
Towards Interpretability Without Sacrifice: Faithful
Dense Layer Decomposition with Mixture of Decoders

James Oldfieldm,q∗ Shawn Imm Sharon Lim Mihalis A. Nicolaouc,i

Ioannis Patrasq Grigorios G Chrysosm
m University of Wisconsin–Madison q Queen Mary University of London c University of Cyprus

i The Cyprus Institute

Abstract

Multilayer perceptrons (MLPs) are an integral part of large language models, yet
their dense representations render them difficult to understand, edit, and steer.
Recent methods learn interpretable approximations via neuron-level sparsity, yet
fail to faithfully reconstruct the original mapping–significantly increasing model’s
next-token cross-entropy loss. In this paper, we advocate for moving to layer-level
sparsity to overcome the accuracy trade-off in sparse layer approximation. Under
this paradigm, we introduce Mixture of Decoders (MxDs). MxDs generalize MLPs
and Gated Linear Units, expanding pre-trained dense layers into tens of thousands
of specialized sublayers. Through a flexible form of tensor factorization, each
sparsely activating MxD sublayer implements a linear transformation with full-
rank weights–preserving the original decoders’ expressive capacity even under
heavy sparsity. Experimentally, we show that MxDs significantly outperform
state-of-the-art methods (e.g., Transcoders) on the sparsity-accuracy frontier in
language models with up to 3B parameters. Further evaluations on sparse probing
and feature steering demonstrate that MxDs learn similarly specialized features of
natural language–opening up a promising new avenue for designing interpretable
yet faithful decompositions. Our code is included at: https://github.com/
james-oldfield/MxD/.

1 Introduction

One strategy for addressing concerns about large language models’ (LLMs) [1, 2, 3] behavior is via a
bottom-up approach to understanding and controlling the network internals–developing models of
how and where human-interpretable features are represented in LLMs and how they affect the output
[4, 5, 6]. Such a mechanistic understanding has proved helpful for a number of issues relating to
safety and transparency, from controlling refusal of harmful requests [7] to detecting generation of
unsafe code [6] and latent model knowledge [8].

However, developing models of LLMs’ internals faces challenges due to the dense nature of their
representations [9, 10]. Indeed, many studies have found that individual neurons in MLP layers
encode multiple distinct concepts. Rather than human-interpretable features being neatly aligned with
individual neurons, they are often distributed across many [11, 12]. As a result, it is not straightforward
to cleanly isolate specific concepts of interest in the models’ latent token representations.

Traditionally, imposing constraints on model form has offered a way to instill more predictable
properties or structure. Indeed, there is a rich history of success with constraints in machine learning:
from parts-based representations through non-negativity [13, 14], to structure through low-rankness
or assumptions on geometry [15, 16]. With the particular issues posed by dense representations

∗Corresponding author: jamesalexanderoldfield@gmail.com. Work done whilst at UW-Madison.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/james-oldfield/MxD/
https://github.com/james-oldfield/MxD/

Figure 1: Units of specialization for sparse layer variants: Neuron-level sparsity of existing sparse
MLPs [27, 26] (center) vs layer-level sparsity (right), which the proposed Mixture of Decoders (MxD)
layer enables at scale. For GPT2, the dimensions are: O = 768, H∗ = O · 4, H ≈ N ≈ O · 32.

in LLMs, specialization through sparsity has re-emerged as a dominating strategy for learning
more interpretable representations. With prior work showing that sparser models both aid human
explanation [17] and achieve higher scores on LLM-based auto-interpretability metrics [18, 19],
sparsity is often used as a proxy for interpretability [20, 21]. To this end, many recent works–
such as sparse autoencoders [22, 23, 6]–take inspiration from traditional sparse dictionary learning
methodologies [24, 25], re-writing pre-trained LLMs’ activations as sparse, non-negative linear
combinations of atoms in a learned overcomplete basis. However, as argued in [26], such approaches
do not learn the functional mechanisms of LLMs’ layers, and their inherent post-hoc nature demands
additional parameters and computation on top of the base models.

One alternative approach is to directly replace layers with more interpretable equivalents [28], such as
with wide MLPs with sparsity constraints. Transcoders [27, 29, 30, 26] (TCs) are a recent example of
this, training new MLPs to mimic the functional behavior of MLPs with sparse hidden units, which
have recently been shown to also learn more interpretable features [26]. Thus, instead of relying on
external post-hoc analysis, sparse MLP layers offer a way to distill specialized features directly into
the model’s forward pass itself.

Both of the above methods for learning specialized features fall into the same category of what
one may call ‘neuron-level sparsity’. Dictionary learning methods restrict the number of non-zero
elements used from a learned dictionary, whilst sparse MLPs [27] limit the number of active rows
used from a learned ‘decoder’ matrix. At its core, whilst this constraint is useful for interpretability, it
is too restrictive–often heavily trading off accuracy for sparsity, poorly reconstructing the original
model components [31, 28]. We argue that preserving the base models’ performance is a crucial
component of sparse MLP layer approximations for the following two key reasons:

1. Model faithfulness: sparse layers that poorly approximate the original layers risk missing
critical intricacies of the base models’ behavior or latent features [32]. Conversely, an
accurate reconstruction (yielding similar downstream next-token loss) is some evidence that
the combination of newly learned subcomputations faithfully emulates the base model.

2. Practical adoption: sparse layers that closely preserve base models’ performance are
capable of replacing the existing MLPs, directly integrating specialized computation into
the native forward pass. Otherwise, downstream use of the sparse layers’ features must run
on top of the base models’ computation. This introduces additional inference-time cost to
every forward pass, and restricts any analysis to post-hoc settings.

In this paper, we advocate for moving from neuron-level to layer-level sparsity (as illustrated in
Figure 1) to address this. We propose the Mixture of Decoders (MxD) layer to overcome the
sparsity-accuracy trade-off through scalable, resource-efficient conditional computation. Rather
than individual vectors, MxDs learn interpretable sublayers as atomic units of specialization. This
faithfully mirrors the functional form of dense layer we wish to approximate, and allows MxDs to
readily generalize to modern MLP variants (i.e., the Gated Linear Unit [33]).

At a technical level, MxDs are constructed via a flexible tensor factorization [34] with the Hadamard
product [35]. Through their parameter efficiency, MxDs scale the number of specialized layers far
beyond what is feasible with classic sparse mixture of experts (MoEs) [36], and recover prior adapter-
based MoEs [37, 38] as a special case. Crucially, we prove that the proposed tensor factorization in
MxDs leads to each ‘expert’ sublayer implementing a linear transformation with full-rank weights–
allowing faithful reconstruction even under heavy sparsity. Empirically, we demonstrate that MxDs
significantly outperform alternative sparse MLP layers such as Transcoders [27] and Skip Transcoders

2

[26] on the sparsity-accuracy frontier. In addition to their faithfulness, MxDs remain competitive
with the SOTA on interpretability metrics. Our contributions can be summarized as follows:

• We propose Mixture of Decoders, an instance of a flexible class of parameter-efficient MoE
through Hadamard product-factorized weight tensors.

• We prove that each specialized MxD expert’s weights inherit up to the same rank as the
original MLP’s decoder, providing faithful approximation even in very sparse models.

• Across 108 sparse layers in 4 LLMs (with up to 3B parameters) MxDs (i) pareto-dominate
existing techniques on the sparsity-accuracy frontier yet (ii) remain competitive on 34 sparse
probing and steering tasks, validating the interpretability of the learned experts.

2 Methodology

We first recall the technical details of language models’ MLP layers and existing approaches to sparse
approximations in Section 2.1. We then introduce the proposed MxD in Section 2.2, outlining the
attractive rank properties it inherits in Section 2.3 and factorized implementation in Section 2.4. We
conclude with extensions to modern MLP layers in Section 2.5.

2.1 Preliminaries

Let x ∈ RI be the pre-MLP latent representation of a specific token at a given layer. Omitting bias
terms throughout for brevity, the GPT2-style MLP layer produces the output vector y ∈ RO as:

MLP(x) = D∗⊤z∗ ∈ RO, with z∗ := ϕ
(
E∗⊤x

)
∈ RH∗

, (1)

where E∗ ∈ RI×H∗
, D∗ ∈ RH∗×O are the learnable ‘encoder’ and ‘decoder’ parameters respectively,

and ϕ(.) is an activation function, often a GELU [39]. We use ∗ to denote the weights/dimensions of
the pre-trained base LLM.

Sparse approximations One approach to learning interpretable features in MLPs is to train new,
wider MLPs with sparse hidden units to reconstruct the original layer’s outputs [27, 26, 30, 29],
reminiscent of dictionary learning techniques [25]. In general, sparse MLPs share the model form:

SMLP(x) = D⊤z =

H∑
h=1

zhdh ∈ RO, with z := S
(
E⊤x

)
∈ RH , (2)

where S(.) is a sparsity-inducing function (such as the top-K [23] activation used in this paper). Here,
the dimensionality of sparse MLPs’ learnable weights E ∈ RI×H , D ∈ RH×O are set as H ≫ H∗

such that the hidden layer is significantly larger than that of the original MLP. The original post-MLP
output vectors are approximated as a K-sparse, non-negative linear combination of the rows dn

of a newly learned decoder matrix. Whilst this model form has been shown to learn interpretable,
specialized features zh in language models [27, 26], their poor reconstruction is of questionable
faithfulness and limits their use as a layer replacement in practice.

2.2 Mixture of Decoders

We now detail the proposed Mixture of Decoders (MxD) layer, which overcomes the sparsity-
accuracy trade-off by treating sparsely activating linear layers as the atomic unit of specialization.
We approximate the original MLP with a conditional combination of N linear transformations:

MxD(x) =

N∑
n=1

an(W
⊤
n z) ∈ RO, (3)

where a := S
(
G⊤x

)
∈ RN are sparse ‘expert coefficients’ from learnable gating matrix G ∈ RI×N ,

and z := ϕ
(
E⊤x

)
∈ RH is the dense output from an encoder. Here, W ∈ RN×H×O is a third-order

tensor of parameters collating all N experts’ decoder weights W(n, :, :) = Wn ∈ RH×O. In MxDs,
we use a large N to scale the feature specialization, and set H := H∗ to match the original MLP’s
smaller hidden dimension.

3

With the gate routing each token to just its top-K experts, each Wn ∈ RH×O receives a gradient
signal from only a specific set of semantically similar tokens. This implicit clustering naturally leads
experts to specialize in feature-specific subcomputations, while collectively covering the layer’s full
functionality. MxDs in Equation (3) also directly inherit the MLP layers’ original functional form,
avoiding the need to impose sparsity and non-negativity constraints on the hidden units z ∈ RH .
However, MxD decoders naively require a prohibitive NHO parameters–preventing N from scaling
to tens of thousands of specialized components. To achieve parameter-efficiency whilst retaining
layer capacity for faithful layer approximation, we parameterize MxDs’ third-order weight tensor
W ∈ RN×H×O specifically to yield full-rank expert weights, defined elementwise as:

W(n, h, :) = cn ∗ dh ∈ RO, ∀n∈ {1, . . . , N}, h∈ {1, . . . ,H}, (4)

where ∗ is the Hadamard product [34, 35], and cn, dh ∈ RO are the rows of learnable weights
C ∈ RN×O, D ∈ RH×O. Intuitively, D implements a base transformation modulated by the N
specialized units in C. Additional technical motivation for this parameterization with tensor methods
can be found in Appendix A.3. This brings MxDs’ parameter count down significantly toO · (N+H)
from NHO in Equation (3) with N full decoders. One can then vary N to parameter-match sparse
MLP layers. We next detail how this design (i) retains expressivity in each unit for faithful layer
approximation under sparsity in Section 2.3 and (ii) yields a simple forward pass in Section 2.4.

