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Abstract

Behavior Cloning (BC) methods are effective at learning complex manipulation tasks. How-
ever, they are prone to spurious correlation—expressive models may focus on distractors
that are irrelevant to action prediction—and are thus fragile in real-world deployment. Prior
methods have addressed this challenge by exploring different model architectures and action
representations. However, none were able to balance between sample efficiency and robustness
against distractors for solving manipulation tasks with a complex action space. We present
Constrained-Context Conditional Diffusion Model (C3DM), a diffusion model policy for
solving 6-DoF robotic manipulation tasks with robustness to distractions that can learn
deployable robot policies from as little as five demonstrations. A key component of C3DM
is a fixation step that helps the action denoiser to focus on task-relevant regions around a
predicted fixation point while ignoring distractors in the context. We empirically show that
C3DM is robust to out-of-distribution distractors, and consistently achieves high success
rates on a wide array of tasks, ranging from table-top manipulation to industrial kitting that
require varying levels of precision and robustness to distractors.1

1 Introduction

Behavior cloning (BC) is a simple yet effective method for learning from offline demonstrations when such
data is available. However, with limited training data and high-capacity neural network models, a BC policy
trained to map high-dimensional input such as images to actions often degenerates to focusing on spurious
features in the environment instead of the task-relevant ones (De Haan et al., 2019). This leads to poor
generalization and fragile execution in real-world applications such as kitting and assembly, where acting in
scenes with distractors is inevitable. This challenge is especially prominent for continuous-control problems,
where instead of committing to one target, the policy often collapses to the “average” of a mix of correct
and incorrect predictions due to distractions. Our research aims to develop a class of sample-efficient BC
methods that are robust to distractions in the environment.

Prior work attempts to address this challenge through different model architectures and action rep-
resentations. A prominent line of research (Zeng et al., 2021; Shridhar et al., 2022a;b) uses fully
convolutional networks (FCNs) with residual connections that 1) learn mappings from visual input

1Project website: https://sites.google.com/view/c3dm-imitation-learning.
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to a spatially-quantized action space, and 2) attend to local features in addition to a global view
of the input. In these models each possible action gets assigned with a probability mass, which
avoids the action averaging effect making the model less prone to bad precision due to distractions.

C3DM
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Figure 1: Illustrating 6-DoF action prediction for
table-top manipulation using our diffusion model
(C3DM), which implicitly learns to fixate on rele-
vant parts of the input and iteratively refines its
prediction using action-relevant details about the
observation.

While effective for 2D tasks such as pushing piles and
transporting objects, this strategy prohibits tasks with
complex 6-DoF action spaces as the quantization space
grows exponentially with action dimensions. For model-
ing actions in a continuous space, generative policy mod-
els (Florence et al., 2021; Weng et al., 2023; Chi et al.,
2023) have shown that flexible probabilistic models such
as Diffusion Models (Ho et al., 2020; Chi et al., 2023) allow
for modeling complex actions. However, the underlying
high-capacity neural network models are still prone to
learning spurious input-output correlations when training
data is limited.

In this work, we argue that these generative policy models
can be made robust to distractions if we imbue them
with the ability to attend to inferred local features, like
an FCN, and share parameters across the processing of
such constrained contexts. Hence, we build a conditional
generative model that controls what it sees in the input
context by inferring action-relevant parts of the scene
using a “fixation point” parameterization, and train it to
iteratively refine its action prediction as it also refines its
input context. Our method, Constrained-Context Conditional Diffusion Model (C3DM), is a diffusion
model policy that solves 6-DoF robotic manipulation tasks with high sample efficiency and robustness to
distractions. Our model learns a distribution over actions given a global input context as either an RGB
image or a depth map. Similar to (Chi et al., 2023), our inference distribution over actions is fixed to a
Gaussian noising process, but in addition to that we also infer constrained observations that are fixated
around the target action. The learned generative distribution utilizes an iteratively refining denoising process
on both the observation and action variables. Our novel denoising process implements “fixation” by zooming
into a part of the input image, or masking out pixels, around iteratively-predicted “fixation points” at each
denoising iteration. This procedure, that we call the f ixation-while-Denoising Diffusion Process (f DDP)
facilitates invariance to distractions during action denoising. We illustrate this process in Figure 1 with the
detailed procedure for implementing the proposed method in Figure 2. Our key contributions are:

1. We propose a theoretically-grounded fixation-while-Denoising Diffusion Process (f DDP) framework
that enables a Diffusion Policy (Chi et al., 2023) to progressively “zoom into” action-relevant input
throughout the iterative denoising process.

2. We show that our method, C3DM, outperforms existing generative policy methods on a wide array
of simulated tasks, such as sweeping, sorting, kitting and assembly, deploy our model on a real robot
to perform sorting and insertion after training on just 20 demonstrations, and demonstrate robust
sim-to-real transfer on a kitting and cup hanging task from 5 demonstrations.

2 Related Works

Visual Imitation Learning. Imitation learning (IL) has been proven effective for robotic manipulation
tasks (Schaal, 1999; Billard et al., 2008; Englert & Toussaint, 2018). Recent works (Zhang et al., 2018; Finn
et al., 2017; Mandlekar et al., 2020; 2021; Brohan et al., 2022) use deep neural networks to map directly from
image observations to action, and demonstrated visuomotor learning for complex and diverse manipulation
tasks. However, these policies tend to generalize poorly to new situations due to spurious connections between
pixels and actions (Wang et al., 2021; De Haan et al., 2019) and requires extensive training data to become
robust. To address the challenge, recent works (Abolghasemi et al., 2018; Wang et al., 2021; Zhu et al.,
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Figure 2: Constrained-Context Conditional Diffusion Model (C3DM) for visuomotor policy learning. Here we
illustrate the iterative action-refinement procedure (4 timesteps) using our fixation-while-denoising diffusion
process (f DDP), wherein we constrain our input context around a “fixation point” predicted by the model
(∧) at each refinement step. Subsequently, we refine the predicted action by fixating only on the useful part
of the context, hence removing distractions and making use of higher levels of detail in the input.

2022) have incorporated visual attention Mnih et al. (2014) as inductive biases in the policy. For example,
VIOLA (Zhu et al., 2022) uses object bounding priors to select salient regions as policy input. Our constrained
context formulation can be similarly viewed as a visual attention mechanism that iteratively refines with
the diffusion process. Another line of work exploits the spatial invariance of fully convolutional models and
discretized action space to improve learning sample efficiency (Zeng et al., 2021; Shridhar et al., 2022a;b).
Notably, PerAct (Shridhar et al., 2022b) show strong performance on 6DoF manipulation tasks. However, to
implement discretized 3D action space, PerAct requires a large voxel-wise transformer model that is expensive
to train and evaluate, and it also requires 3D point cloud input data. Our method instead adopts an implicit
model that can model arbitrary action space and only requires 2D image input.

