) (Figure 2 (c, d)). Such decomposition allows the
explicit enforcement of both translational and rotational rigidity at the molecular level effectively,
ensuring that each molecule in the cluster moves as a unified, rigid body throughout the crystallization
process. During such enforcement, AssembleFlow employs a distinct approach for learning the
SE(3)-equivariant velocity functions associated with translations and rotations. For translations,
it uses linear interpolation (LERP) in Euclidean space, while for rotations, it leverages spherical
linear interpolation (SLERP) in spherical space, with a closed-form solution. This distinction in
handling the translation and rotation groups allows AssembleFlow to accurately model the rigid
transformations of molecules during each prediction and generation step within the flow matching
framework (Lipman et al., 2022; Liu et al., 2022; Albergo & Vanden-Eijnden, 2022).

We empirically evaluate AssembleFlow using the benchmarking crystallization dataset COD-
Cluster17. The quantitative results reveal that AssembleFlow significantly outperforms six competi-
tive deep learning baselines by at least 45% in terms of assembly matching score. Also, AssembleFlow

2

Published as a conference paper at ICLR 2025

exhibits strong assembly performance compared to a widely used domain-specific simulation tool for
molecular assembly, achieving this with a 25-fold reduction in computational cost. Furthermore, we
present qualitative results, including atomic collision properties of predicted crystals, which further
demonstrate AssembleFlow’s effectiveness in preserving and modeling the rigidity of the molecular
crystallization and assembly process. Our work is the first to implement rigid generation in SE(3)
space for molecular assembly. We also want to mention that in what follows, we use molecular
assembly, crystallization, and molecular packing interchangeably.

2 PRELIMINARIES

Molecular crystallization. Molecular crystallization is a transition of molecules from weakly
correlated structures to strongly correlated structures, e.g., from liquid or gas phase to solid phase, as
illustrated in Figure 1. One example is liquid water freezing into ice, transitioning from a liquid phase
to a solid phase. The crystallization from a gas phase directly to a solid phase is called deposition.

SE(3)-equivariance. For geometric modeling for crystallization, one critical property of the target
function is rotation-equivariant and translation-equivariant (i.e., SE(3)-equivariant). We here provide a
brief introduction on the SE(3)-equivariance, and for more detailed discussions of SE(3)-equivariance,
we refer the reader to (Smidt et al., 2018; Brandstetter et al., 2021; Liu et al., 2023; Zhang et al.,
2023). SE(3)-equivariance is the property for the geometric modeling function f : X → Y as:

f(ρX(a)x) = ρY (a)f(x), ∀a ∈ G,x ∈ X, (1)

where ρX(a) and ρY (a) are the SE(3) group representations on the input and output space, re-
spectively. SE(3)-equivariant modeling in Equation (1) is essentially saying that the designed deep
learning model f is modeling the whole SE(3) group transformation trajectory on the molecule
conformations, and the output is the transformed ŷ accordingly. One concrete example is that when
we rotate the input molecular system by a certain angle, the predicted forces by SE(3)-equivariant
models will also rotate accordingly.

Conditional flow matching. Conditional flow matching (CFM) (Lipman et al., 2022) and two parallel
works (Rectified Flow (Liu et al., 2022) and Stochastic Interpolants (Albergo & Vanden-Eijnden,
2022)) formulate the distribution modeling problem as learning a vector field that can generate a
probability path mapping from simple distribution at t = 0 to the target distribution at t = 1. Please
refer to the original papers for a more detailed discussion (Lipman et al., 2022).

In the crystallization processes, our geometric data are atomic coordinates in the 3D Euclidean points
r ∈ R3, and the atomic type is fixed during the whole crystallization process, so we may as well
ignore that. Then we define time-dependent vector field v : [0, 1] × R3 → R3. A time-dependent
vector field defines a time-dependent diffeomorphic map, called flow, ϕ : [0, 1] × R3 → R3. The
vector field defines flow via an ordinary differential equation as

dϕt(r)

dt
= vt(ϕt(r)). (2)

A probability density path is denoted as p : [0, 1] × R3 → R>0. Existing flow model (Chen et al.,
2018) maps a prior distribution p0 to another distribution pt with push-forward equation or change

of variable rule: pt(r) = [ϕt]∗p0(r) = p0(ϕ
−1
t (r))det

∣∣∣dϕt(r)
dx

∣∣∣−1

. Thus, modeling the likelihood of
data distribution at t = 1 can be transformed into modeling the velocity field matching problem with
parameterized velocity field vθ, i.e., flow matching:

LFM = Et,r

∥∥vt(r)− vθ(r, t)
∥∥2

. (3)

With the continuity equation (Villani et al., 2009), we can further derive an equivalent objective by
considering the conditional vector field conditioned on the empirical data r1, i.e., vt(r|r1), and the
resulting objective is the conditional flow matching:

LCFM = Et,r,r1

∥∥vt(r|r1)− vθ(r, r1, t)
∥∥2

. (4)

3 METHOD: ASSEMBLEFLOW

Problem Formulation. AssembleFlow is designed to model rigid transformations during crystalliza-
tion, ensuring that each molecule in the cluster remains rigid throughout the transformation process.

3

Published as a conference paper at ICLR 2025

Rigorously, we are modeling P ({rf}|{ri}), where {rf} and {ri} are the atom conformations in
final and initial positions respectively. During this process, we assume the rigidity of molecules.
Noticeably, we will use a preprocessed dataset where the prior conformations are geometrically
optimized and fixed (Liu et al., 2024c).

This section outlines the five key steps in the algorithm’s development. Specifically, in Section 3.1, we
explain how inertial frames can be leveraged to provide a stable reference for tacking the orientation
of multiple assembling molecules in the Euclidean space. Such a reference perspective can guarantee
rigid structures during molecular rotations throughout the assembly process. Building on these
frames, there are multiple ways for rotation representation, so in Section 3.2, we illustrate how to use
quaternion representation for capturing the rotation transformation induced from inertial frames. This
is followed by a detailed discussion of AssembleFlow, a rigid flow matching method, in Section 3.3.
AssembleFlow decomposes the assembly probabilistic paths into SO(3) group path and R3 group
path to guarantee the rigidity, and learns the time-dependent vector fields through a flow-matching
framework on the two path spaces respectively. In Section 3.4, we employ the reparameterization trick
to make AssembleFlow more numerically stable. Finally, in Section 3.5, we present the two types of
SE(3)-equivariant flow matching velocity functions specifically designed for use in AssembleFlow.
Note: the pseudo algorithm of our AssembleFlow is provided in Appendix E.3.

3.1 SO(3) GROUP AND INERTIAL FRAME FOR RIGID PACKING

The core of AssembleFlow lies in the utilization of the inertial frame as the reference frame. Within
this frame, the rotation matrix in the SO(3) group defines how the molecular system rotates rigidly.
This serves as the key step in AssembleFlow for modeling rigid transformations in SO(3) group.

SO(3) group. The special orthogonal group, denoted as SO(n), is a group of rotation matrices that
represent rotations in n-dimensional Euclidean space. In this paper, we are interested in n = 3
dimensional space, and every rotation matrix used to perform a rotation in 3D space can be represented
as an element of SO(3) group. The SO(3) group consists of all orthogonal matrices with determinant
1 R ∈ R3×3 such that RTR = I , where RT is the transpose of R and I is the identity matrix.

Figure 3: (a, b) show two potential rotational alignments
between two coordinate systems (axes). (c, d) show that only
one unique rotation is possible for four non-coplanar points.

Inertial frame as the reference frame.
An inertial frame is a reference frame such
that it can provide a consistent basis for
describing a molecule’s motion, including
rotation. Here, we utilize the inertial frame
to build a basis for explaining how each
molecule rotates in the Euclidean space.
One example is illustrated in Figure 2. Im-
portantly, an inertial frame provides a co-
ordinate system such that a molecule stays
rigid and does not deform over the crys-
tallization or modeling process; we here
assume the system is not influenced by ex-
ternal forces. Next, we will detail how iner-
tial frames are used to represent the rotation
matrix for rigid molecules.

First, we employ the following four sequential steps to derive the reference frames that construct the
rotation matrix from N atomic positions r:

• Calculate the mass center: c = 1
N

∑
i ri.

• Adjust position relative to the center ri = ri − c.
• Compute the inertia tensor Î =

∑
i ∥ri∥2I − rir

T
i , where I is the unit diagonal matrix.

• Obtain the principal axes of inertia by applying eigen-decomposition on Î . We have
Î = QΛQT , where Q is the orthogonal matrix whose columns are the eigenvectors of Î ,
and Λ is the diagonal matrix whose elements are the eigenvalues λi of Î , representing the
principal moments of inertial along the principal axes.

The above steps yield the three principal axes in Q. To adopt this for modeling the crystallization
process (Figure 1), we build inertial frames for each molecule in the cluster. In our case, for each

4

Published as a conference paper at ICLR 2025

molecule we need to build two inertial frames, for the weakly correlated and strongly correlated
structures, respectively. We call these two frames initial (inertial) frame Fi and final (inertial)
frame Ff .

Second, we apply the eigen-decomposition to obtain the initial principal axes Qi and final principal
axes Qf , respectively. As illustrated in Figure 2 (d), we can only perform the rotation based on
the aligned principal axes or the aligned coordinate systems. However, as we conduct the eigen-
decomposition of frames Fi and Ff , it is not guaranteed that the corresponding principal axes Qi

and Qf are aligned. To align the two coordinate systems, we aim to match both the directions and the
orders of the corresponding principal axes in each set. We will detail this alignment process next.

Align the directions between initial and final coordinate systems. First, for a given inertial frame
F , we have three axes in Q composing a coordinate system. This can lead to eight possible directions.
To align the directions between the initial system Qi and final system Qf , we add a first constraint
– the three axes must form a right-handed coordinate system. Such a filtering step can be achieved
by using cross-product: if the local frame system is right-handed, then the cross-product between
any two axes should match the third axis or share the same direction as the third axis. Otherwise, the
coordinate system is left-handed, then we randomly revert one basis out of three. This reduces to
four potential combinations of directions. To further align the directions, we introduce Lemma 1 and
Theorem 1 to help provide us with theoretical guidance.

Lemma 1. For an initial inertial frame Fi and a final inertial frame Ff , we build up the correspond-
ing right-handed principal axes as coordinate systems, Qi and Qf , respectively. Suppose we have to
change the directions of Qf to match Qi, then we should change the directions of two bases in Qf .

Proof. There are three bases in Qf . If we change one or three basis directions in Qf , then Qf will
change from right-handedness to left-handedness, which violates the assumption. Thus, if we need to
change the directions of Qf to match Qi, we should change the directions of two bases in Qf .

With Lemma 1, we find that using three base vectors is insufficient to determine the direction
alignment of three axes. To define the directions that can match between the initial and final
coordinate systems, we need to incorporate an extra node as an auxiliary, as in Theorem 1.

Theorem 1. For an initial inertial frame Fi and a final inertial frame Ff , we build up the corre-
sponding right-handed principal axes as coordinate systems, Qi and Qf , respectively. Then we need
to incorporate a fourth point that is not coplanar with the three basis vectors, to align the directions
of two coordinate systems with one unique rotation transformation matrix.

Proof Sketch. We first provide intuitive examples in Figure 3. In Figure 3 (a, b), we can see at least
two possible rotation matrices to transform from initial axes to final axes. However, when we add
a fourth non-coplanar point in Figure 3 (c), the rotation transformation becomes unique, and the
corresponding rotation in Figure 3 (d) is invalid. Then more rigorously, the proof includes the two key
steps: (1) Using Lemma 1, we can find multiple rotation matrices for alignment between coordinate
systems. (2) After introducing the fourth non-coplanar point, the contradiction proves that there exists
only one unique rotation for alignment. For more rigorous proof, please refer to Appendix D.

Align the ordering between initial and final coordinate systems. We can typically sort the
eigenvectors (as for principal axes) through the corresponding eigenvalues. The main challenge
comes when there is a tie in eigenvalues. Because this is a rare case, we propose doing a depth-first-
search to enumerate all the possible combinations of basis orderings of Qf , to match Qi.

Outputs and engineering issue: numerical stability. Without loss of generality, we can assume that
we do not change the axis direction or ordering in the initial coordinate system Qi, and we only change
Qf to Q̂f , so as to align with Qi. The ultimate rotation matrix is thus R = QT

i Q̂f . Meanwhile, we
would like to point out that multiple numerical stability issues exist. This can arise in the following
scenarios: (1) when the sampled points are near the origin, (2) when checking if the eigenvalues are
tied or not, (3) when extracting a fourth non-planar point for alignment, (4) when verifying whether
rotating the initial atoms (points) matches the final atoms. To mitigate these issues, we carefully
select a threshold value and clamp the (reconstructed) coordinates to this minimum threshold.