2.3 MxDs are rank-preserving

In the original LLM, the linear transformation from the hidden units to the output is constrained by
the rank of the original MLP’s decoder matrix D∗ ∈ RH∗×O. Under only mild technical conditions,
every expert’s weight matrix in MxDs inherits the rank of D ∈ RH×O, thus allowing it to match that
of the original MLP’s decoder, despite its parameter-efficiency:
Lemma 1 (Decoder rank preservation). We can materialize linear expert n’s weight matrix as
W(n, :, :) = Wn = D diag (cn) ∈ RH×O. Assuming diag (cn) ∈ RO×O is a diagonal matrix with
no zeros along its diagonal (and thus invertible), we then have

rank(Wn) = rank(D diag(cn)) = rank(D).

The proof is found in Appendix A.1, which first derives the matrix-valued expression for each expert
from Equation (4) and then applies a standard rank equality. At a sparsity level of K, each MxD
output vector is a weighted sum of K-many linear transformations (each with potentially full-rank
weights) of the dense hidden units z. As a result, MxDs retain layer capacity even under high
sparsity. Sparse MLPs’ hidden units have only K non-zero elements in contrast–each output in
Equation (2) is therefore confined to a K-dimensional subspace of RO, potentially limiting the
capacity of sparse MLPs to faithfully approximate the original mapping in the small K regime
desirable for interpretability (mirroring speculations by [26]). Further, whilst alternative soft linear
MoEs achieve scalability through low-rankness [40], Lemma 1 states that no such rank constraints
are present in MxDs. For approximating existing MLP layers where low-rank assumptions may not
hold, MxDs are consequently a more suitable class of conditional layer.

2.4 Factorized forward pass

Figure 2: Mixture of Decoders
extends the base MLP/GLU layers
with a conditional ‘expert’ branch,
modulating the MLP’s outputs.

MxDs compute a linear combination of N linear transfor-
mations of the dense vector. With the proposed Hadamard-
factorized weights, this yields a simple implementation.
Lemma 2 (Hadamard-factorized MoE forward pass). Let z ∈
RH and a ∈ RN denote the MLP hidden units and expert
coefficients respectively. Further, denote the decoder matrices
as C ∈ RN×O, D ∈ RH×O parameterizing W ∈ RN×H×O.
MxD’s forward pass can be re-written as:

MxD(x) =

N∑
n=1

an
(
W⊤

n z
)
=

(
C⊤a

)
∗

(
D⊤z

)
. (5)

The proof is found in Appendix A.2. We include a notebook at https://github.com/
james-oldfield/MxD/blob/main/form-equivalence.ipynb showing the equivalence in Py-
Torch. Further, please see Appendix A.5 for a discussion of how the Hadamard factorization relates

4

https://github.com/james-oldfield/MxD/blob/main/form-equivalence.ipynb
https://github.com/james-oldfield/MxD/blob/main/form-equivalence.ipynb

Table 1: Model formulations of related work: x ∈ RI , y ∈ RO are the pre- and post-MLP
representations respectively, z are the hidden units, and a is the vector of the ‘expert coefficients’ for
MxD. Model-specific encoders/decoders E, D map between the hidden units and output.

MLPs SAEs Transcoders Skip Transcoders MxDs
[3] [22] [27] [26] (Ours)

Model form y = D∗⊤z∗ y ≈ D⊤z y ≈ D⊤z y ≈ D⊤z+ S⊤x y ≈
∑

n an
(
W⊤

n z
)

Sparse component None z = S
(
E⊤y

)
∈ RH z = S

(
E⊤x

)
∈ RH z = S

(
E⊤x

)
∈ RH a = S

(
G⊤x

)
∈ RN

to prior parameter-efficient MoEs with element-wise scaling [37], and Appendix B.6 for perfor-
mance/computational cost comparisons.

2.5 Extending MxDs to GLUs

In contrast to methods imposing neuron-level sparsity [22, 27, 26], MxDs do not make assumptions
about the base layer’s encoder architecture or activation function. As a result, MxDs readily generalize
to alternative architectures such as the Gated Linear Units (GLUs) [33] used in recent LLMs [1, 2].
Recall that GLUs’ hidden units are computed as zGLU = ψ(E⊤

GLUx) ∗
(
E⊤x

)
∈ RH , with additional

GLU parameters EGLU ∈ RI×H and GLU activation function ψ (e.g., Swish [1]). By substituting in
the GLU hidden representations, MxDs straightforwardly extend the GLU model form too:

MxDGLU(x) =

N∑
n=1

an W
⊤
n

(
ψ(E⊤

GLUx) ∗
(
E⊤x

)︸ ︷︷ ︸
GLU hidden units

)
=

(
C⊤a

)
∗ D⊤(ψ(E⊤

GLUx) ∗
(
E⊤x

))
where a := S

(
G⊤x

)
∈ RN are the expert units, and Wn = D diag(cn) ∈ RH×O as before. For

a technical discussion of GLUs and their relationship to MxDs, we refer readers to Appendix A.4–
through the theoretical results developed in this paper, we show that GLU encoders themselves can
be viewed as a mixture of rank-1 linear experts (in contrast to the rank-preserving MxDs).

3 Experiments

The experimental section in the main paper is split into two parts. Section 3.1 first demonstrates
how MxDs perform significantly better on the accuracy-sparsity frontier as sparse MLP layer ap-
proximations on 4 LLMs. We then demonstrate in Section 3.2 that MxD’s features retain the same
levels of specialization through sparse probing and steering evaluations. Thorough ablation studies,
experiments with matrix rank, and comparisons to low rank MoEs are presented in Appendix B.

3.1 Sparse approximations of MLPs in LLMs

In this section, we perform experiments approximating LLMs’ existing feed-forward layers with
sparse MLPs, establishing that MxDs better navigate the sparsity-accuracy frontier, more faithfully
approximating the base models’ MLPs than the SOTA baseline methods.

Implementation details We train on 4 base models: GPT2-124M [3], Pythia-410m,
Pythia-1.4b [41], and Llama-3.2-3B [1] with up to 80k experts/features. We train all sparse
layers on a total of 480M tokens of OpenWebText [42], with learning rate 1e− 4 and a context length
of 128, initializing the output bias as the empirical mean of the training tokens, and D in MxDs
as the zero-matrix (following [26]). We vary N in MxD layers to parameter-match Transcoders in
all experiments, with parameter counts and dimensions shown in Table 2. For Llama3.2-3B, we
use the Swish-GLU variant of MxD and GELU-MLP MxDs for the other three models, matching the
architectures of their base encoders. Through ablation studies in Appendix B.8 we show that MxDs
using the GELU/GLU variants are much more accurate layer approximators than the ReLU variants.
Full experimental details are included in Appendix D. Whilst we do not have the computational
resources to show similarly thorough experiments on even larger models, we expect MxDs to scale
just as well as sparse MLPs to models with tens of billions of parameters or more.

5

Table 2: Sparse layer parameters/dimensions: H denotes the size of the layers’ hidden units and N is
the expert count. MxDs perform almost as many linear transformations as the baselines have features.

GPT2-124M Pythia-410M Pythia-1.4B Llama-3.2-3B

Model Params H N Params H N Params H N Params H N

Transcoders [27] 37.7M 24,576 — 67.1M 32,768 — 268.5M 65,536 — 604M 98,304 —
Skip Transcoders [26] 38.4M 24,576 — 68.2M 32,768 — 272.7M 65,536 — 614M 98,304 —
MxDs 37.7M 3072 21,490 67.1M 4096 28,658 268.4M 8192 57,330 604M 8202 86,015

16 32 64 128 256
3.600

3.605

3.610

3.615

3.620

3.625

3.630

3.635

 M
ea

n
cr

os
s-

en
tro

py
 lo

ss

GPT2-124M
 (Layer 8)
Original LLM
TC (38M params)
STC (38M params)
MxDs (38M params)

16 32 64 128 256

3.325

3.330

3.335

3.340

3.345

Pythia-410M
 (Layer 15)
Original LLM
TC (67M params)
STC (68M params)
MxDs (67M params)

16 32 64 128 256
 Sparsity level K

3.100

3.105

3.110

3.115

3.120

 M
ea

n
cr

os
s-

en
tro

py
 lo

ss

Pythia-1.4B
 (Layer 12)
Original LLM
TC (269M params)
STC (273M params)
MxDs (268M params)

16 32 64 128 256
 Sparsity level K

3.0200

3.0225

3.0250

3.0275

3.0300

3.0325

3.0350

3.0375

3.0400
Llama3.2-3B
 (Layer 12)
Original LLM
TC (604M params)
STC (614M params)
MxDs (604M params)

Figure 3: Model cross-entropy loss preserved when replacing MLPs with Transcoders [27], Skip
Transcoders [26], and MxDs, as a function of the number of active units K (hidden neurons/experts).
We highlight that MxDs have consistently lower loss at all levels of sparsity.

Objective function Given the frozen weights of the MLP, we train sparse layers to minimize the
normalized reconstruction loss between its output and that of the original MLP layer with objectives
of the form L = Ex

[
||MLP(x)−f(x)||22

||MLP(x)||2

]
, where f(.) denotes the various learnable sparse MLP layers.

This follows the protocol of past work [27, 26], where the new sparse layers’ parameters alone are
trained directly on the output of the MLP. To compare with recent work [26], we adopt the TopK
activation function [23] for sparsity-inducing function S(.), removing the need for an additional
sparsity penalty. Please see Appendix A.6 for details on the TopK activation function.

3.1.1 Results: sparsity vs faithfulness

We train an exhaustive set of 60 sparse MLP approximations across 4 diverse LLMs with up to 3B
parameters. We show in Figure 3 the resulting downstream base model cross-entropy loss when using
the trained sparse layers in place of the original MLPs. As can be seen, not only do the proposed

6

MxD layers outperform Transcoders [27] notably, but model performance is similarly preserved at
all sparsity levels in MxD layers. Please also see Figure 9 for results with normalized MSE, where
MxDs’ reconstruction errors are up to an order of magnitude smaller. Full results on additional layers
are included in Appendix B.3 for 48 more trained sparse layers.

The recent ‘Skip Transcoders’ (STCs) [26], introduce an additional IO parameters with a skip
connection S ∈ RI×O mapping the input directly to the output with y ≈ D⊤z+ S⊤x. STC layers
thus have considerably more parameters (e.g., STCs on llama3.2-3B have 10M more parameters
than MxDs). Despite the smaller parameter counts, we find MxDs consistently outperform STCs on
the sparsity-accuracy frontier, attesting to the benefits of MxDs’ model form.

3.1.2 Faithfulness in output space

Next, we perform experiments comparing the faithfulness of sparse layers as their computation
propagates to the model output space. We sample 16 future tokens with the base model and then
measure how similar the same generations are when the target MLP layer is replaced with the sparse
layers. We use 512 text snippets from OpenWebText, and take the first 4 words of each as the initial
prompts, generating 16 future tokens after each prompt. We plot in Figures 4a and 4b the percentage
of the samples’ continuations that are identical in the original LLM and hooked LLMs up to n future
tokens ahead. We note that this is a rather punishing task–any small deviations quickly compound as
n grows. Despite this, we see that the MxDs match the future token generations far better than the
baselines, exhibiting more faithfulness in model output space (as well as in latent space).