Diffusion Policy Models. Diffusion models have shown remarkable performance in modeling complex data
distributions such as high-resolution images (Song et al., 2020; Ho et al., 2020). More recently, diffusion models
have been applied to decision making (Chi et al., 2023; Ajay et al., 2022; Zhong et al., 2023; Mishra et al.,
2023) and show promising results in learning complex human actions (Chi et al., 2023; Pearce et al., 2023;
Reuss et al., 2023) and conditionally generating new behaviors (Ajay et al., 2022; Zhong et al., 2023). Closely
related to our work is DiffusionPolicy (Chi et al., 2023) that uses a diffusion model to learn visuomotor policies.
However, despite the demonstrated capability in modeling multimodal actions, DiffusionPolicy still learns an
end-to-end mapping between the input and the score function and is thus prone to spurious correlation, as
we will demonstrate empirically. Our method introduces a framework that enables the denoising diffusion
process to fixate on relevant parts of the input and iteratively refine its predictions.

Implicit Policy Models. Closely related to diffusion policy models are implicit-model policies (Florence
et al., 2021; Jarrett et al., 2020), which represent distributions over actions using Energy-Based Models
(EBMs) (LeCun et al., 2006). Finding optimal actions with an energy function-based policies can be done
through sampling or gradient-based procedures such as Stochastic gradient Langevin dynamics. Alternatively,
actions prediction can be implicitly represented as a distance field to the optimal action (Weng et al., 2023).
Similar to diffusion policies, implicit models can represent complex action distributions but are also prone to
spurious correlations in imitation, as we will demonstrate empirically.

3 Background

Denoising Diffusion Probabilistic Models (DDPMs) are a class of generative models that introduce a
hierarchy of latent variables and are trained to maximize the variational lower-bound on the log-likelihood of
observations (ELBO). To compute the ELBO, this class of models fixes the inference distribution on the
introduced latent variables to a diffusion process, that can be aggregated to directly infer each latent variable
from the observation. Say x0 represents the random variable that we want to model, we introduce T latent
variables {xt}T

t=1 each of which can be inferred from the observation x0 using
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q(xt|x0) :=
√

α(t) · x0 +
√

1 − α(t) · ϵt, (1)

where ϵt ∼ N (0, I) is the standard normal Gaussian noise, and α(t) is a fixed “noise schedule” that determines
the variance of the noising process, and satisfies α(t) < 1 ∀t and α(t) → 0 as t → T . We call the index t
“time,” and in principle the cardinality of the set {xt}T

t=1 should tend to infinity. The choice of q(xt|x0) can
play a significant role in the learning process of the generative distribution, and we will see in this paper
how it affects the performance of our action prediction model during evaluation. Additionally, the denoising
process can be obtained using the Bayes’ rule as q(xt−1|xt, x0) = q(xt|xt−1, x0) q(xt−1|x0)

q(xt|x0) .

Each latent variable x1, . . . , xT can be interpreted as a noisy variant of x0, and the generative distribution
over x0 is modeled using conditional distributions p(xt−1|xt) as p(x0) = p(xT )

∏T
t=1 p(xt−1|xt), where p(xT )

is fixed to be a standard Gaussian prior to comply with the noising process in (1). The process of learning
p(x0) comes down to minimizing divergences KL(q(xt−1|xt, x0)||p(xt−1|xt)) to learn p(xt−1|xt). As shown
by Ho et al. (2020), we can learn p by training an auxiliary “score function” fθ, parameterized using a
neural network, that is (generally) trained to predict the standard normal noise ϵt that was used to infer xt

(ϵ-prediction), that is, θ = argminθ MSE(fθ(xt, t), ϵt). Other design choices include training fθ to predict the
denoised sample x0 directly (x-prediction), or a combination of x and ϵ (v-prediction) (Salimans & Ho, 2022).

To generate samples of x0, we begin with samples of xT , which for the chosen noising process in (1) should
result in a sample from the standard normal distribution. Then, we “denoise” xT using the ϵT noise predicted
by the learned score function fθ(xT , T ) to obtain the next latent xT −1 ∼ p(xT −1|xT ). This is one step of the
“iterative refinement” process. We continue to refine the sample for T steps after which we return the last
denoised sample, which is a sample from the distribution p(x0).

Problem Setup (Imitation Learning). In this work, we focus on modeling a conditional generative
distribution over 12-dimensional action variables (x0 ∈ R12) conditioned on image observations O, i.e.
p(x0|O). We obtain observations from a downward-facing camera over a table-top, and output two 6-DoF
gripper poses as actions for a robot, which comprise 3D position and Euler rotation angles around z-x-y axes
(in that order) in the camera frame. The output actions then parameterize primitive pick-and-place motions
that can be deployed on a robot using any off-the-shelf motion planner to generate a trajectory leading to the
6-DoF gripper poses output from the generative model.

4 Method

We present a Constrained-Context Conditional Diffusion Model (C3DM) that predicts robot actions
conditioned on image observations. Our novel f ixation-while-Denoising Diffusion Process (f DDP) infers a
“fixation point” in the input at each action-refinement step, which it iteratively uses to 1) ignore distractions
by constraining its input context around that point, and 2) improve its precision by querying for higher
levels of detail in the image input around the predicted fixation point. f DDP exploits the observation-action
coupling which allows it to determine fixation points in the context and constrain its observation throughout
the action refinement process.

4.1 Conditional Diffusion for Action Prediction

Diffusion models have shown great success in image and video generation (Ho et al., 2020; 2022; Song et al.,
2020). Recently their conditional counterpart (Diffusion Policy (Chi et al., 2023)) has been shown to learn
stable image-conditioned robot policies with little hyperparameter tuning. A major contributing factor for
the success of these models is the iterative refinement procedure that reuses model capacity to iteratively
denoise latent samples in the action space into useful ones that match the data distribution. More precisely,
these models learn a denoiser function ϵθ that learns to denoise a random action aT into a target action a0
given a static observation O in an iterative fashion. This iterative refinement process can be depicted as,
aT

ϵθ( · ; O)−−−−−−→ aT −1
ϵθ( · ; O)−−−−−−→ · · · ϵθ( · ; O)−−−−−−→ a0. However, given limited offline demonstrations, these models

are not immune from learning spurious correlations between image input (O) and action output (a), which
generally leads to imprecise and fragile execution on robots. We argue that while it is hard to control what
correlations a model learns from data, it is possible to control what the model sees and use it to our advantage.
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Figure 3: (a) Action inference and generation in Diffusion Policy, compared with (b) inference and
generation of observation-action tuples in C3DM. Filled circles represent observed variables. In (b), solid
lines represent the generative distributions, pθ(Ot−1|Xt) for generating latent (fixated) observations and
pθ(at−1|Xt) for the next latent (noisy) actions. Solid and dashed lines together show the inference (de-noising)
distributions, q(Ot−1| Ot, X0) and q(at−1| Xt, a0) for inferring latent observations and actions respectively.

