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Abstract

Theory of Mind (ToM) is a critical component
of intelligence but its assessment remains the
subject of heated debates. Prior research ap-
plied human ToM assessments to natural lan-
guage processing models using either human-
created standardized tests or rule-based tem-
plates. However, these methods primarily fo-
cus on simplistic reasoning and require further
validation. Here, we leverage dynamic epis-
temic logic to isolate a particular component of
ToM and to generate controlled problems. We
also introduce new verbalization techniques to
express these problems in English natural lan-
guage. Our findings indicate that some lan-
guage model scaling (from 70M to 6B and
350M to 174B) does not consistently yield re-
sults better than random chance. While GPT-4
demonstrates superior epistemic reasoning ca-
pabilities, there is still room for improvement.
Our code and datasets are publicly available1

1 Introduction

Theory of Mind (ToM) is the cognitive ability to at-
tribute mental states, such as beliefs, desires, and in-
tentions, to oneself and others, allowing individuals
to understand and predict behavior based on these
inferred mental states. It is an important require-
ment for general text understanding or artificial in-
telligence (Navarro et al., 2020), but claims about
ToM are prone to bias from human expectations
(de Waal, 2016). Kosinski (2023) recently sparked
debate by showing that scaling large language mod-
els (LLMs) improves performance at standardized
tests designed to measure ToM. However, these
tests were widely discussed in academic research
and might have leaked into the training corpora
of LLM. Earlier work generated synthetic exam-
ples instead, extending the bAbi (Weston et al.,
2016) framework. Nematzadeh et al. (2018) pro-
posed a dataset of fixed templates based on the

1[code:GitHub][data:HF-datasets]

Sally-Anne problem (Baron-Cohen et al., 1985):
Sally puts a marble in a box while Anne is with
her. Sally leaves for a moment and Mary puts
the marble in a basket. Where will Sally look
for the marble? [ANSWER=BOX]
Le et al. (2019) deem these problems simplistic

and extend them to track second-order beliefs (e.g.
the belief of Sally about Anne’s beliefs).

In our study, we generate dynamic epistemic
logic (DEL) problems and develop verbalizations
to transform them into natural language infer-
ence problems. DEL is a branch of modal logic
that can model an individual’s knowledge about
particular facts or about other agents’ knowl-
edge. DEL also enables reasoning about the
impact of consecutive public announcements:

Alice and Bob have mud on their head. Their
father says that at least one of them is muddy.
He asks Alice and Bob if they are muddy. Do
Alice and Bob know that they are muddy? [AN-
SWER=NO] They answer that they don’t know.
Do Alice and Bob now know that they are
muddy? [ANSWER=YES]
Bob would have answered YES to the first ques-

tion if Alice was not muddy, so after Bob’s first
answer, Alice can know that she is muddy.2 DEL
can formalize certain ToM problems, making it
a valuable perspective for ToM assessment. The
problems we create can require tracking multiple
agents’ beliefs and reasoning about higher-order
beliefs3. Our dataset encompasses numerous vari-
ations of the Muddy Children and Drinking Logi-
cians problems (van Eijck, 2014). This controlled
test bench offers new appreciations of language
model scaling and presents the first dataset with a
complexity that can challenge supervised learning
models. The dataset and the scripts to generate is
publicly available1.

2The same holds if we switch Bob and Alice.
3For example, Anne’s belief about Sally’s belief about

Anne’s belief about Mary’s belief.

https://github.com/sileod/llm-theory-of-mind
https://huggingface.co/datasets/sileod/mindgames


2 Related Work

Logical Reasoning in Natural Language Process-
ing Logic shares profound connections with NLP.
Early systems were built around logic, and more
recent approaches incorporate logical reasoning
into neural networks (Hamilton et al., 2022; Helwe
et al., 2022). Another line of research closer to ours
investigates the logical capabilities of NLP models
using textual datasets and labels generated with log-
ical reasoning tools. RuleTaker (Clark et al., 2020)
explores this area with propositional logic, while
LogicNLI addresses first-order logic (Tian et al.,
2021). Richardson and Sabharwal (2022) examine
the satisfiability problem in natural language. Sileo
and Moens (2022) targets probabilistic logic. Our
study is the first to focus on modal logic, specifi-
cally epistemic logic, in natural language.