Please see qualitative examples of the first 8 prompts and the subsequent ‘diffs’ (using Python 3’s
difflib) of the generated tokens in the Appendix in Figures 7 and 8.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
n-gram length

M
xD

ST
C

TC
SA

E

1 0.99 0.94 0.88 0.84 0.8 0.76 0.71 0.68 0.65 0.62 0.6 0.58 0.55 0.53 0.51

1 0.99 0.86 0.75 0.65 0.59 0.52 0.48 0.42 0.39 0.35 0.34 0.31 0.28 0.24 0.22

1 0.99 0.83 0.7 0.61 0.57 0.49 0.45 0.39 0.33 0.31 0.28 0.25 0.22 0.2 0.18

1 0.95 0.56 0.31 0.18 0.11 0.057 0.031 0.02 0.016 0.012 0.0059 0.0039 0.002 0 0
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

(a) Pythia-410m.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
n-gram length

M
xD

ST
C

TC
SA

E

1 1 0.94 0.88 0.85 0.81 0.78 0.73 0.7 0.66 0.62 0.58 0.54 0.51 0.5 0.46

1 0.98 0.85 0.73 0.65 0.57 0.49 0.43 0.37 0.32 0.27 0.22 0.19 0.17 0.15 0.13

1 0.99 0.83 0.7 0.6 0.52 0.46 0.38 0.33 0.29 0.23 0.2 0.17 0.13 0.12 0.088

1 0.96 0.73 0.53 0.37 0.28 0.21 0.16 0.12 0.082 0.057 0.043 0.035 0.023 0.014 0.0098
0.0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
1.0

(b) GPT2-124m.

Figure 4: Proportion of 512 generated samples that contain n predicted future words identical to the
original model’s output when replacing the base LLM’s MLP layer with the sparse layers.

3.2 Feature evaluations

The accurate reconstruction of MxD models in Section 3.1 provides some evidence that MxDs are
faithfully emulating the original MLP layers’ functional mapping. However, for interpretability,
we care equally about the extent to which the learned features correspond to specialized, human-
interpretable concepts. We confirm that MxD’s features compete with the baselines quantitatively in

7

World Sports Business Tech
News type

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 F
1

sc
or

e

ag_news

gpt2
MxD
TC
Skip-TC
TopK-SAE

World Sports Business Tech
News type

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 F
1

sc
or

e

ag_news

pythia-410m
MxD
TC
Skip-TC
TopK-SAE

Figure 5: Highest F1 score probing for ‘news category’ [48] on individual features/experts. As
expected, the MxDs remain competitive with the Transcoder baselines, outperforming TopK-SAEs.

two ways: through probing for known concepts in Section 3.2.1 and by steering the model using the
learned features Section 3.2.2. For all experiments in this section, we use the K = 32 models.

Shared experts and specialization Interestingly, we find MxDs naturally learn a ‘shared’ expert
performing a common base transformation–the remaining K − 1 active experts are thus free to
dedicate their capacity to modelling features unique to individual tokens. This emergent shared/private
processing complements recent trends to use shared experts by design in MoEs [43, 44, 45, 46, 47]
with [43] arguing this facilitates greater specialization. Furthermore, one may view the skip connection
in STCs [26] as performing an analogous role to the shared expert. With MxDs, however, all units
have the same high capacity to accurately learn separate subcomputation regardless of the frequency
or rarity of features.

We also observe that our trained MxDs exhibit very few ‘dead’ experts, as shown in Appendix C.1,
with many experts contributing actively. Furthermore, initial ablations in Appendix C.2 show that one
can train MxDs without shared experts if desired, at small performance cost. Please see qualitative
results of activated tokens for particular experts in Appendix E.

3.2.1 Sparse probing with individual features/experts

One challenge is that the sparse layers learn features in an unsupervised manner. As pointed out in
[23], we therefore do not know which high-level features we ought to expect the model to learn (or
even whether they exist in the OpenWebText training data). Nonetheless, we can reasonably expect a
useful unsupervised model to learn at least a handful of commonly occurring concepts and linguistic
themes. We accordingly focus our evaluation on the relative abilities of the sparse models to learn
features well-predicting a variety of binary features used in the literature.

Concretely, to quantify the extent to which sparse layer features reliably fire in response to common
high-level, interpretable concepts of natural language, we adopt the experimental settings of [49,
23, 19], training binary probes on the individual units of specialization (sparse hidden units zn for
TCs/SAEs and expert units an for MxDs–all pre-activation). For probing of sample-level concepts,
we mean-pool activations across all non-padding tokens [19]. We train separate probes on 100
features with the largest mean difference between positive and negative activations, as per [49].

We perform experiments on all 24 binary probing tasks in the SAEBench suite [19]. Four of which
are shown in Figure 5, plotting the best F1 score (on a held-out set) for news topic classification in a
1-vs-all setting [48]. As can be seen, there exist individual MxD expert units that are predictive of
various categories of news articles, competitive with the baselines. We refer readers to Appendix B.7
for additional experiments on 20 more sample-level probing tasks, 10 token-level probing tasks, and
experimental details.

3.2.2 Feature steering

Specific features might reliably fire in response to interpretable patterns of the input, yet not contribute
to the generation process. Here, we aim to test this functional role of features by steering the LLMs.
We note that these experiments do not aim to establish TCs/MxDs as competitive with the SOTA
for controllable LLM generation. Rather, we aim to validate that the learned features contribute
mechanistically to the LLM’s forward pass in a predictable way.

8

Figure 6: Mean score along dimensions of ‘textual coherence’ and ‘steerability’ of text generated by
steering with the first 100 features of the sparse layers. Each sample is scored by 2 LLM judges.

Mechanisms for steering Let λ ∈ R be a hyperparameter controlling the desired ‘strength’ of
the model edit. For TCs, we hook the forward pass at the relevant layer to increase the presence of
target feature n with ŷ = y + λdn. In contrast, MxDs can be steered with ŷ = y + λ · (W⊤

n z).
Intuitively, increasing the weight of an expert’s contribution in the forward pass modulates the token
representation in the direction of the learned specialization.

Results We perform steering with the first 100 neurons/experts individually, using λ := 100 for all
experiments. We generate a collection of 10 synthetic outputs for each neuron, each string consisting
of 32 generated tokens to the prompt “Let’s talk about ”. We then ask two LLMs2 to rate the
collection of text along two dimensions separately: (1) the extent to which a shared concept, theme,
or linguistic pattern is present throughout the generated collection of text, and (2) the grammatical
fluency of the text (please see Appendix D.1 for the full prompt). As can be seen from the mean
scores over the 100 neurons shown in Figure 6, MxDs are competitive with the baselines, exhibiting
a similar trade-off between textual coherence and presence of concept as we expect.

4 Related work

Sparse decompositions Learning sparse [50, 25], non-negative [51] features of a data signal
has found many applications in computer vision [15, 52, 53, 54] and natural language processing
[55, 56, 57], motivated by the pursuit of interpretable, parts-based representations [13, 14]. In
transformer-based language models [3], similar variants have been proposed for post-hoc analysis;
sparse autoencoders (SAEs) are a popular method that rewrites latent features as non-negative
combinations of atoms in a learned overcomplete dictionary, imposing either soft sparsity penalties
[6, 22, 31] or thresholding activations directly [23, 58, 59]. Recent work aims to sparsify the existing
layers of pretrained LLMs, either by learning new MLPs with sparse hidden units [29] (for circuit
analysis [27] or more interpretable yet faithful computation [26, 60]), or by decomposing model
parameters directly using attribution [61] and/or masking [62]. Despite the surge of interest in
SAEs, many works are emerging drawing attention to their limitations–underperforming baselines
for probing [63], unlearning [64], and steering [65], in addition to other pathologies [66, 32, 67, 68].

Conditional computation One natural alternative to static fully connected layers is conditional
computation [69, 70]. Tracing back to the early work of [71, 72], single dense layers are replaced
with specialized subunits–conditional on the input–as a form of layer-level sparsity. The Mixture of
Experts (MoE) architecture [36, 73, 74] is a prominent example of conditional computation, breaking
the link between parameter count and FLOPs. Consequently, MoEs have seen rapid adoption in
SOTA models in recent years–scaling to very large parameter counts [75, 76, 77, 78, 79]. For

2We use gemini-2.0-flash and llama-4-scout-17b-16e-instruct as two independent LLM judges.

9

parameter-efficient instruction tuning [37] introduces conditional (IA)3 adapters [38], modulating
the MLP hidden dimension with the Hadamard product. Our proposed formulation with factorized
weight tensors yields ‘MoVs’ [37] as a less scalable special case (see Appendix A.5). In contrast,
MxDs model the decoder output space directly for reconstruction, and also provide significantly more
specialized units than [37], making MxDs more suitable for our goal of interpretability.

Whilst the primary focus of MoEs has been on their impressive capabilities, the literature has observed
that individual experts often specialize in particular semantic patterns of the input data, despite not
being trained to do so [80, 81, 43, 82, 83]. For example, many works find that data that are in some
sense similar are routed to the same experts–specializing to object shapes [84], texture [85], image
category [86], or semantic patterns in natural language [36]. In the context of large language models,
this emergent property of specialization in MoEs has been a primary focus of recent work: from
encouraging monosemantic experts [87] or sparsity amongst experts’ weights [88] to efficiently
scaling the expert count for fine-grained specialization [40]. In contrast to these works exploring
pre-training, we explore an efficient design of MoE to replace existing LLMs’ dense layers.

Interpretability by design Whilst MxDs follow the paradigm of specialization-via-sparsity, a
number of promising interpretable mechanisms have been recently proposed that do not rely on
sparsity constraints. For example, recent work explores bilinear layers [89], combinatorial structure
[90], and/or tensor networks [91] as alternative ways of designing interpretable architectures. Notably,
[89] show how the Hadamard product between two linear transformations of the same input vector
allows direct interpretation (such as analyzing input-output feature interactions). Whilst MxDs yield
a similar Hadamard product forward pass, it involves two different input vectors, and establishes a
theoretical equivalence to mixture of experts and conditional computation when sparsity is present in
one of the operands (i.e., the expert coefficients).

5 Conclusion

In this paper, we showed the benefits of decomposing dense layers’ computations as a mixture
of interpretable sublayers. We proposed the Mixture of Decoders (MxD) layer to achieve this at
scale, proving that MxDs’ linear experts preserve the matrix rank properties of the original decoders.
Experimentally, we showed MxDs significantly outperform on the sparsity-accuracy frontier when
trained to replace dense MLP layers. Quantitative results on sparse probing and feature steering
demonstrated MxDs nonetheless learn specialized latent features similarly to existing interpretability
techniques. Crucially, MxDs reexamine the dominating neuron-level sparsity paradigm of popular
techniques, providing evidence that specialization doesn’t have to come with such a high cost to
model performance. We believe MxDs (and specialization at the layer-level more generally) are an
important step towards sparsity without sacrifice, and hope future work continues to build interpretable
mechanisms that better preserve model capabilities. We are excited about future work exploring
MxDs (and mixtures of linear transformations more generally) in alternative settings, such as for
cross-layer features or transformations [92].

Limitations Our experiments show MxDs outperform on the sparsity-accuracy frontier on 4 diverse
LLMs. Whilst we fully anticipate this trend to scale just as well as with sparse MLPs in even larger
models, our experiments only provide direct evidence for LLMs with up to 3B parameters, given our
limited resources. Furthermore, whilst the TopK activation can greatly reduce the decoders’ FLOPs,
the large encoders in sparse MLPs and the gating function in MxDs remain an additional inference-
time cost. Future work could explore hierarchical structures [87, 36] and/or efficient retrieval [93]
for further reductions in FLOPs. Secondly, MoEs are prone to issues of expert imbalance [73],
or collapse [94]. Through random weight initialization alone, we find MxDs in our experiments
learn diverse experts without collapsing to the base decoder. However, we expect standard MoE
load-balancing [95] or diversity losses [96] to be useful for MxDs should one need more explicit ways
of encouraging expert diversity, or when training new interpretable MxD architectures end-to-end.
With regards to feature evaluations, our steering experiments rely on LLMs as judges. Whilst this is
commonplace in recent popular steering benchmarks [65], there is mixed evidence emerging about
the reliability of all base models [97, 98]. Our experiments attempt to circumvent issues by reporting
scores across two capable SOTA models, but we caution inferring too much into the absolute values
of reported scores (rather than the relative performance between sparse layers).