In this paper, we build a diffusion model that learns to iteratively constrain its input context around inferred
action-relevant parts of the scene – in a process we call “fixation.” As we will discuss later, this process can
also be viewed as a form of data augmentation that further boosts the learning sample efficiency. In summary,
our model 1) learns to infer action-relevant parts of the scene as “fixation-points” while performing action
denoising, and 2) appends the iterative action refinement with observation refinement that we implement as
zooming or masking around the inferred fixation-point, that helps improve robustness and sample efficiency
in action prediction.

4.2 Constrained-Context Conditional Diffusion Model (C3DM)

We propose a f ixation-while-Denoising Diffusion Process (f DDP) that utilizes a joint iterative refinement of
intermediate observations and actions (deemed fixated and noisy respectively). In the following subsections,
we formulate the different components that make up the f DDP, essentially the generative and inference
distributions, and talk about our specific implementations of the same.

Generative distribution. We build a theoretical framework for generating target action a0, given a single
global observation OT of the scene, by introducing both latent observations and actions for timesteps 1 to
T − 1. We define the joint distribution for such generation as,

pθ(a0|OT ) =
∫

pθ(a0:T , O0:T −1|OT )da1:T dO0:T −1, (2)

where {at}T
t=1 are noisy actions and {Ot}T −1

t=0 are fixated observations. We define a generated tuple of fixated
observation and action as Xt := (at, Ot). We factorize the joint as a reverse de-noising process given by,

pθ(a0:T , O0:T −1|OT ) = pθ(aT |OT )
T∏

t=1
pθ(Xt−1|Xt). (3)

We further break down the generation pθ(Xt−1|Xt) into,

pθ(Xt−1|Xt) = pθ(Ot−1|Xt)pθ(at−1|Ot−1, Xt)
= pθ(Ot−1|Xt)︸ ︷︷ ︸

fixated obs

pθ(at−1|Xt)︸ ︷︷ ︸
next noisy action

, (4)

where pθ(at−1|Xt) generates the “next noisy action” and pθ(Ot−1|Xt) the next “fixated observation.” Given
a global observation of the scene, we can use these generative distributions to iteratively generate denoised
actions and fixated observations where the latter act as input to the next action denoising. This framework
hence enables action denoising with a different observation input at each timestep, which in this work we
leverage for action generation with robustness to distractors. We illustrate these generative distributions as
solid lines in Figure 3.

5



Published in Transactions on Machine Learning Research (07/2024)

Inference distribution. We formalize the inference distribution as a reverse de-noising process
q(Xt−1|Xt, X0), which we break down as,

q(Xt−1|Xt, X0) = q(at−1, Ot−1| Xt, X0)
= q(Ot−1| Xt, X0)︸ ︷︷ ︸

fixated obs

q(at−1| Xt, a0)︸ ︷︷ ︸
next noisy action

. (5)

We compute the fixated observation q(Ot−1| Ot, X0) using either a zooming or masking process centered
around a fixation point that we obtain from the given action a0 by exploiting the observation-action alignment
in the setup. The latent actions q(at−1| Ot−1, a0) are sampled using a fixed noising process, which we discuss
in detail in Section 4.3.1. The role of these inference distributions is to help train the generative distributions
we obtained in (4) by providing a way to generate fixated observations and noisy actions that are privy of the
ground truth action, which our training procedure then attempts to match with the parameterized generative
distributions in (4) (see Figures 3 and 12).

Note that we directly define the denoising process in q, whereas DDPM first defines the noising process as a
Gaussian and uses Bayes’ rule to obtain the denoising process in closed form. We do this because our noising
process to get fixated observations would be implemented as an unmask or zoom-out process whose inverse
cannot be written in closed form, leading us to resort to directly defining the denoising distributions in q.

Training objective. The likelihood pθ(a0|OT ) can be maximized by minimizing the KL divergence between
the fixed inference distributions q(Xt−1|Xt, X0) and learned pθ(Xt−1|Xt) ∀t. Please see proof in Appendix A.2.

4.3 Implementing C3DM

4.3.1 Action Noising (and the choice of noising process)

During training, for each target action a(i), where i is the sample index in the training dataset, we sample
K “noisy” actions {ã(i)

k }K
k=1 by adding noise vectors using a fixed noising process, conditioned on timesteps

{tk}K
k=1, tk ∼ Unif(0, T ) (we use T = 1 in our setup). Note that this implements the noisy action inference

q(at−1| Xt, a0) in (5).

Fixation, as we will see later, not only changes the observation, but also the coordinate frame of the action at
each refinement iteration. This introduces an additional challenge to training the denoising model which has
to infer the noise level for different denoising steps in addition to generalizing to different observation fixation
levels. To address this challenge, we introduce a simple yet powerful modification to the standard noising
process - we remove the drifting of the target action and rather diffuse the action only when obtaining noisy
(latent) actions. This lets us control the noisy action to always stay within bounds that are observable for the
model in the fixated observation, making action denoising significantly easier to learn for different fixation
levels. We formalize both these processes below.

Noising process with drift. The standard noising process in DDPM can be written as,
ã(i)

k =
√

α(tk) · a(i) +
√

1 − α(tk) · ϵ
(i)
k , (6)

where ϵ
(i)
k ∼ N (0, I) with N being a normal distribution and I the identity matrix. α(tk) is a tunable noise

schedule that satisfies the conditions specified in Section 3.

Noising process without drift (ours). Our noising process diffuses but does not drift the noisy actions,
and can be written as,

ã(i)
k = a(i) +

√
1 − α(tk) · ϵ

(i)
k . (7)

As we show in Section 5.1.2, we find the noising process in (7) (no drift) to perform better empirically than
the one with drift, and hence is the default setting for all our main results. We also point out that using (7)
would result in ak being sampled from a uniform random distribution when tk = T rather than a standard
normal distribution, as is the case when using (6). See detailed proof in Appendix A.3.2.

4.3.2 Fixation and Context Constraining

We imbue our diffusion model with the ability to implicitly identify action-relevant regions and ignore
distractions in the input as it iteratively refines actions. We do this by determining a “fixation point” in
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the observation at each step of the action refinement procedure. We exploit the alignment between the
observation and action space and set the fixation point to the target actions during training. This echos
with many prior works (e.g., Zeng et al. (2021); Shridhar et al. (2022b)) that exploit this observation-action
alignment for improving sample efficiency.