Theory of Mind in NLP To measure ToM capa-
bilities of NLP models, Nematzadeh et al. (2018)
created examples using Sally-Ann templates, and
Le et al. (2019) added complexity to the data by
incorporating second-order knowledge. Both stud-
ies framed their examples as question-answering
tasks. Kosinski (2023) employed handcrafted tests
to evaluate language models’ next-word prediction
capabilities. Ullman (2023) showed LLM brittle-
ness to interventions on these datasets and Ma et al.
(2023) consolidated the prior datasets into a prin-
cipled evaluation suite. The Social-IQA dataset
(Sap et al., 2019) covers a broad spectrum of social
commonsense, encompassing aspects of theory of
mind and challenges like comprehending desires
and emotions. Cohen (2021) investigated whether
natural language inference models captured veridi-
cality with epistemic verbs like know and think,
using handcrafted patterns. This task was incorpo-
rated into the BIG-Bench framework (Srivastava
et al., 2022) as the epistemic-reasoning task, but
it targets only one shallow aspect of epistemic rea-
soning. Bara et al. (2021) used a Minecraft dataset
for real-time belief deduction in collaborative tasks.
Shapira et al. (2023b) highlighted LLM struggles
in faux pas tests. Shapira et al. (2023a) conducted
stress tests on LLMs’ social reasoning capabilities.

Epistemic Logic and ToM Bolander (2018)
showed that the Sally-Ann problem could be mod-
eled with epistemic logic. Van Ditmarsch and
Labuschagne (2007) examined more general con-
nections between DEL and ToM, while Dissing and
Bolander (2020) demonstrated DEL’s applicability

in robotics. Van De Pol et al. (2018) explored the
plausibility of epistemic logic for ToM by investi-
gating its theoretical computational tractability.

3 Dynamic Epistemic Logic Problem
Generation and Verbalization

3.1 Problem definition

Our objective is to simultaneously create dynamic
epistemic logic problems and their corresponding
natural language representations, with a (PREMISE,
HYPOTHESIS, LABEL) format.

An epistemic logic problem can be decomposed
into the following components:

Agents: A set of N individuals, each assigned a
different arbitrary name.

Predicates: A set of Boolean predicates. Here,
we use N predicates, one corresponding to each
agent (e.g., Alice has mud on her head).

Observabilities: The description of each agent’s
initial knowledge of the predicate values. We repre-
sent observabilities with a boolean matrix O of size
N×N , where Oi,j=1 means that agent i initially
knows whether predicate j is true.

Announcements: A list of expressions (predi-
cates or agent knowledge about predicates) that are
shared to all agents. Announcements are made se-
quentially, and each new announcement can change
what the agents know, even if it is the same an-
nouncement is repeated twice.

Hypothesis: An expression that may contain
predicates and knowledge of agents about partic-
ular expressions after the announcements, given
the agents, observabilities, and announcements
grouped into a premise.

3.2 Setups: connecting predicate and
observabilities

The concrete choice of predicates dictates the struc-
ture of observabilities. For example, the predi-
cate "Alice has mud on her head" is observable by
agents other than Alice, but "Alice has mud on her
hand" could be observable by everyone. We group
predicates and observabilities into what we call se-
tups to generate textual descriptions. We define the
following setups:

Forehead-mud setup
PREDICATEi: <AGENTi>’s forehead is muddy.
O : ONES(N)− IDENTITY(N)
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Figure 1: Accuracy of Pythia language models on MindGames setups.
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Figure 2: Accuracy of GPT-3 family (ada, cabbage, curie, davinci) language models on MindGames setups.

Forehead-mud-mirror setup
PREDICATEi: <AGENTi>’s forehead is muddy.
O : ONES(N)
OBSERVATION: There is a mirror in the room.
Thirst setup
PREDICATEi: <AGENTi>’s is thirsty.
O : IDENTITY(N)

Explicit setup
PREDICATEi: <AGENTi> picked a red card.
O : RANDBOOL(N,N),E(sum(O))=N
OBSERVATION: Each person draws a card,
face unrevealed (red or black). < <AGENTj>
card is revealed to <AGENTi>. for all i, j
where Oi,j=1>

3.3 Problem verbalization

We then construct a problem for a given setup with
the following natural language template:

[Premise] There are <N> persons. Everyone is
visible to others. <OBSERVATION> It is publicly
announced that someone <PREDICATE> <[0−N ]
ANNOUNCEMENTS>

[Hypothesis] <[1−K]th ORDER BELIEF>

[0 − N ] denotes uniform sampling from 0 to
N . We restrict announcements to first-order be-
liefs. A first-order belief has the following struc-
ture: <AGENT> (can know whether | can know
that | cannot know that | cannot know whether)