10

Acknowledgments

James Oldfield is grateful to Demian Till for reviewing the draft and providing valuable feedback and
suggestions, and would also like to thank Markos Georgopoulos, Benjamin Hayum, and Wisconsin
AI Safety Initiative’s Safety Scholars for insightful discussions throughout the project. We are
also grateful to the open-source Zulip platform for facilitating research discussion. Sharon Li is
supported in part by the AFOSR Young Investigator Program under award number FA9550-23-1-0184,
National Science Foundation under awards IIS-2237037 and IIS-2331669, Office of Naval Research
under grant number N00014-23-1-2643, Schmidt Sciences Foundation, Open Philanthropy, Alfred P.
Sloan Fellowship, and gifts from Google and Amazon. Shawn Im is also supported by the National
Science Foundation Graduate Research Fellowship Program under Grant No. 2137424. Any opinions,
findings, and conclusions or recommendations expressed in this material are those of the author(s)
and do not necessarily reflect the views of the National Science Foundation. Support was also
provided by the Graduate School and the Office of the Vice Chancellor for Research at the University
of Wisconsin-Madison with funding from the Wisconsin Alumni Research Foundation. Mihalis
Nicolaou is supported in part by the TensorICE project (EXCELLENCE/0524/0407), implemented
under the social cohesion programme “THALIA 2021-2027”, co-funded by the European Union
through the Research and Innovation Foundation.

References
[1] Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle,

Aiesha Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The Llama 3
herd of models. arXiv preprint arXiv:2407.21783, 2024.

[2] Morgane Riviere, Shreya Pathak, Pier Giuseppe Sessa, Cassidy Hardin, Surya Bhupatiraju,
Léonard Hussenot, Thomas Mesnard, Bobak Shahriari, Alexandre Ramé, et al. Gemma 2:
Improving open language models at a practical size. arXiv preprint arXiv:2408.00118, 2024.

[3] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[4] Zhengxuan Wu, Atticus Geiger, Thomas Icard, Christopher Potts, and Noah Goodman. In-
terpretability at scale: Identifying causal mechanisms in Alpaca. In A. Oh, T. Naumann,
A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, Adv. Neural Inform. Process. Syst.
(NeurIPS), volume 36, pages 78205–78226. Curran Associates, Inc., 2023.

[5] Atticus Geiger, Zhengxuan Wu, Christopher Potts, Thomas Icard, and Noah Goodman. Finding
alignments between interpretable causal variables and distributed neural representations. In
Francesco Locatello and Vanessa Didelez, editors, Proceedings of the Third Conference on
Causal Learning and Reasoning, volume 236 of Proceedings of Machine Learning Research,
pages 160–187. PMLR, 01–03 Apr 2024.

[6] Adly Templeton. Scaling monosemanticity: Extracting interpretable features from Claude 3
Sonnet. Anthropic, 2024.

[7] Andy Arditi, Oscar Obeso, Aaquib Syed, Daniel Paleka, Nina Panickssery, Wes Gurnee, and
Neel Nanda. Refusal in language models is mediated by a single direction. arXiv preprint
arXiv:2406.11717, 2024.

[8] Collin Burns, Haotian Ye, Dan Klein, and Jacob Steinhardt. Discovering latent knowledge in
language models without supervision. In Int. Conf. Learn. Represent. (ICLR), 2023.

[9] David E. Rumelhart and James L. McClelland. A General Framework for Parallel Distributed
Processing, pages 45–76. 1987.

[10] Geoffrey E Hinton. Distributed representations. 1984.
[11] Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan

Carter. Zoom In: An introduction to circuits. Distill, 2020. doi: 10.23915/distill.00024.001.
https://distill.pub/2020/circuits/zoom-in.

[12] Nelson Elhage, Tristan Hume, Catherine Olsson, Nicholas Schiefer, Tom Henighan, Shauna
Kravec, Zac Hatfield-Dodds, Robert Lasenby, Dawn Drain, Carol Chen, Roger Grosse, Sam
McCandlish, Jared Kaplan, Dario Amodei, Martin Wattenberg, and Christopher Olah. Toy
models of superposition, 2022.

11

https://zulip.com/

[13] Daniel D Lee and H Sebastian Seung. Learning the parts of objects by non-negative matrix
factorization. Nature, 401(6755):788–791, 1999.

[14] Bruno A Olshausen and David J Field. Emergence of simple-cell receptive field properties by
learning a sparse code for natural images. Nature, 381(6583):607–609, 1996.

[15] Emmanuel J Candès, Xiaodong Li, Yi Ma, and John Wright. Robust principal component
analysis? Journal of the ACM (JACM), 58(3):1–37, 2011.

[16] Jiankang Deng, Jia Guo, Niannan Xue, and Stefanos Zafeiriou. Arcface: Additive angular
margin loss for deep face recognition. In IEEE Conf. Comput. Vis. Pattern Recog. (CVPR),
pages 4690–4699, 2019.

[17] Vikram V. Ramaswamy, Sunnie S. Y. Kim, Ruth C. Fong, and Olga Russakovsky. Over-
looked factors in concept-based explanations: Dataset choice, concept learnability, and human
capability. IEEE Conf. Comput. Vis. Pattern Recog. (CVPR), pages 10932–10941, 2022.

[18] Caden Juang, Gonçalo Paulo, Jacob Drori, and Nora Belrose. Open source automated inter-
pretability for sparse autoencoder features. https://blog.eleuther.ai/autointerp/,
July 2024. EleutherAI Blog.

[19] Adam Karvonen, Can Rager, Johnny Lin, Curt Tigges, Joseph Bloom, David Chanin, Cal-
lum McDougall, Yeu-Tong Lau, Eoin Farrell, Arthur Conmy, Kola Ayonrinde, Demian Till,
Matthew Wearden, Samuel Marks, and Neel Nanda. SAEBench: A comprehensive benchmark
for sparse autoencoders in language model interpretability. In Int. Conf. Mach. Learn. (ICML),
2025.

[20] Zachary Chase Lipton. The mythos of model interpretability. Communications of the ACM,
61:36 – 43, 2016.

[21] Forough Poursabzi-Sangdeh, Daniel G. Goldstein, Jake M. Hofman, Jennifer Wortman
Vaughan, and Hanna M. Wallach. Manipulating and measuring model interpretability. Pro-
ceedings of the 2021 CHI Conference on Human Factors in Computing Systems, 2018.

[22] Robert Huben, Hoagy Cunningham, Logan Riggs Smith, Aidan Ewart, and Lee Sharkey.
Sparse autoencoders find highly interpretable features in language models. In Int. Conf. Learn.
Represent. (ICLR), 2023.

[23] Leo Gao, Tom Dupre la Tour, Henk Tillman, Gabriel Goh, Rajan Troll, Alec Radford, Ilya
Sutskever, Jan Leike, and Jeffrey Wu. Scaling and evaluating sparse autoencoders. In Int. Conf.
Learn. Represent. (ICLR), 2025.

[24] Bruno A Olshausen and David J Field. Sparse coding with an overcomplete basis set: A
strategy employed by V1? Vision research, 37(23):3311–3325, 1997.

[25] M. Aharon, M. Elad, and A. Bruckstein. K-SVD: An algorithm for designing overcomplete
dictionaries for sparse representation. IEEE Transactions on Signal Processing, 54(11):
4311–4322, 2006. doi: 10.1109/TSP.2006.881199.

[26] Gonçalo Paulo, Stepan Shabalin, and Nora Belrose. Transcoders beat sparse autoencoders for
interpretability. arXiv preprint arXiv:2501.18823, 2025.

[27] Jacob Dunefsky, Philippe Chlenski, and Neel Nanda. Transcoders find interpretable LLM
feature circuits. In Adv. Neural Inform. Process. Syst. (NeurIPS), 2024.

[28] Lee Sharkey, Bilal Chughtai, Joshua Batson, Jack Lindsey, Jeff Wu, Lucius Bushnaq, Nicholas
Goldowsky-Dill, Stefan Heimersheim, Alejandro Ortega, Joseph Bloom, et al. Open problems
in mechanistic interpretability. arXiv preprint arXiv:2501.16496, 2025.

[29] Trenton Bricken, Adly Templeton, Joshua Batson, Brian Chen, Adam Jermyn, Tom Con-
erly, Nick Turner, Cem Anil, Carson Denison, Amanda Askell, Robert Lasenby, Yifan Wu,
Shauna Kravec, Nicholas Schiefer, Tim Maxwell, Nicholas Joseph, Zac Hatfield-Dodds, Alex
Tamkin, Karina Nguyen, Brayden McLean, Josiah E Burke, Tristan Hume, Shan Carter,
Tom Henighan, and Christopher Olah. Towards monosemanticity: Decomposing language
models with dictionary learning. Transformer Circuits Thread, 2023. https://transformer-
circuits.pub/2023/monosemantic-features/index.html.

[30] Samuel Marks, Adam Karvonen, and Aaron Mueller. dictionary_learning. https://github.
com/saprmarks/dictionary_learning, 2024.

12

https://blog.eleuther.ai/autointerp/
https://github.com/saprmarks/dictionary_learning
https://github.com/saprmarks/dictionary_learning

[31] Senthooran Rajamanoharan, Tom Lieberum, Nicolas Sonnerat, Arthur Conmy, Vikrant Varma,
János Kramár, and Neel Nanda. Jumping ahead: Improving reconstruction fidelity with
jumprelu sparse autoencoders. arXiv preprint arXiv:2407.14435, 2024.

[32] Joshua Engels, Logan Riggs, and Max Tegmark. Decomposing the dark matter of sparse
autoencoders. arXiv preprint arXiv:2410.14670, 2024.

[33] Noam Shazeer. GLU variants improve transformer. arXiv preprint arXiv:2002.05202, 2020.
[34] Tamara G Kolda and Brett W Bader. Tensor decompositions and applications. SIAM review,

51(3):455–500, 2009.
[35] Grigorios G Chrysos, Yongtao Wu, Razvan Pascanu, Philip Torr, and Volkan Cevher. Hadamard

product in deep learning: Introduction, advances and challenges. IEEE Transactions on Pattern
Analysis and Machine Intelligence, pages 1–20, 2025. doi: 10.1109/TPAMI.2025.3560423.

[36] Noam Shazeer, *Azalia Mirhoseini, *Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey
Hinton, and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-
experts layer. In Int. Conf. Learn. Represent. (ICLR), 2017.

[37] Ted Zadouri, Ahmet Üstün, Arash Ahmadian, Beyza Ermis, Acyr Locatelli, and Sara Hooker.
Pushing mixture of experts to the limit: Extremely parameter efficient moe for instruction
tuning. In Int. Conf. Learn. Represent. (ICLR), 2024.

[38] Haokun Liu, Derek Tam, Muqeeth Mohammed, Jay Mohta, Tenghao Huang, Mohit Bansal,
and Colin Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context
learning. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors,
Adv. Neural Inform. Process. Syst. (NeurIPS), 2022.

[39] Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (GELUs). arXiv preprint
arXiv:1606.08415, 2016.

[40] James Oldfield, Markos Georgopoulos, Grigorios Chrysos, Christos Tzelepis, Yannis Pana-
gakis, Mihalis Nicolaou, Jiankang Deng, and Ioannis Patras. Multilinear mixture of experts:
Scalable expert specialization through factorization. In Adv. Neural Inform. Process. Syst.
(NeurIPS), 2024.

