
MKOR: Momentum-Enabled Kronecker-Factor-Based
Optimizer Using Rank-1 Updates

Mohammad Mozaffari
Department of Computer Science

University of Toronto
mmozaffari@cs.toronto.edu

Sikan Li
Texas Advanced Computing Server

sli@tacc.utexas.edu

Zhao Zhang
Department of Electrical and Computer Engineering

Rutgers University
zhao.zhang@rutgers.edu

Maryam Mehri Dehnavi
Department of Computer Science

University of Toronto
mmehride@cs.toronto.edu

Abstract

This work proposes a Momentum-Enabled Kronecker-Factor-Based Optimizer
Using Rank-1 Updates, called MKOR, that improves the training time and con-
vergence properties of deep neural networks (DNNs). Second-order techniques,
while enjoying higher convergence rates vs first-order counterparts, have cubic
complexity with respect to either the model size and/or the training batch size.
Therefore, they exhibit poor scalability and performance in transformer models,
e.g. large language models (LLMs), because the batch sizes in these models
scale by the attention mechanism sequence length, leading to large model size
and batch sizes. MKOR’s complexity is quadratic with respect to the model size,
alleviating the computation bottlenecks in second-order methods. Because of their
high computation complexity, state-of-the-art implementations of second-order
methods can only afford to update the second order information infrequently, and
thus do not fully exploit the promise of better convergence from these updates.
By reducing the communication complexity of the second-order updates, as well
as achieving a linear communication complexity, MKOR increases the frequency
of second-order updates. We also propose a hybrid version of MKOR (called
MKOR-H) that mid-training falls backs to a first order optimizer if the second order
updates no longer accelerate convergence. Our experiments show that MKOR
outperforms state-of-the-art first-order methods, e.g. the LAMB optimizer, and
best implementations of second-order methods, i.e. KAISA/KFAC, up to 2.57×
and 1.85× respectively on BERT-Large-Uncased on 64 GPUs.

1 Introduction

Second-order optimization methods have recently gained popularity in the training process of deep
neural networks (DNNs) due to their higher convergence rate in comparison to their first-order
counterparts. One of the well-known second-order methods, Newton’s method, uses the inverse of
the Hessian of the objective function as a preconditioner to the gradients, capturing more information
on the curvature of the loss function. However, since the size of the Hessian scales with the model
size, computing and storing the exact Hessian and its inverse is the main bottleneck in these methods,
giving rise to different approximation methods.

One of the most common approximations of Newton’s method is Natural Gradient Descent (NGD) [1],
where the Hessian is substituted with the Fisher Information Matrix (FIM) [4] to reduce the cost

37th Conference on Neural Information Processing Systems (NeurIPS 2023).

of computing the second-order derivatives. However, as the models become larger, it becomes
impractical to store and compute the exact inverse of the FIM, leading to the design of algorithms
based on block-diagonal approximations of FIM; each block corresponds to a layer in the neural
network (NN). Inverting the diagonal blocks is also not practical due to the large number of parameters
in a NN layer, thus their inverse is also approximated.

The class of Kronecker-Factored Approximate Curvature (KFAC) [16] methods attempt to reduce
the computation costs of the the block inversion. They approximate an FIM block for a batch of
samples using the Kronecker multiplication of the covariance of the output activations and input
gradients. KFAC is implemented on distributed platforms for both linear and convolutional layers
[5; 27; 20; 19], and different computation and communication optimization techniques have been
applied to its implementations [25; 21]. KAISA [21] is a framework with state-of-the-art distributed
KFAC implementation. The computational complexity of KFAC-based methods is O(d3), where d
is the layer dimension. These methods work well for small models with a small layer dimension d,
however, in large models, they don’t scale well, resulting in poor performance.

To reduce the effect of model size on the computation complexity of second-order updates, KBFGS
[8], which does not have an efficient distributed implementation, uses a Broyden-Fletcher-Goldfarb-
Shannon (BFGS) [13]-based method for computing and updating the Kronecker factor and has
O(bd2) complexity, where b is the batch size. The class of SNGD (Sherman-Morrison-Woodbury-
based NGD) methods [23; 31; 17] uses the Sherman-Morrison-Woodbury (SMW) identity to calculate
the FIM blocks with a complexity of O(b3), making the complexity independent of the model size.
HyLo [17] is the state-of-the-art SNGD implementation. It reduces communication for better
scalability. KBFGS and SNGD solve the scalability issue of KFAC-based methods for small batches.
However, in transformer models [28], the batch size scales with the sequence length of the attention
mechanism (which can be as high as a few thousands [26]) thus limiting the scalability of SNGD
and KBFGS methods. Recent work Eva [33] attempts to reduce this cost further to O(d2) by storing
vectors instead of Kronecker factors in the KFAC formulation. However, similar to KFAC, Eva uses
a damping factor that can lead to additional error in the FIM approximation. Also, because Eva stores
the Kronecker vectors instead of factors, it can not leverage the benefits of momentum.

This work presents MKOR, a Momentum-Enabled Kronecker-Factorizatoin-Based Optimizer with
Rank-1 Updates. (1) MKOR approximates the inverse of covariance matrices using rank-1 updates
in the Sherman-Morrison-Based (SM-Based) Matrix Inversion, reducing the inversion computation
complexity from O(d3) to O(d2). As a result, the second-order information updates can be applied
up to 100 times more frequently compared to KAISA/KFAC and HyLo/SNGD. KFAC computes and
inverts the covariance matrices precisely; KFAC updates the second-order information infrequently,
e.g. every 100-1000 iterations, due to the high cost of inversion and for time efficiency, which
damages its convergence rate and generalization capability. SNGD-based methods suffer from similar
overhead due to inversion of their kernel matrices. (2) Second-order methods suffer from high
communication costs for synchronizing the inverse of factors between workers. MKOR alleviates this
by only synchronizing rank-1 approximation vectors among the workers, reducing the communication
costs from O(d2) to O(d). Also, MKOR uses half-precision to further reduce communication; other
second-order methods cannot use low-precision computations due to their complex matrix inversion
algorithms. (3) Second-order methods are more prone to the exploding gradients due to the effects
of preconditioning on the norm of the gradients and lack of numerical bounds on the inverse of the
factors. MKOR uses a Norm-Based Stabilizer and a Gradient Rescaling Mechanism to detect and
prevent exploding gradients. (4) The high convergence rate of second-order methods, including
MKOR, stagnates after the first few iterations or epochs of training. We propose a hybrid version of
MKOR, namely MKOR-H, that combines the high convergence rate of second-order methods in the
initial phase of training with the low overhead of first-order methods in the late stages of the training,
using a loss-reduction-rate-based switching mechanism.

MKOR outperforms state-of-the-art distributed second- and first-order methods by up to 2.57×,
reducing the training time of BERT-Large-Uncased from 8 hours to 3 hours on 64 A100 GPUs.
MKOR also achieves new state-of-the-art metrics on the GLUE dataset, where other second-order
methods such as KFAC fail to converge to the baseline.

2

Activation
Covariance

Gradient
Covariance

SM-Based Inversion

a. Rank-1 Approximation & Synchronization -

b. Norm-Based Stabilization

c. SM-Based Inversion -

d. Precondition & Rescale Gradients

Figure 1: MKOR for layer m on a single worker. The inputs of MKOR are the activations Am
t , the

gradients of the loss function with respect to the inputs Gm
t , and the gradients of the loss function

with respect to the weights∇WmL. The output is the update values ∆Wm.

2 Background

Training a neural network involves solving an optimization problem to find the optimal values for
a set of weightsW = {Wm}Mm=1, where M is the number of layers in the network and Wm is a
matrix in Rd×d. Second-order methods precondition the weights of the network with the inverse of
the Hessian for better convergence rates. Block-diagonal approximations of NGD methods replace
the Hessian with the block-diagonal FIM as shown in Equation 1, where wm ∈ Rd2

is the vector
representation of Wm, Fm is the block corresponding to that layer and L is the loss function. [15]
Shows that the FIM matches the Gauss-Newton matrix under certain conditions.

wm := wm − α(Fm)
−1∇wmL (1)

KFAC-based methods reformulate the FIM block as the Kronecker product of two matrices. Equation
2 shows the update rule in KFAC, where L is the loss function and (Lm

t)
−1 and (Rm

t)
−1 are the

inverse of the left and right factors, respectively.