Summary. In this section, we first introduce the basic concepts of SO(3) group and inertial frame.
Then we present how we construct the initial and final inertial frames for each molecule, i.e., Fi

and Ff , in molecular crystallization. Next, by applying the eigen-decomposition on the constructed

5

Published as a conference paper at ICLR 2025

inertial frames, we obtain the initial and final principal axes (right-handed), Qi and Qf , respectively.
Finally, we align the Q̂f to Q̂i by checking the directions and ordering of three axes in Qf . This
results in two aligned bases (Qi and Q̂f) and a rotation matrix R such that Q̂f = RQi. As a result,
this enables rigid molecule-level rotations during their transformations in the assembling processes.

3.2 QUATERNION REPRESENTATION FOR ROTATION

For the SO(3) group in Section 3.1, there are multiple ways to represent a rotation transformation
in addition to the rotation matrix R. If we want to model the rotation matrix directly, we must
guarantee that the generated matrix variable satisfies the two properties discussed in Section 3.1,
namely Orthogonality and Determinant. Such a constrained modeling is challenging. Thus, an
alternative way of rotation representation with a more flexible formulation is preferred. To attain this
goal, we utilize quaternion representation defined through the inertial frame, as described below.

Definition. A quaternion q is defined as:

q = w + xi+ yj + zk = (w,v), (5)

where w, x, y, z are real numbers, and i, j, k are the fundamental quaternion units. Equivalently, the
w is called the real part, while v = (x, y, z) is a 3D vector representing the imaginary part.

Rotation quaternion. A rotation quaternion is a unitary quaternion, i.e., w2+x2+ y2+ z2 = 1, and
this can be easily achieved by taking the normalization of the quaternion variables. In what follows,
we will assume the quaternion is a rotation quaternion unless otherwise specified. Notice that for
each rotation matrix, there are two equivalent quaternions, q and −q. Here we manually enforce the
real number part of the generated quaternion to be non-negative.

Tranformation from rotation matrix to rotation quaternion. There are multiple ways to extract
the quaternion from the rotation matrix, and we provide a more detailed discussion in Appendix B. In
this work, we adopt eigendecomposition (Horn, 1987; Bar-Itzhack, 2000) to extract the initial and
final quaternion (i.e., qi and qf) from the initial and final coordinate systems (i.e., Qi and Qf).

Spherical interpolation (SLERP) for quaternion interpolation. One of the main advantages
of using quaternion is that it is friendly to interpolation on the SO(3) space, i.e., the spherical
interpolation (SLERP) between two quaternions q0 and q1:

SLERP(q0, q1, t) =
sin((1− t)ω)q0 + sin(tω)q1

sin(ω)
, (6)

where ω is the angle between q0 and q1, and t ∈ [0, 1] is interpolation parameter. Thus, we can
see that SLERP provides a smooth and uniform rotation between two quaternions. An example is
provided in Figure 2.

We provide a comprehensive discussion of various rotation representations in Appendix B, including
quaternion multiplication and vector rotation using quaternion. Please consult that section for details.

3.3 PATH INTERPOLATION IN ASSEMBLEFLOW

To model the crystallization process, our AssembleFlow method integrates the inertial frames and
quaternion representation for rotation, as discussed in Sections 3.1 and 3.2, into a conditional flow
matching framework. We note that, unlike most existing flow matching methods that focus solely
on atom-level diffusion paths in the Euclidean space, which suffices for non-rigid transformation,
AssembleFlow operates within the full SE(3) group space in the molecule level due to the rigidity
requirement.

Recall that the crystallization process involves the movement over a cluster of molecules, and for each
molecule in the cluster, AssembleFlow jointly models the rotational transformations in SO(3) space
and translational transformations in R3 space. Such a decomposition ensures the preservation of rigid
molecular structures throughout the crystallization process. We next detail these two transformations.

Modeling translations in R3. The goal is to model the molecule-level translations in each cluster,
and AssembleFlow achieves this by modeling the translations on each molecule’s mass center, as
depicted in Figure 2. For notation simplicity, we will use x ∈ R3 to represent the translation vector.

6

Published as a conference paper at ICLR 2025

We adopt the flow-matching framework, and the goal here is to learn the probability of final mass
center xf from the initial mass center xi, i.e., p(xf |xi). To this end, we assume that we use linear
interpolation (LERP) for path interpolation, by treating x0 = xi and x1 = xf , then for interpolation
parameter t ∈ [0, 1], we have the interpolated translation as:

LERP(x0,x1, t) = tx0 + (1− t)x1. (7)

Next, we introduce an SE(3)-equivariant function vθ,R3(xt, t) as the core module to learn the velocity
at time t. Thus the objective function is defined as:

LR3 = ∥x1 − x0 − vθ,R3(xt, qt, t)∥2. (8)

Modeling rotations in SO(3). For modeling the rotations in the SO(3) group, recall that we can
find the initial bases Qi and final principal bases Qf from inertial frames in Section 3.1, and then we
transform them into the rotation quaternions qi and qf as introduced in Section 3.2. The task here is
to model p(qf |qi).
Thus, it is natural to adopt the spherical interpolation (SLERP) as the smooth translation between
two quaternions. We treat q0 = qi and q1 = qf and plug them into Equation (6). This gives us the
interpolated rotations at time t. The first-order derivative of SLERP has an analytical formula:

d

dt
SLERP(q0, q1, t) =

ω
(
cos(tω)q1 − cos((1− t)ω)q0

)
sin(ω)

. (9)

Similarly here, we then introduce an SE(3)-equivariant function vθ,SO(3)(qt, t) to model the molecule-
level rotation velocity at time t. The objective function becomes:

LSO(3) = ∥ d

dt
SLERP(q0, q1, t)− vθ,SO(3)(xt, qt, t)∥2. (10)

Inference. For inference, AssembleFlow conducts the sampling step in SO(3) and R3 alternatively:

xt+1 = xt + δt · vθ,R3(xt, qt, t), qt+1 = qt + δt · vθ,SO(3)(xt, qt, t). (11)

Thus, both the molecule-level translation xt+1 and molecule-level rotation qt+1 are applied on each
molecule, and we repeat Equation (11) for T steps to obtain the predicted strongly correlated molecule
position. However, in Equation (11), it remains an open question on how to obtain the ω for SO(3)
generation, since ω is the angle between q0 and q1, and q1 is unknown during the inference process.
We address this by proposing the reparameterization trick as will be discussed next in Section 3.4.

3.4 REPARAMETERIZATION FOR STRONGLY CORRELATED STRUCTURES

We here leverage the reparameterization trick to directly model the SE(3) action at time T instead of
the velocity at each time t. Equivalently, the velocity of SE(3) action can be written as:

vθ,R3(xt, qt, t) = (x̂1,θ(xt, qt, t)− xt)/(1− t),

vθ,SO(3)(xt, qt, t) =
ω
(
cos(tω)q̂1,θ(xt, qt, t)− cos((1− t)ω)q0

)
sin(ω)

.
(12)

In other words, we directly estimate the translation x̂1,θ(xt, qt, t) and rotation q̂1,θ(xt, qt, t) in the
final step or the strongly correlated structure. The objectives over the two spaces thus become:

LR3,reparameter = E[∥x1 − x̂1,θ(xt, qt, t)∥2], LSO(3),reparameter = E[∥q1 − q̂1,θ(xt, qt, t)∥2]. (13)

The final objective function is the summation of two terms. Besides, such a reparameterization
enables us to conduct inference using the Euler algorithm:

xt+1 = xt + δt · (x̂1,θ(xt, qt, t)− xt)/(1− t),

qt+1 = qt + δt ·
ω̂
(
cos(tω̂)q̂1,θ(xt, qt, t)− cos((1− t)ω̂)q0

)
sin(ω̂)

,
(14)

where ω̂ is the angle between q0 and q̂1,θ(xt, qt, t). The velocity functions of x̂1,θ(xt, qt, t) and
q̂1,θ(xt, qt, t) are SE(3)-equivariant and will be discussed next in Section 3.5.

7

Published as a conference paper at ICLR 2025

Table 1: AssembleFlow against six generative models on COD-Cluster17 with 5K, 10K, and all samples. The
best results are marked in bold.

Packing Matching Validity
PM (atom) ↓ PM (center) ↓ Collision ↓ Separation ↑ Compactness ↑

Dataset: COD-Cluster17-5K
GNN-MD 13.67 ± 0.06 13.80 ± 0.07 27.53 ± 0.49 0.22 ± 0.11 100.00 ± 0.00
CrystalSDE-VE 15.52 ± 1.48 16.46 ± 0.99 1.20 ± 0.08 27.17 ± 0.86 57.47 ± 7.76
CrystalSDE-VP 18.15 ± 3.02 19.15 ± 4.46 0.84 ± 0.14 53.13 ± 12.89 34.00 ± 30.75
CrystalFlow-VE 14.87 ± 7.07 13.08 ± 4.51 1.37 ± 0.04 35.70 ± 0.73 8.40 ± 4.17
CrystalFlow-VP 15.71 ± 2.69 17.10 ± 1.89 1.38 ± 0.04 35.43 ± 0.88 4.87 ± 1.09
CrystalFlow-LERP 13.59 ± 0.09 13.26 ± 0.09 0.34 ± 0.01 97.38 ± 0.10 100.00 ± 0.00
AssembleFlow (ours) 7.27 ± 0.04 6.13 ± 0.10 0.33 ± 0.00 97.64 ± 0.36 100.00 ± 0.00

Dataset: COD-Cluster17-10K
GNN-MD 13.83 ± 0.06 13.90 ± 0.05 27.88 ± 0.49 0.23 ± 0.11 100.00 ± 0.00
CrystalSDE-VE 17.25 ± 2.46 17.86 ± 1.11 0.99 ± 0.27 32.99 ± 10.72 34.93 ± 14.99
CrystalSDE-VP 22.20 ± 3.29 21.39 ± 1.50 0.53 ± 0.35 52.48 ± 15.44 16.83 ± 18.09
CrystalFlow-VE 16.41 ± 2.64 16.71 ± 2.35 1.42 ± 0.03 33.79 ± 0.51 5.47 ± 0.47
CrystalFlow-VP 19.39 ± 4.37 16.01 ± 3.13 1.44 ± 0.03 33.35 ± 0.55 4.23 ± 0.48
CrystalFlow-LERP 13.54 ± 0.03 13.20 ± 0.03 0.32 ± 0.00 97.32 ± 0.05 100.00 ± 0.00
AssembleFlow (ours) 7.38 ± 0.03 6.21 ± 0.05 0.31 ± 0.00 97.73 ± 0.16 99.93 ± 0.05

Dataset: COD-Cluster17-All
GNN-MD 22.30 ± 12.04 14.51 ± 0.82 24.29 ± 4.58 4.13 ± 5.60 98.77 ± 1.73
CrystalSDE-VE 17.28 ± 0.73 18.92 ± 0.03 0.19 ± 0.18 15.47 ± 12.42 2.51 ± 2.37
CrystalSDE-VP 18.03 ± 4.56 20.02 ± 3.70 0.55 ± 0.19 48.78 ± 1.70 6.88 ± 2.82
CrystalFlow-VE 12.80 ± 1.20 15.09 ± 0.34 1.41 ± 0.01 35.34 ± 0.28 2.90 ± 0.02
CrystalFlow-VP 13.50 ± 0.44 13.28 ± 0.48 1.51 ± 0.02 33.06 ± 1.31 6.61 ± 3.17
CrystalFlow-LERP 13.61 ± 0.00 13.28 ± 0.01 0.34 ± 0.00 97.34 ± 0.02 99.99 ± 0.01
AssembleFlow (ours) 7.37 ± 0.01 6.21 ± 0.01 0.31 ± 0.00 98.15 ± 0.22 99.98 ± 0.00

3.5 SE(3)-EQUIVARIANT MULTI-GRAINED VELOCITY FUNCTION

Recall that the data structure considered here is the cluster of molecules, thus it is natural to split
the modeling into intra-molecule and inter-molecule modeling, as introduced below. For intra-
molecule modeling, we adopt the PaiNN (Schütt et al., 2021), which is one of the most widely used
SE(3)-equivariant models. It can encode the inherent geometric structural information of individual
molecules. Then for inter-molecule modeling, we consider two options of SE(3)-equivariant models:
(1) Atomic-level modeling that utilizes all the atoms’ positions for learning the molecular-level
rotation and translation for the next step. (2) Molecular-level modeling that directly utilizes the
molecular-level rotation and translation for next-step prediction. This concludes our discussion on
AssembleFlow, and more details are provided in Appendix E. A high-level overview and pseudo
algorithm are provided in Algorithms 1 and 2 in Appendix E.3.

4 EXPERIMENTS

4.1 EXPERIMENT SETUP

Implementation. The codes and checkpoints are available at this GitHub repository.

Datasets. We evaluate our method using the crystallization dataset COD-Cluster17 (Liu et al., 2024c).
This COD-Cluster17 contains 133K crystals and is a curated subset derived from the Crystallography
Open Database (COD) database (Grazulis et al., 2009). We consider three versions of COD-Cluster17,
with 5k, 10k, and all data, respectively. Detailed discussion on this dataset is provided in Appendix G.