[41] Stella Biderman, Hailey Schoelkopf, Quentin Gregory Anthony, Herbie Bradley, Kyle O’Brien,
Eric Hallahan, Mohammad Aflah Khan, Shivanshu Purohit, USVSN Sai Prashanth, Edward
Raff, et al. Pythia: A suite for analyzing large language models across training and scaling. In
Int. Conf. Mach. Learn. (ICML), pages 2397–2430. PMLR, 2023.

[42] Aaron Gokaslan, Vanya Cohen, Ellie Pavlick, and Stefanie Tellex. OpenWebText corpus.
http://Skylion007.github.io/OpenWebTextCorpus, 2019.

[43] Damai Dai, Chengqi Deng, Chenggang Zhao, R. X. Xu, Huazuo Gao, Deli Chen, Jiashi
Li, Wangding Zeng, Xingkai Yu, Y. Wu, Zhenda Xie, Y. K. Li, Panpan Huang, Fuli Luo,
Chong Ruan, Zhifang Sui, and Wenfeng Liang. DeepSeekMoE: Towards ultimate expert
specialization in mixture-of-experts language models, 2024.

[44] Meta AI. The Llama 4 herd: The beginning of a new era of natively multimodal AI innova-
tion, 2025. URL https://ai.meta.com/blog/llama-4-multimodal-intelligence/.
Accessed: 2025-04-06.

[45] Qwen Team. Qwen1.5-MoE: Matching 7b model performance with 1/3 activated parameters",
February 2024. URL https://qwenlm.github.io/blog/qwen-moe/.

[46] An Yang, Baosong Yang, Binyuan Hui, Bo Zheng, Bowen Yu, Chang Zhou, Chengpeng Li,
Chengyuan Li, Dayiheng Liu, Fei Huang, Guanting Dong, Haoran Wei, Huan Lin, Jialong
Tang, Jialin Wang, Jian Yang, Jianhong Tu, Jianwei Zhang, Jianxin Ma, Jianxin Yang, Jin Xu,
Jingren Zhou, Jinze Bai, Jinzheng He, Junyang Lin, Kai Dang, Keming Lu, Keqin Chen, Kexin
Yang, Mei Li, Mingfeng Xue, Na Ni, Pei Zhang, Peng Wang, Ru Peng, Rui Men, Ruize Gao,
Runji Lin, Shijie Wang, Shuai Bai, Sinan Tan, Tianhang Zhu, Tianhao Li, Tianyu Liu, Wenbin
Ge, Xiaodong Deng, Xiaohuan Zhou, Xingzhang Ren, Xinyu Zhang, Xipin Wei, Xuancheng
Ren, Xuejing Liu, Yang Fan, Yang Yao, Yichang Zhang, Yu Wan, Yunfei Chu, Yuqiong Liu,
Zeyu Cui, Zhenru Zhang, Zhifang Guo, and Zhihao Fan. Qwen2 technical report, 2024.

[47] An Yang, Bowen Yu, Chengyuan Li, Dayiheng Liu, Fei Huang, Haoyan Huang, Jiandong Jiang,
Jianhong Tu, Jianwei Zhang, Jingren Zhou, Junyang Lin, Kai Dang, Kexin Yang, Le Yu, Mei
Li, Minmin Sun, Qin Zhu, Rui Men, Tao He, Weijia Xu, Wenbiao Yin, Wenyuan Yu, Xiafei

13

http://Skylion007.github.io/OpenWebTextCorpus
https://ai.meta.com/blog/llama-4-multimodal-intelligence/
https://qwenlm.github.io/blog/qwen-moe/

Qiu, Xingzhang Ren, Xinlong Yang, Yong Li, Zhiying Xu, and Zipeng Zhang. Qwen2.5-1m
technical report, 2025.

[48] Antonio Gulli. Ag corpus of news articles. http://groups.di.unipi.it/~gulli/AG_
corpus_of_news_articles.html, 2005.

[49] Wes Gurnee, Neel Nanda, Matthew Pauly, Katherine Harvey, Dmitrii Troitskii, and Dimitris
Bertsimas. Finding neurons in a haystack: Case studies with sparse probing. Transactions on
Machine Learning Research, 2023. ISSN 2835-8856.

[50] Rodolphe Jenatton, Guillaume Obozinski, and Francis Bach. Structured sparse principal
component analysis. In Yee Whye Teh and Mike Titterington, editors, Proceedings of the
Thirteenth International Conference on Artificial Intelligence and Statistics, volume 9 of
Proceedings of Machine Learning Research, pages 366–373, Chia Laguna Resort, Sardinia,
Italy, 13–15 May 2010. PMLR.

[51] Patrik O Hoyer. Non-negative matrix factorization with sparseness constraints. Journal of
machine learning research, 5(Nov):1457–1469, 2004.

[52] Edo Collins, Radhakrishna Achanta, and Sabine Süsstrunk. Deep Feature Factorization
for Concept Discovery, page 352–368. Springer International Publishing, 2018. ISBN
9783030012649. doi: 10.1007/978-3-030-01264-9_21.

[53] James Oldfield, Christos Tzelepis, Yannis Panagakis, Mihalis Nicolaou, and Ioannis Patras.
PandA: Unsupervised learning of parts and appearances in the feature maps of GANs. In Int.
Conf. Learn. Represent. (ICLR), 2023.

[54] Yue Song, Thomas Anderson Keller, Yisong Yue, Pietro Perona, and Max Welling. Un-
supervised representation learning from sparse transformation analysis. arXiv preprint
arXiv:2410.05564, 2024.

[55] Wei Xu, Xin Liu, and Yihong Gong. Document clustering based on non-negative matrix
factorization. In Proceedings of the 26th Annual International ACM SIGIR Conference
on Research and Development in Information Retrieval, SIGIR ’03, page 267–273, New
York, NY, USA, 2003. Association for Computing Machinery. ISBN 1581136463. doi:
10.1145/860435.860485.

[56] Da Kuang, Jaegul Choo, and Haesun Park. Nonnegative matrix factorization for interactive
topic modeling and document clustering. Partitional clustering algorithms, pages 215–243,
2015.

[57] Sanjeev Arora, Yuanzhi Li, Yingyu Liang, Tengyu Ma, and Andrej Risteski. Linear algebraic
structure of word senses, with applications to polysemy. Transactions of the Association for
Computational Linguistics, 6:483–495, 2018. doi: 10.1162/tacl_a_00034.

[58] Alireza Makhzani and Brendan Frey. K-sparse autoencoders. arXiv preprint arXiv:1312.5663,
2013.

[59] Bart Bussmann, Patrick Leask, and Neel Nanda. BatchTopK sparse autoencoders. In NeurIPS
2024 Workshop on Scientific Methods for Understanding Deep Learning, 2024.

[60] Lucy Farnik, Tim Lawson, Conor Houghton, and Laurence Aitchison. Jacobian sparse
autoencoders: Sparsify computations, not just activations, 2025.

[61] Dan Braun, Lucius Bushnaq, Stefan Heimersheim, Jake Mendel, and Lee Sharkey. Inter-
pretability in parameter space: Minimizing mechanistic description length with attribution-
based parameter decomposition. arXiv preprint arXiv:2501.14926, 2025.

[62] Lucius Bushnaq, Dan Braun, and Lee Sharkey. Stochastic parameter decomposition. arXiv
preprint arXiv:2506.20790, 2025.

[63] Subhash Kantamneni, Joshua Engels, Senthooran Rajamanoharan, Max Tegmark, and Neel
Nanda. Are sparse autoencoders useful? A case study in sparse probing, 2025.

[64] Eoin Farrell, Yeu-Tong Lau, and Arthur Conmy. Applying sparse autoencoders to unlearn
knowledge in language models, 2024.

[65] Zhengxuan Wu, Aryaman Arora, Atticus Geiger, Zheng Wang, Jing Huang, Dan Jurafsky,
Christopher D. Manning, and Christopher Potts. AxBench: Steering LLMs? even simple
baselines outperform sparse autoencoders. In Int. Conf. Mach. Learn. (ICML), 2025.

14

http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html
http://groups.di.unipi.it/~gulli/AG_corpus_of_news_articles.html

[66] David Chanin, James Wilken-Smith, Tomáš Dulka, Hardik Bhatnagar, and Joseph Bloom. A
is for absorption: Studying feature splitting and absorption in sparse autoencoders, 2024.

[67] Patrick Leask, Bart Bussmann, Michael Pearce, Joseph Bloom, Curt Tigges, Noura Al
Moubayed, Lee Sharkey, and Neel Nanda. Sparse autoencoders do not find canonical units of
analysis, 2025.

[68] Gonçalo Paulo and Nora Belrose. Sparse autoencoders trained on the same data learn different
features, 2025.

[69] Yizeng Han, Gao Huang, Shiji Song, Le Yang, Honghui Wang, and Yulin Wang. Dynamic
neural networks: A survey. IEEE Trans. Pattern Anal. Mach. Intell. (TPAMI), 44(11):7436–
7456, 2021.

[70] Emmanuel Bengio, Pierre-Luc Bacon, Joelle Pineau, and Doina Precup. Conditional com-
putation in neural networks for faster models. In Int. Conf. Mach. Learn. Worksh. (ICMLW),
2015.

[71] Robert A Jacobs, Michael I Jordan, and Andrew G Barto. Task decomposition through compe-
tition in a modular connectionist architecture: The what and where vision tasks. Cognitive
science, 15(2):219–250, 1991.

[72] Robert A Jacobs, Michael I Jordan, Steven J Nowlan, and Geoffrey E Hinton. Adaptive
mixtures of local experts. Neural computation, 3(1):79–87, 1991.

[73] William Fedus, Barret Zoph, and Noam Shazeer. Switch transformers: Scaling to trillion
parameter models with simple and efficient sparsity. Journal of Machine Learning Research,
23(120):1–39, 2022.

[74] Barret Zoph, Irwan Bello, Sameer Kumar, Nan Du, Yanping Huang, Jeff Dean, Noam Shazeer,
and William Fedus. ST-MoE: Designing stable and transferable sparse expert models. arXiv
preprint arXiv:2202.08906, 2022.

[75] Dmitry Lepikhin, HyoukJoong Lee, Yuanzhong Xu, Dehao Chen, Orhan Firat, Yanping Huang,
Maxim Krikun, Noam Shazeer, and Zhifeng Chen. GShard: Scaling giant models with
conditional computation and automatic sharding. In Int. Conf. Learn. Represent. (ICLR), 2021.

[76] Nan Du, Yanping Huang, Andrew M Dai, Simon Tong, Dmitry Lepikhin, Yuanzhong Xu,
Maxim Krikun, Yanqi Zhou, Adams Wei Yu, Orhan Firat, et al. Glam: Efficient scaling
of language models with mixture-of-experts. In Int. Conf. Mach. Learn. (ICML), pages
5547–5569. PMLR, 2022.

[77] Albert Q. Jiang, Alexandre Sablayrolles, Antoine Roux, Arthur Mensch, Blanche Savary, Chris
Bamford, Devendra Singh Chaplot, Diego de las Casas, Emma Bou Hanna, Florian Bressand,
Gianna Lengyel, Guillaume Bour, Guillaume Lample, Lélio Renard Lavaud, Lucile Saulnier,
Marie-Anne Lachaux, Pierre Stock, Sandeep Subramanian, Sophia Yang, Szymon Antoniak,
Teven Le Scao, Théophile Gervet, Thibaut Lavril, Thomas Wang, Timothée Lacroix, and
William El Sayed. Mixtral of experts, 2024.