Fixation. The fixation point for each observation image is a function of the target action, given by
p(i) := imgT real pos(a(i)), where imgT real is a matrix that transforms points in the camera frame to image
frame, and pos(a(i)) extracts the 2-D position of actuation on the x-y plane from the input 6-DoF action.
The constrained context can then be formulated as O(i)

k := C(O(i); p(i), tk), where C either masks parts of
the observation far away from p(i) (C3DM-Mask) or zooms into the context fixated at p(i) (C3DM). Note
that context constraining implements the fixated observation inference q(Ot−1| Xt, X0) formulated in (5).
We implement pθ(Ot−1|Xt) (in (4)) during testing by using the intermediate denoised action for the fixation
point.

zoom

mask

Figure 4: Illustrating masking
(top) and zooming (bottom) for
constraining context around pre-
dicted fixation point (∧).

Constraining context by masking (C3DM-Mask). For masking an
image of size H ×W , we first create a window of size H∗tk

T × W ∗tk

T centered
at the fixation point p(i), add random jitter to the window location while
still keeping p(i) inside the window to minimize the train-test gap where the
next fixation point might not necessarily be at the center of the constrained
context. Then, we mask all pixels outside this window with the background
value. We illustrate this in Figure 4(top).

Constraining context by zooming (C3DM). Similar to fixation by
masking, we first create a window around the fixation point p(i) with
random jitter to the window location. Then, we use a cached high-
resolution image of the same scene to obtain a zoomed-in image in the
constrained window. Our new context is still of the same input size (H×W )
but now has higher levels of detail. We note that while we do assume
access to high-res images, our model does not utilize the entire image but
rather only task-relevant parts for action inference. Not using the entire
high-res image keeps the model activation size small and inference time
as low as possible for this method (given the additional computational
overload introduced due to observation encoding at each denoising timestep). While we utilize cached high-res
images during training, one can use this model to physically move the camera closer to the fixation point
to obtain and process higher levels of detail in the input during inference. We illustrate this process in
Figure 4(bottom).

After zooming in to obtain the constrained context, we re-normalize the noisy action ã(i)
k to the new camera

frame for input to the denoiser network during training. This ensures that the noisy action and constrained
observation input to the denoiser are consistent. The denoiser output is still expected in the unconstrained
context to keep the scale of the model output constant.

Baked-in data augmentation. C3DM trains an action denoiser given a variety of constrained contexts O(i)
k

over and above the training set of images. Additionally, with our zooming-in approach, we also transform the
ground-truth action into new camera frames. This essentially increases the coverage of both the observation
and action spaces seen during training and deems our method very sample efficient.

4.3.3 Action Denoising

We learn robot policies in a table-top setup that has a single downward-facing camera to obtain top-
down observations of the table. For each observation O(i) in the dataset we obtain latent encodings
o(i) := encϕ(O(i)), where encϕ is parameterized using a ResNet-18 (He et al., 2015). We build a model ϵθ

parameterized by a fully-connected MLP that is supervised to predict the standard normal noise vector
(ϵ-prediction) given the embeddings of the constrained input observation o(i)

k and noisy action ã(i)
k . That is,

we train our model using the MSE loss,
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L(D) := 1
N

1
K

N∑
i=1

K∑
k=1

||ϵθ(o(i)
k , ã(i)

k ) − ϵ
(i)
k ||2. (8)

We summarize the training procedure in Algorithm 1.

4.3.4 f ixation-while-Denoising Diffusion Process for Action Generation (f DDP)

The context constrainer C, observation encoder encϕ, and the action denoiser ϵθ in conjunction with the
reversible noising process in (7), together facilitate the fixation-while-Denoising Diffusion Process (f DDP) that
we use for generating action given any observation input. We summarize our iterative observation and action
refinement process that implements the generative distributions pθ(Ot−1|Xt) and pθ(at−1|Xt) respectively
(in (4)) in Algorithm 2. Precisely, we implement context-constraining in pθ(Ot−1|Xt) around intermediate
denoised actions for action-relevant fixation, obtain a sequence of latent actions and constrained contexts
(OT , aT ) → (OT −1, aT −1) → · · · → (O0, a0), and return the last denoised action a0 as predicted action. We
provide an illustration in Figure 2, and an example showing fixation points and fixated observations in f DDP
in Figure 6.

Algorithm 1 C3DM - Training f DDP components
Require: D = {O(i), a(i)}N

i=1, K, max_iters,img T cam,
ϕ, encϕ, θ, ϵθ, T
for all n_iter ∈ {1, . . . , max_iters} do

L← 0
for all k ∈ {1, . . . , K} do

for all i ∈ {1, . . . , N} do
tk ∼ Unif(0, T) ▷ sampled timestep
ϵ

(i)
k
∼ N (0, I) ▷ sampled noise

ã(i)
k
← a(i) +

√
1− α(tk) · ϵ(i)

k
▷ noisy action

p(i) ← imgT real pos(a(i)) ▷ fixation point
O(i)

k
← C(O(i); p(i), tk) ▷ constrained context

o(i)
k
← encϕ(O(i)

k
) ▷ encoding constrained obs

L← L + ||ϵθ(o(i)
k

, ã(i)
k

)− ϵ
(i)
k
||2

end for
end for
ϕ← ϕ− 1

NK
∇ϕL ▷ update encoder params

θ ← θ − 1
NK
∇θL ▷ update denoiser params

end for

Algorithm 2 C3DM - Iterative refinement with f DDP
for action prediction during testing
Require: OT , act_bounds,img T cam, ϕ, encϕ, θ, ϵθ, T

aT ∼ Unif (act_bounds)
for all t ∈ {T, . . . , 1} do

ot ← encϕ(Ot) ▷ encoding constrained obs
a0

t ← at −
√

1− α(t) · ϵθ(ot, at) ▷ action denoising
ϵ ∼ N (0, I) ▷ sampled noise
pt ← imgT real pos(a0

t ) ▷ fixation point
at−1 ← a0

t +
√

1− α(t− 1) · ϵ ▷ noising using (7)
Ot−1 ← C(Ot, pt) ▷ fixated obs for next iter

end for
return a0
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Figure 5: (Top) Success rates for manipulation tasks in simulation (average across 100 rollouts, peak
performance in 500 epochs of training. (Bottom) Illustration of the simulated evaluation tasks.
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5 Experiments

We evaluated C3DM extensively on 5 tasks in simulation and demonstrated our model on various tasks
with real robot arms. For the simulated tasks, we used Implicit Behavioral Cloning (IBC, Florence et al.
(2021)), Neural Grasp Distance Fields (NGDF, Weng et al. (2023)), Diffusion Policy (Chi et al., 2023), and
an explicit behavior cloning model (Conv. MLP) with the same backbone as our method for the baselines.
Additionally, we ablated against the masking version of C3DM, called C3DM-Mask. Each task assumed
access to 1000 demonstrations from an oracle demonstrator. For the real robot evaluation, we used Diffusion
Policy as the baseline. We used 20 human demonstrations in one set of real robot experiments and just 5
simulated demonstrations for the sim-to-real experiments. We used RGB inputs for all simulation and real
robot experiments except for when performing sim-to-real transfer where we used depth maps to reduce the
domain gap between sim and real. Hence, we also highlight here that our method can be used to solve tasks
irrespective of the input modality.