Evaluation metrics. We evaluate the performance of the compared approaches using a comprehensive
set of metrics tailored to assess the quality of crystallization packing. These metrics include: (1)
Packing Matching (PM) (Chisholm & Motherwell, 2005): This metric measures how well the
generated molecular assemblies match the reference crystal structures in terms of spatial arrangement
and packing density. Following (Liu et al., 2024c), we employ packing matching on both the atomic
level (PM-atom) and the mass-center-level (PM-center) (Chisholm & Motherwell, 2005). (2) Atomic
Collision: This follows (Cordero et al., 2008). It measures the percentage of collided atom pairs in the
predicted assemblies. Atoms must maintain a minimum covalent distance governed by the balance of
attractive and repulsive forces. (3) Separation: We extend the metric from (Xie et al., 2022; Yang
et al., 2024) to our setting. A cluster of molecules is valid if the minimum distance between molecules

8

https://github.com/chao1224/AssembleFlow

Published as a conference paper at ICLR 2025

is above 0.5Å (Court et al., 2020). This metric is referred to as separation to measure the validity
to avoid unphysical interactions at the molecular level. (4) Compactness: We propose this measure
by calculating the percentage of simulated clusters where the maximum atomic pairwise distances
are below 100Å. A higher compactness value suggests a more efficient arrangement, where the
intermolecular spaces are minimized, leading to a denser crystalline structure. Detailed discussions
on these metrics are provided in Appendix G.

Table 2: Ablation studies of PackMol and AssembleFlow variants.
PackMol AssembleFlow-Atom AssembleFlow-Molecule

Dataset: COD-Cluster17-5K
PM (atom) ↓ 7.10± 0.05 7.27± 0.04 7.67± 0.10
PM (center) ↓ 6.05± 0.04 6.13± 0.10 6.77± 0.10
Collision ↓ 0.32± 0.00 0.33± 0.00 0.37± 0.01
Separation ↑ 99.56± 0.08 97.64± 0.36 92.95± 0.16

Dataset: COD-Cluster17-10K
PM (atom) ↓ 7.16± 0.01 7.38± 0.03 7.65± 0.17
PM (center) ↓ 6.11± 0.01 6.21± 0.05 6.69± 0.20
Collision ↓ 0.30± 0.00 0.31± 0.00 0.35± 0.01
Separation ↑ 99.45± 0.10 97.73± 0.16 92.67± 0.32

Dataset: COD-Cluster17-All
PM (atom) ↓ 7.15± 0.01 7.37± 0.01 7.47± 0.05
PM (center) ↓ 6.09± 0.01 6.21± 0.01 6.36± 0.06
Collision ↓ 0.30± 0.00 0.31± 0.00 0.33± 0.00
Separation ↑ 99.42± 0.03 98.15± 0.22 95.66± 0.08

Baselines. We compare our
method with two categories
of baselines: state-of-the-
art deep generative models
and an established domain-
specific simulation tool.

(1) Deep generative base-
lines. For generative
models, we evaluate our
approach against GNN-
MD (Liu et al., 2024c),
CrystalSDE (Liu et al.,
2024c), CrystalFlow (Liu
et al., 2024c), and differ-
ent variations of them,
including CrystalSDE-
VE, CrystalSDE-VP,
CrystalFlow-VE, CrystalFlow-VP, and CrystalFlow-LERP. These models employ various mecha-
nisms to handle the challenges of molecular crystallization. CrystalSDE-VE and CrystalSDE-VP
use stochastic differential equations to model diffusion processes under different parameterizations.
CrystalFlow-VE and CrystalFlow-VP apply flow matching principles for diffusion-based interpolation
path, with the latter focusing on variance-preserving methods. CrystalFlow-LERP utilizes linear
interpolation to handle molecular transformations, striking a balance between computational
complexity and performance.

(2) Domain-specific simulation baseline. We also compare our method with PackMol (Martínez et al.,
2009), a well-established simulation tool widely used in the field for molecular packing. PackMol
has long been a go-to solution for chemistry and material experts due to its ability to generate initial
molecular configurations for follow-up simulations, making it an important and relevant baseline for
evaluating molecular assembly tasks. More detail on this baseline is in Appendix F.

4.2 MAIN RESULTS

The comparison results with the generative modeling baselines and the simulation model are presented
in Tables 1 and 2, respectively.

As shown in Table 1, AssembleFlow significantly outperformed all six deep generative models
across almost all metrics. For example, AssembleFlow improved Packing Matching by at least 45%
compared to other models. Notably, most baselines struggled with rigid packing, leading to very low
Separation scores, except for CrystalFlow-LERP. For example, AssembleFlow achieved a Separation
rate of 97.64%, while GNN-MD only reached 0.22%.

As shown in Table 2, when compared to the domain-specific tool PackMol, our data-driven
approach demonstrates strong assembly performance relative to this widely used simulation method.
Remarkably, our method achieves 100% validity, matching that of the domain-specific simulation
tool. While this outcome highlights the promise of AssembleFlow, it is expected for PackMol, as
it leverages well-established domain knowledge and heuristic physical rules to determine molecular
orientations. Promisingly, both methods achieved a very low Collision rate. The results indicate
that the data-driven AssembleFlow performs comparably to the domain simulation tool PackMol.

4.3 ABLATION STUDIES

9

Published as a conference paper at ICLR 2025

Figure 4: Atomic collisions (red circles) in predicted assemblies.

Velocity function. As dis-
cussed in Section 3.5, As-
sembleFlow can utilize two
types of SE(3)-equivariant
velocity functions. We here
evaluate their performance
and, as shown in the last
two columns of Table 2,
AssembleFlow-Atom
generally outperforms
AssembleFlow-Molecule,
as atomic-level information
provides more detailed
geometric insights. Despite this, both variations of AssembleFlow exhibit strong results, significantly
surpassing other deep learning baselines.

Atomic collision. To show atomic collisions of the assemblies, we visualize, in Figure 4, two atomic
collisions in assemblies predicted by AssembleFlow, where two molecules collide into each other
(indicated by the red circle).

Computational cost. In Figure 5, we present the computation time needed for AssembleFlow and
PackMol. It reveals that our data-driven method achieves a 25-fold reduction in computational costs.
This suggests that our method can be scaled effectively for larger molecular systems and datasets.

5 CONCLUSION AND OUTLOOK

864

35

PackMol AssembleFlow

Figure 5: Comparison of computational cost in hours
for 10,543 molecule clusters from COD-Cluster17. Pack-
Mol requires around 864 hours, while AssembleFlow
requires 35 hours.

We introduced AssembleFlow, a generative
model that maintains the inherent rigidity of
molecular structures during assembly. By us-
ing inertial frames for positional references at
the molecular level, AssembleFlow accurately
tracks molecular orientation and motion. It de-
composes transformations into translations and
rotations, enforcing rigidity throughout the gen-
eration process. This innovative approach en-
ables the model to separately learn velocity func-
tions using linear and spherical interpolation for
accurate rigid molecular assembly.

Empirical results on COD-Cluster17 show that AssembleFlow outperforms six state-of-the-art
deep learning models while maintaining molecular integrity and achieves comparable assembly
performance to an established simulation tool, significantly reducing computational costs. This
suggests that AssembleFlow offers an efficient solution for large-scale molecular simulations and
opens avenues for faster material generation in molecular engineering.

To the best of our knowledge, AssembleFlow is the first to implement rigid generation in SE(3) space
for molecular assembly. It has the potential to be generalized to more complex and challenging
scenarios, such as simulating the crystallization process of polymorphs with diverse configurations
and structures. These scenarios are critical for accurately modeling real-world materials, where
different polymorphic forms can exhibit vastly different properties. However, the current dataset,
COD-Cluster17, lacks the necessary information to fully explore this aspect. As such, extending
AssembleFlow to handle these intricate processes remains an exciting direction for future research,
where more specialized datasets could enable deeper insights into material formation and polymorph
behavior. We aim to address these challenges in future work.

10

Published as a conference paper at ICLR 2025

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their valuable suggestions and feedback. YB acknowledges
support from NRC AI4D, CIFAR, and the CIFAR AI Chair program. This project’s computational
resources are provided by NRC and the Digital Research Alliance of Canada.

REFERENCES

Josh Abramson, Jonas Adler, Jack Dunger, Richard Evans, Tim Green, Alexander Pritzel, Olaf
Ronneberger, Lindsay Willmore, Andrew J Ballard, Joshua Bambrick, et al. Accurate structure
prediction of biomolecular interactions with alphafold 3. Nature, pp. 1–3, 2024. 15

Michael S Albergo and Eric Vanden-Eijnden. Building normalizing flows with stochastic interpolants.
arXiv preprint arXiv:2209.15571, 2022. 2, 3, 15

Marloes Arts, Victor Garcia Satorras, Chin-Wei Huang, Daniel Zugner, Marco Federici, Cecilia
Clementi, Frank Noe, Robert Pinsler, and Rianne van den Berg. Two for one: Diffusion models and
force fields for coarse-grained molecular dynamics. Journal of Chemical Theory and Computation,
2023. 15

Michael F. Ashby and David RH Jones. Engineering Materials 2. Butterworth-Heinemann, 4 edition,
2012. 2

Minkyung Baek, Frank DiMaio, Ivan Anishchenko, Justas Dauparas, Sergey Ovchinnikov, Gyu Rie
Lee, Jue Wang, Qian Cong, Lisa N. Kinch, R. Dustin Schaeffer, Claudia Millán, Hahnbeom Park,
Carson Adams, Caleb R. Glassman, Andy DeGiovanni, Jose H. Pereira, Andria V. Rodrigues,
Alberdina A. van Dijk, Ana C. Ebrecht, Diederik J. Opperman, Theo Sagmeister, Christoph
Buhlheller, Tea Pavkov-Keller, Manoj K. Rathinaswamy, Udit Dalwadi, Calvin K. Yip, John E.
Burke, K. Christopher Garcia, Nick V. Grishin, Paul D. Adams, Randy J. Read, and David
Baker. Accurate prediction of protein structures and interactions using a three-track neural
network. Science, 373(6557):871–876, 2021. doi: 10.1126/science.abj8754. URL https:
//www.science.org/doi/abs/10.1126/science.abj8754. 1

Itzhack Y Bar-Itzhack. New method for extracting the quaternion from a rotation matrix. Journal of
guidance, control, and dynamics, 23(6):1085–1087, 2000. 6, 21

Avishek Joey Bose, Tara Akhound-Sadegh, Kilian Fatras, Guillaume Huguet, Jarrid Rector-Brooks,
Cheng-Hao Liu, Andrei Cristian Nica, Maksym Korablyov, Michael Bronstein, and Alexander Tong.
Se (3)-stochastic flow matching for protein backbone generation. arXiv preprint arXiv:2310.02391,
2023. 15

Johannes Brandstetter, Rob Hesselink, Elise van der Pol, Erik J Bekkers, and Max Welling. Ge-
ometric and physical quantities improve e (3) equivariant message passing. arXiv preprint
arXiv:2110.02905, 2021. 3

WH Brooks, WC Guida, and KG Daniel. The significance of chirality in drug design and development.
Current topics in medicinal chemistry, 11(7):760, 2011. 15

Stephen R. Byrn, Robert R. Pfeiffer, and John G. Stowell. Solid-State Chemistry of Drugs. SSCI,
Inc., West Lafayette, IN, 1999. 2

C. Barry Carter and M. Grant Norton. Ceramic Materials: Science and Engineering. Springer, 2
edition, 2013. 2

Ricky TQ Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. Advances in neural information processing systems, 31, 2018. 3

James Alexander Chisholm and Sam Motherwell. Compack: a program for identifying crystal
structure similarity using distances. Journal of applied crystallography, 38(1):228–231, 2005. 8,
31

Beatriz Cordero, Verónica Gómez, Ana E Platero-Prats, Marc Revés, Jorge Echeverría, Eduard
Cremades, Flavia Barragán, and Santiago Alvarez. Covalent radii revisited. Dalton Transactions,
(21):2832–2838, 2008. 8, 31

11

https://www.science.org/doi/abs/10.1126/science.abj8754
https://www.science.org/doi/abs/10.1126/science.abj8754

Published as a conference paper at ICLR 2025

Callum J. Court, Batuhan Yildirim, Apoorv Jain, and Jacqueline M. Cole. 3-d inorganic crystal
structure generation and property prediction via representation learning. Journal of Chemical
Information and Modeling, 60(10):4518–4535, 2020. 9, 31

Stefan Doerr, Maciej Majewski, Adrià Pérez, Andreas Kramer, Cecilia Clementi, Frank Noe, Toni
Giorgino, and Gianni De Fabritiis. Torchmd: A deep learning framework for molecular simulations.
Journal of chemical theory and computation, 17(4):2355–2363, 2021. 15

Daniel Flam-Shepherd and Alán Aspuru-Guzik. Language models can generate molecules, materials,
and protein binding sites directly in three dimensions as xyz, cif, and pdb files. arXiv preprint
arXiv:2305.05708, 2023. 15