[78] DeepSeek-AI, Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu,
Chenggang Zhao, Chengqi Deng, Chenyu Zhang, Chong Ruan, Damai Dai, Daya Guo, Dejian
Yang, Deli Chen, Dongjie Ji, Erhang Li, Fangyun Lin, Fucong Dai, Fuli Luo, Guangbo Hao,
Guanting Chen, Guowei Li, H. Zhang, Han Bao, Hanwei Xu, Haocheng Wang, Haowei Zhang,
Honghui Ding, Huajian Xin, Huazuo Gao, Hui Li, Hui Qu, J. L. Cai, Jian Liang, Jianzhong
Guo, Jiaqi Ni, Jiashi Li, Jiawei Wang, Jin Chen, Jingchang Chen, Jingyang Yuan, Junjie Qiu,
Junlong Li, Junxiao Song, Kai Dong, Kai Hu, Kaige Gao, Kang Guan, Kexin Huang, Kuai
Yu, Lean Wang, Lecong Zhang, Lei Xu, Leyi Xia, Liang Zhao, Litong Wang, Liyue Zhang,
Meng Li, Miaojun Wang, Mingchuan Zhang, Minghua Zhang, Minghui Tang, Mingming Li,
Ning Tian, Panpan Huang, Peiyi Wang, Peng Zhang, Qiancheng Wang, Qihao Zhu, Qinyu
Chen, Qiushi Du, R. J. Chen, R. L. Jin, Ruiqi Ge, Ruisong Zhang, Ruizhe Pan, Runji Wang,
Runxin Xu, Ruoyu Zhang, Ruyi Chen, S. S. Li, Shanghao Lu, Shangyan Zhou, Shanhuang
Chen, Shaoqing Wu, Shengfeng Ye, Shengfeng Ye, Shirong Ma, Shiyu Wang, Shuang Zhou,
Shuiping Yu, Shunfeng Zhou, Shuting Pan, T. Wang, Tao Yun, Tian Pei, Tianyu Sun, W. L.
Xiao, Wangding Zeng, Wanjia Zhao, Wei An, Wen Liu, Wenfeng Liang, Wenjun Gao, Wenqin
Yu, Wentao Zhang, X. Q. Li, Xiangyue Jin, Xianzu Wang, Xiao Bi, Xiaodong Liu, Xiaohan
Wang, Xiaojin Shen, Xiaokang Chen, Xiaokang Zhang, Xiaosha Chen, Xiaotao Nie, Xiaowen
Sun, Xiaoxiang Wang, Xin Cheng, Xin Liu, Xin Xie, Xingchao Liu, Xingkai Yu, Xinnan Song,

15

Xinxia Shan, Xinyi Zhou, Xinyu Yang, Xinyuan Li, Xuecheng Su, Xuheng Lin, Y. K. Li,
Y. Q. Wang, Y. X. Wei, Y. X. Zhu, Yang Zhang, Yanhong Xu, Yanhong Xu, Yanping Huang,
Yao Li, Yao Zhao, Yaofeng Sun, Yaohui Li, Yaohui Wang, Yi Yu, Yi Zheng, Yichao Zhang,
Yifan Shi, Yiliang Xiong, Ying He, Ying Tang, Yishi Piao, Yisong Wang, Yixuan Tan, Yiyang
Ma, Yiyuan Liu, Yongqiang Guo, Yu Wu, Yuan Ou, Yuchen Zhu, Yuduan Wang, Yue Gong,
Yuheng Zou, Yujia He, Yukun Zha, Yunfan Xiong, Yunxian Ma, Yuting Yan, Yuxiang Luo,
Yuxiang You, Yuxuan Liu, Yuyang Zhou, Z. F. Wu, Z. Z. Ren, Zehui Ren, Zhangli Sha, Zhe
Fu, Zhean Xu, Zhen Huang, Zhen Zhang, Zhenda Xie, Zhengyan Zhang, Zhewen Hao, Zhibin
Gou, Zhicheng Ma, Zhigang Yan, Zhihong Shao, Zhipeng Xu, Zhiyu Wu, Zhongyu Zhang,
Zhuoshu Li, Zihui Gu, Zijia Zhu, Zijun Liu, Zilin Li, Ziwei Xie, Ziyang Song, Ziyi Gao, and
Zizheng Pan. Deepseek-v3 technical report, 2025.

[79] Joan Puigcerver, Carlos Riquelme, Basil Mustafa, and Neil Houlsby. From sparse to soft
mixtures of experts. In Int. Conf. Learn. Represent. (ICLR), 2024.

[80] Aya Abdelsalam Ismail, Sercan O Arik, Jinsung Yoon, Ankur Taly, Soheil Feizi, and Tomas
Pfister. Interpretable mixture of experts. Transactions on Machine Learning Research, 2023.
ISSN 2835-8856.

[81] Marmik Chaudhari, Idhant Gulati, Nishkal Hundia, Pranav Karra, and Shivam Raval. MoE
lens - an expert is all you need. In Sparsity in LLMs (SLLM): Deep Dive into Mixture of
Experts, Quantization, Hardware, and Inference, 2025.

[82] Huy Nguyen, Xing Han, Carl Harris, Suchi Saria, and Nhat Ho. On expert estimation in
hierarchical mixture of experts: Beyond softmax gating functions, 2025.

[83] Stefan Nielsen, Rachel Teo, Laziz Abdullaev, and Tan Minh Nguyen. Tight clusters make
specialized experts. In Int. Conf. Learn. Represent. (ICLR), 2025.

[84] Brandon Yang, Gabriel Bender, Quoc V Le, and Jiquan Ngiam. CondConv: Conditionally pa-
rameterized convolutions for efficient inference. Adv. Neural Inform. Process. Syst. (NeurIPS),
32, 2019.

[85] Basil Mustafa, Carlos Riquelme Ruiz, Joan Puigcerver, Rodolphe Jenatton, and Neil Houlsby.
Multimodal contrastive learning with LIMoE: the language-image mixture of experts. In
Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, Adv. Neural
Inform. Process. Syst. (NeurIPS), 2022.

[86] Carlos Riquelme, Joan Puigcerver, Basil Mustafa, Maxim Neumann, Rodolphe Jenatton, André
Susano Pinto, Daniel Keysers, and Neil Houlsby. Scaling vision with sparse mixture of experts.
Adv. Neural Inform. Process. Syst. (NeurIPS), 34:8583–8595, 2021.

[87] Jungwoo Park, Ahn Young Jin, Kee-Eung Kim, and Jaewoo Kang. Monet: Mixture of
monosemantic experts for transformers. In Int. Conf. Learn. Represent. (ICLR), 2025.

[88] Xingyi Yang, Constantin Venhoff, Ashkan Khakzar, Christian Schroeder de Witt, Puneet K.
Dokania, Adel Bibi, and Philip Torr. Mixture of experts made intrinsically interpretable, 2025.

[89] Michael T Pearce, Thomas Dooms, Alice Rigg, Jose Oramas, and Lee Sharkey. Bilinear MLPs
enable weight-based mechanistic interpretability. In Int. Conf. Learn. Represent. (ICLR), 2025.
URL https://openreview.net/forum?id=gI0kPklUKS.

[90] Micah Adler, Dan Alistarh, and Nir Shavit. Towards combinatorial interpretability of neural
computation. arXiv preprint arXiv:2504.08842, 2025.

[91] Thomas Dooms, Ward Gauderis, Geraint A. Wiggins, and Jose Oramas. Compositionality
unlocks deep interpretable models. In AAAI’25 workshop on CoLoRAI - Connecting Low-Rank
Representations in AI, 2025. URL https://openreview.net/forum?id=bXAt5iZ69l.

[92] Jack Lindsey, Brian Chen, Adam Pearce, Sasha Hydrie, and Thomas Conerly. Sparse mix-
tures of linear transforms. https://transformer-circuits.pub/2025/bulk-update/
index.html, 2025. Preliminary research update, Transformer Circuits.

[93] Xu Owen He. Mixture of a million experts, 2024.

[94] Zewen Chi, Li Dong, Shaohan Huang, Damai Dai, Shuming Ma, Barun Patra, Saksham
Singhal, Payal Bajaj, Xia Song, Xian-Ling Mao, Heyan Huang, and Furu Wei. On the
representation collapse of sparse mixture of experts. In Alice H. Oh, Alekh Agarwal, Danielle
Belgrave, and Kyunghyun Cho, editors, Adv. Neural Inform. Process. Syst. (NeurIPS), 2022.

16

https://openreview.net/forum?id=gI0kPklUKS
https://openreview.net/forum?id=bXAt5iZ69l
https://transformer-circuits.pub/2025/bulk-update/index.html
https://transformer-circuits.pub/2025/bulk-update/index.html

[95] Lean Wang, Huazuo Gao, Chenggang Zhao, Xu Sun, and Damai Dai. Auxiliary-loss-free
load balancing strategy for mixture-of-experts, 2024. URL https://arxiv.org/abs/2408.
15664.

[96] Boan Liu, Liang Ding, Li Shen, Keqin Peng, Yu Cao, Dazhao Cheng, and Dacheng Tao. Diver-
sifying the mixture-of-experts representation for language models with orthogonal optimizer,
2024. URL https://arxiv.org/abs/2310.09762.

[97] Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan Zhuang, Zhanghao Wu, Yonghao
Zhuang, Zi Lin, Zhuohan Li, Dacheng Li, Eric Xing, Hao Zhang, Joseph E Gonzalez, and Ion
Stoica. Judging LLM-as-a-judge with MT-Bench and chatbot arena. In A. Oh, T. Naumann,
A. Globerson, K. Saenko, M. Hardt, and S. Levine, editors, Adv. Neural Inform. Process. Syst.
(NeurIPS), volume 36, pages 46595–46623, 2023.

[98] Anna Bavaresco, Raffaella Bernardi, Leonardo Bertolazzi, Desmond Elliott, Raquel Fernández,
Albert Gatt, Esam Ghaleb, Mario Giulianelli, Michael Hanna, Alexander Koller, Andre Martins,
Philipp Mondorf, Vera Neplenbroek, Sandro Pezzelle, Barbara Plank, David Schlangen,
Alessandro Suglia, Aditya K Surikuchi, Ece Takmaz, and Alberto Testoni. LLMs instead of
human judges? a large scale empirical study across 20 NLP evaluation tasks. In Wanxiang
Che, Joyce Nabende, Ekaterina Shutova, and Mohammad Taher Pilehvar, editors, Proceedings
of the 63rd Annual Meeting of the Association for Computational Linguistics (Volume 2:
Short Papers), pages 238–255, Vienna, Austria, July 2025. Association for Computational
Linguistics. ISBN 979-8-89176-252-7. doi: 10.18653/v1/2025.acl-short.20.

[99] James E. Gentle. Matrix Algebra: Theory, Computations, and Applications in Statistics.
Springer, New York, 2nd edition, 2007.

[100] Nicholas D Sidiropoulos and Rasmus Bro. On the uniqueness of multilinear decomposition
of n-way arrays. Journal of Chemometrics: A Journal of the Chemometrics Society, 14(3):
229–239, 2000.

[101] Donghyun Lee, Jaeyong Lee, Genghan Zhang, Mo Tiwari, and Azalia Mirhoseini. CATS:
Context-aware thresholding for sparsity in large language models. In First Conference on
Language Modeling, 2024.

[102] Frank Lauren Hitchcock. The expression of a tensor or a polyadic as a sum of products.
Journal of Mathematics and Physics, 6:164–189, 1927.

[103] J. Douglas Carroll and Jih Jie Chang. Analysis of individual differences in multidimensional
scaling via an n-way generalization of “Eckart-Young” decomposition. Psychometrika, 35:
283–319, 1970.

[104] fvcore: Flop counter for PyTorch models. https://github.com/facebookresearch/
fvcore.

[105] CodeParrot. Github code dataset. https://huggingface.co/datasets/codeparrot/
github-code, 2022.

[106] Yupeng Hou, Jiacheng Li, Zhankui He, An Yan, Xiusi Chen, and Julian McAuley. Bridging
language and items for retrieval and recommendation. arXiv preprint arXiv:2403.03952, 2024.