(<PREDICATE>|<NEGATED-PREDICATE>), e.g.
Alice cannot know whether Bob is not muddy. We
use can to acknowledge that an agent could theo-
retically infer something but fail to see it. A Kth

order belief is a first-order belief about a (K−1)th

order belief. We consider everyone, not everyone,
and nobody as possible subjects for the setup predi-
cates. Subjects are uniformly sampled among these
quantifiers and the list of individual agents. We
transform abstract problem representations into nat-
ural language and code that can be fed to a model
checker to determine whether a hypothesis is en-
tailed by the premise. We use the SMCDEL model
checker (Benthem et al., 2018), an announcement
logic based on the S5 (Lewis et al., 1959) modal
logic. This implementation is the most cited pub-
licly available epistemic logic as of April 2023.
We discard examples where the premise contains
a contradiction4. To generate diverse and gender-
balanced random English surnames, we use Cen-
susName5 (Qian et al., 2022).

4 Experiments

4.1 Problem generation parameters

We randomly sample N∈{2, 3, 4} agents, as we
observed that problems were sufficiently challeng-

4We identify contradictions by examining whether an un-
used predicate is entailed or not by the premise.

5https://pypi.org/project/censusname/

https://pypi.org/project/censusname/


ing with only three agents, and we use K=2 for the
same reason. We use knowledge predicate nega-
tions 80% of the time to encourage richer infer-
ences (as the fact that an agent does not know
something conveys information to others) in an-
nouncements and 50% of the time otherwise.

4.2 Controlling for example difficulty

Shortcuts, like hypothesis only bias (Gururangan
et al., 2018; Zhang et al., 2023), can lead to the
answer without correct reasoning. To control for
shortcuts, we trained a relatively shallow super-
vised model (deberta-small (He et al., 2021), 6
layers, 44M backbone parameters) on a training
set combining all setups (ensuring that there was
no duplicate and no example that was also in the
test set). We used 11.2k training examples for 3
epochs and a learning rate of 3e-5 and 3.73k test
and validation examples. Overall validation accu-
racy was 83%. We also experimented with simpler
lexical baselines like TF-IDF which did not capture
negations well enough. We assumed that examples
correctly predicted by deberta-small with high con-
fidence contained shortcut cues. We used these
deberta-small predictions and confidence as addi-
tional metadata. We found that the evaluated lan-
guage models already failed on easy examples. So
we used a random subset of the validation and test
subsets for our experiments, but our dataset can be
filtered by difficulty using the provided confidence
level and the discrepancy between deberta-small
prediction and ground truth.

We limit the number of agents to 3 and dedu-
plicate then undersample the problems to generate
400 test cases with a perfect balance of True/False
labels per setup. We refer to the resulting dataset
as MindGames.

4.3 Scaling experiments

We conduct zero-shot experiments and few-shots
with a range of language models. We use standard
prompting to follow Kosinski (2023) setup. We
use the lm-eval-harness software (Gao et al.,
2021) to measure whether a language model per-
plexity favors the correct reasoning in a multiple-
choice setting, with a natural language inference
prompt from Brown et al. (2020): <PREMISE>
Question: <HYPOTHESIS> True or False ?" with
two possible continuation choices, True and False.
We evaluate two families of language models:

Human evaluation We present 50 test samples
per setup to two NLP researchers only instructed
to perform entailment detection. Inter-annotator
agreement is 0.89, and average accuracy is 94%6.

Pythia language models We select the Pythia
(Biderman et al., 2023) language models for our
open-source scaling experiments. We use the
checkpoints trained on the deduplicated corpus
(deduped) with checkpoint sizes of 70M, 160M,
410M, 1B, 1.4B, 2.8B, and 6.9B.

OpenAI API We evaluate the OpenAI GPT-3
(Brown et al., 2020) models, specifically the ada,
babbage, curie, and davinci checkpoints, through
the public API. We assume that their model sizes
are respectively 350M, 1.3B, 6.7B, and 174B and
we use the default temperature.

Figure 1 displays the results for various Pythia
model sizes. We observe that scaling improves 5-
shot7 reasoning, but it has no impact on zero-shot
reasoning. In contrast to the emergence results
reported by Kosinski (2023), Figure 2 does not
show a clear scaling trend for GPT-3 models on
MindGames data, which suggests that the emer-
gent behavior they observed was not due to robust
epistemic logic capabilities.