Octavian Ganea, Lagnajit Pattanaik, Connor Coley, Regina Barzilay, Klavs Jensen, William Green,
and Tommi Jaakkola. Geomol: Torsional geometric generation of molecular 3d conformer
ensembles. Advances in Neural Information Processing Systems, 34:13757–13769, 2021. 15

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017. 28

K. Elsabett Gonsalves, C.-P. Wong, Lisa T. Kuhn, and R. Shukla. Nanotechnology: Molecularly
Designed Materials. American Chemical Society, 2000. 2

Saulius Grazulis, Daniel Chateigner, Robert T. Downs, Alex F. T. Yokochi, Manuel Quirós, Luca
Lutterotti, Elena Manakova, Justinas Butkus, Peter Moeck, and Armel Le Bail. Crystallography
open database – an open-access collection of crystal structures. Journal of Applied Crystallography,
42(4):726–729, 2009. doi: 10.1107/S0021889809016690. 8, 31

Jiaqi Guan, Wesley Wei Qian, Xingang Peng, Yufeng Su, Jian Peng, and Jianzhu Ma. 3d equivariant
diffusion for target-aware molecule generation and affinity prediction. In The Eleventh International
Conference on Learning Representations, 2022. 15

Jiaqi Guan, Xiangxin Zhou, Yuwei Yang, Yu Bao, Jian Peng, Jianzhu Ma, Qiang Liu, Liang Wang,
and Quanquan Gu. DecompDiff: Diffusion models with decomposed priors for structure-based
drug design. In Andreas Krause, Emma Brunskill, Kyunghyun Cho, Barbara Engelhardt, Sivan
Sabato, and Jonathan Scarlett (eds.), Proceedings of the 40th International Conference on Machine
Learning, volume 202 of Proceedings of Machine Learning Research, pp. 11827–11846. PMLR,
23–29 Jul 2023. URL https://proceedings.mlr.press/v202/guan23a.html. 15

Anne Marie Healy, Zelalem Ayenew Worku, Dinesh Kumar, and Atif M. Madi. Pharmaceutical
solvates, hydrates and amorphous forms: A special emphasis on cocrystals. Advanced Drug Deliv-
ery Reviews, 117:25–46, 2017. URL https://api.semanticscholar.org/CorpusID:
38541447. 2

Rolf Hilfiker. Polymorphism in the Pharmaceutical Industry. Wiley-VCH, 2006. 2

Jonathan Ho, Xi Chen, Aravind Srinivas, Yan Duan, and Pieter Abbeel. Flow++: Improving flow-
based generative models with variational dequantization and architecture design. In International
conference on machine learning, pp. 2722–2730. PMLR, 2019. 17

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020. 15

Emiel Hoogeboom, Vıctor Garcia Satorras, Clément Vignac, and Max Welling. Equivariant diffusion
for molecule generation in 3d. In International conference on machine learning, pp. 8867–8887.
PMLR, 2022. 15

Berthold KP Horn. Closed-form solution of absolute orientation using unit quaternions. Josa a, 4(4):
629–642, 1987. 6, 21

Guillaume Huguet, James Vuckovic, Kilian Fatras, Eric Thibodeau-Laufer, Pablo Lemos, Riashat
Islam, Cheng-Hao Liu, Jarrid Rector-Brooks, Tara Akhound-Sadegh, Michael Bronstein, et al.
Sequence-augmented se (3)-flow matching for conditional protein backbone generation. arXiv
preprint arXiv:2405.20313, 2024. 15

12

https://proceedings.mlr.press/v202/guan23a.html
https://api.semanticscholar.org/CorpusID:38541447
https://api.semanticscholar.org/CorpusID:38541447

Published as a conference paper at ICLR 2025

Rui Jiao, Wenbing Huang, Peijia Lin, Jiaqi Han, Pin Chen, Yutong Lu, and Yang Liu. Crystal
structure prediction by joint equivariant diffusion. Advances in Neural Information Processing
Systems, 36, 2024. 15

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Figurnov, Olaf Ronneberger,
Kathryn Tunyasuvunakool, Russ Bates, Augustin Žídek, Anna Potapenko, et al. Highly accurate
protein structure prediction with alphafold. Nature, 596(7873):583–589, 2021. 1, 15

Leon Klein, Andreas Krämer, and Frank Noé. Equivariant flow matching. Advances in Neural
Information Processing Systems, 36, 2024. 15

Jonas Köhler, Michele Invernizzi, Pim De Haan, and Frank Noé. Rigid body flows for sampling
molecular crystal structures. In International Conference on Machine Learning, pp. 17301–17326.
PMLR, 2023. 15, 16, 17

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022. 2, 3, 15

Shengchao Liu, Weitao Du, Yanjing Li, Zhuoxinran Li, Zhiling Zheng, Chenru Duan, Zhi-Ming
Ma, Omar M. Yaghi, Anima Anandkumar, Christian Borgs, Jennifer T Chayes, Hongyu Guo, and
Jian Tang. Symmetry-informed geometric representation for molecules, proteins, and crystalline
materials. In Thirty-seventh Conference on Neural Information Processing Systems Datasets and
Benchmarks Track, 2023. URL https://openreview.net/forum?id=ygXSNrIU1p. 3,
15, 27

Shengchao Liu, Weitao Du, Yanjing Li, Zhuoxinran Li, Vignesh Bhethanabotla, Nakul Rampal,
Omar Yaghi, Christian Borgs, Anima Anandkumar, Hongyu Guo, et al. A multi-grained sym-
metric differential equation model for learning protein-ligand binding dynamics. arXiv preprint
arXiv:2401.15122, 2024a. 15

Shengchao Liu, Divin Yan, Weitao Du, Weiyang Liu, Zhuoxinran Li, Hongyu Guo, Christian Borgs,
Jennifer Chayes, and Anima Anandkumar. Manifold-constrained nucleus-level denoising diffusion
model for structure-based drug design. arXiv preprint arXiv:2409.10584, 2024b. 15, 31

Shengchao Liu, Divin Yan, Hongyu Guo, and Anima Anandkumar. Equivariant flow match-
ing framework for learning molecular cluster crystallization. In ICML 2024 Workshop on
Geometry-grounded Representation Learning and Generative Modeling, 2024c. URL https:
//openreview.net/forum?id=lCVqpQvr4l. 2, 4, 8, 9, 15, 31

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022. 2, 3, 15

Hannes H Loeffler, Jiazhen He, Alessandro Tibo, Jon Paul Janet, Alexey Voronov, Lewis H Mervin,
and Ola Engkvist. Reinvent 4: Modern ai–driven generative molecule design. Journal of Chemin-
formatics, 16(1):20, 2024. 1

Youzhi Luo, Chengkai Liu, and Shuiwang Ji. Towards symmetry-aware generation of periodic
materials. Advances in Neural Information Processing Systems, 36, 2024. 15

Leandro Martínez, Ricardo Andrade, Ernesto G Birgin, and José Mario Martínez. Packmol: A package
for building initial configurations for molecular dynamics simulations. Journal of computational
chemistry, 30(13):2157–2164, 2009. 2, 9

Rebecca U McVicker and Niamh M O’Boyle. Chirality of new drug approvals (2013–2022): trends
and perspectives. Journal of Medicinal Chemistry, 67(4):2305–2320, 2024. 15

Amil Merchant, Simon Batzner, Samuel S. Schoenholz, Muratahan Aykol, Gowoon Cheon, and
Ekin Dogus Cubuk. Scaling deep learning for materials discovery. Nature, 2023. doi: 10.1038/
s41586-023-06735-9. 1

David A. Porter, Kenneth E. Easterling, and Mohamed Y. Sherif. Phase Transformations in Metals
and Alloys. CRC Press, third edition, 2009. 2

13

https://openreview.net/forum?id=ygXSNrIU1p
https://openreview.net/forum?id=lCVqpQvr4l
https://openreview.net/forum?id=lCVqpQvr4l

Published as a conference paper at ICLR 2025

Bayrammurad Saparov and David B. Mitzi. Organic–inorganic hybrid perovskites: Structural
versatility for functional materials design. Chemical Reviews, 116(7):4558–4596, 2016. 2

Kristof T Schütt, Oliver T Unke, and Michael Gastegger. Equivariant message passing for the
prediction of tensorial properties and molecular spectra. arXiv preprint arXiv:2102.03150, 2021.
8, 27, 28, 30

Tess Smidt, Nathaniel Thomas, Steven Kearnes, Lusann Yang, Li Li, Kai Kohlhoff, and Patrick Riley.
Tensor field networks: Rotation-and translation-equivariant neural networks for 3d point clouds.
arXiv preprint arXiv:1802.08219, 2018. 3, 15

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019. 15

David Van Der Spoel, Erik Lindahl, Berk Hess, Gerrit Groenhof, Alan E Mark, and Herman JC
Berendsen. Gromacs: fast, flexible, and free. Journal of computational chemistry, 26(16):
1701–1718, 2005. 2

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Łukasz
Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information processing
systems, 30, 2017. 27, 28

Cédric Villani et al. Optimal transport: old and new, volume 338. Springer, 2009. 3

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural computa-
tion, 23(7):1661–1674, 2011. 15

Tian Xie, Xiang Fu, Octavian-Eugen Ganea, Regina Barzilay, and Tommi S. Jaakkola. Crystal diffu-
sion variational autoencoder for periodic material generation. In International Conference on Learn-
ing Representations, 2022. URL https://openreview.net/forum?id=03RLpj-tc_.
8, 31

Sherry Yang, Simon Batzner, Ruiqi Gao, Muratahan Aykol, Alexander L. Gaunt, Brendan McMorrow,
Danilo J. Rezende, Dale Schuurmans, Igor Mordatch, and Ekin D. Cubuk. Generative hierarchical
materials search. 2024. URL https://arxiv.org/abs/2409.06762. 8, 31

Jason Yim, Andrew Campbell, Andrew YK Foong, Michael Gastegger, José Jiménez-Luna, Sarah
Lewis, Victor Garcia Satorras, Bastiaan S Veeling, Regina Barzilay, Tommi Jaakkola, et al. Fast
protein backbone generation with se (3) flow matching. arXiv preprint arXiv:2310.05297, 2023a.
15

Jason Yim, Brian L Trippe, Valentin De Bortoli, Emile Mathieu, Arnaud Doucet, Regina Barzilay,
and Tommi Jaakkola. Se (3) diffusion model with application to protein backbone generation.
arXiv preprint arXiv:2302.02277, 2023b. 15

Min Yu, Weiming Li, Yunru Yu, Yu Zhao, Lizhi Xiao, Volker Lauschke, Yiyu Cheng, Xingcai Zhang,
and Yi Wang. Deep learning large-scale drug discovery and repurposing. Nature Computational
Science, 4:1–15, 08 2024. doi: 10.1038/s43588-024-00679-4. 1

Xuan Zhang, Limei Wang, Jacob Helwig, Youzhi Luo, Cong Fu, Yaochen Xie, Meng Liu, Yuchao
Lin, Zhao Xu, Keqiang Yan, et al. Artificial intelligence for science in quantum, atomistic, and
continuum systems. arXiv preprint arXiv:2307.08423, 2023. 3, 15

14

https://openreview.net/forum?id=03RLpj-tc_
https://arxiv.org/abs/2409.06762

Published as a conference paper at ICLR 2025

A RELATED WORKS

A.1 GEOMETRIC MODELING

Geometric modeling of molecules has predominantly been applied in 3D Euclidean space (Smidt et al.,
2018). It requires that the representation and generation function over the molecular system remain
equivariant to the rotations and translations, i.e., the SE(3)-equivariance, ensuring that molecular
properties are preserved regardless of orientation or position in space (Smidt et al., 2018; Zhang et al.,
2023; Liu et al., 2023).

We note that reflection (or chirality) is also an important factor in geometric molecule modeling. For
multi-component molecular systems like protein-ligand binding complexes, each individual molecule
can lead to different energies and corresponding properties with distinct chiralities (Brooks et al.,
2011; McVicker & O’Boyle, 2024). Also, as shown in AlphaFold2, the natural molecules should be
sensitive to the chirality (Jumper et al., 2021). Thus, more physically accurate geometric modeling
should be SE(3)-equivariant and reflection-antisymmetric, and we have shown how our proposed
AssembleFlow satisfies this in Section 3.

We also want to highlight another line of research that downplays the importance of symmetry
in molecular modeling, as demonstrated by models like AlphaFold3 (Abramson et al., 2024) and
XYZTransformer (Flam-Shepherd & Aspuru-Guzik, 2023). These models avoid incorporating
geometric symmetries because enforcing group symmetry constraints, such as SE(3)-equivariance,
can limit a model’s expressiveness. In some domain-specific tasks, relaxing these constraints has
resulted in strong performance. However, in the case of crystallization, maintaining molecular
rigidity—a key symmetric property—is crucial. As demonstrated in previous work (Liu et al.,
2024c), neglecting these equivariance constraints during molecular crystallization leads to unrealistic
molecular structures.