Wm := Wm − α(Lm
t)

−1∇WmL(Rm
t)

−1 (2)

(Lm
t)

−1 and (Rm
t)

−1 in Equation 2 are computed using equations 3 and 4, respectively, where am is
the activation value of a sample at layer m, and gm = ∇am−1L and γ incorporate the momentum
feature to avoid extreme changes in the factors.

Lm
t = γLm

t−1 + (1− γ)E[gmt gmt
T] (3)

Rm
t = γRm

t−1 + (1− γ)E[am−1
t am−1

t

T
] (4)

3 MKOR: Momentum-Enabled Kronecker-Factorization-Based Optimizer
with Rank-1 Updates

In this section we first present the MKOR algorithm, its computation and communication complexity,
then present hybrid MKOR (MKOR-H), and finally discuss MKOR’s convergence and stability.

3

Algorithm 1: MKOR Algorithm for a Single Layer m

Data: Am−1
t , Gm

t ,Wm
t−1

Result: Wm
t

1 if m ∈ Second Order Layers then
2 am−1

t ← 1
b

∑b
i=1(A

m−1
t):,i ; // Approx: Am−1

t Am−1
t

T ≈ am−1
t am−1

t

T

3 gm
t ← 1

b

∑b
i=1(G

m
t):,i ; // Approx: Gm

t Gm
t

T ≈ gm
t gm

t
T

4 am−1
t ,gm

t ← AllReduce(am−1
t ,gm

t) ; // Synchronize Approximations
// Norm-Based Stabilization

5 ˆLm
t−1

−1
← if ∥Lm

t−1
−1∥ > ϵ then ζLm

t−1
−1 + (1− ζ)I else Lm

t−1
−1 ;

6 ˆRm
t−1

−1
← if ∥Rm

t−1
−1∥ > ϵ then ζRm

t−1
−1 + (1− ζ)I else Rm

t−1
−1 ;

// SM-Based Factor Inversion

7 Lm
t

−1 ← γ ˆLm
t−1

−1
+ (1−γ)

γ2(1+γ(1−γ)gm
t

T ˆLm
t−1

−1
gm
t)

ˆLm
t−1

−1
gm
t gm

t
T ˆLm

t−1

−1

8 Rm
t

−1 = γ ˆRm
t−1

−1
+ (1−γ)

γ2(1+γ(1−γ)am
t

T ˆRm
t−1

−1
am
t)

ˆRm
t−1

−1
amt amt

T ˆRm
t−1

−1

9 ∆Ŵm
t ← Lm

t
−1∇WmLRm

t
−1 ; // Precondition Gradients

10 ∆Wm
t ←

∥∇WmL∥
∆Ŵm

t

∆Ŵm
t ; // Rescale Gradients

11 else
12 ∆Wm

t ← ∇WmL ;
13 end
14 Wm

t ← Optimizer.step(∆Wm
t ,Wm

t−1) ;

3.1 The MKOR Algorithm

Algorithm 1 summarizes the MKOR optimizer for a single layer and Figure 1 shows the workflow.
For each layer (line 1 in Algorithm 1) MKOR updates the second-order information and preconditions
the gradients, and at the end the backend optimizer updates the weight using the preconditioned
gradients (line 14 in Algorithm 1).

Rank-1 Approximation. For the rank-1 approximations of the covariance matrices, we use the average
of the values across all the samples, i.e. am−1

t = E[am−1
t] and gm

t = E[gmt] (lines 2 and 3 in Algo-
rithm 1 and Figure 1-a). (Am−1

t)−1
:,i and (Gm

t)−1
:,i show the ith column of (Am−1

t)−1 and (Gm
t)−1

respectively, where Am−1
t and Gm

t are the activations and the gradients of layer m respectively.

Norm-Based Stabilizer. The values in the factor inverses in second-order methods can become large
or vanish due to extremely large or small values in activations and gradients, leading to numerical
instabilities and over/underflows. Since the inverse of the factors are directly multiplied by the
gradients to find the update values, it can cause oscillations or even divergence. MKOR uses a norm-
based stabilizer to detect this and addresses it by modifying the inverse of the factors accordingly
(lines 5 and 6 in Algorithm 1 and Figure 1-b). More detail on the norm-based stabilizer are in
Section3.3.

SM-Based Inverter. MKOR directly modifies the inverse of the left and right factors using rank-1
updates, while using the momentum for better convergence. If E[gmgm

T

] is approximated using a
rank-1 matrix gmgmT

and using the Sherman-Morrison identity, Equation 5 in obtained (line 7 in
Algorithm 1 and Figure 1-c).

Lm
t

−1 = γLm
t−1

−1 +
(1− γ)

γ2(1 + γ(1− γ)gm
t

TLm
t−1

−1gm
t)

Lm
t−1

−1gm
t gm

t
TLm

t−1
−1 (5)

Furthermore, if Equation 4 is approximated using E[am−1
t am−1

t

T
] ≈ amt am

T

t with a similar deriva-
tion, Equation 6 is obtained (line 8 in Algorithm 1 and Figure 1-c).

4

Table 1: The computation and communication complexity and memory overhead of the state-of-
the-art implementations of the first- and second-order optimizers. The division by 2 in MKOR is
because MKOR uses half-precision computations. The complexity of KFAC-based methods depends
on layer dimensions while SNGD methods mostly depend on the batch size. In transformers, due to
the scaling of the batch size by the sequence length, batch sizes and layer dimensions are comparable,
making both KFAC- and SNGD-based methods more expensive than SGD.

Optimizer Computational
Complexity

Memory Overhead Communication
Complexity

MKOR O(d2 + bd) O(2d2/2) O(2d/2)
SNGD (HyLo) O(b3) O(2bd+ b2) O(2bd+ b2)

KFAC (KAISA) O(d3) O(4d2) O(4d2)
Eva O(d2 + bd) O(2d) O(2d)

SGD (Momentum) - O(d2) -
ADAM / LAMB - O(d2) -

Rm
t

−1 = γRm
t−1

−1 +
(1− γ)

γ2(1 + γ(1− γ)amt
TRm

t−1
−1amt)

Rm
t−1

−1amt amt
TRm

t−1
−1 (6)

Rescaling Gradients. Preconditioning the gradients using the computed factors can change gradient
norms. Sometimes, these changes interfere with the effect of the learning rate on the training process.
To alleviate this and to make learning rate schedulers more effective, the preconditioned gradients are
scaled so that their norm matches the original norms (line 10 in Algorithm 1 and Figure 1-d).

Complexity Analysis. MKOR reduces the memory, communication, and computation costs for factor
inversion. Table 1 compares the overheads of different optimizers. (1) Computation Complexity.
MKOR inverts the left and right factors in Equation 2 using equations 5 and 6, both of which
can be computed using matrix-vector multiplications, and have O(d2) computation complexity, in
contrast to KFAC and SNGD methods that need O(d3) and O(b3) complexity to invert matrices in
Rd×d and Rb×b respectively. (2) Communication Complexity. The only data that is synchronized
among different workers in MKOR is the two rank-1 approximations that have 2d elements. With
quantization, this size can be halved. In KFAC, the activation and gradient covariance matrices and
the inversion of left and right factors need to be synchronized between all the workers, leading to 4d2

data transfers. In SNGD , the activations and gradients are synchronized, leading to 2bd data transfers
and the inverted kernels are broadcast, resulting in b2 data transfers. Reducing the communication
complexity of MKOR from quadratic to linear results in better performance on large number of
workers. (3) Memory Overhead. MKOR needs to store the inverse of the left and right factors and
two rank-1 approximation vectors, leading to 2d2 + 2d memory overhead, and using half-precision
computations further reduces this. KFAC stores the activation and gradient covariance matrices and
the left and right factors, leading to 4d2 memory overhead. SNGD stores the activations, the gradients,
and the kernels they use as second-order information, leading to 2bd+ b2 memory complexity.

The low memory overhead of MKOR allows us to use larger batch sizes compared to other second-
order methods. In practice, gradient accumulation methods are used to increase the effective batch
size in training, which reduces the training speed significantly. This issue worsens with KAISA and
HyLo, but MKOR alleviates this. For fairness, in our experiments, we set the local batch sizes to the
same value in all optimizers and do not leverage this feature of MKOR.