[107] Philipp Koehn. Europarl: A parallel corpus for statistical machine translation. In Proceedings
of Machine Translation Summit X: Papers, pages 79–86, Phuket, Thailand, September 13-15
2005.

[108] Maria De-Arteaga, Alexey Romanov, Hanna Wallach, Jennifer Chayes, Christian Borgs,
Alexandra Chouldechova, Sahin Geyik, Krishnaram Kenthapadi, and Adam Tauman Kalai.
Bias in bios: A case study of semantic representation bias in a high-stakes setting. In Proceed-
ings of the Conference on Fairness, Accountability, and Transparency, FAT* ’19, page 120–128,
New York, NY, USA, 2019. Association for Computing Machinery. ISBN 9781450361255.
doi: 10.1145/3287560.3287572. URL https://doi.org/10.1145/3287560.3287572.

[109] Anthony Duong Joseph Bloom, Curt Tigges and David Chanin. Saelens. https://github.
com/jbloomAus/SAELens, 2024.

17

https://arxiv.org/abs/2408.15664
https://arxiv.org/abs/2408.15664
https://arxiv.org/abs/2310.09762
https://github.com/facebookresearch/fvcore
https://github.com/facebookresearch/fvcore
https://huggingface.co/datasets/codeparrot/github-code
https://huggingface.co/datasets/codeparrot/github-code
https://doi.org/10.1145/3287560.3287572
https://github.com/jbloomAus/SAELens
https://github.com/jbloomAus/SAELens

NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: The quantitative results in Section 3.1 support the claims that the MxDs
better navigate the sparsity-accuracy frontier in models up to 3B parameters. Section 3.2
quantitatively supports the claims that the features are similarly specialized.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitations are stated explicitly in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

18

Answer: [Yes]
Justification: The proofs of Lemmas 1 and 2 are provided in the appendix in Appendix A.2,
and referenced from the main paper. It is made explicit in Lemma 1 under exactly which
technical conditions the rank property holds. A small summary of the proof of Lemma 1 is
given in the main paper, too.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Yes, all details, configurations, and resources used to train the models are
included in Appendix D. Implementations of the models are provided in notebooks explicitly
linked to from the main paper.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in

19

some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [Yes]
Justification: A link to the code to train the models is included in the submission.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: Details about the main training runs are provided in Table 10, and the details
about the sparse probing experiments are provided in Appendix B.7.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [No]
Justification: The largest model runs take on the order of multiple days per value of K–thus,
training multiple models is not feasible on our resource budget.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

20

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: Yes, this is provided in Table 10, including the specific GPU types and
wall-clock runtime.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: No violations of the code of ethics are made. In particular, the paper focuses
on designing more transparent and interpretable mechanisms, and thus we don’t consider
the paper to cause any direct negative societal issues. However, we acknowledge that
there is often an inherent dual-use nature to much interpretability work, including our own.
Furthermore, whilst our largest training runs take multiple days, each uses a single GPU,
therefore the environmental impact is limited.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]

21

https://neurips.cc/public/EthicsGuidelines

Justification: We discuss how our design of increasingly performant yet interpretable models
may provide better understanding, debugging, and editing of pre-trained models. We do not
explicitly discuss the downsides of the work.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The proposed work only explores existing pre-trained models that are openly
accessible.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We include links to all used models’ huggingface pages in Table 10.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.

22

• The authors should state which version of the asset is used and, if possible, include a
URL.

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: No new assets are released.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: No human subjects are used.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: No human subjects are used.

Guidelines:

23

paperswithcode.com/datasets

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [Yes]
Justification: We use 2 LLMs via public APIs for our steering evaluation. The full prompt
is provided in Appendix D.1, and the exact model endpoint names are provided for repro-
ducibility.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

24

https://neurips.cc/Conferences/2025/LLM

Appendix

Table of Contents
A Proofs and additional technical results 25

A.1 Proof of rank equality . 25
A.2 Proof of MxD forward pass equivalence . 26
A.3 Intuition for weight parameterization through the lens of tensor methods 26
A.4 GLU encoders are a mixture of rank-1 linear experts 27
A.5 Hadamard-factorized tensors generalize MoVs 28
A.6 TopK activation function . 28

B Additional quantitative results and ablations 29
B.1 Faithfulness in output space . 29
B.2 Additional reconstruction metrics . 30
B.3 Results on additional layers . 30
B.4 Initial results on Gemma2-27B . 31
B.5 Expert rank . 32
B.6 Computational cost of sparse layers . 34
B.7 Sparse probing . 34
B.8 Ablations . 35

C Feature balance and shared experts 40
C.1 Expert/feature balance . 40
C.2 Shared experts . 42

D Detailed experimental setup 42
D.1 Feature steering details . 44

E Additional qualitative results 44

A Proofs and additional technical results

A.1 Proof of rank equality

Proof of Lemma 1. We first derive the expression for expert n’s weight matrix Wn = D diag(cn) ∈
RH×O and then show the rank equality that follows. First, recall that we have the third-order weight
tensor defined as

W(n, h, :) = cn ∗ dh ∈ RO,

for matrices C ∈ RN×O, D ∈ RH×O. We can express each element of the tensor W ∈ RN×H×O

in terms of elements of the two matrices as

W(n, h, o) = cno · dho = (D)ho · cno. (6)

Equation (6) shows that for a fixed expert n, the nth row cn ∈ RO essentially scales the columns of
matrix D ∈ RH×O. This is equivalent to right-multiplying matrix D by a diagonal matrix formed
from cn ∈ RO. Indeed, the (h, o) entry of such matrix product is

[D diag(cn)]ho =

O∑
i=1

(D)hi diag(cn)io (7)

= (D)ho diag(cn)oo (8)
= dho · cno, (9)

25

since all off-diagonal terms (i.e., i ̸= o) in Equation (7) vanish and diag(cn)oo = cno by con-
struction. Comparing Equation (6) and Equation (9) shows that, for every h ∈ {1, 2, . . . ,H} and
o ∈ {1, 2, . . . , O} we have

W(n, h, o) = [D diag(cn)]ho .

Hence, indexing into the first mode of the tensor alone gives us the matrix-valued expression for
expert n as claimed:

W(n, :, :) = Wn = D diag(cn) ∈ RH×O.

Finally, a standard result in linear algebra [99] has that rank(AB) = rank(A) for any A ∈ RH×O

and invertible matrix B ∈ RO×O. Since matrix diag (cn) ∈ RO×O is invertible by assumption in
Lemma 1, setting A = D and B = diag(cn) yields the rank equality.

A.2 Proof of MxD forward pass equivalence

Recall we have input vector z ∈ RH , expert coefficients a ∈ RN , and layer weights W ∈ RN×H×O.
The weights are defined in Equation (4) element-wise through the Hadamard product ∗ as

W(n, h, :) = cn ∗ dh ∈ RO, ∀n∈ {1, . . . , N}, h∈ {1, . . . ,H},

for learnable parameters C ∈ RN×O, D ∈ RH×O. Lemma 2 states that MxD’s forward pass can be
equivalently expressed as

N∑
n=1

an
(
W⊤

n z
)
=

(
C⊤a

)
∗
(
D⊤z

)
.

Proof of Lemma 2. The LHS can first be re-written as an explicit sum over the hidden dimension

ŷ =

N∑
n=1

an
(
W⊤

n z
)
=

N∑
n=1

H∑
h=1

an
(
wnh:zh

)
∈ RO. (10)

Plugging in the definition of wnh: ∈ RO from Equation (4) then yields

ŷ =

N∑
n=1

H∑
h=1

an
(
wnh:zh

)
(11)

=

N∑
n=1

H∑
h=1

an
(
(cn ∗ dh) zh

)
(12)

=

(N∑
n=1

ancn

)
∗
(H∑

h=1

zhdh

)
(13)

=
(
C⊤a

)
∗
(
D⊤z

)
, (14)

which is exactly the RHS of Equation (5), showing the MxD forward pass is equivalent to the
Hadamard product of C⊤a and D⊤z.

A.3 Intuition for weight parameterization through the lens of tensor methods

A second complementary way of viewing the MxD layer’s parameterization (and its full-rank
properties) is through the lens of tensor methods [34]. A tensor-based motivation for MxD’s weight
tensor parameterization and forward pass is presented in Appendix A.3.1 and Appendix A.3.2,
respectively.

Notation and definitions A brief primer is first included below, based on [34] (and can be safely
skipped for those already familiar):

26

• The mode-n fibers of an N th order tensor X ∈ RI1×I2×···×IN are the In-dimensional
column vectors obtained by fixing every index except that of the nth mode (e.g., x:i2i3 ∈ RI1

are the mode-1 fibers of a third-order tensor X ∈ RI1×I2×I3). Stacking all mode-n fibers
column-wise yields the so-called mode-n unfolding X(n) ∈ RIn×Īn , with number of
columns given by the product of remaining dimensions Īn =

∏N
t=1
t ̸=n

It.

• The Khatri-Rao product (denoted by ⊙) between two matrices A ∈ RI×K and B ∈ RJ×K ,
is the column-wise Kronecker product (denoted by ⊗):
A⊙B :=

[
a:1 ⊗ b:1 · · · a:K ⊗ b:K

]
∈ R(I·J)×K .

• The mode-n (vector) product of a tensor X ∈ RI1×I2×···×IN with a vector u ∈ RIn is
denoted X ×n u and has entries (X ×n u)i1...in−1in+1...iN =

∑In
in=1 xi1i2...iN uin .

A.3.1 MxD weight tensors through the Khatri-Rao product

MxDs construct the collective weight tensor through the Khatri-Rao product ⊙ [34] of the two factor
matrices C ∈ RN×O, D ∈ RH×O. Concretely, the mode-3 unfolding3 of the third-order weight
tensor W ∈ RN×H×O in MxDs from Equation (4) is alternatively given by:

W(3) := (C⊙D)
⊤ ∈ RO×(N ·H). (15)

Given that the factor matrices are learned end-to-end without constraints, they are likely of full
column-rank, i.e. rank(D) = rank(C) = O (as N > O, H = 4 · O > O in practice given the
MLP layers’ larger bottleneck). Consequently, their Khatri-Rao product parameterizing the collective
N experts’ weights will be of maximum rank O too, through Lemma 1 of [100]. As a result,
parameterized this way, the O-dimensional fibers likely span the full output space.

A.3.2 Tensorized MxD forward pass

Furthermore, the layer’s forward pass can then be viewed as performing two tensor contractions
between the third-order weight tensor W ∈ RN×H×O (collecting all N experts’ H×O-dimensional
matrices) and expert coefficients a ∈ RN and hidden activations z ∈ RH . This can be expressed in
terms of the so-called mode-n product (denoted by ×n) [34] as follows:

ŷ =

N∑
n=1

an ·
(
W⊤

n z
)

=

N∑
n=1

an

H∑
h=1

wnhzh =

N∑
n=1

H∑
h=1

anzhwnh

= W ×1 a×2 z ∈ RO. (16)

A.4 GLU encoders are a mixture of rank-1 linear experts

Both the proposed MxDs and Gated Linear Units (GLUs) [33] share a similar functional form, using
the element-wise product. However, there are crucially important differences between GLUs and
MxDs that make both their interpretation and model capacity different.

In short, the technical results here in our paper show that GLUs’ encoder can be viewed as a linear
mixture of expert layer with rank-1 experts. Furthermore, GLUs can be modified and extended to
MxDs with two additions to their model form as detailed at the end of this subsection. First, recall
that the GLU encoder [33] computes:

yGLU = ψ(E⊤
GLUx) ∗

(
E⊤x

)
∈ RH , (17)

for input vector x ∈ RI , learnable weights EGLU, E ∈ RI×H , and activation function ψ(.). To
transform Equation (17) into the same model form as MxDs, we first pre-multiply the LHS by the
identity matrix to match the MxD model form of Equation (5), yielding:

yGLU =
(
I⊤a

)
∗
(
E⊤x

)
, (18)

3which is simply a reshaping of a higher-order tensor into a matrix, arranging all N expert matrices’ column
vectors along the columns of a new matrix.