A.2 GENERATIVE MODELS ON GEOMETRIC DATA

The geometric modeling on the continuous 3D Euclidean space can be naturally merged with deep
generative frameworks, where the goal is to learn the geometric data distribution and generate new
molecules. The deep generative models include but are not limited to denoising score matching (Vin-
cent, 2011; Song & Ermon, 2019), denoising diffusion probabilistic model (Ho et al., 2020), and flow
matching (Lipman et al., 2022; Liu et al., 2022; Albergo & Vanden-Eijnden, 2022). Such geometric
generative models have been widely adopted for molecule and material generation (Hoogeboom et al.,
2022; Jiao et al., 2024; Luo et al., 2024), structure-based drug design (Guan et al., 2023; 2022; Liu
et al., 2024b), and molecular dynamics simulation (Doerr et al., 2021; Arts et al., 2023; Liu et al.,
2024a).

A.3 GENERATIVE MODELS ON RIGID GEOMETRIC DATA

Though our work is the first to apply rigid generation in SE(3) space for molecular pack-
ing/crystallization, similar ideas have been carried out for protein backbone generation (Jumper
et al., 2021; Yim et al., 2023a;b; Bose et al., 2023; Huguet et al., 2024) and relevant works (Köhler
et al., 2023; Ganea et al., 2021; Klein et al., 2024)) In the protein backbone generation and folding
setting, there exists a well-defined local frame structure for each residue: the backbone atom pairs
(C −N) and (Cα − C) form two bases, and their cross product leads to the third basis, which is a
normal vector perpendicular to the two bases. Thus, the rotation matrix can be easily constructed
based on such a local frame structure. Such a modeling paradigm is appealing for macromolecules
like proteins to reduce the computational cost.

In this field, AlphaFold2 adopts this local-frame idea to model the folding process (Jumper et al.,
2021), while FrameDiff applies this idea and denoising diffusion model for protein structure gen-
eration (Yim et al., 2023b). Similarly, FrameFlow and FoldFlow integrate local frames with flow
matching to learn the protein dynamics (Yim et al., 2023a; Bose et al., 2023; Huguet et al., 2024).
However, this approach cannot be easily extended to crystallization tasks, as constructing reliable lo-
cal frames to establish positional references for assembling molecules is not straightforward. Instead,
we innovatively introduce inertial frames to achieve this goal.

15

Published as a conference paper at ICLR 2025

A.4 COMPARISON BETWEEN SPHERICAL INTERPOLATION AND EXPONENTIAL MAP
INTERPOLATION ON SO(3)

In addition to spherical interpolation, we could also consider the exponential map interpolation, as
used in (Riemannian FM, FrameFlow, and FoldFlow). In this section, we would like to compare
the theoretical differences. We further conduct experiments for empirical comparison, and please
check Appendix H.2 for more details.

We mark exponential map interpolation as (EMLERP), and it is defined as:

EMLERP(r0, r1, t) = expr0
(t logr0

(r1)). (15)

We then discuss how FoldFlow and FoldFlow2 utilized this equation since they are the latest work
along this line of using EMLERP. By utilizing the tangent space of the manifold and axis-angle
representation, existing works (FoldFlow, FoldFlow2) have been using an approximated closed-form
solution for the derivative:

d

dt
EMLERP(r0, r1, t) = logrt

r0
t
. (16)

Thus, their objective function on SO(3) is:

LSO(3) = ∥ d

dt
EMLERP(r0, r1, t)− vθ,SO(3)(xt, rt, t)∥2

= ∥ logrt

r0
t

− vθ,SO(3)(xt, rt, t)∥2.
(17)

To sum up, these two methods do not have a clear methodological advantage over each other; however,
the EMLERP considers more approximation tricks in implementation. We summarize the main
differences in Table 3.

Table 3: Comparison between the interpolation paths in AssembleFlow and FrameFlow.

AssembleFlow (ours) FoldFlow

Reference Frame Eigenvectors of inertial frames Gram-Schmidt on N -C-Cα

SO(3) Interpolation Spherical Interpolation Exponential Map Interpolation
Equation sin((1−t)ω)q0+sin(tω)q1

sin(ω) expr0
(t logr0

(r1))

Derivative Equation (9) Equation (16)
Rotation Representation (for Velocity / Objective Function) Quaternion Rotation Matrix or Axis-angle
Reparameterization Yes No

A.5 COMPARISON BETWEEN OUR WORK AND RIGID STRUCTURE SAMPLING (KÖHLER
ET AL., 2023)

We would like to emphasize that our work differs from (Köhler et al., 2023) in the following
fundamental aspects. Noticeably, we would like to emphasize that our work can be seen as an
extension of (Köhler et al., 2023), yet addressing more practical and challenging problems, including
rigid modeling on arbitrary molecules, SE(3)-equivariant modeling, and interpolation modeling.

1. Experiment and Data Difference: (Köhler et al., 2023) targets at modeling the transition,
e.g., water molecules at different temperatures (no code or comments related to methane
rigid modeling were found in the GitHub repository). The MD simulation can provide
samples at the stable or equilibrium status. Our work models the transition from unstable to
stable conformations.

2. Dynamic Transition Modeling vs. Stable Structure Sampling: Unlike (Köhler et al.,
2023) which focuses on stable structure sampling, our work models the dynamic transition
process from weakly correlated (unstable) structures to strongly correlated (stable) structures.
Notably, dynamic transition modeling toward stability is identified as a nontrivial next step
in the ICML work (Köhler et al., 2023), which states ’... a flow model for the positions that
can handle ... phase transitions’. We also want to emphasize that the transition of a molecular
cluster from weakly correlated (unstable) structures to strongly correlated (stable) structures
is a special case of the general dynamics. The limitation here is the data insufficiency (lack
of intermediate snapshots), not modeling.

16

Published as a conference paper at ICLR 2025

3. Objective Difference: (Köhler et al., 2023) first introduces molecular equilibrium sampling
with Boltzmann distribution in Eq 1,2. But this is not the goal, (Köhler et al., 2023) changes
to estimating log-ratio: ∇F = − log(Zα1

/Zα0
) between two configurations in Eq 3. This

measure estimates the energy difference and tells which state is more stable. (Köhler et al.,
2023) says using trackable priors like Gaussian can be biased, thus it takes the insight
from previous work, and targets solving the problems Eq 3 and 7 (learned free energy
perturbation). (Notice that other equations Eq 2,4,5 are preliminaries, not directly related to
the core method in this work.) This reveals another theoretical difference between this work
and our work: (Köhler et al., 2023) is estimating the upper bound of log-ratio between two
stable states (with MD simulations), and ours is directly modeling p(X1|X0) from unstable
to stable transition.

4. Use of Inertial Frames for Rigid Modeling: (Köhler et al., 2023) specifically models the
frame for H-O-H (codes here) (no code or comments related to methane rigid modeling
were found in the GitHub repository). In contrast, our approach is more generalizable, as
the inertial frame can serve as a reference frame for any molecule. Thus, (Köhler et al.,
2023) cannot be directly applied to our dataset, as it is limited to few types of constructed
frames, and our work can be viewed as an extension of (Köhler et al., 2023) to a more
general setting.

5. SE(3)-equivariant Symmetry Modeling: (Köhler et al., 2023) states that it has a limitation
on not ’exploiting the SE(3) symmetry of jointly moving all rigid bodies’. We solve this
issue by introducing the SE(3)-equivariant modeling from two granularities.

6. Limitations of Coupling Layers in Normalizing Flow: (Köhler et al., 2023) does modeling
with an extra bijectivity constraint in coupling layers, limiting the model capacity (Ho et al.,
2019). Flow matching enables flexible velocity functions under the interpolation framework.

We list the comparison in the table below:

Table 4: Comparison between (Köhler et al., 2023) and AssembleFlow.

Paper (Köhler et al., 2023) AssembleFlow (ours)

Experiments Transition between two stable conformations Transition from unstable to stable

Data Water and methane (experiment missing on
GitHub repo) molecules

COD organic molecules

Frame construction H-O-H frame specific for water molecule (No code
or comments related to methane rigid modeling
were found in the GitHub repository)

Inertial frame for any organic molecule

Objective function Upper bound of log-ratio between two stable con-
formations for energy difference

Direct estimation of conditional density from un-
stable to stable

Modeling SE(3) symmetry in moving
rigid bodies

No Yes

Avoid bijectivity constraint in coupling
layers

No Yes

17

https://github.com/noegroup/rigid-flows/blob/main/rigid_flows/rigid.py#L13-L29

Published as a conference paper at ICLR 2025

B ROTATION REPRESENTATION

In this section, we will be mainly discussing three types of rotation representations. It is important to
note that “representation” here refers to the data structure commonly used in the machine learning
community, rather than the concept of a representation space.

In Appendix C.1, we will explain how to use inertials to represent the rigid structures of molecules in
a cluster. With such a rigid representation, we can then decompose SE(3) transformation into a tuple
of SO(3) and R3 transformations.

A natural way to represent the SO(3) transformation is by using the rotation matrix, as will be
introduced in Appendix B.1. However the rotation matrix is not flexible and it must satisfy specific
mathematical properties to make sure it is a valid rotation in space, so we need a more flexible
and efficient representation. To this end, we would like to introduce axis-angle representation in
Appendix B.2 and quaternion representation in Appendix B.3. The axis-angle representation and
quaternion representation are closely related, and their transformation is discussed in Appendix B.4.
Last but not least, the transformation between the rotation matrix and quaternion is in Appendix B.5,
and the transformation between axis-angle representation and rotation matrix representation is in
Appendix B.6. An overview of the rotation representation and the corresponding transformations are
listed in Figure 6.

Figure 6: Transformation between rotation matrix, quaternion, and axis-angle representation.

B.1 ROTATION REPRESENTATION WITH ROTATION MATRIX

Definition Rotation matrix is R ∈ R3×3, satisfying two conditions:

1. Orthogonality: The rows and columns of R are orthonormal vectors. RTR = RRT = I .
2. Determinant: The determinant of R must be 1. det(R) = 1.

The set of all orthogonal matrices of size 3 with determinant 1 is a representation of a group known
as the special orthogonal group SO(3). To generate a rotation matrix in SO(3), certain properties
for the rotation matrix must be satisfied, and such constrained generation is challenging. Thus, an
alternative way of representing the rotation matrix is preferred. To this end, we consider axis-angle
representation, as described below.

Rotation with Rotation Matrix To rotation a point, p = (x, y, z), in the 3D Euclidean space, the
rotation operation is: [

x′

y′

z′

]
= R

[
x
y
z

]
=

[
R11 R12 R13

R21 R22 R23

R31 R32 R33

][
x
y
z

]
. (18)

Properties

• If we have multiple rotation matrices, and we want to yield a single matrix that combines
these rotations into one, then we have two options:

18

Published as a conference paper at ICLR 2025

– Extrinsic rotations. All rotations refer to a fixed and global coordinate system, and the
rotation matrices are ordered from the right to the left. If we apply rotations R1, R2,
and R3, then it is written as R = R3R2R1.

– Intrinsic rotations. A rotation refers to the last rotated coordinate system, and the
rotation matrices are ordered from the left to the right. If we apply rotations R1, R2,
and R3, then it is written as R = R1R2R3.

B.2 ROTATION REPRESENTATION WITH AXIS-ANGLE REPRESENTATION

The axis-angle represents the rotation by its angle θ and the rotation axis u. For example, a rotation
of 180 degrees around the Y-Axis would be represented as θ = 180, u = (0, 1, 0). The representation
is very intuitive, but for actually applying the rotation, another representation is required, such as a
quaternion or rotation matrix.

Definition The axis-angle representation of a rotation is defined by two components:

1. Rotation axis: a unit vector u = (ux, uy, uz) that specifies the direction of rotation, ∥u∥ =
1.

2. A scalar θ specifies the angle of rotation around the rotation axis.

For annotation, an axis-angle rotation can thus be presented by four numbers as (θ, x̂, ŷ, ẑ).

B.3 ROTATION REPRESENTATION WITH QUATERNION REPRESENTATION

Quaternion represents a rotation by a 4D vector and it is a more concise representation than a rotation
matrix. It requires more math and is less intuitive, but is a much more powerful representation.
Quaternion representation has been widely used in rigid motion modeling, robotics modeling, and
quantum mechanics (e.g., the spin of an electron and the polarization of a photon). In this work, we
are focusing on the first case, rigid motion modeling.

Definition A quanternion q is:

q = w + xi+ yj + zk = (w,v), (19)

where w, x, y, z are real numbers, and i, j, k are the fundamental quaternion units. The w is the real
part, and v = (x, y, z) is a 3D vector representing the imaginary part.

Multipliation of basis elements The multiplication for the basis elements i, j, k is defined below:

i2 = j2 = k2 = −1

ij = −ji = k

jk = −kj = i

ki = −ik = j

ijk = −1.