4.4 Qualitative analysis with ChatGPT
We also run brief qualitative analyses with GPT-
3.5 and GPT-4 (OpenAI, 2023), as of May 2023.
On 20 randomly sampled problems, we found that
GPT3 was 60% correct and GPT-4 70% correct.
We present a brief qualitative analysis of the re-
spective models.

As shown in Appendix A, GPT3.5 tends to an-
swer that there is not enough information and to
perform correct inferences only when it requires
very shallow reasoning. GPT-4 can solve this par-
ticular example. However, some problems are still
challenging, as shown in Figure 3. GPT-4 rarely
answers that there is not enough information and
its reasoning looks has the surface form of epis-
temic reasoning, but occasionally contains glaring
mistakes.

5 Conclusion

We developed a novel dataset aimed at evaluating
epistemic logic reasoning, addressing a particular

6Most errors arose from failing to distinguish between
know whether and know that.

7Increasing number of examples did not improve valida-
tion accuracy.



User:
[Premise] There are two persons. Everyone is

visible to others. There is a mirror in the room. It
is publicly announced that someone’s forehead is

muddy. It is publicly announced that not everyone’s
forehead is muddy. It is publicly announced that
not everyone’s forehead is muddy. [Hypothesis]
Robert can now know whether or not everyone’s

forehead is muddy. Is the hypothesis true or false ?

GPT-4:
False. Based on the information provided, Robert
cannot know for certain whether or not everyone’s
forehead is muddy. The statements provided are:

There are two persons. Everyone is visible to
others. There is a mirror in the room. It is publicly

announced that someone’s forehead is muddy. It
is publicly announced that not everyone’s forehead

is muddy. Since it is publicly announced that
not everyone’s forehead is muddy, Robert can

deduce that at least one person does not have a
muddy forehead. However, this information alone

does not allow Robert to definitively determine
whether or not his own forehead is muddy.

Figure 3: GPT4 conversation

aspect of ToM. Our results reveal that this task con-
tinues to pose challenges for contemporary large-
scale language models. When future models can
solve MindGames for 2-3 agents, the difficulty can
be easily scaled up with more agents. Future stud-
ies could better explore human performance on our
dataset, taking into account factors such as age and
educational background. Additionally, further in-
vestigation can examine the impact of fine-tuning
on other downstream tasks and assess how well
Transformer circuits model Kripke structures that
represent modal logic problems.

6 Limitations

Theory of mind is a complex subject, and our study
takes a deliberately specific angle, leaving multiple
open problems:

Language Our work is centered on English, the
method could be adapted to other languages us-
ing a subject-verb-object structure. Besides, we
restricted our study to templates that do not cover
the full variety of the English language.

Prompt structure and models scaling We fo-
cused on zero-shot and few-shot prompting, which
were sufficient to (Kosinski, 2023), however,

Moghaddam and Honey (2023) recently showed
that more advanced prompting schemes made sig-
nificant differences. In addition, we did not explore
the full range of Pythia models due to computa-
tional limitations.

Task complexity, annotators variation The task
we proposed is relatively complex, and raises ques-
tions about the profiles of annotators that would
match the results of a symbolic reasoner. The
framework of DEL itself can also provide insights
on theory of mind, as a DEL solver perfectly solves
this task, even though we could feel uncomfortable
attributing ToM to the solver. We might argue that
failing on simple DEL examples disproves ToM,
but proving failure is difficult, as mentioned in the
previous paragraph.

7 Ethical considerations

This work involves human annotations. However,
we used procedurally generated data, ensuring no
confidential or harmful content. Besides, annota-
tions were carried out during the researchers’ work-
ing hours. For these reasons, our Institutional Re-
view Board has determined that it was exempted
from formal review according to internal guide-
lines.
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A Qualitative example with GPT3.5

User:
[Premise] There are three persons. Everyone is visible to others. It is publicly an-

nounced that someone’s forehead is muddy. It is publicly announced that Her-
bert knows whether someone’s forehead is muddy. [Hypothesis] Herbert can
now know that Herbert’s forehead is muddy. Is the hypothesis true or false ?

GPT-3.5:
It is not possible to determine the truth value of the hypothesis based on the given premise.
While it is publicly announced that someone’s forehead is muddy, it is not clear who the
muddy forehead belongs to. Therefore, it is not possible to determine whether Herbert’s
forehead is muddy or not based on this information alone. However, it is stated that Her-
bert knows whether someone’s forehead is muddy, so Herbert may know whether their

own forehead is muddy or not based on additional information not provided in the premise.

Figure 4: GPT-3.5 conversation