3.2 Hybrid MKOR

We observed that second-order methods, including MKOR, usually accelerate training more during
the first iterations of the training time, and as the loss flattens, their advantage over their first-order
counterparts becomes less noticeable. This is because the second-order information of the loss
functions approach identity near convergence points. Thus we designed a hybrid second- and first-
order optimizer with a loss decrease rate-based switching method (MKOR-H). MKOR-H evaluates
the changes in the loss function in different iterations and switches back to first-order methods
if needed for an efficient trade-off between the costly second-order updates and their benefits for
convergence.

5

3.3 MKOR Convergence and Stability

Inversion Frequency Due to the high factor inversion costs in KFAC- and SNGD-based methods,
researchers use the stale factor approach, which updates the inverted factors every f iterations and
reuses the results in the other iterations in their preconditioning to reduce the computation and
communication costs. f is the reciprocal of inversion frequency and varies from a few 100s to a few
1000s. Our experiments show that in average-sized models such as ResNet-50 [9], in an iteration that
the inversion of factors is executed, the cost of KAISA and HyLo is 150×more than an SGD iteration.
Furthermore, more than 98% of the total cost in those iterations are spent on matrix inversion.

The stale factors approach can lead to good preconditioners if the loss function landscape does not
vary significantly in each iteration. However, this is a strong assumption and doesn’t necessarily
hold in practice. Also, increasing the inversion frequency can benefit the convergence rate of the
second-order methods. In addition, our experiments show that using stale factors. The stale factors
can be good preconditioners lead to converging to local minima in the loss function and damage the
generalization of the model.

Numerical Stability In second-order techniques, we need to invert or find the roots of matrices of
different sizes, which are usually not full-rank, resulting in numerical issues. The KFAC implementa-
tion uses singular value decomposition (SVD) of the factors and masks the eigenvalues that are close
to zero to deal with singular matrix inversion issues. In practice, the eigenvalues of the left and right
factors in KFAC-based methods computed from equations 3 and 4 are increased manually by adding
µI to each of them to improve numerical stability (µ > 0 is called the damping factor), but MKOR
doesn’t need such numerical fixes. Furthermore, HyLo uses two decomposition methods to sample
the batch of inputs, namely KID and KIS. KID requires inverting matrices in Rb×b of rank min(b, d),
thus for batch sizes larger than d in a specific layer, the method fails.

Unlike SVD or other iterative methods used for factor inversion, MKOR doesn’t suffer from numerical
instabilities that rise from large condition numbers. MKOR has a single scalar division, in which the
denominator is guaranteed to be non-zero based on lemma 3.1, eliminating the numerical over/under-
flow possibility and the need for damping factors (required by other second-order methods for
computational stability).
Lemma 3.1. The factors computed using Equation 5 and 6 are all positive-definite.

[2] suggests using double precision representation of numbers to avoid numerical over/under-flow in
inverting or computing the roots of matrices. This approach adds more costs to the matrix inversion
and increases the time complexity of the main bottleneck in second-order methods.

MKOR does not need higher precision computations, and can use half-precision floating point
operations to reduce costs significantly. This will improve the memory utilization and reduce the
communication costs in GPUs by 2× while using cheaper computation blocks for half-precision
operations. Lemma 3.2 shows an upper bound on the quantization error effect in the MKOR updates.
Lemma 3.2. Assuming that the maximum quantization error is ϵ, the maximum number in matrices
and vectors is m, and the dimension of the vectors and matrices are d and d × d respectively, the
quantization error of formulas 5 and 6 is O((γ + 4 (1−γ)

γ2 m3d2)ϵ)

Exploding Gradients Problem In second-order methods, where the gradients are preconditioned
by various factors, the exploding gradient problem is worsened. Our experiments show that in first-
order methods, by choosing a learning rate that doesn’t lead to divergence in the first few iterations,
explosion in gradients almost never occurs. On the other hand, in second-order methods, we observe
that the explosion can occur at any iteration, and both KFAC and SNGD implementations are prone
to this problem. This can lead to ripples in accuracy and divergence. One of the main approaches for
solving the exploding gradient problem is choosing small values for the learning rate, limiting the
convergence rate significantly. In particular, small learning rates damage the second-order methods
and make them almost as performant as their first-order counterparts. Considering that SGD is more
robust against the exploding gradients and taking advantage of the direct control of MKOR on the
inverse of the factors, the factors in MKOR are modified to lean toward SGD once the possibility of
exploding gradients is detected using equations 7 and 8, where ζ is a hyperparameter that controls the
amount of information from the original factors that needs to be saved in the new factors.

L̂m
t = ζLm

t + (1− ζ)I (7)

6

R̂m
t = ζRm

t + (1− ζ)I (8)

By expanding Equation 2 with the new factors, we will get Equation 9, which reduces the loss-based
on lemma 3.3. The first term in the right-hand-side of 9 is the KFAC term, the second and third terms
are the left and right preconditioned versions, and the last term is the SGD term.

L̂m−1

∇WmLR̂m−1

= ζ2Lm−1

∇WmLRm−1

+ ζ(1− ζ)Lm−1

∇WmL+ ζ(1− ζ)∇WmLRm−1 + (1− ζ)2∇WmL
(9)

Lemma 3.3. Given a differentiable function L(w) with first-order Taylor series approximation
L̂(w −∆w) = L(w0)∆wT∇wL(w0) around point w0, assuming that at point w0 the second-order
derivative of the function L(w) is given as ∇2

wL(w0) = H = L⊗R, where L and R are positive-
semi-definite matrices, for a value of ∆w = ((ζL−1 + (1 − ζ)I) ⊗ (ζR−1 + (1 − ζ)I))∇L(w0),
the inequality L̂(w0 −∆w) < L(w0) holds.

While this modification can avoid exploding gradients, overusing it with small values of ζ will convert
MKOR to SGD. MKOR uses a factor norm-based metric that observes the infinity norm of the factors,
and if they are greater than a specific threshold, the process of factor modification will be triggered.

4 Experimental Results

In this section, we demonstrate the performance of MKOR on a large language model using different
benchmarks, and analyze the timing of different components in different first- and second-order
algorithms. For results on more models and training sets, please refer to the supplementary material.

Large Language Models. We pre-train BERT-Large Uncased and fine-tune it for different question-
answering and text classification tasks. A setup similar to [21] for pre-training and fine-tuning is
used. The first-order baseline used is Fused LAMB [32]. Similar to [21], for the pre-training process,
the English Wikipedia [30] and the Toronto BookCorpus [34] dataset, which was used in the original
BERT pre-training, are used; the latter dataset is not thoroughly available which results in a small
reduction in the baseline accuracies achieved in our experiments from the original BERT results.
Following [21], due to the time-intensive process of hyperparameter tuning for the first phase of
pre-training, we report the effectiveness of MKOR in the second phase of pre-training only while
using the checkpoints of the first phase generated using LAMB optimizer.

As expected, the computation, communication, and memory complexity of HyLo is high, and the
Khatri-Rao-based Interpolative Decomposition (KID) approximation method, the main idea of HyLo,
cannot be executed because a single sample cannot fit into the 40GB memory of an A100 GPU. In
addition, HyLo doesn’t support gradient accumulation due to its memory complexity, depending on
the batch size; in LLMs such as BERT, the batch sizes are as large as 64k.

For the question answering task, we fine-tune the pre-trained BERT checkpoints on the SQuAD
v1.1 [22] dataset. Table 2 shows the F1 Score achieved using different optimizers and compares their
convergence rate and speedups. The vanilla MKOR and KAISA both converge after 1000 iterations,
while the LAMB optimizer requires 1, 536 steps. Considering that each step in MKOR is faster than
KAISA, MKOR achieves an end-to-end speedup. MKOR-H will converge in 600 steps, reducing
the number of steps in LAMB by 2.6×, while achieving the same accuracy. In addition, it achieves
2.57× speedup over the LAMB optimizer and 1.75× speedup over KAISA. As another second-order
baseline, we consider Eva, which converges in 1000 iterations, and MKOR achieves 1.69× speedup
over it.

For classification tasks, we fine-tune BERT on the GLUE [29] dataset. Table 3 compares the results
for different classification tasks in the GLUE dataset. MKOR with 1500 steps achieves a new state-
of-the-art accuracy in GLUE dataset on BERT-Large Uncased, and MKOR and MKOR-H with 600
steps achieve the same average metric as the baseline, while reducing the number of steps by a factor
of 2.6×. MKOR and MKOR-H both achieve 2.57× end-to-end speedup. After training KAISA for
1,563 steps, the model does not converge to the baseline average accuracy, while slowing down the
convergence by 0.89×. Eva requires 1000 steps to converge to the target average metric, being 1.69×
slower than MKOR-H with 600 steps and 1.24% less accurate than MKOR with 1500 steps.