5.1 Simulation Experiments

5.1.1 Tasks

We evaluated our method on 5 different tasks in simulation (see Table 5 and Appendix B for a detailed
description of each task). Since IBC experimented predominantly on tasks with “push” primitives, we
included the sweeping-piles task for a fair comparison. The remaining tasks, place-red-in-green, hang-cup,
kitting-part, and two-part-assembly are based on “pick/grasp” and “place” primitives. Place-red-in-green and
sweeping-piles were made available by Zeng et al. (2020) as part of the Ravens simulation benchmark, and
we built the remaining tasks on the robotics research platform provided by Koga et al. (2022). An oracle
demonstrator provided 1000 demonstrations for all tasks, where each demonstration is a unique reset of
the task containing a single top-down observation of the scene and the pick-place action (no intermediate
waypoint observations). The success rates for the various methods are shown in Figure 5.

5.1.2 Main results

C3DM is sample efficient and learns policies from minimal data. We tested the sam-
ple efficiency of C3DM against the Diffusion Policy baseline and found that our method was able

Pi
ck

in
g

Pl
ac

in
g

t = 1 0.9 0.8 0.7 0.6 0.5 0.4 0.3 0.2

Figure 6: Fixation-while-Denoising Diffusion Process (f DDP). This figure shows score fields when
inferring the pick (top) and place (bottom) actions for the place-red-in-green task using C3DM. The score
field (output by ϵθ, depicted here as a 2D projection on the input image) at each timestep induces a fixation
point denoted by × (that can be obtained by probing the field at a random point, translating towards the
predicted direction, and transforming into the image space). The input image at each timestep (other than
t = 1) is obtained by zooming around the fixation point (×) predicted at the previous timestep. For both
picking and placing, we observe that the model is distracted at first with the entire table-top in view. As
it zooms in (with decreasing timestep), our model fixates closer and closer to the objects of interest (red
block for picking and green bowl for placing) showcasing a less distracted prediction owing to the removal of
distractors and higher spatial resolution utilized during the denoising process.
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C3
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Iterative fixation and action refinement
Final action

Figure 7: C3DM vs C3DM-Mask. Context refinement by fixation in conjunction with action denoising
using f DDP on the kitting-part task (picking) (C3DM (top) and C3DM-Mask (bottom)). The red region
depicts the standard deviation of the predicted latent action, ∧ represents the latent action (orientated with
grasp yaw), and × is the fixation point. The observation at each refinement iteration is fixated around the
fixation point (×) predicted in the previous timestep, using a zooming mechanism for C3DM and masking for
C3DM-Mask. As refinement progresses, we observe how the model fixates on the target part (yellow) as it
refines its action for grasping.

to achieve good performance using just 30 demos in simulation, reaching 90% success on the
place-red-in-green sorting task while the baseline achieved very little success, as shown in Figure 8.
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Figure 8: Sample efficiency of C3DM (peak
success rates in 500 epochs of training).

We attribute this to the high observation and action space
coverage of our method that clearly helps with sample efficiency.

C3DM can ignore distractions in table-top manipula-
tion. Both C3DM-Mask and C3DM showed good performance
on place-red-in-green due to their ability to ignore distractor
objects leading to precise locations for picking. On the contrary,
baseline methods struggled to fixate on the target object that
needed to be picked. In kitting-part, while baseline methods
were able to predict actions approximately around the target
action, they were not precise enough to succeed given the low
tolerance of this task. C3DM ignored unnecessary objects on
the table, as shown in Figure 7, leading to precise pick and
place predictions. We observed failures when the distractor
objects were too close to the object and fixation in C3DM was
unable to minimize their effect.

Table 1: Model performance, with and with-
out drift in the diffusion process, after train-
ing for 200 epochs on place-red-in-green task.

Method C3DM C3DM-Mask
Drift (6) 60% 40%
No drift (7) 79% 47%

C3DM is invariant to unseen distractions. To test the
generalization ability of C3DM against unseen distractors, we
added unseen objects usually found on table-tops such as a pen,
remote, mouse, etc. (shown in Figure 13), all made available
in the SAPIEN dataset (Xiang et al., 2020; Mo et al., 2019;
Chang et al., 2015). We report success rates comparing C3DM
and Diffusion Policy in Table 2. We found a <10% drop in
success rate of C3DM when replacing seen distractors with
unseen ones suggesting very good generalization to ignoring
unseen distractors compared to Diffusion Policy.

Action refinement with a fixated gaze can help predict 6-DoF gripper poses with high precision.
C3DM is the only method that could succeed substantially on the hang-cup and two-part-assembly tasks due
to its ability to precisely predict the full 6-DoF action. C3DM beat all other baselines and the C3DM-Mask
ablation showing the importance of action refinement with a fixated gaze. We illustrate how our learned score
field creates this fixation in Figure 6. The cases where our model did fail were in which the model fixated on
spurious locations early in the refinement process leading to the correct pick location being outside the region
of view, as well as when small errors in the action prediction led to irrecoverable scenarios.
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Figure 10: Real-world experiment setup and tasks, from left to right: place-block-in-bowl (big) place-block-
in-bowl (small), screw-insert, kitting-part and hang-cup. First three were setup on a Franka Emika Panda
robot and trained on human demos, the last two on a UR10 robot and deployed sim-to-real.

Table 2: Task success rates with unseen dis-
tractors (showing average over 3 random
seeds and 1 standard deviation, across 20
rollouts, after 500 train epochs) on place-red-
in-green task. Models saw blocks as distrac-
tors during training; we replaced them with
daily-life objects (see Figures 13 and 14) to
test generalization.

Method 50% unseen 100% unseen
Diffusion Policy 41.7% ± 5% 33.3% ± 10%
C3DM (ours) 85% ± 4% 90% ± 4%

Iterative refinement with more levels of input detail can
solve visual challenges in tasks. The sweeping-piles task
poses the challenge of inferring the location of small particles
and the target zone from an image, for which C3DM outper-
forms all considered baselines. We note that IBC’s performance
on this task is lower than that reported in their work for planar
sweeping, because our version of this task is more visually com-
plex with the target zone marked by a thin square as opposed
to being marked by a color-filled region. The kitting-part task
also presents a complex-looking part to infer the pose of in
order to predict a stable grasp. C3DM can iteratively refine its
pose by obtaining higher levels of detail in the input leading
to a substantially low grasp error of 0.72 cm and 11.28◦ and
eventually a higher success rate compared to all baseline methods, including the C3DM-Mask ablation, which
can only ignore distractions in the input.
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Figure 9: Success rate on the place-red-in-
green task with increasing number of refine-
ment timesteps.