(20)

Quanternion multiplication: Hamilton product This can give us the quaternion multiplication,
a.k.a., Hamilton product. For two quaternions r = (r0, r1, r2, r3) and s = (s0, s1, s2, s3):

t = rs, (21)

where
t0 = r0s0 − r1s1 − r2s2 − r3s3

t1 = r0s1 + r1s0 − r2s3 + r3s2

t2 = r0s2 + r1s3 + r2s0 − r3s1

t3 = r0s3 − r1s2 + r2s1 + r3s0.

(22)

Point rotation with quaternion We rotate a point v = (vx, vy, vz) by the quaternion q =
(w, x, y, z) using the following three steps:

1. Transform v to quaternion p = (0, vx, vy, vz).

19

Published as a conference paper at ICLR 2025

2. Construct the conjugate quaternion q∗ = (w,−x,−y,−z).
3. There are two types of rotation operations:

(a) Active rotation: p′ = q∗pq, when the point is rotated w.r.t. the coordinate system.
(b) Passive rotation: p′ = qpq∗, when the coordinate system is rotated w.r.t. the point.

Notice that the two rotations are opposite from each other. In our case, we use the passive
rotation.

4. The resulting vector v′ is extracted from the imaginary part of p′.

Spherical Interpolation (SLPER) for Quaternion Interpolation Quaternions are often pre-
ferred for interpolating between rotations because they offer smoother interpolation than axis-angle
representation. The spherical interpolation defines the geodesic over the rotation group.

SLERP(q0, q1, t) =
sin((1− t)ω)q0 + sin(tω)q1

sin(ω)
, (23)

where ω is the angle between q0 and q1.

Properties

• A quaternion is a unit quaternion if ∥q∥ = w2 + x2 + y2 + z2 = 1.
• All rotation quaternions must be unit quaternions.
• A rotation of qa followed by a rotation of qb can be combined into a single rotation:
qc = qbqa. Note that order matters.

• The conjugate of a quaternion is q∗ = (w,−x,−y,−z).
• The inverse of a rotation quaternion is q−1 = q∗. Then we can see that qq−1 = qq∗ =
(1, 0, 0, 0).

• Quaternion multiplication is associative: abc = a(bc).
• Quaternion multiplication is not commutative: ab ̸= ba.

B.4 TRANSFORMATION BETWEEN AXIS-ANGLE AND QUATERNION

Axis-angle representation to quaternion representation Axis-angle representation is u =
(ux, uy, uz) equipped with a rotation angle θ, and the rotation quaternion is unitary, i.e., w2 +
x2 + y2 + z2 = 1. The quaternion is thus:

q = cos

(
θ

2

)
+ sin

(
θ

2

)
(uxi+ uyj + uzk), (24)

or equivalently in the vector form:

q = (cos

(
θ

2

)
, sin

(
θ

2

)
ux, sin

(
θ

2

)
uy, sin

(
θ

2

)
uz). (25)

Quaternion representation to axis-angle representation Quaternion is q = (w, x, y, z), and to
convert it to axis-angle representation:

1. Compute the angle θ = 2 cos−1(w).
2. Compute the axis u:

u =
(x, y, z)√

x2 + y2 + z2
=

(x, y, z)

sin θ
2

. (26)

B.5 TRANSFORMATION BETWEEN QUATERNION AND ROTATION

Quaternion to rotation matrix Given a quaternion q = (w, x, y, z), the corresponding rotation
matrix is

R =

1− 2y2 − 2z2 2xy − 2wz 2xz + 2wy
2xy + 2wz 1− 2x2 − 2z2 2yz − 2wx
2xz − 2wy 2yz + 2wx 1− 2x2 − 2y2

 (27)

20

Published as a conference paper at ICLR 2025

Rotation matrix to rotation quaternion Given a rotation matrix R =

[
R11 R12 R13

R21 R22 R23

R31 R32 R33

]
, then

we first calculate the magnitude of four quaternion components as below:

|q0| =
√

1 +R11 +R22 +R33

4

|q1| =
√

1 +R11 −R22 −R33

4

|q2| =
√

1−R11 +R22 −R33

4

|q3| =
√

1−R11 −R22 +R33

4

(28)

To find the signs of the four elements, we can find the largest magnitude:

• If |q0| is the largest, then

w = q0, x =
R32 −R23

4w
, y =

R13 −R31

4w
, z =

R21 −R12

4w
. (29)

• If |q1| is the largest, then

x = q1, w =
R32 −R23

4x
, y =

R12 +R21

4x
, z =

R13 +R31

4x
. (30)

• If |q2| is the largest, then

y = q2, w =
R13 −R31

4y
, x =

R12 +R21

4y
, z =

R23 +R32

4y
. (31)

• If |q3| is the largest, then

z = q3, w =
R21 −R12

4z
, x =

R13 +R31

4z
, y =

R23 +R32

4z
. (32)

The sign is ambiguous because any rotation has two possible quaternion representations. If one is
known, the other one can be found by taking the negative of all four terms.

Besides, there exist other solutions, for instance, extracting quaternion from rotation matrix using
eigendecomposition (Horn, 1987; Bar-Itzhack, 2000). We first construct a matrix K with:

K =
1

3

R11 +R22 +R33 R32 −R23 R13 −R31 R21 −R12

R32 −R23 R11 −R22 −R33 R12 +R21 R13 +R31

R13 −R31 R12 +R21 R22 −R11 −R33 R23 +R32

R21 −R12 R13 +R31 R23 +R32 R33 −R11 −R22

 . (33)

Then we perform eigendecomposition K = V ΛV T , where Λ is a diagonal matrix with eigenvalues
and V is the matrix with eigenvectors as columns. Finally, we pick up the eigenvector w.r.t. the
largest eigenvalue, and this eigenvector is the unit quaternion.

B.6 TRANSFORMATION BETWEEN AXIS-ANGLE REPRESENTATION AND ROTATION MATRIX

Axis-angle representation to rotation matrix Construct the skew-symmetric matrix:

K =

[
0 −uz uy

uz 0 −ux

−uy ux 0

]
(34)

According to the Rodrigue’s rotation formula, we have:

R = I + sin(θ)K + (1− cos(θ))K2. (35)

21

Published as a conference paper at ICLR 2025

Rotation matrix to axis-angle representation The rotation angle can be computed using the trace
of R, i.e.,

θ = cos−1
(Tr(R)− 1

2

)
, (36)

where Tr(R) is the trace, as Tr(R) = R11 +R22 +R33.

Then we calculate the rotation direction or rotation axis u = (ux, uy, uz), as

ux =
R32 −R23

2 sin θ
, uy =

R13 −R31

2 sin θ
, uz =

R21 −R12

2 sin θ
. (37)

Notice that when θ = 0, there is no definition of rotation axis and the whole rotation matrix R is
unitary. When θ = π, because sin θ = 0, then we need other methods (e.g., eigendecomposition) to
determine the rotation axis.

22

Published as a conference paper at ICLR 2025

C INERTIAL FRAME FOR RIGID BODY

C.1 RIGID REPRESENTATION OF MOLECULE

We employ the following four sequential steps to derive the reference frames that construct the
rotation matrix from N atomic positions r:

• Calculate the mass center: c = 1
N

∑
i ri.

• Adjust position relative to the center ri = ri − c.
• Compute the inertia tensor Î =

∑
i ∥ri∥2I − rir

T
i , where I is the unit diagonal matrix.

• Obtain the principal axes of inertia by applying eigen-decomposition on Î . We have
Î = QΛQT , where Q is the orthogonal matrix whose columns are the eigenvectors of Î ,
and Λ is the diagonal matrix whose elements are the eigenvalues λi of Î , representing the
principal moments of inertial along the principal axes.

C.2 ORTHOGONAL MATRIX

In linear algebra, an orthogonal matrix or orthonormal matrix is a square matrix whose columns and
rows are orthonormal vectors. This can be written as

QTQ = QQT = I. (38)

This leads to the equivalent characterization: a matrix Q is orthogonal if its transpose is equal to its
inverse:

QT = Q−1. (39)

Notice that when discussing matrices, the two terms (orthogonal and orthonormal) can be used
interchangeably.

If Q is a square matrix, then the conditions RRT = I and RTR = I are equivalent. Proof sketch:
RTR = I and RTRR−1 = R−1, so RT = R−1. This can give us RRT = I .

C.3 ROTATION MATRIX FROM RIGID BODY

From Appendix C.1, we can construct the inertial tensors. Then we employ eigenvalue decomposition
on the inertial tensor. The normalized eigenvectors v1,v2,v3 form an orthonormal basis, which can
be used to construct the rotation matrix, i.e.,

R = [v1 v2 v3] . (40)

Eigendecomposition of Inertial Tensors For inertial tensor I , the decomposition is: with Ivi =
λivi, where λi are eigenvalues and vi ∈ R3×1 are eigenvectors. Thus, we can have

Iv = λv

IR = RΛ

I = RΛR−1,

(41)

where Λ =

[
λ0 0 0
0 λ1 0
0 0 λ2

]
. Because the inertial tensors are symmetric matrices, we have that

matrices R are orthonormal matrices.

C.4 EXPLORATIONS ON OTHER REFERENCE FRAME OPTION

One critical question is in addition to the Inertial frame, do we have other options for modeling the
rigidity? One simple solution is to directly apply the eigendecomposition as principal component
analysis (PCA) on the point clouds of centered molecules.

First, we would like to clarify that there are two roles and one important property of the inertial frame
and its eigenvectors:

23

Published as a conference paper at ICLR 2025

• Role 1: The three bases in inertial frames act as a reference or a canonical pose.
• Role 2: The three bases enable modeling the velocity function in SO3 space.
• What’s more important, we expect the three bases to be numerically stable.

Then getting back to the question, though both can help build up the reference frame or canonical
pose, there are certain aspects we would like to emphasize when comparing PCA and Inertial frames.

• Canonical pose: The key question is defining a canonical pose. If we just do PCA on the
point clouds, this cannot guarantee the group symmetry in SE(3). However, if we remove
the center point, then the group symmetry can be guaranteed; then we can use SVD to get
the three principal components. Till this step, one can find this is somewhat similar to the
inertial frame construction (Sec 3.1).

• Difference between PCA and Inertial Frame as reference frames: Though both can be
used for building up the reference frame or canonical poses, SVD (for PCA) on the set of
point clouds N × 3 (N is the number of atoms) can be less numerically unstable, while
eigendecomposition Inertial Frame 3× 3 can be more numerically stable. We conduct an
experiment to verify this.

– Experiment setup: Suppose we have weakly-correlated structures X0 and strongly-
correlated structures X1, and we find the corresponding bases using either eigendecom-
position on centered X or inertial frame I . The two bases are marked as B0 ∈ R3×3

and B1 ∈ R3×3.
– Objective: We can obtain the rotation matrix with RT = BT

0 B1, and then we can rotate
the whole molecular system as X̃1 = X0R

T , and we are measuring the reconstruction
errors as MSE(X1 − X̃1). We mark the MSE using inertial frame and PCA as δInertial
and δPCA, respectively. If δInertial < δPCA, then we can conclude that using the inertial
frame is more stable than using PCA, and vice versa. Notice that since the MSE
reconstruction is meaningless when it is too small, so we only compare these two
frames when at least one of them has reconstruction greater than or equal to a threshold
θ.

– Results: The comparison results are in Table 5, and we can observe that in general,
using the inertial frame is more stable than PCA. We are listing multiple reconstruction
threshold θ in Table 5, and we are using θ = 1e− 3 in the main article.

Table 5: Comparison of using inertial frame and PCA for reconstruction (%).

θ 1e-3 1e-4 1e-5 1e-6 1e-7 1e-8

P (δInertial < δPCA) 0.434 0.884 1.338 1.794 2.254 2.727
P (δInertial > δPCA) 0.371 0.756 1.147 1.539 1.934 2.345

C.5 KABSCH ALGORITHM

Kabsch algorithm is one way to compute the optimal rotation matrix that minimizes the root-mean-
square deviation (RMSD) between two sets of points (atoms in our case). However, it is guaranteed in
the COD-Cluster17 dataset that the molecules in weakly correlated structures can rotate to molecules
in strongly correlated structures; in other words, the RMSD can be approximately 0 if we use the
Kabsch algorithm, which is equivalent to calculating the rotation matrix directly after we fix the
poses. We have shown how to calculate the rotation matrix in the experiment above.

24

Published as a conference paper at ICLR 2025

D PROOF OF THEOREM 1

Proof. For three vectors, we can easily find a counter-example, as illustrated in Figure 3 (a, b).
Figure 3 (a, b) describes two cases where we have the same initial frame, and we can rotate it to two
different final frames with two rotation matrices, yet the righthandness still matches. We can easily
see that there are four options of rotation matrices in this case, and we cannot uniquely determine the
final inertial frame in this case.