7

Table 2: BERT-Large Uncased results on SQuAD v1.1 question answering task
Metric LAMB KAISA MKOR MKOR-H Eva

F1 90.44 90.44 90.50 90.64 90.55
Iterations 1,536 1,000 1,000 600 1,000

Time (h) 7.97 5.71 5.25 3.10 5.24
Speedup (×) 1.00 1.39 1.51 2.57 1.52

BERT-Large-Uncased Training Loss

0 200 400 600 800 1000 1200 1400 1600

Iteration

2

4

6

8

10

L
o
ss

LAMB

MKOR

K-FAC

MKOR-H

Eva

0 1 2 3 4 5 6 7 8

Time (h)

2

4

6

8

10

L
o
ss

LAMB

MKOR

K-FAC

MKOR-H

Eva

Figure 2: The training loss of BERT-Large-Uncased using different optimizers.

Per figure 2, which shows the training error during the training of BERT, MKOR decreases the error
in less iterations in comparison to KAISA, Eva, and LAMB, leading to faster convergence. From
Tables 2 and 3, MKOR-H converges in only 600 steps.

Inversion Frequency. Due to the low computation complexity of the updates on MKOR, the factor
inversion frequency (f) in MKOR is in the range of 10. Figure 4-a shows that while the average
iteration cost in KAISA is heavily dependent on the inversion frequency, MKOR’s cost is almost
independent of the inversion frequency. Also 4-b shows that increasing the inversion frequency
leads to higher convergence rate. In addition, using stale factors may result in converging to a local
minima. Hence, in MKOR we increase the convergence rate by updating the factors more frequently,
without affecting the per-iteration cost, leading to end-to-end speedups in training. We use a simple
autoencoder [24] on CIFAR-100 [11] in this experiment.

Performance Analysis. We compare the performance of different parts of the optimizers to illustrate
the bottlenecks and advantages of different methods. The training process for an optimizer has
three steps: factor computation, precondition, and update weights. Figure 3 shows the time spent
on each task in different optimizers on two models; ResNet-50, a CNN and BERT-Large-Uncased,
a transformer-based LLM with large sequence length. Since first-order optimizers such as SGD,
ADAM, and LAMB don’t require factorization and preconditioning, their optimization time is only
spent in updating the weights. In ResNet-50, since the model size is larger compared to the batch
size, the factor computation and inversion is more expensive for KAISA compared to HyLo. This
cost is significantly reduced in MKOR.

For BERT-Large-Uncased, because of the large size of the model, the factor inversion time for KAISA
is large. Also, due to the large sequence length value in this model, the kernel inversion time for

Table 3: BERT-Large Uncased results on the GLUE classification tasks.
Optimizer Iterations Time (h) Speedup (×) Average Metric

LAMB 1,563 7.97 1.00 0.8023
KAISA 1,563 8.93 0.89 0.796
MKOR 1,500 7.88 1.01 0.8214
MKOR 600 3.10 2.57 0.8078

MKOR-H 600 3.10 2.57 0.811
Eva 1000 5.24 1.52 0.809

8

Factor
Computation

Precondition Update
Weights

10−1

100

T
im

e
(s

)

BERT Large Uncased - Wikipedia

MKOR

KAISA

Eva

LAMB

Factor
Computation

Precondition Update
Weights

10−2

T
im

e
(s

)

ResNet-50 - ImageNet

MKOR

HyLo

KAISA

Eva

SGD

ADAM

(a) (b)

Figure 3: Per-step breakdown of different optimizes on BERT-Large-Uncased (a) and ResNet-50 (b)

100 101 102 103

Factor Reuse Time

0

50

100

150

200

250

T
im

e/
It

er
a
ti

o
n

(m
s)

Autoencoder

MKOR

KAISA

100 101 102 103

Factor Reuse Time

0

1000

2000

3000

4000

5000

6000

7000

T
im

e/
It

er
a
ti

o
n

(m
s)

BERT-Large-Uncased

MKOR

KAISA

(a) - Average Time per Iteration

0 5 10 15 20 25

Epochs

0.4

0.5

0.6

0.7

0.8

0.9

L
o
ss

Autoencoder

MKOR - Reuse 10

KAISA - Reuse 100

KAISA - Reuse 1000

MKOR - Reuse 100

0 25 50 75 100 125 150 175

Iteration

2

3

4

5

6

L
o
ss

BERT Large Uncased

MKOR – Reuse 50

MKOR – Reuse 10

(b) - Test Loss

Figure 4: The sensitivity of MKOR and KAISA for BERT-Large-Uncased and an Autoencoder model
(a) and the effect of inversion frequency on the convergence properties of these models (b).

HyLo is comparable to KAISA’s inversion time. But as expected, because of its low computational
complexity, the aforementioned cost in our method is much smaller than the total training time,
leading to speedups. It is important to note that HyLo diverges in this training process, hence
convergence time is not reported for HyLo.

Approximation Error Experimental Results. Due to the low-rank properties of the covariance matri-
ces, MKOR utilizes rank-1 approximations of the covariance matrices to accelerate the computations
and communication in KFAC-based optimizers. Here, we aim to theoretically and experimentally
support this choice. As shown in Figure 5, our experiments show that the covariance matrices can be
approximated with rank-1 matrices with low error and higher rank approximations are unnecessary
in practice. Figure 5 shows the error distribution of the optimal rank-1 approximation methods of
the covariance matrices in ResNet-50 and BERT-Large-Uncased pre-training. Our extensive tests

9

0.0 0.2 0.4 0.6 0.8 1.0

Activation Error

0.00

0.05

0.10

0.15

P
ro

b
a
b

il
it

y
D

en
si

ty

BERT Activation Error Distribution

0.0 0.2 0.4 0.6 0.8 1.0

Input Gradient Error

0.000

0.025

0.050

0.075

0.100

0.125

0.150

P
ro

b
a
b

il
it

y
D

en
si

ty

BERT Input Gradient Error Distribution

(a) (b)

0.0 0.2 0.4 0.6 0.8 1.0

Activation Error

0.0

0.1

0.2

0.3

0.4

P
ro

b
a
b

il
it

y
D

en
si

ty

ResNet-50 Activation Error Distribution

0.0 0.2 0.4 0.6 0.8 1.0

Input Gradient Error

0.00

0.02

0.04

0.06

0.08

0.10

P
ro

b
a
b

il
it

y
D

en
si

ty

ResNet-50 Input Gradient Error Distribution

(c) (d)

Figure 5: Rank-1 error for activation and input gradient covariance matrices for BERT-Large-Uncased
pre-training (a, b) and ResNet-50 on ImageNet (c, d).

on well-known benchmarks show this property holds for all models and we have not come across a
benchmark that does not have low-rank covariance matrices.

Approximation Error Analysis and Extension to Higher Ranks. Small batch sizes and over
parameterization of networks will lead to low-rank covariance matrices in DNNs. Let’s consider
the covariance matrix C = XXT , where C ∈ Rd×d is the covariance matrix and X ∈ Rd×b is a
matrix in which each column corresponds to a single sample and d and b are the sample dimension
and the per-GPU batch size respectively. Rank of the covariance matrix is min(b, d). If the per-GPU
batch sizes are small, the covariance matrices in each GPU will be low-rank. Rank-1 approximation
methods can work well in these scenarios. If the batch sizes in each GPU are large, we observe that
the covariance matrices will stay low-rank. The underlying reason for this observation is that current
neural networks are over-parameterized, and as a result, different features in the covariance matrices
of the activations and the output gradients won’t be linearly independent, resulting in low-rank
covariance matrices.

Extending MKOR to Higher Ranks: Furthermore, one can extend MKOR to use higher-rank covari-
ance matrices. Let’s assume that C =

∑r
i=1 cic

T
i where r is the rank of the covariance matrix C. We

can apply SMW identity to compute Cnew
1 = (Cold+c1c

T
1)

−1 with O(d2) computational complexity.
Then we can compute Cnew

2 = (Cnew
1 + c2c

T
2)

−1 using SMW identity with O(d2) computational
complexity. We can continue the same pattern by computing Cnew

i = (Cnew
i−1 + cic

T
i)

−1. The total
computation complexity of this process will be O(rd2). We should add this cost to the cost of
computing the low-rank approximation of C which requires an SVD. Using SVD kills the main
advantage of using low-rank computations, since the computational complexity of applying SVD is
the same as inverting the factors directly. We could not find any cheaper way to compute low-rank
approximations of the covariance matrices, except for the rank-1 approximation used in this paper.