Additional observations. Table 1 shows comparison between
two diffusion processes for training our model, one that drifts
the latent action to the origin (Equation (6)), and the other
a pure diffusion (Equation (7)). We observed the latter to
perform better in practice and is the default choice for all our
main results. We also show the success rates when varying the
number of refinement steps during action refinement in Figure 9,
and as expected we observe a rising trend in success as number
of refinement steps increase.

5.2 Real-robot Experiments

We demonstrated our model’s ability to ignore distractions
and precise action prediction using two real robots. On a
Franka Emika robot, we deployed policies trained on human-
driven demonstration, and used an Intel RealSense D435 camera
mounted to view the workspace top-down. On a UR10 robot,
we deployed sim-to-real policies, with a MechEye Pro M depth camera that produced depth maps comparable
to those in the simulator. Testing in both setups proved that our method can work reliably when trained
on real images as well as be robust to the sim-to-real gap, making it extremely practical for real-world
deployment.

5.2.1 Model Performance with Real-world Demonstrations

For the setup that trains on real-world demonstrations, we collected 20 human demonstrations using a
space-mouse teleoperator for the place-block-in-bowl and screw-insert tasks which required picking target
objects and placing them into a goal location. In the sim-to-real setup, we collected up to 100 demonstrations
for the kitting-part and hang-cup tasks (as described in Appendix B) in simulation using a scripted policy.
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Table 3: Success rates for tasks on a real Franka Emika robot.

Method place-block-in-bowl screw-insert
big blocks small blocks pick pick+place

Diffusion Policy 45% 0% 5% 0%
C3DM-Mask (ours) 60% 40% 0% 0%
C3DM (ours) 55% 65% 80% 60%

Each demo consisted of an initial image observation and the locations for pick and place actions in the robot’s
coordinate frame. We trained the baseline Diffusion Policy model, C3DM-Mask, and C3DM for 200 epochs.
During testing, we evaluated all models using a linear schedule of 10 timesteps. All success rates averaged
over 20 trials are summarized in Table 3 and Table 4.

kitting-part hang-cup

Si
m
ul
at
ed

Re
al

Figure 11: Sim-to-real experiment. Both
real setups mimic the tasks we designed in
sim. For hang-cup we evaluated C3DM with
unseen distractors to further prove the ro-
bustness of our method even with the sim-
to-real domain gap.

C3DM can ignore distractions in real images. We per-
formed experiments on two variants of the place-block-in-bowl
task, one with big blocks with edge size 4.5 cm and other with
small blocks of edge size 2.5 cm. Example image observations
are shown in Figure 10. We observed that C3DM was able to ef-
fectively identify and ignore distractions in the input leading to
precise actions for both variants. While C3DM-Mask was able
to ignore distractions well, it lacked precision when evaluated
with smaller blocks.

Iterative context constraining leads to precise actions
and high sample efficiency. We performed experiments on a
screw-insert task where the robot picks up a hex-head screw of
edge size 1 cm, base diameter 1 cm, and places it in a receptacle
with a hole of diameter 1.5 cm. Successfully completing this
task required high precision as a pick prediction that is slightly
off from the center of the screw would result in the screw falling
on the table instead of being clamped by the parallel-jaw gripper
of the robot. We observed that C3DM was significantly more
successful in completing this task. While other methods failed
due to both imprecise action prediction as well as the lack of
generalization capability given a small number of demonstrations, C3DM was able to generalize to all test
locations as well as be precise within the 1 cm tolerance needed for this task.

5.2.2 Model Performance in Sim-to-Real

We conducted sim-to-real experiments using depth maps converted to height map observations of the kitting-
part and hang-cup tasks. We used depth maps since the MechEye Pro M depth camera can produce depth
map observations comparable to the simulator.

Table 4: Success rates for sim-to-real tasks
on a UR10 robot.

Method #demos kitting-part hang-cup
Diffusion Policy 5 0% 0%

50 0% 65%
100 0% 60%

C3DM (ours) 5 100% 100%

C3DM can predict precise actions even with the sim-
to-real domain gap. Table 4 shows the success rate results
over 20 trials of C3DM and the baseline Diffusion Policy for
the 2 tasks. Both tasks required high precision for success
with roughly 1-2 mm of positional and 1-2 degree rotational
tolerance. The precision constraint for the cup hanging task is
for the cup pick sub-task, where the clearance between the open
fingers and the cup for grasping was roughly 1 mm. We found
5 demonstrations was sufficient to train C3DM in simulation
and deploy on the real robot setup with 100% success with random arrangements of the items. With 100
demonstrations, we could not get the deployed model to work for the kitting-part task with Diffusion Policy.
The model worked well in simulation, so we attribute the slight noise difference in the real depth maps of the
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distractor objects for the failure. It took 50 demonstrations to get the hang-cup task to work reasonably well
with Diffusion Policy. Unexpectedly, the simulated success results for these tasks using RGB input (Figure 5)
are lower than these results. We speculate that height maps are a better observation signal for certain tasks
and hope to investigate this further in future work.

C3DM can handle unseen distractors in real. We evaluated C3DM and Diffusion Policy on the hang-cup
task where the training data did not contain any distractors while the evaluation rollouts did. We found that
C3DM showed reasonable performance with unseen distractor objects in the real deployment as shown in
Figure 11 however Diffusion Policy showed no task success.

6 Limitations and Conclusion

We presented a Constrained-Context Conditional Diffusion Model (C3DM) for visuomotor imitation learning
that learns to fixate on action-relevant parts of the input context while denoising actions. We demonstrated
that the fixation-based context constraining allows our diffusion model to remove distractors from the input,
achieving high success rate in a wide range of tasks requiring varying levels of precision and robustness against
distraction. We also showed that our method can be deployed on a real robot for pick-and-place tasks either
directly (sim-to-real) or by training on a handful of human demonstrations.