More rigorously, let us first assume that there exists a rotation transformation R that can transform
the initial coordinate system Qi to the final coordinate system Qf , as:

[
Qf,0

Qf,1

Qf,2

]T

= R ·

[
Qi,0

Qi,1

Qi,2

]T

(42)

First, as Lemma 1, we should change either zero or two directions for direction alignment.

Then without loss of generality, we can assume the two directions to be the last two axes. Thus, we
can obtain a rotation matrix R′ such that R′ is rotating R along vector Qf,0 with 180 degrees. We
can represent R′ using Rodrigue’s rotation formula, as R′ = (2Qf,0Q

T
f,0 − I)R. Thus, we can have:

R′ ·

[
Qi,0

Qi,1

Qi,2

]T

= (2Qf,0Q
T
f,0 − I)

[
Qf,0

Qf,1

Qf,2

]T

=

[
Qf,0

−Qf,1

−Qf,2

]T

(43)

This is essentially saying starting from one initial frame, we can have multiple matched final frames.
Thus, using only three vectors cannot uniquely determine the direction matching. We provide two
examples in Figure 3 (a, b).

For the four vectors, we introduce an extra atom into the inertial frame system, and such an extra atom
point is nonplanar to the three base axes. Then the problem becomes: starting from an initial frame
and an extra point, can we find multiple rotation matrices such that the final frames have reflected
directions? To be more rigorous, let us have the following formulation.

First, let us assume we have this rotation matrix:

Qf,0

Qf,1

Qf,2

v

T

= R ·

Qi,0

Qi,1

Qi,2

v

T

(44)

As discussed above, we need to guarantee the right-handedness property, thus, without loss generality,
here we also assume the last two axes are reflected. The question turns to: does it exit another rotation
matrix R′, such that:

 Qf,0

−Qf,1

−Qf,2

v

T

= R′ ·

Qi,0

Qi,1

Qi,2

v

T

(45)

We now use contradiction. Since we still have the two axes rotated 180 degrees around the first axes,
Qf,0, so R′ = (2Qf,0Q

T
f,0 − I)R. Then given the two conditions vT = RvT and vT = R′vT , we

have (2Qf,0Q
T
f,0 − I)vT = vT .

25

Published as a conference paper at ICLR 2025

If we let Qf,0 = [k1, k2, k3] and v = [v1, v2, v3], then we have

(2Qf,0Q
T
f,0 − I)vT = vT[

k1k1 k1k2 k1k3
k1k2 k2k2 k2k3
k2k3 k2k3 k3k3

][
v1
v2
v3

]
=

[
v1
v2
v3

]
[
k1(k1v1 + k2v2 + k3v3)
k2(k1v1 + k2v2 + k3v3)
k3(k1v1 + k2v2 + k3v3)

]
=

[
v1
v2
v3

]

(k1v1 + k2v2 + k3v3)

[
k1
k2
k3

]
=

[
v1
v2
v3

]
.

(46)

After calculation, we can obtain that Qf,0 = cv, where c is a coefficient. However, as we claimed in
the condition, v does not lie in the same line as Qf,0, thus, there does not exist such another rotation
matrix R′ ̸= R satisfying Equation (45). We also provide two examples in Figure 3 (c, d).

By contradiction, we can tell that there is only one unique rotation mapping from the initial inertial
frame to the final inertial frame.

To sum up, three points cannot form a rigid structure in Euclidean space, thus there can exist multiple
reflection transformations, leading to opposite inertial frames. Four points can form a rigid structure,
thus there exists only one reflection transformation.

26

Published as a conference paper at ICLR 2025

E PROBLEM FORMULATION AND MORE DETAILS OF ASSEMBLEFLOW

E.1 PROBLEM FORMULATION

We would like to emphasize that previous works aim at atomic level modeling, while our proposed
AssembleFlow focuses on molecular level modeling. Meanwhile, both models need to satisfy the
SE(3)-equivariance, as detailed below.

Atomic Level Modeling Existing deep learning frameworks have been using atomic level modeling.
For each atom r, the inference step is:

rt+1 = rt + xθ,t,

s.t. xθ,t is SE(3)-equivariant.
(47)

Thus, we can observe that such a problem formulation cannot guarantee the rigidity of each molecule
during the crystallization process.

Molecular Level Modeling In our proposed AssembleFlow, it learns the translation and rotation at
the molecule level. For each atom r, the inference step is:

rt+1 = Rθ,t(rt + xθ,t),

s.t. xθ,t and Rθ,t are SE(3)-equivariant.
(48)

The xθ,t and Rθ,t are molecular level modeling. Notice that this also holds after we take the
reparameterization, as discussed in Section 3.4. In Appendix E.2, we will explore how to define the
SE(3)-equivariant models on top of that.

E.2 SE(3)-EQUIVARIANT VELOCITY FUNCTION

We consider two types of SE(3)-equivariant models as the velocity function. As shown in Figure 7,
the inputs are the same for learning: the positions at the initial step and the final step, respectively.
We take the position of the mass center for each molecule in the cluster to obtain the translation in R3

(xi and xf), and we take the first principal axes of inertial frames to obtain the reference coordinate
system for rotation in SO(3) (qi and qf with alignment). Then we adopt Equations (6) and (7) for
the interpolation on SO(3) and R3 group respectively, which gives us translation xt and rotation qt
at interpolation time t ∈ [0, 1].

Recall that the data structure considered here is the cluster of molecules, thus it is natural to split the
modeling into intra-molecule and inter-molecule modeling, as introduced below.

Intra-molecule Modeling. For each molecule in the cluster, we adopt the SE(3)-equivariant
PaiNN (Schütt et al., 2021) to obtain the representation for each atom. Such an atomic representation
can encode the inherent geometric structural information of individual molecules, which can be
passed to inter-molecule modeling in the next step.

Inter-molecule Modeling. This step aims to model the inter-molecule interactions during the
molecular crystallization process based on the intra-molecule representation. We can have two
options for SE(3)-equivariant inter-molecule modeling: (1) to project xt and qt back to obtain the
atom-wise position and do modeling, as in Figure 7(a), or (2) to directly perform molecular level
modeling on molecular-level translation xt and rotation qt, as in Figure 7(b).

• Atomic level modeling. This means we build up the SE(3)-equivariant models on top of
atom positions rt at time t, and the outputs are the rotation and translation for step t+ 1 or
step T (if we use reparameterization).

– Obtain intra-molecule representation ha using PaiNN (Schütt et al., 2021).
– Obtain time embedding ht with positional encoding (Vaswani et al., 2017).
– Build up the vector frame basis (Liu et al., 2023) for each atom Fa, based on its

neighborhoods.
– Then we update the atomic representation ha as the summation of ha and ht.

27

Published as a conference paper at ICLR 2025

(a) Atomic level inter-molecule modeling. (b) Molecular level inter-molecule modeling.

Figure 7: Illustration of two types of SE(3)-equivariant inter-molecule velocity functions.

– Apply message passing (Gilmer et al., 2017) to exchange the information between each
atom and its neighborhood on top of the atomic representation ha and vector frame
basis Fa.

– The outputs include the atomic scalar representation ha,s ∈ RN×d and atomic vector
representation ha,v ∈ RN×3×d, where N is the total number of atoms in the cluster.

– Then we conduct the aggregation to obtain the molecular level predicted rotation
velocity q̂θ ∈ RM×3 and predicted translation velocity x̂θ ∈ RM×3, where M is the
number of molecules in the cluster.

– This holds similarly if we are going to predict the final rotation q̂1,θ and final translation
vector x̂1,θ when using the reparameterization.

• Molecular level modeling. This means we build up the SE(3)-equivariant models on top of
xt and qt at time t, and the outputs are the rotation and translation for step t+ 1 or step T
(if we are using reparameterization).

– Obtain intra-molecule representation ha using PaiNN (Schütt et al., 2021).
– Obtain time embedding ht with positional encoding (Vaswani et al., 2017).
– Then we update the atomic representation ha as the summation of ha and ht.
– Aggregate the atomic representation to get the molecular representation hm.
– Apply the message passing (Gilmer et al., 2017) to exchange the information between

each molecule and other molecules in the cluster, where the interactions are treated as
the forces in the inter-molecule level in the cluster.

– The outputs include a molecular level predicted rotation velocity q̂θ ∈ RM×3 and
predicted translation velocity x̂θ ∈ RM×3, where M is the number of molecules in the
cluster.

– This holds similarly if we are going to predict the final rotation q̂1,θ and final translation
vector x̂1,θ when using the reparameterization.

Notice that for the predicted quaternion q̂θ, we only predict the imaginary part. We then concat the
real part as 1, followed by a normalization to make it a rotation quaternion.

E.3 ALGORITHM

In this section, we provide the pseudocodes for AssembleFlow. Following Section 3, we illustrate
the reparameterized version here. The training and inference algorithms are in Algorithms 1 and 2,
respectively. We would also like to emphasize the following prior steps: (1) We first construct the
inertial frames as discussed in the main article. (2) Then we construct the coordinate system (in
rotation matrix) and conduct the alignment between the initial and final frames. (3) Last but not least,
we transform the coordinate system from rotation matrix to quaternion as discussed in Appendix B.5.

28

Published as a conference paper at ICLR 2025

Algorithm 1 Learning of AssembleFlow.

1: Inputs: For N atoms in M molecules, we have atomic level initial position r0 ∈ RN×3,
molecular level initial rotation quaternion qM×4

0 and translation x0 ∈ RM×3, atomic level
final position r ∈ RN×3, molecular level final rotation quaternion q1 ∈ RM×4 and translation
x1 ∈ RM×3, timestep T ∈ R, epoch E ∈ R, coefficients α0, α1 ∈ R.

2: for epoch e ∈ [1, E] do
3: Sample t ∈ [1, T].
4: Conduct LERP to obtain translation xt at time t, following Equation (7).
5: Perform SLERP to obtain quaternion qt at time t, following Equation (6).
6: Predict the final quaternion q̂1 = q̂1,θ(xt, qt, t) and translation x̂1 = x̂1,θ(xt, qt, t) using

SE(3)-equivariant modeling as discussed in Appendix E.2.
7: Minimize loss L = α0LR3,reparameter + α1LSO(3),reparameter, as defined in Equation (13).
8: end for

Algorithm 2 Inference of AssembleFlow.

1: Inputs: For N atoms in M molecules, we have atomic level initial position r0 ∈ RN×3,
molecular level initial rotation quaternion qM×4

0 and translation x0 ∈ RM×3, timestep T ∈
R, learned SE(3)-equivariant models final rotation quaternion q̂1,θ(xt, qt, t) and translation
x̂1,θ(xt, qt, t).

2: for timestep t ∈ [1, T] do
3: Predict the final quaternion q̂1 = q̂1,θ(xt, qt, t) and translation x̂1 = x̂1,θ(xt, qt, t) using

SE(3)-equivariant modeling as discussed in Appendix E.2.
4: Calculate the next-step quaternion q̂t+1 and translation x̂t+1 as Equation (14).
5: Move the cluster of molecules w.r.t. q̂t+1 and x̂t+1.
6: Obtain the corresponding atomic positions rt+1 at time t+ 1, following Equation (48).
7: end for
8: The final predicted crystal structure is r̂T .

E.4 HYPER-PARAMETERS

We provide the key hyper-parameters of AssembleFlow in Table 6.

Table 6: Hyperparameter specifications for AssembleFlow.

Model Hyperparameter Value

Intra-modeling PaiNN
embedding dim {128}
num of layers {3}
cutoff {5}
read out {mean}

Intra-modeling Atomic Level num of layers {2,5}
num of convolution {2}
num of head {4, 8}
num of timesteps {50, 200}
α0 {1}
α1 {1, 10}

Intra-modeling Molecular Level num of layers {4,5}
num of head {4, 8}
num of timesteps {50, 200}
α0 {1}
α1 {1, 10}

Optimization seed {0, 42, 123}
epochs {1000, 2000}
cutoff c {20, 50}
learning rate {1e-4, 5e-4}
optimizer {Adam }

29

Published as a conference paper at ICLR 2025

F DETAILS OF BASELINES

F.1 DEEP LEARNING BASELINES AND PARAMETERS

Notice that for all the baselines listed below, we also adopt the PaiNN for atomic level representa-
tion (Schütt et al., 2021), and the hyperparameters are the same as Appendix E. We list the remaining
hyperparameters of baselines in Table 7.

Table 7: Hyperparameter specifications for deep learning baselines.

Model Hyperparameter Value

GNN-MD seed {0, 42, 123}
epochs 3000
num of timesteps {50, 200}
cutoff c {20, 50}
learning rate {1e-4, 5e-4}
optimizer {Adam }

CrystalSDE SDE type {VE, VP}
seed {0, 42, 123}
epochs 3000
num of timesteps {50, 200}
cutoff c {20, 50}
learning rate {1e-4, 5e-4}
optimizer {Adam }

CrystalFlow interpolation type {VE, VP, LERP}
seed {0, 42, 123}
epochs 3000
num of timesteps {50, 200}
cutoff c {20, 50}
learning rate {1e-4, 5e-4}
optimizer {Adam }

F.2 PACKMOL

We want to mention that using PackMol for evaluation with the packing matching metrics is non-
trivial. This is because the atom ordering in each molecule and the molecule ordering in each cluster
are different between PackMol simulated results and the ground-truth results. We note that deep
learning methods do not have this issue because the orderings of initial atoms/molecules match with
the final atoms/molecules.