5 Conclusion
We propose MKOR, a Momentum-Enabled Kronecker-Factor-Based Optimizer Using Rank-1 updates
that improves the end-to-end training time and convergence rate of second-order methods by reducing
their computation, communication, and memory usage complexity. Our experiments illustrate that
MKOR outperforms state-of-the-art first- and second-order optimizers on large language models.

10

6 Broader Impact

The research described in this paper introduces a novel method for training DNNs that achieves
faster convergence in LLMs. Using our work can help save a lot of energy and time for machine
learning practitioners. The computations in this work are fully transparent. DNNs can be applied to
different problems, including medical diagnostics, voice recognition, and addressing climate changes.
However, it should be acknowledged that optimization algorithms for DNNs can also be applied to
models with potentially negative implications such as privacy invasion. It is important to note that
the responsible and ethical utilization of any efficient optimization algorithm, including those we
propose, extends beyond the scope of this research.

7 Acknowledgments

We thank the reviewers for their constructive feedback. We would like to express our deepest
appreciation to Dr. Behrooz Zarebavani for all the time and energy he put into helping with the writing
and formatting of this paper. This work is supported by NSERC Discovery Grants (RGPIN06516,
DGECR00303, RGPIN-2023-04897, DGECR-2023-00133), National Science Foundation (NSF
CCF-2106621), the Canada Research Chairs program, the Ontario Early Researcher Award, the
Digital Research Alliance of Canada (https://www.alliancecan.ca) and Texas Advanced
Computing Center (https://www.tacc.utexas.edu). Work of Zhao Zhang was supported
by OAC-2106661.

References
[1] Shun-Ichi Amari. Natural gradient works efficiently in learning. Neural computation, 10(2):

251–276, 1998.

[2] Rohan Anil, Vineet Gupta, Tomer Koren, Kevin Regan, and Yoram Singer. Scalable second
order optimization for deep learning. arXiv preprint arXiv:2002.09018, 2020.

[3] Argonne Leadership Computing Facility. Polaris. https://www.alcf.anl.gov/
polaris.

[4] Nihat Ay. On the locality of the natural gradient for learning in deep bayesian networks.
Information Geometry, pp. 1–49, 2020.

[5] Jimmy Ba, Roger Grosse, and James Martens. Distributed second-order optimization using
kronecker-factored approximations. 2016.

[6] Compute Canada. Compute canada. https://computecanada.ca/.

[7] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-
scale hierarchical image database. In 2009 IEEE conference on computer vision and pattern
recognition, pp. 248–255. Ieee, 2009.

[8] Donald Goldfarb, Yi Ren, and Achraf Bahamou. Practical quasi-newton methods for training
deep neural networks. Advances in Neural Information Processing Systems, 33:2386–2396,
2020.

[9] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

[10] Jeremy Howard and Sebastian Ruder. Universal language model fine-tuning for text classifica-
tion. arXiv preprint arXiv:1801.06146, 2018.

[11] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[12] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E Hinton. Imagenet classification with deep
convolutional neural networks. Communications of the ACM, 60(6):84–90, 2017.

11

https://www.alliancecan.ca
https://www.tacc.utexas.edu
https://www.alcf.anl.gov/polaris
https://www.alcf.anl.gov/polaris
https://computecanada.ca/

[13] Dong C Liu and Jorge Nocedal. On the limited memory bfgs method for large scale optimization.
Mathematical programming, 45(1):503–528, 1989.

[14] Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

[15] James Martens. New insights and perspectives on the natural gradient method. The Journal of
Machine Learning Research, 21(1):5776–5851, 2020.

[16] James Martens and Roger Grosse. Optimizing neural networks with kronecker-factored ap-
proximate curvature. In International conference on machine learning, pp. 2408–2417. PMLR,
2015.

[17] Baorun Mu, Saeed Soori, Bugra Can, Mert Gürbüzbalaban, and Maryam Mehri Dehnavi.
Hylo: a hybrid low-rank natural gradient descent method. In Proceedings of the International
Conference on High Performance Computing, Networking, Storage and Analysis, pp. 1–16,
2022.

[18] NVIDIA Corporation. Nvidia deep learning examples. https://github.com/NVIDIA/
DeepLearningExamples.

[19] Kazuki Osawa, Yohei Tsuji, Yuichiro Ueno, Akira Naruse, Rio Yokota, and Satoshi Matsuoka.
Large-scale distributed second-order optimization using kronecker-factored approximate curva-
ture for deep convolutional neural networks. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 12359–12367, 2019.

[20] J Gregory Pauloski, Zhao Zhang, Lei Huang, Weijia Xu, and Ian T Foster. Convolutional
neural network training with distributed k-fac. In SC20: International Conference for High
Performance Computing, Networking, Storage and Analysis, pp. 1–12. IEEE, 2020.

[21] J Gregory Pauloski, Qi Huang, Lei Huang, Shivaram Venkataraman, Kyle Chard, Ian Foster, and
Zhao Zhang. Kaisa: an adaptive second-order optimizer framework for deep neural networks.
In Proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis, pp. 1–14, 2021.

[22] Pranav Rajpurkar, Jian Zhang, Konstantin Lopyrev, and Percy Liang. Squad: 100,000+ questions
for machine comprehension of text. arXiv preprint arXiv:1606.05250, 2016.

[23] Yi Ren and Donald Goldfarb. Efficient subsampled gauss-newton and natural gradient methods
for training neural networks. arXiv preprint arXiv:1906.02353, 2019.

[24] Jürgen Schmidhuber. Deep learning in neural networks: An overview. Neural networks, 61:
85–117, 2015.

[25] Shaohuai Shi, Lin Zhang, and Bo Li. Accelerating distributed k-fac with smart parallelism
of computing and communication tasks. In 2021 IEEE 41st International Conference on
Distributed Computing Systems (ICDCS), pp. 550–560. IEEE, 2021.

[26] Yi Tay, Mostafa Dehghani, Samira Abnar, Yikang Shen, Dara Bahri, Philip Pham, Jinfeng Rao,
Liu Yang, Sebastian Ruder, and Donald Metzler. Long range arena: A benchmark for efficient
transformers. arXiv preprint arXiv:2011.04006, 2020.

[27] Yuichiro Ueno, Kazuki Osawa, Yohei Tsuji, Akira Naruse, and Rio Yokota. Rich information is
affordable: A systematic performance analysis of second-order optimization using k-fac. In
Proceedings of the 26th ACM SIGKDD International Conference on Knowledge Discovery &
Data Mining, pp. 2145–2153, 2020.

[28] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. Advances in neural information
processing systems, 30, 2017.

[29] Alex Wang, Amanpreet Singh, Julian Michael, Felix Hill, Omer Levy, and Samuel R Bowman.
Glue: A multi-task benchmark and analysis platform for natural language understanding. arXiv
preprint arXiv:1804.07461, 2018.

12

https://github.com/NVIDIA/DeepLearningExamples
https://github.com/NVIDIA/DeepLearningExamples

[30] Wikipedia. Wikipedia corpus. https://meta.wikimedia.org/wiki/Data_dump_
torrents#English_Wikipedia.

[31] Minghan Yang, Dong Xu, Zaiwen Wen, Mengyun Chen, and Pengxiang Xu. Sketchy empirical
natural gradient methods for deep learning. arXiv preprint arXiv:2006.05924, 2020.

[32] Yang You, Jing Li, Sashank Reddi, Jonathan Hseu, Sanjiv Kumar, Srinadh Bhojanapalli,
Xiaodan Song, James Demmel, Kurt Keutzer, and Cho-Jui Hsieh. Large batch optimization for
deep learning: Training bert in 76 minutes. arXiv preprint arXiv:1904.00962, 2019.

[33] Lin Zhang, Shaohuai Shi, and Bo Li. Eva: A general vectorized approximation framework for
second-order optimization, 2023.