A limitation of our method is the task specific labelling of the fixation point in the demonstrations and
selection of the final cropping dimension. For our set of examples, we set the fixation point at the finger
location for the task (action). However, in other tasks, the region of interest may be elsewhere, for example,
inserting a portion of a shape that is far from the grasp. The final cropping dimension was chosen to give
an “ideal” view of our tasks (e.g., for picking tasks, the final cropping had the target object roughly fitting
the view). We also want to point out that our method trades off precise action prediction and robustness
against distractors for computational time. Since Diffusion Policy conditions on a single observation input, it
can cache visual encodings for reuse across all denoising timesteps, however our method needs to encode
observations at each refinement timestep. Another limitation, was the overhead camera, whose view of the
target parts was easily occluded by the robot arms. This prevented seamless closed-loop error recovery. We
plan to solve this by incorporating multiple camera views, such as an eye-in-hand camera configuration.
We believe that future work with goal-conditioning policies and training on action trajectories (rather than
sub-task goals) will render our model applicable for longer horizon manipulation.
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A Method Details

A.1 Pictographic representation of the denoising pathway in C3DM

t = 0t = T Fixating observation

Denoising action

Given obs.

Random action Target action

Most fixated obs.Intermediate fixated obs.

Intermediate noisy actions

Figure 12: Illustrating action denoising without drift (bottom) and corresponding fixation in the observation
(top). Fixation in the observation is implemented as a zooming process that directs camera observations
towards a zoomed-in view around the target action.

A.2 Proof of method

Given a global view of the scene OT , we train a generative model pθ (formulated in (4)) that aims to generate
target action a0 given the global observation. We do this by minimizing the cross-entropy loss which is given
by,

LCE = −Eq(a0|OT ) log pθ(a0|OT )

= −Eq(a0|OT ) log
( ∫

pθ(a0:T , O0:T −1|OT )da1:T dO0:T −1

)
= −Eq(a0|OT ) log

( ∫
q(a1:T , O0:T −1|a0, OT )

pθ(a0:T , O0:T −1|OT )
q(a1:T , O0:T −1|a0, OT )

da1:T dO0:T −1

)
= −Eq(a0|OT ) log

(
Eq(a1:T ,O0:T −1|a0,OT )

pθ(a0:T , O0:T −1|OT )
q(a1:T , O0:T −1|a0, OT )

)
≤ −Eq(a0:T ,O0:T −1|OT ) log

(
pθ(a0:T , O0:T −1|OT )

q(a1:T , O0:T −1|a0, OT )

)
= −Eq(X0:T −1,aT |OT ) log

(
pθ(X0:T −1, aT |OT )

q(X1:T −1, aT , O0|a0, OT )

)
= Eq(X0:T −1,aT |OT )

[
− log pθ(aT |OT ) +

(
log q(O0|a0, OT ) +

T −1∑
t−1

log
q(Xt|Xt−1, OT )

pθ(Xt−1|Xt)
+ log

q(aT |XT −1, OT )
pθ(XT −1|XT )

)]

= Eq(X0:T −1,aT |OT )

[
− log pθ(aT |OT ) +

(
log q(O0|a0, OT ) +

[ T −1∑
t−2

log
q(Xt|Xt−1, OT )

pθ(Xt−1|Xt)
+ log

q(aT |XT −1, OT )
pθ(XT −1|XT )

]
+ log

q(X1|X0, OT )
pθ(X0|X1)

)]
= Eq(X0:T −1,aT |OT )

[
− log pθ(aT |OT ) +

(
log q(O0|a0, OT ) +

[ T −1∑
t−2

log
q(Xt−1|Xt, X0, OT )

pθ(Xt−1|Xt)
·

q(Xt|X0, OT )
q(Xt−1|X0, OT )

+ log
q(XT −1|aT , X0, OT )

pθ(XT −1|XT )
·

q(aT |X0, OT )
q(XT −1|X0, OT )

]
+ log

q(X1|X0, OT )
pθ(X0|X1)

)]
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= Eq(X0:T −1,aT |OT )

[
− log pθ(aT |OT ) +

(
log q(O0|a0, OT ) +

[ T −1∑
t−2

log
q(Xt−1|Xt, X0, OT )

pθ(Xt−1|Xt)

+ log
q(XT −1|X0, OT )

q(X1|X0, OT )
+ log

q(XT −1|aT , X0, OT )
pθ(XT −1|XT )

+ log
q(aT |X0, OT )

q(XT −1|X0, OT )

]
+ log

q(X1|X0, OT )
pθ(X0|X1)

)]
= Eq(X0:T −1,aT |OT )

[
− log pθ(aT |OT ) +

(
log q(O0|a0, OT ) +

[ T −1∑
t−2

log
q(Xt−1|Xt, X0, OT )

pθ(Xt−1|Xt)

+ log
q(XT −1|aT , X0, OT )

pθ(XT −1|XT )
+ log

q(aT |X0, OT )
q(X1|X0, OT )

]
+ log

q(X1|X0, OT )
pθ(X0|X1)

)]
= Eq(X0:T −1,aT |OT )

[
log

q(aT |X0, OT )
pθ(aT |OT )

+ log q(O0|a0, OT ) +
[ T −1∑

t=2

log
q(Xt−1|Xt, X0)

pθ(Xt−1|Xt)
+ log

q(XT −1|XT , X0)
pθ(XT −1|XT )

]
− log pθ(X0|X1)

]
= Eq(X0:T −1,aT |OT )

[
log

q(aT |X0, OT )
pθ(aT |OT )︸ ︷︷ ︸

LT

+ log q(O0|a0, OT ) +
T∑

t=2

log
q(Xt−1|Xt, X0)

pθ(Xt−1|Xt)︸ ︷︷ ︸
L1:T −1

− log pθ(X0|X1)︸ ︷︷ ︸
L0

]

Here LT is constant and hence can be ignored. We minimize {Lt}T −1
t=0 by factorizing

pθ(Xt−1|Xt) = pθ(at−1|Xt)pθ(Ot−1|Xt), ∀ t ∈ {1, . . . , T}, and subsequently pθ(at−1|Xt) is formulated
as N (µt−1(at, Ot), σt−1I) where, when using the noising process without drift (as in (7)),

µt−1(at, Ot) = at −
√

1 − αtϵθ(at, Ot, t)
σt−1 =

√
1 − αt−1,

(9)

and when using the noising process with drift (as in (6)),

µt−1(at, Ot) =
√

αt−1√
αt

(
at −

√
1 − αtϵθ(at, Ot, t)

)
σt−1 =

√
1 − αt−1.

(10)

Additionally, pθ(Ot−1|Xt) is formulated as a non-differentiable masking or zooming process.

A.3 Noising processes

A.3.1 Noising process with drift

Let a0 be a random variable over which we wish to define a generative distribution. We define inference
distributions over latents {a1, . . . , aT } as

q(at|at−1) = N (at;
√

αtat−1,
√

1 − αtI), (11)

where {(1 − αi)}t
i=1 is a fixed noise schedule.

We can unroll this recursion to obtain the distribution over at for any t given the sample a0, as follows:

at =
√

αtat−1 +
√

1 − αtϵt−1

= √
αtαt−1at−2 +

√
1 − αtαt−1ϵt−2

= . . .