Thus, to address this issue, we first use the Hungarian algorithm to match the mass centers of
simulated results to obtain the least matching distance with the ground truth mass centers, i.e., PM
(center). This gives us the molecule ordering mapping from simulated clusters to the ground-truth
clusters. Then for each molecule simulated-and-ground-truth pair, we apply the Hungarian algorithm
again to obtain the minimum distance for alignment.

30

Published as a conference paper at ICLR 2025

G DATASET AND EVALUATION METRICS

G.1 DATASET

We evaluate our method using the crystallization dataset COD-Cluster17 from (Liu et al., 2024c). This
COD-Cluster17 is a curated subset derived from the COD database (Grazulis et al., 2009). We note
that some single molecules/substances can crystallize in different forms, known as polymorphs. This
arises due to changes in the configurations during the process, such as the environment temperature,
pressure, and solvent. COD-Cluster17 simplifies this setup by ignoring the configuration information
and treats the crystallization problem as a density estimation problem.

G.2 DETAILS OF EVALUATION METRICS

We illustrate five types of evaluation metrics below. Notice that in the original dataset, the dynamics
or trajectories of molecules are missing. Thus, our evaluation is based on the ground truth cluster
geometry at the last step.

Packing Matching (PM) This metric quantifies how well the generated molecular assemblies
match the reference crystal structures in terms of spatial arrangement and packing density (Chisholm
& Motherwell, 2005). It is a key indicator of how accurately a model can replicate real-world
crystallization patterns. We provide both the atomic MP, denoted as “PM (atom)” and mass-center-
level PM, denoted as “PM (center)”.

Collision This follows (Cordero et al., 2008; Liu et al., 2024b). It measures if there is any atomic
collision in the predicted assemblies. Atoms must maintain a minimum pairwise distance governed
by the balance of attractive and repulsive forces. More concretely, we are using covalent radii as the
most strict metric for atomic collisions in molecular generation. This is because it provides a precise
lower bound for the distances between atoms when they are bonded. In other words, covalent radii
represent the distance at which two atoms form a stable covalent bond, which is a very close and
well-defined interaction compared to non-covalent interactions. However, other types of atomic radii,
such as van der Waals radii or ionic radii, can be used for different purposes, depending on the nature
of the interaction you’re modeling.

Separation We extend the metric from (Xie et al., 2022; Yang et al., 2024) to our setting. A cluster
of molecules is valid if the minimum distance between molecules is above 0.5Å (Court et al., 2020).
This metric is referred to as separation to measure the validity to avoid unphysical interactions at the
molecular level.

Compactness We propose this measure by calculating the percentage of simulated clusters where
the maximum atomic pairwise distances are below 100Å. This assesses the spatial efficiency of
the molecular assemblies, indicating how closely the constituent molecules are packed together. A
higher compactness value suggests a more efficient arrangement, where the intermolecular spaces are
minimized, leading to a denser crystalline structure.

31

Published as a conference paper at ICLR 2025

H ABLATION STUDIES

H.1 ABLATION STUDIES ON RANDOM SAMPLING

Here, we add another baseline by randomly sampling translation and rotation.

• For SO(3), we can do random sampling.
• For R3, we first obtain the range of atom positions in the training data, and then we just do

uniform sampling within this range.

The results are in Table 8. As observed in Table 8, the Random baseline performs exceptionally well
across all three validity metrics; however, its packing matching is significantly worse by an order of
magnitude.

Table 8: AssembleFlow against six generative models on COD-Cluster17 with 5K, 10K, and all samples. The
best results are marked in bold. Baseline Random has the best validity metrics, but they are meaningless since
the packing matching is extremely high, remarking that the results collapse. Thus, we mark them in gray.

Packing Matching Validity
PM (atom) ↓ PM (center) ↓ Collision ↓ Separation ↑ Compactness ↑

Dataset: COD-Cluster17-5K
Random 54.07 ± 0.42 54.62 ± 0.43 0.31 ± 0.01 99.88 ± 0.01 100.00 ± 0.00
GNN-MD 13.67 ± 0.06 13.80 ± 0.07 27.53 ± 0.49 0.22 ± 0.11 100.00 ± 0.00
CrystalSDE-VE 15.52 ± 1.48 16.46 ± 0.99 1.20 ± 0.08 27.17 ± 0.86 57.47 ± 7.76
CrystalSDE-VP 18.15 ± 3.02 19.15 ± 4.46 0.84 ± 0.14 53.13 ± 12.89 34.00 ± 30.75
CrystalFlow-VE 14.87 ± 7.07 13.08 ± 4.51 1.37 ± 0.04 35.70 ± 0.73 8.40 ± 4.17
CrystalFlow-VP 15.71 ± 2.69 17.10 ± 1.89 1.38 ± 0.04 35.43 ± 0.88 4.87 ± 1.09
CrystalFlow-LERP 13.59 ± 0.09 13.26 ± 0.09 0.34 ± 0.01 97.38 ± 0.10 100.00 ± 0.00
AssembleFlow (ours) 7.27 ± 0.04 6.13 ± 0.10 0.33 ± 0.00 97.64 ± 0.36 100.00 ± 0.00

Dataset: COD-Cluster17-10K
Random 54.20 ± 0.90 54.76 ± 0.90 0.30 ± 0.00 99.86 ± 0.01 100.00 ± 0.00
GNN-MD 13.83 ± 0.06 13.90 ± 0.05 27.88 ± 0.49 0.23 ± 0.11 100.00 ± 0.00
CrystalSDE-VE 17.25 ± 2.46 17.86 ± 1.11 0.99 ± 0.27 32.99 ± 10.72 34.93 ± 14.99
CrystalSDE-VP 22.20 ± 3.29 21.39 ± 1.50 0.53 ± 0.35 52.48 ± 15.44 16.83 ± 18.09
CrystalFlow-VE 16.41 ± 2.64 16.71 ± 2.35 1.42 ± 0.03 33.79 ± 0.51 5.47 ± 0.47
CrystalFlow-VP 19.39 ± 4.37 16.01 ± 3.13 1.44 ± 0.03 33.35 ± 0.55 4.23 ± 0.48
CrystalFlow-LERP 13.54 ± 0.03 13.20 ± 0.03 0.32 ± 0.00 97.32 ± 0.05 100.00 ± 0.00
AssembleFlow (ours) 7.38 ± 0.03 6.21 ± 0.05 0.31 ± 0.00 97.73 ± 0.16 99.93 ± 0.05

Dataset: COD-Cluster17-All
Random 65.94 ± 0.07 66.56 ± 0.07 0.30 ± 0.00 99.91 ± 0.00 100.00 ± 0.00
GNN-MD 22.30 ± 12.04 14.51 ± 0.82 24.29 ± 4.58 4.13 ± 5.60 98.77 ± 1.73
CrystalSDE-VE 17.28 ± 0.73 18.92 ± 0.03 0.19 ± 0.18 15.47 ± 12.42 2.51 ± 2.37
CrystalSDE-VP 18.03 ± 4.56 20.02 ± 3.70 0.55 ± 0.19 48.78 ± 1.70 6.88 ± 2.82
CrystalFlow-VE 12.80 ± 1.20 15.09 ± 0.34 1.41 ± 0.01 35.34 ± 0.28 2.90 ± 0.02
CrystalFlow-VP 13.50 ± 0.44 13.28 ± 0.48 1.51 ± 0.02 33.06 ± 1.31 6.61 ± 3.17
CrystalFlow-LERP 13.61 ± 0.00 13.28 ± 0.01 0.34 ± 0.00 97.34 ± 0.02 99.99 ± 0.01
AssembleFlow (ours) 7.37 ± 0.01 6.21 ± 0.01 0.31 ± 0.00 98.15 ± 0.22 99.98 ± 0.00

32

Published as a conference paper at ICLR 2025

H.2 ABLATION STUDIES ON INTERPOLATION ON SO(3)

Empirical results. We consider replacing the SLERP with EMLERP in AssembleFlow, and name
it as AssembleFlow-EMLERP. We conduct the experiment on COD-5000, where we are taking the
optimal hyperparameters from AssembleFlow.

The results are in Table 9. As observed, using SLERP is better than EMLERP. We are still running
results for COD-10k and COD, and will update the results later.

Table 9: AssembleFlow against six generative models on COD-Cluster17 with 5K, 10K, and all samples. The
best results are marked in bold.

Packing Matching Validity
PM (atom) ↓ PM (center) ↓ Collision ↓ Separation ↑ Compactness ↑

Dataset: COD-Cluster17-5K
GNN-MD 13.67 ± 0.06 13.80 ± 0.07 27.53 ± 0.49 0.22 ± 0.11 100.00 ± 0.00
CrystalSDE-VE 15.52 ± 1.48 16.46 ± 0.99 1.20 ± 0.08 27.17 ± 0.86 57.47 ± 7.76
CrystalSDE-VP 18.15 ± 3.02 19.15 ± 4.46 0.84 ± 0.14 53.13 ± 12.89 34.00 ± 30.75
CrystalFlow-VE 14.87 ± 7.07 13.08 ± 4.51 1.37 ± 0.04 35.70 ± 0.73 8.40 ± 4.17
CrystalFlow-VP 15.71 ± 2.69 17.10 ± 1.89 1.38 ± 0.04 35.43 ± 0.88 4.87 ± 1.09
CrystalFlow-LERP 13.59 ± 0.09 13.26 ± 0.09 0.34 ± 0.01 97.38 ± 0.10 100.00 ± 0.00
CrystalFlow-LERP 13.59 ± 0.09 13.26 ± 0.09 0.34 ± 0.01 97.38 ± 0.10 100.00 ± 0.00
AssembleFlow-EMLERP 7.30 ± 0.04 6.32 ± 0.04 0.37 ± 0.01 93.38 ± 0.54 100.00 ± 0.00
AssembleFlow (ours) 7.27 ± 0.04 6.13 ± 0.10 0.33 ± 0.00 97.64 ± 0.36 100.00 ± 0.00

Dataset: COD-Cluster17-10K
GNN-MD 13.83 ± 0.06 13.90 ± 0.05 27.88 ± 0.49 0.23 ± 0.11 100.00 ± 0.00
CrystalSDE-VE 17.25 ± 2.46 17.86 ± 1.11 0.99 ± 0.27 32.99 ± 10.72 34.93 ± 14.99
CrystalSDE-VP 22.20 ± 3.29 21.39 ± 1.50 0.53 ± 0.35 52.48 ± 15.44 16.83 ± 18.09
CrystalFlow-VE 16.41 ± 2.64 16.71 ± 2.35 1.42 ± 0.03 33.79 ± 0.51 5.47 ± 0.47
CrystalFlow-VP 19.39 ± 4.37 16.01 ± 3.13 1.44 ± 0.03 33.35 ± 0.55 4.23 ± 0.48
CrystalFlow-LERP 13.54 ± 0.03 13.20 ± 0.03 0.32 ± 0.00 97.32 ± 0.05 100.00 ± 0.00
AssembleFlow-EMLERP 7.51 ± 0.17 6.46 ± 0.22 0.33 ± 0.00 94.68 ± 0.44 99.93 ± 0.05
AssembleFlow (ours) 7.38 ± 0.03 6.21 ± 0.05 0.31 ± 0.00 97.73 ± 0.16 99.93 ± 0.05

Dataset: COD-Cluster17-All
GNN-MD 22.30 ± 12.04 14.51 ± 0.82 24.29 ± 4.58 4.13 ± 5.60 98.77 ± 1.73
CrystalSDE-VE 17.28 ± 0.73 18.92 ± 0.03 0.19 ± 0.18 15.47 ± 12.42 2.51 ± 2.37
CrystalSDE-VP 18.03 ± 4.56 20.02 ± 3.70 0.55 ± 0.19 48.78 ± 1.70 6.88 ± 2.82
CrystalFlow-VE 12.80 ± 1.20 15.09 ± 0.34 1.41 ± 0.01 35.34 ± 0.28 2.90 ± 0.02
CrystalFlow-VP 13.50 ± 0.44 13.28 ± 0.48 1.51 ± 0.02 33.06 ± 1.31 6.61 ± 3.17
CrystalFlow-LERP 13.61 ± 0.00 13.28 ± 0.01 0.34 ± 0.00 97.34 ± 0.02 99.99 ± 0.01
AssembleFlow-EMLERP 7.28 ± 0.00 6.23 ± 0.01 0.35 ± 0.00 93.17 ± 0.02 99.98 ± 0.00
AssembleFlow (ours) 7.37 ± 0.01 6.21 ± 0.01 0.31 ± 0.00 98.15 ± 0.22 99.98 ± 0.00

33