[34] Yukun Zhu, Ryan Kiros, Rich Zemel, Ruslan Salakhutdinov, Raquel Urtasun, Antonio Torralba,
and Sanja Fidler. Aligning books and movies: Towards story-like visual explanations by
watching movies and reading books. In Proceedings of the IEEE international conference on
computer vision, pp. 19–27, 2015.

13

https://meta.wikimedia.org/wiki/Data_dump_torrents#English_Wikipedia
https://meta.wikimedia.org/wiki/Data_dump_torrents#English_Wikipedia

8 Supplementary Material

In this section, we start by discussing an experiment on training the ResNet-50 [9] model on
ImageNet [7] dataset and compare MKOR against state-of-the-art second-order and first-order
baselines. Then, for completeness, we report the GLUE results achieved on each task in 8.2. Next,
we discuss the derivation of KFAC and SNGD approximation methods in 8.3. We then discuss some
of the features of MKOR an other optimizers and back them up with quantitative data in 8.4 and 8.5.
We will provide scalability results of MKOR in 8.6 and provide more data to back up the low-rank
features of the covariance matrices in 8.7. In 8.9 and 8.10, and 8.11 we discuss the training setup
used in our experiments and a link to the MKOR repository . In 8.12 we analyze MKOR and other
optimizers on the training tasks as non-convex optimizers, only concerning their performance on
training tasks. We conclude this section by proofs of the lemmas used in the paper.

8.1 ResNet-50

We train ResNet-50, a convolutional neural network with more than 25M parameters, on ImageNet, a
text classification task with more than 1.2M samples. The same setup is used in [21], and SGD is
used as the first-order baseline.

The target accuracy in this experiment is 75.9%. MKOR converges to this target accuracy in 57
epochs, while SGD, the first-order baseline, achieves this accuracy in 88 epochs. MKOR achieves
1.49× speedup over SGD. KAISA, the second-order baseline converges in 54 epochs, but due to
its expensive steps, MKOR still converges 1.04× faster than KAISA. We do not compare to HyLo
because HyLo is not able to achieve the target accuracy for ResNet (it reaches 75.6% with tuning as
reported in [17] and our experiments confirm it). As shown, the effect of complexity reduction and
improvement in performance in MKOR is less obvious in ResNet because the model dimension (d) is
smaller compared to LLMs such as BERT. Please see Table 1 for comparison of complexity between
methods.

We could not reproduce the ResNet-50 results of Eva [33] on ImageNet because the hyperparameters
are not reported. We tried to tune Eva on multiple settings and none converged to desired accuracy. It
is important to note Eva is not comparing results with the most efficient implementation of KFAC.
The KFAC version used in Eva is from [16], dated to 2015. A number of followup works, mentioned
in 1, have provided faster implementations of KFAC. We use KAISA [21], the state-of-the-art
implementation of KFAC. Also from discussions with KAISA authors and our own experiments the
optimal inversion frequency for KFAC is 200. Eva uses an inversion frequency of 50 for KFAC,
which makes KFAC slower.

ResNet-50 Test Accuracy

0 20 40 60 80

Epochs

0

20

40

60

80

A
cc

u
ra

cy

8
8

5
7

5
4

ResNet-50

SGD

MKOR

KFAC

0 5000 10000 15000 20000 25000 30000 35000

Time (s)

0

20

40

60

80

A
cc

u
ra

cy

3
2
8
1
5

2
2
0
0
2

2
2
9
7
8

SGD

MKOR

KFAC

(a) (b)

Figure 6: Test accuracy of ResNet-50 on ImageNet for MKOR, KAISA, and SGD on 64 GPUs.

14

Table 4: BERT-Large-Uncased Results on the GLUE classification tasks.

Optimizer Iterati-
ons

MNLI
(acc)

QQP
(F1)

QNLI
(acc)

SST-
2

(acc)
COLA
(mcc)

STS-
B

(corr)
MRPC
(F1)

RTE
(acc)

Avera-
ge

LAMB 1,563 0.841 0.878 0.913 0.919 0.516 0.875 0.812 0.664 0.8023
KAISA 1,563 0.821 0.854 0.900 0.921 0.489 0.878 0.888 0.617 0.796
MKOR 1,500 0.844 0.879 0.916 0.923 0.523 0.892 0.905 0.690 0.8214
MKOR 600 0.833 0.878 0.904 0.921 0.494 0.886 0.893 0.653 0.8078

MKOR-H 600 0.838 0.877 0.911 0.921 0.502 0.886 0.898 0.657 0.811
Eva 1000 0.839 0.877 0.907 0.914 0.499 0.890 0.904 0.650 0.809

Reshape

a. Block Diagonal Approximation

b. Kronecker-Factored Based Approximation

c. SNGD Based Approximatoin

SMW Identity

Figure 7: Approximations in second-order methods.

8.2 GLUE Results

We discussed the speedup achieved using MKOR on the GLUE dataset in Section 4. For completeness,
Table 4 shows the metrics achieved in each of the different GLUE tasks on BERT-Large-Uncased
trained on different optimizers.

8.3 Derivation of NGD Approximations

Natural Gradient Descent (NGD) In NGD, which is a second-order method, we use the inverse of
the Fisher Information Matrix (FIM) as a preconditioner to the gradients as shown in Figure 7-a.
Equation 1 shows the update rule of NGD , where Fm is the FIM block corresponding to block m.
Equation 10 shows the definition of FIM for an arbitrary layer in our model, where xi is the ith

sample in the batch.

Fm =
1

b

b∑
i=1

∇xi
ℓ(W, xi)∇xi

ℓ(W, xi)
T (10)

15

Kronecker Factorization (KFAC). KFAC methods reformulate the FIM block as the Kronecker
product of two matrices as shown in Equation 11 where gm = ∇xmL and am is the vector form of
the activation output of layer m and E is the expectation operator and xm is the input matrix of layer
m. Please note that we have used the mixed-product property of Kronecker multiplication for getting
the right hand value.

Fm = E[(gm ⊗ am−1)(gm ⊗ am−1)T] = E[(gmgmT)⊗ (am−1am−1T)] (11)

Furthermore, we assume that E[(gmgmT)⊗(am−1am−1T)] ≈ E[gmgmT]⊗E[am−1am−1T], which
is a strong assumption, but helps us simplify the computation further. Using the inversion property of
Kronecker multiplication, we can compute the inverse of FIM using Equation 12.

Fm−1wm = E[gmgmT]−1 ⊗ E[am−1am−1T]−1wm (12)

By using the mixed Kronecker matrix-vector product property, we can get the update value in
Equation 2, which is illustrated in Figure 7-b. We refer to Lm and Rm as the left and right factors
respectively. Adding momentum to the left and right factors and denoting the iteration number with a
subscript to the factors, we will get equations 3 and 4.

Sherman-Morrison-Woodbury-Based Natural Gradient Descent (SNGD). In this method, the SMW
identity is used for approximating the inverse of (Fm + µI) ∈ Rd2×d2

, where µ is a damping
factor used in the preconditioning. Equation 13 shows the process of computing the inverse of the
FIM for a single layer in the network, where Am ∈ Rd×b is the batch of activations of layer l and
Gm ∈ Rd×b is the batch of gradients of the loss function with respect to the inputs of that layer and
U = [∇WmL(W, x1), ...,∇WmL(W, xb)]

T ∈ Rd2×b is the concatenation of the gradients of the
loss function with respect to the parameters of that layer and ⊙ shows the Hadamard element-wise
product. In this method, a kernel matrix in Rb×b is inverted, as shown in Figure 7-c.

(Fm + µI)−1 =
1

µ
(I − Um(Am−1TAm−1 ⊙GmTGm + µI)−1UmT) (13)

8.4 Numerical Instability of Second-order Methods

In Section 3.3, we discussed that in second-order methods, multiple matrix inversion or root-finding
algorithms need to be executed, which make the second-order methods prone to numerical instabilities.
Furthermore, we discussed that left and right factors in second-order methods have large condition
numbers, resulting in further issues in inversion. Figure 8 shows the eigenvalues of the right factor
and its condition number for ResNet-50 model on CIFAR-10 dataset on KFAC algorithm. Even
when using damping factors and filtering out extremely small eigenvalues, the condition number of
these matrices is large, motivating for using double precision computations for avoiding numerical
instabilities.

MKOR, on the other hand, doesn’t suffer numerical instabilities when inverting such matrices, and its
computational complexity isn’t dependent on the condition number either.