=
√

αta0 +
√

1 − αtϵ,

(12)

where ϵ ∼ N (0, I).
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Proof of recursion:
√

αtat−1 +
√

1 − αtϵt−1

= √
αtαt−1at−2 +

√
αt(1 − αt−1)ϵt−2 +

√
1 − αtϵt−1

Here ϵt−1 and ϵt−2 are N (0, I) Gaussian distributions. Their weighted sum will result into a Gaussian
distribution whose variances are added up. That is,√

αt(1 − αt−1)ϵt−2 +
√

1 − αtϵt−1

=
√

αt(1 − αt−1) + 1 − αtϵt−2

=
√

1 − αtαt−1ϵt−2

where ϵt−2 ∼ N (0, I). We observe here that as t → ∞, at ∼ N (0, I).

A.3.2 Noising process without drift

We fix the inference distribution over the latent variables {a1, . . . , aT } as a diffusion process without the
scaling term. That is, we define

q(at|at−1) = N (at; at−1,
√

1 − αtI), (13)

where {(1 − αi)}t
i=1 is a fixed noise schedule.

We can unroll this recursion to obtain the inference distribution over any at directly given the sample a0, as
follows:

at = at−1 +
√

1 − αtϵt−1

= at−2 +
√

2 − (αt−1 + αt) ϵt−2

= . . .

= a0 +

√√√√t −
t∑

τ=1
ατ ϵ,

(14)

where ϵ ∼ N (0, I). We observe here that as t → ∞, at ∼ Unif(−∞, ∞).

Note: If we analyze the noising process in (6) as tk → T , since α(tk) → 0 we have ã(i)
k → ϵ

(i)
k . This means

that if we train our denoising network ϵθ to predict ϵ
(i)
k , around tk → T the model is trained to model an

identity function (Salimans & Ho, 2022). This hampers training and eventual model performance. We point
out that the noising process without drift does not suffer from this issue. Additionally, we also found it useful
to directly tune α (as opposed to tuning the underlying β-schedule) to prevent identity-training issues.

B Tasks and their Desiderata

Sweeping-piles. This task requires the model to output the parameters of a push primitive, that is the
starting location and orientation of a pusher and ending location, to push piles of small objects into a target
zone.

Place-red-in-green. This is a slightly more precision-requiring task where the robot is supposed to pick up
a red 4x4x4 cm block using a suction cup and place it in a green bowl. The table is also laid with distractor
blocks that can hinder model precision leading to imprecise picks. We also test our model for robustness
against unseen distractor objects in this task by replacing blocks with daily-life objects such as pen, remote,
stapler, etc.

Kitting-part. In this task, 5 parts of a skateboard truck assembly are laid out on a tabletop, and the robot
is tasked to grasp the truck base on its slotted end and place correctly in a kit. To succeed in the task, our
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Table 5: Simulation (⋆) and real-robot (†) tasks and their desiderata.

Task Ignore Precision Position
distractions tolerance

sweeping-piles⋆ ✗ ✗ n/a
place-red-in-green⋆ ✓ ✓ 4.0 cm
kitting-part⋆† ✓ ✓ 2.0 cm
hang-cup⋆† ✗ ✓ 1.0 cm
two-part-assembly⋆ ✗ ✓ 0.5 cm
place-block-in-bowl†

- big blocks ✓ ✗ 4.5 cm
- small blocks ✓ ✓ 2.5 cm

screw-insert† ✗ ✓ 1.0 cm

hypothesis is that the robot needs to fixate on and observe the part in detail, while ignoring distractions that
can hinder accuracy.

Hang-cup. This task requires the model to predict the pose of the gripper for picking and placing that
should result in the cup hanging by its handle on the hook of a Y-shaped hanger. In the best possible scenario
where the cup is oriented such that the handle’s plane is perpendicular to the hanger’s hook, the tolerance
for error in position prediction is only 1 cm.

Two-part-assembly. This is a high-precision assembly task where the robot is tasked to pick up a skateboard
truck hanger and insert it in the hole of the truck base. This task is a subroutine of assembling a full skateboard
truck.

C Model Architecture and Training Details

We use a deep convolutional neural network with residual connections (ResNet-18 He et al. (2015)), without
any pretraining, to process images, the output of which we then flatten and process using an MLP with two
hidden layers (encϕ). We concatenate the encoder embeddings with query actions, which are then further
processed by 4 fully-connected feedforward layers with skip connections (ϵθ). We use ReLU activations for all
intermediate layers. We implemented all baselines with the same backbone architecture, tune learning rate in
the range [10−4, 10−3], and train using the Adam optimizer (Kingma & Ba, 2014) with a batch size of 100
demonstrations on a single Nvidia 2080 Ti GPU. We use rotation augmentation of the demonstrations.

D Hyperparameters

Table 6: Hyperparameters used for simulation experiments. In case of multiple entries, the one in bold
worked best.

Hyperparameter Diffusion Policy C3DM-Mask (ours) C3DM (ours)
Num noisy action samples 1, 10 1, 10 1, 10
Noise schedule linear linear linear, linear
Timestep encoding size 64 64 64
Downsample ratio N/A N/A 0.2
Learning rate 1e-4 1e-4 1e-4

19



Published in Transactions on Machine Learning Research (07/2024)

Table 7: Hyperparameters used for real robot experiments. In case of multiple entries, the one in bold
worked best.

Hyperparameter Diffusion Policy C3DM-Mask (ours) C3DM (ours)
Num noisy action samples 1, 10, 50 1, 10, 50 1, 10, 50
Noise schedule linear linear linear, cos2

Timestep encoding size 64 64 64
Downsample ratio N/A N/A 0.4
Learning rate 1e-4 1e-4 1e-4

Table 8: Hyperparameters used for sim-to-real robot experiments.

Hyperparameter Diffusion Policy C3DM (ours)
Num noisy action samples 1 1
Noise schedule linear linear
Timestep encoding size 256 256
Downsample ratio N/A 0.28
Learning rate 1e-4 1e-4

E Unseen objects used in simulation experiments

Figure 13: Table-top objects, unseen during training for any experiment, that we used to evaluate C3DM on
ignoring novel distractor objects.

Figure 14: Table setup showing the place-red-in-green task with novel distractor objects.

F Details on motion planner used for tasks in simulation

For all tasks considered in Section 5.1, we implemented a motion planner that calculates a “hover” pose
over the pick and place poses, and made the robot reach the hover pose both before and after attempting to
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reach the corresponding predicted pose during action rollout. This hover pose was computed using a relative
translation along the +z axis on the predicted pick or place pose. To generate fine-grained motion, we did
not obtain the collision model of the table-top, rather used linear interpolation to obtain the trajectories
between target poses.
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