8.5 Sensitivity to Learning Rate

Learning rate is one of the main hyperparameters in machine learning (ML) that can directly affect
the convergence time of optimization, and ML practitioners have to spend a lot of time tuning this
hyperparameter. More specifically, in first-order methods, a large learning rate can easily lead to
divergence and numerical instability, and in second-order methods large learning rates can lead to
exploding gradient descent as discussed in Section 3.3. Using small learning rates can lead to slow
convergence in both first- and second-order methods, and can even jeopardize the main advantage of
second-order methods, which is their faster convergence rate.

One of the main advantages of our method is its robustness against a wide range of learning rates.
As Table 5 shows, first-order methods are extremely sensitive to learning rate, and the second-
order methods are prone to ripples and divergent for a larger range of learning rates, and lose their
performance for small learning rates. Our method, on the other hand, will converge with a high

16

0 100 200 300

Iteration (x1000)

10−3

10−2

10−1

100

E
ig

en
v
a
lu

e
ResNet-50 - CIFAR-10 - Eigenvalues of Right Factor

Minimum Eigenvalues

Maximum Eigenvalues

0 100 200 300

Iteration (x1000)

100

101

102

103

C
o
n

d
it

io
n

N
u

m
b

er

ResNet-50 - CIFAR-10 - Condition Number of Right Factor

Condition Number

(a) (b)

Figure 8: Maximum and minimum eigenvalues (a) and the condition number (b) of the right factors
in KFAC when training ResNet-50 on CIFAR-10. As illustrated, the minimum eigenvalues of the
factors in KFAC approach zero, meaning that the factors are singular, and hence have large condition
numbers, making numerical inversion of them complex and numerically unstable.

Table 5: Number of epochs necessary for convergence in different optimizers for ResNet-50 on
CIFAR10. MKOR is the least sensitive optimizer to learning rate, converging in almost the same
number of iterations for a wide range of learning rate, while other optimizers either diverge (D) or
converge to a local-minimum (∗ superscript).

Optimizer
Learning Rate

10 1 0.1 0.01

MKOR 94 79 78 76
KAISA 112 100 90 89∗

HyLo D 123∗ 98 150∗

SGD D D 108 145∗

convergence rate for a wide range of learning rates, and by directly modifying the inverse of factors
as discussed in 3.3 can find a proper equilibrium between first- and second-order methods. This table
shows that our method is the least sensitive to the learning rate values and can make the job of ML
practitioners for tuning this hyperparameter extremely easy.

8.6 Scalability

Figure 9 shows the strong scalability of MKOR on BERT-Large-Uncased on up to 64 GPUs.

0 10 20 30 40 50 60

#GPUs

20

30

40

50

60

S
p

ee
d

u
p

BERT Large Uncased Scalability

Num GPUs

MKOR

Figure 9: Scalability of MKOR.

17

0 200 400 600 800 1000 1200

Iteration

0.2

0.4

0.6

0.8

1.0

A
v
er

a
g
e

C
o
v
a
ri

a
n

ce
R

a
n

k
-1

E
rr

o
r ResNet-50 Average Covariance Rank-1 Error

Gradient

Activation

Figure 10: Average covariance rank-1 approximation error for ResNet-50 in different iterations

Table 6: Per-GPU memory usage (in GB) for MKOR, KFAC/KAISA, LAMB, and SGD on BERT-
Large-Uncased pre-trainingResNet-50 training on ImageNet.

Model MKOR KFAC/KAISA LAMB SGD
ResNet-50 3.88 5.83 - 3.01

BERT 23.34 29.97 12.80 -

8.7 Decaying Eigenvalues and Rank-1 Approximations

Figure 10 shows that the eigenvalues of the factors will decay as the model converges, making rank-1
approximations more effective. The reason behind the decay in the eigenvalues is that the weights are
initialized randomly and the neurons work independently in the beginning of the training, but as the
model converges, the neurons become more dependent on each other and thus the activation and input
gradients will become linearly dependent. This is also reflected by some large error values in the
distributions in Figure 5[a, b, c, d]. The factors in MKOR are initialized with identity, starting MKOR
from a first-order method. As a result, MKOR is more robust against noise in the approximations
in the first iterations (the approximation error does not noticeably affect the factors when replacing
Lm−1
t−1

−1
and Rm

t−1
−1 in equations 5 and 6 with identity). But as the model converges, the factors

in MKOR will be mostly shaped by the training samples, making MKOR more reliable on less
erroneous approximations, and the decaying eigenvalues of the factors help MKOR with that.

8.8 Memory Overheads

The memory overheads of MKOR in comparison to other optimizers are reported in Table 6. It can
be observed that all the second-order methods have significant memory overheads to the first-order
methods, but MKOR reduces the overhead of KFAC/KAISA up to 1.5×.

8.9 Hyperparameters

BERT-Large-Uncased. For the BERT-Large-Uncased pre-training, we use the same hyperparameters
used in [18]. The factors in KAISA are updated every 50 iterations, and the factors in MKOR and
MKOR-H are updated every 10 iterations.

ResNet-50. For SGD and KAISA, we use the same hyperparameters used in [21]. The factors in
MKOR are updated every 10 iterations, and the learning rate used there is the same is KAISA. The
learning rate in MKOR decays by a factor of 2 at the end of epochs 25, 35, 40, 45, 50, 55, and 56.

8.10 Experiment Settings

For the BERT-Large-Uncased pre-training and fine-tuning experiments, we have used up to 64 A100
GPUs on the Polaris [3] cluster which has 560 nodes, each with 4 NVIDIA A-100 GPUs with NVLink
interconnects.

18

Table 7: List properties of the models, datasets, and settings used in our experiments.
Model Dataset GPU

Name #Parameters Name Train Test Arch #
BERT-Large-Uncased 335.1M Wikipedia - BookCorpus - - A100 64

ResNet-50 25.5M ImageNet 1.2M 50k V100 64
AlexNet 20.3M CIFAR-100 50K 10K V100 4

BERT-Base-Cased 108.9M SQuAD v1.1 87.6K 10.6K V100 4
BERT-Large-Cased 335.1M IMDB 25K 25K V100 4

The rest of the experiments are conducted on the Mist cluster [6], which has 54 nodes, each with 32
IBM power9 cores with 256GB RAM and 4 NVIDIA V100 GPUs with 32GB memory and NVLink
inter-node connections and InfiBand EDF intra-node connections.

Each of the training experiments are conducted 5 times, and their median timing is reported. The
reported accuracies are the median of the results we have obtained from multiple runs. For the
scalability experiments, we have trained BERT-Large-Uncased for 100 iterations on two separate
jobs for each setting and averaged them. For the time breakdown experiment, we have reported the
median of 5 experiments.

Table 7 summarizes the models, datasets, and GPU architectures used in our training and fine-tuning
experiments. In addition, the results in Figures 3 and 4-a are gathered on a single 4-GPU node of
V100s. The results of Figure 4-b are gathered on 64 A100 GPUs.

8.11 Reproduction

Our code base is publicly available on https://github.com/Mohammad-Mozaffari/
mkor, and the instructions for running each experiment are available there.

8.12 Training Accuracy Experiments

To evaluate MKOR as an optimizer that tries to minimize a specific objective function, we have
considered the case of only minimizing the loss function of models on different tasks and set all the
other optimizer parameters such as weight decay to zero. Since using a non-zero weight decay adds a
quadratic term to the loss function and using different weight decays for different optimizers leads to
optimizing different objective functions using different optimizers which might be considered unfair.

Recent work has shown the advantage of second-order methods over their first-order counterparts
on multiple CNN tasks [17; 21], such as residual networks [9]. In our training accuracy experiment,
we use another CNN benchmark, AlexNet [12] with more than 20M parameters on CIFAR-100 [11]
consisting of 50K training and 10K validation images of 100 classes. Figures 11-a and 12-a show
the convergence properties of different optimizers. MKOR is 1.26×, 1.31×, and 1.58× faster than
HyLo-KIS, SGD, and KAISA respectively. The reason for the low convergence speed of KAISA is
that we needed to use small learning rates for avoiding exploding gradients in it, which has damaged
its convergence rate.

BERT is a large language model with two variants, BERT-Base with more than 108M parameters
and Bert-Large with more than 335M parameters. As shown in Figures 11-c and 12-c, we have
fine-tuned BERT-Large on the IMDB dataset which is a text classification task with 25K training and
25K test samples. MKOR outperforms SGD and HyLo-KIS by a speedup factor of 1.22× and 1.43×
respectively. We have also fine-tuned BERT-Base on SQuAD dataset, which is a question answering
task with 87.6K training and 10.6K test samples. MKOR achieves 1.26× and 1.56× speedup over
SGD and HyLo respectively. We couldn’t find a learning rate with which KAISA would converge on
any of our BERT experiments which are based on the HuggingFace implementation of BERT, and
the reason for lack of convergence of KAISA is exploding gradients.

8.13 Knee-Point Learning Rate Scheduler

While using large learning rates is crucial for utilizing the higher convergence rate of second-order
methods, it is necessary to reduce the convergence rate after some iterations so that the model

19

https://github.com/Mohammad-Mozaffari/mkor
https://github.com/Mohammad-Mozaffari/mkor

0 10000 20000 30000 40000 50000 60000 70000 80000

Time (s)

0

20

40

60

80

100
A

cc
u

ra
cy

7
8
4
7
4

5
1
2
7
5

6
3
9
1
8

BERT Base Cased Question Answering - SQuAD

HyLo

MKOR

SGD

0 10000 20000 30000 40000 50000

Time (s)

0

20

40

60

80

100

A
cc

u
ra

cy

1
5
6
3
9

2
2
3
2
3

1
9
1
5
4

BERT Large Cased Text Classification - IMDB

MKOR

HyLo-KIS

SGD

(a) (b)

0 250 500 750 1000 1250 1500 1750 2000

Time (s)

0

20

40

60

80

100

A
cc

u
ra

cy

2
1
1
9

1
4
0
0

1
5
0
9

1
5
6
2

AlexNet - CIFAR-100

KAISA

MKOR

HyLo-KIS

SGD

(c)

Figure 11: Training time for distributed first- and second-order optimizers SGD, MKOR, KAISA,
and HyLo on BERT-Large-Cased on IMDB (a), BERT-Base-Cased on SQuAD (b), and AlexNet on
CIFAR-100 (c). In all the experiments, MKOR outperforms other optimizers in convergence speed.

converges, and the number of iterations for changing the learning rate is not known in advance. In
practice, machine learning practitioners will manually find the number of iterations by trial and error
or use predefined functions [10; 14] that don’t necessarily work ideally in all optimization problems.
We used knee-point learning rate scheduler in Section 8.12.

To fully utilize the potentials of the optimizers, we have designed a learning rate scheduler that
monitors the rate of improvement in accuracy or decrease in the loss function value, and based on that
decides when to decrease the learning rate. The scheduler detects knee-points in the accuracy/loss
and decreases the learning rate when a knee-point is observed.

By definition, knee-points are defined as the points where the average accuracy/loss rate is less
than β times the increment/decrement in the accuracy/loss since using the current learning-rate. For
averaging the accuracy/loss rate, we use an exponential moving average, and β is a hyperparameter
that we can choose to show how much the scheduler can tolerate lack of improvement to detect the
accuracy/loss.

20

0 5 10 15 20 25 30 35 40

Epochs

0

20

40

60

80

100
A

cc
u

ra
cy

1
1

2
0

2
2

BERT Large Cased Text Classification - IMDB

MKOR

HyLo-KIS

SGD

0 10 20 30 40 50 60

Epochs

0

20

40

60

80

100

A
cc

u
ra

cy

6
0

3
7

5
7

BERT Base Cased Question Answering - SQuAD

HyLo

MKOR

SGD

(a) (b)

0 50 100 150 200 250 300 350 400

Epochs

0

20

40

60

80

100

A
cc

u
ra

cy

3
9
5

2
6
1

2
8
0

2
9
3

AlexNet - CIFAR-100

KAISA

MKOR

HyLo-KIS

SGD

(c)

Figure 12: Training accuracy vs. the number of epochs for distributed first- and second-order
optimizers SGD, MKOR, KAISA, and HyLo on BERT-Large-Cased on IMDB (a), BERT-Base-Cased
on SQuAD (b), and AlexNet on CIFAR-100 (c). In all the experiments, MKOR outperforms other
optimizers in convergence rate.

8.14 Proofs

Lemma 3.1:

Proof. Given a matrix positive definite matrix Jt−1 and a vector j and scalar 0 < γ < 1, we show
that Equation 14 results in a positive-definite matrix.

Jt
−1 = γJt−1

−1 +
(1− γ)

γ2(1 + γ(1− γ)jTJt−1
−1j)

Jt−1
−1jjTJt−1

−1 (14)

Since γ > 0 and Jt−1 is a positive-definite matrix, γJt−1 is also positive-definite.

Also, since Jt−1 is a positive-definite matrix, ∀x ̸= 0 : xTJt−1x > 0.

jTL−1
t−1j > 0

0<γ<1−−−−→ 1 + γ(1− γ)jTJt−1
−1j > 0 (15)

Now we show that Jt−1
−1jjTJt−1

−1 is also positive-definite.

∀x ̸= 0 : xTJt−1
−1jjTJt−1

−1x = (jTJ−1
t−1x)

T (jTJ−1
t−1x) = ∥(jTJ

−1
t−1x)∥2 > 0 (16)

Since both matrices on the right-hand-side of Equation 14 are positive-definite and the sum of two
positive-definite matrices is a positive-definite matrix, the left-hand-side of it will be also positive
definite.

Lemma 3.3:

21

Proof. By defining P = (ζL−1 + (1− ζ)I)⊗ (ζR−1 + (1− ζ)I), Equation 17 will hold.

L̂(w0 −∆w)− L(w0) = −∇L(w0)
TP∇L(w0) (17)

Now, we will show that P is a positive-semi-definite matrix. By using the associativity property of
Kronecker multiplication, we can represent P as in Equation 18. Please note that different identity
matrices in 18 have different shapes.

P = ζ2L−1 ⊗R−1 + ζ(1− ζ)L−1 ⊗ I + ζ(1− ζ)I ⊗R−1 + I (18)

Since matrices L and R are positive-semi-definite, the Kronecker products L−1 ⊗ R−1, L−1 ⊗ I ,
and I ⊗R−1 are also positive-semi-definite. As a result, for any non-zero vector x, xTPx > 0. So,
based on Equation 17, −∇L(w0)

TP∇L(w0). As a result, Equation 19 holds.

L̂(w0 −∆w) < L(w0) (19)

Lemma 3.2

Proof. Considering the quantization of matrix J and vector j in Equation 20 and assuming the
maximum quantization error is ϵ and the maximum values in vector j and matrix J is m, we can
consider one of the three possible cases:

1. Vector-Vector Dot Product: The resulting error is O(2ϵm2d) because the error of each
multiplication can at most be 2mϵ+ ϵ2 and by adding the d multiplications, the maximum
error can be (2m+ 1)dϵ.

2. Vector-Matrix Product: The resulting error is O(2ϵm2d) because a vector-matrix product
can be considered as multiple independent vector-vector dot products.

3. Vector-Vector Outer Product: The resulting error is O(2ϵm) because each element in the
resulting matrix is computed using a multiplication with the maximum error of 2ϵm2 + ϵ2.

γJ +
(1− γ)

γ2(1 + γ(1− γ)jTJj)
JjjTJT (20)

The error imposed by quantizing γJ is at most γϵ. The quantization error in the denominator of the
fraction in 20 is negligible in comparison to 1 and won’t change the growth order of the final error
term. The quantization error of Jj is O(2m2dϵ) as discussed earlier in the case of vector-matrix
product. JjjTJT = (Jj)(Jj)T is a vector-vector outer product, resulting in O(4m3d2) error.

So the final error quantization error is O((γ + 4 (1−γ)
γ2 m3d2)ϵ)

22

	Introduction
	Background
	MKOR: Momentum-Enabled Kronecker-Factorization-Based Optimizer with Rank-1 Updates
	The MKOR Algorithm
	Hybrid MKOR
	MKOR Convergence and Stability

	Experimental Results
	Conclusion
	Broader Impact
	Acknowledgments
	Supplementary Material
	ResNet-50
	GLUE Results
	Derivation of NGD Approximations
	Numerical Instability of Second-order Methods
	Sensitivity to Learning Rate
	Scalability
	Decaying Eigenvalues and Rank-1 Approximations
	Memory Overheads
	Hyperparameters
	Experiment Settings
	Reproduction
	Training Accuracy Experiments
	Knee-Point Learning Rate Scheduler
	Proofs