27

where a = ψ(E⊤
GLUx) ∈ RH and I ∈ RH×H is the H-dimensional identity matrix. Next, we can

write this explicitly in terms of a linear MoE with expert weights Wn ∈ RI×H as follows:

yGLU =
(
I⊤a

)
∗
(
E⊤x

)
(19)

=

H∑
n=1

an
(
W⊤

n x
)

(20)

=

H∑
n=1

an (Ediag ((I)n))⊤ x
)
, (21)

where (I)n ∈ RH is the nth row of the H-dimensional identity matrix (i.e. a one-hot vector with
its only non-zero element at index n). We draw particular attention to how the nth expert’s matrix
Wn = Ediag ((I)n) ∈ RI×H essentially picks out the nth column of E, leaving all remaining H−1
columns as zero vectors. Therefore, GLU encoders compute a MoE with linear expert weights of
(at most) rank 1. This relationship between GLUs and conditional computation is consistent with
prior work interpreting individual GLU column vectors as experts [101]. Whilst GLUs’ encoders’
model form does not put any inherent restrictions on the total number of rank-1 terms that can
contribute to the output, the sparsity necessary for specialization does.

We conclude this section by summarizing the two technical changes needed to transform GLUs into
full-rank linear MoEs based on the Hadamard product:

1. Replace I in Equation (18) with learnable, non-diagonal weight matrices for full-rankness.

2. Choose ψ(.) to produce non-negative, sparse coefficients to encourage specialization through
sparsity among the experts (for example, a softmax function, or a ReLU activation followed
by TopK).

The first of the steps above provides full-rankness, whilst the second brings the sparsity and non-
negativity needed for specialization. We include a notebook showing this connection in PyTorch at:
https://github.com/james-oldfield/MxD/blob/main/glus-to-moes.ipynb.

A.5 Hadamard-factorized tensors generalize MoVs

Prior work [37] proposes to linearly combine N many (IA)3 adapters [38] for parameter-efficient
MoEs for instruction fine-tuning. The implementation results in a very similar functional form
to the factorized forward-pass in MxDs. Interestingly, the Hadamard product parameterization of
the third-order weight tensor in Equation (4) provides a more general framework through which
one can also derive MoVs’ model form, shedding light on the relationship to the proposed MxDs
and their benefits. Concretely, factorizing the weight tensor instead along the second mode as
W(n, :, o) = cn ∗ do ∈ RH in our framework immediately recovers MoV [37] as a special case.
In particular, in contrast to the MxD in Appendix A.3 whose weight tensor can be parametrized
equivalently through its mode-3 unfolding [34], MoV’s implicit weight tensor can be given in terms
of its mode-2 unfolding in terms of a similar Khatri-Rao product of two factor matrices.

Instead, MoVs in analogy would yield expert weights by pre-multiplying D as: Wn = diag(cn)D ∈
RH×O for much larger C ∈ RN×H). Due to H ≫ O, our proposed MxD formulation yields
around 4× the number of specialized units as MoVs with the same parameter budget (yet MoVs’
experts are of no higher rank than MxDs’), making MxDs a much more suitable and efficient class
of layer for our goal of scalable specialization. We therefore see that the proposed lens of tensor
methods for unification provides valuable insights about how to design more interpretable layers with
the minimum trade-off to capabilities.

A.6 TopK activation function

Formally, for activations z ∈ RH (possibly with the ReLU activation applied), the TopK activation
function can be formulated elementwise as the following:

TopK(z)h =

{
zh, if zh ≥ τK(z)

0, otherwise
,

28

https://github.com/james-oldfield/MxD/blob/main/glus-to-moes.ipynb

where τK(z) ∈ R returns the value of the K th largest element of vector z ∈ RH . Intuitively, the
TopK activation retains only the largest K ≤ H elements of the H neurons, setting the rest to zero.
We note here that the definition above does not handle ties (although this is very unlikely in practice,
given the activations are continuous).

B Additional quantitative results and ablations

B.1 Faithfulness in output space

Experiments in Section 3.1.2 of the main paper report the number of future predicted words that
are identical from the original model and from the LLM with the sparse layer replacements. We
also show qualitative examples of the first 8 prompts and the subsequent ‘diffs’ (using Python 3’s
difflib) of the generated tokens in Figures 7 and 8–we see MxDs’ superior ability to preserve
model functionality as it propagates through to the output space of future tokens.

Figure 7: Pythia-410m: The first few generated tokens from the base model (‘GT’) and the
corresponding tokens from the model when the sparse layers replace the target MLP. Red denotes
tokens that are removed, orange denotes newly inserted tokens, and green denotes matching tokens.

29

Figure 8: GPT2-124m: The first few generated tokens from the base model (‘GT’) and the corre-
sponding tokens from the model when the sparse layers replace the target MLP. Red denotes tokens
that are removed, orange denotes newly inserted tokens, and green denotes matching tokens.

B.2 Additional reconstruction metrics

To highlight the scale of difference in the reconstructions between MxDs and the baselines, we also
plot in Figure 9 the normalized MSE at the end of training for all models and LLMs. At the smallest
values of K (which we care about most for interpretability), MxDs’ normalized MSE is up to an
order of magnitude smaller than Transcoders’.

B.3 Results on additional layers

We also fully train all models and baselines (with 4 different values of K) on different target layers
for each model. The results are shown in Figure 10 for 48 additional trained layers for the same setup
in the original paper, using different colours to highlight that these are new results. As can be seen,
the same trend holds: MxDs significantly outperform the baselines at small K in all LLMs.

30

16 32 64 128 256
0.001
0.002
0.003
0.004
0.005
0.006
0.007
0.008
0.009
0.010
0.011
0.012
0.013
0.014
0.015
0.016
0.017

 N
or

m
al

ize
d

M
SE

GPT2-124M
 (Layer 8)
TC (38M params)
STC (38M params)
MxDs (38M params)

16 32 64 128 256
0.0000
0.0001
0.0002
0.0003
0.0004
0.0005
0.0006
0.0007
0.0008
0.0009
0.0010
0.0011
0.0012
0.0013
0.0014
0.0015
0.0016
0.0017
0.0018 Pythia-410M

 (Layer 15)
TC (67M params)
STC (68M params)
MxDs (67M params)

16 32 64 128 256
 Sparsity level K

0.0000
0.0002
0.0004
0.0006
0.0008
0.0010
0.0012
0.0014
0.0016
0.0018
0.0020
0.0022
0.0024

 N
or

m
al

ize
d

M
SE

Pythia-1.4B
 (Layer 12)
TC (269M params)
STC (273M params)
MxDs (268M params)

16 32 64 128 256
 Sparsity level K

0.00000
0.00005
0.00010
0.00015
0.00020
0.00025
0.00030
0.00035
0.00040
0.00045
0.00050
0.00055
0.00060
0.00065
0.00070
0.00075 Llama3.2-3B

 (Layer 12)
TC (604M params)
STC (614M params)
MxDs (604M params)

Figure 9: Normalized MSE at the end of training Sparse MLP layers, as a function of the number of
active units (i.e., hidden neurons vs experts); with differences as large as an order of magnitude in
error.

B.4 Initial results on Gemma2-27B

In the main paper, we perform experiments on base models with up to 3B parameters. For initial
evidence of scalability to even larger models, we perform here additional large-scale experiments on
the 27B Gemma2 model (in half-precision, and with a smaller batch size to fit into memory). We
see MxDs continue to outperform on the sparsity-accuracy frontier, as shown by the (normalized)
reconstruction loss in Table 3.

Table 3: Normalized MSE (↓) on Gemma2-27B, Layer 20, K = 32, partially trained for 50k
iterations. To fit in memory, the model is loaded in half precision. We use 1/8 the batch size and #
buffers stored, and 1/2 the multiplier on the number of latent features (with values of 4, 16, and 16,
respectively).

Iterations 10k 20k 30k 40k 50k
Transcoder 0.147 0.132 0.128 0.123 0.119
Skip Transcoder 0.128 0.107 0.102 0.100 0.093
MxD 0.098 0.096 0.093 0.086 0.069

31

32 64 128 256
3.600

3.605

3.610

3.615

3.620

3.625

3.630

3.635

3.640

3.645

 M
ea

n
cr

os
s-

en
tro

py
 lo

ss

GPT2-124M
 (Layer 10)
Original LLM
TC (38M params)
STC (38M params)
MxDs (38M params)

32 64 128 256

3.3225

3.3250

3.3275

3.3300

3.3325

3.3350

3.3375

3.3400

3.3425
Pythia-410M
 (Layer 12)
Original LLM
TC (67M params)
STC (68M params)
MxDs (67M params)

32 64 128 256
 Sparsity level K

3.1000

3.1025

3.1050

3.1075

3.1100

3.1125

3.1150

3.1175

 M
ea

n
cr

os
s-

en
tro

py
 lo

ss

Pythia-1.4B
 (Layer 10)
Original LLM
TC (269M params)
STC (273M params)
MxDs (268M params)

32 64 128 256
 Sparsity level K

3.020

3.022

3.024

3.026

3.028

3.030

3.032

3.034

3.036

3.038 Llama3.2-3B
 (Layer 10)
Original LLM
TC (604M params)
STC (614M params)
MxDs (604M params)

Figure 10: Additional layer results: model cross entropy loss preserved when replacing MLPs with
Transcoders [27], Skip Transcoders [26], and MxDs, as a function of the number of active units
(hidden neurons/experts). These results complement those in the main paper, but here we train a new
set of additional models on different layers.

B.5 Expert rank

This section concerns the matrix rank of the linear experts in parameter-efficient MoEs. We first
compare to low-rank MoEs in Appendix B.5.1 to demonstrate the benefits of full-rankness, and then
follow up in Appendix B.5.2 by confirming that the learned MxD expert ranks are close to maximum
in the trained models.

B.5.1 Comparisons to low-rank MoEs

In this section, we study the impact of expert rank on the ability of efficient MoE layers to reconstruct
pre-trained MLP layers’ mappings. One compelling alternative to MxDs for efficient conditional
computation is the µMoE layer [40], which imposes low-rankness on expert weights to achieve
parameter-efficiency. Whilst µMoEs are found to perform competitively in the pre-training setting,
the impact of low-rankness on approximations of existing layers will determine their suitability in the
sparse layer approximation setting studied in this work.

We therefore compare to µMoE layers, which we use to compute a linear MoE in place of the MLP’s
decoder. In CPµMoEs, N experts’ weight matrices are jointly parameterized through low-rank tensor
structure with the CP decomposition [102, 103] for chosen rank R ∈ N+. With the same learnable
encoder and expert gating matrices producing the expert coefficients a ∈ RN and hidden units
z ∈ RH generated the same way as in the main paper, we train µMoE layers to approximate the

32

original MLP layer’s output with:

µMoE(x) =
N∑

n=1

H∑
h=1

R∑
r=1

anzh D(r, h) ·C(r, n) ·W(:, r) ∈ RO, (22)

where C ∈ RR×N , D ∈ RR×H , W ∈ RO×R are the learnable low-rank terms of the implicit
third-order tensor parameterizing all N collective experts’ weights.

We match the MxD experimental configuration as closely as possible for a fair comparison. For the
encoders, we mirror MxDs and use the GELU activation function, which we find through ablations
in Appendix B.8 to perform the best. We initialize the parameters the same as MxDs and Skip
Transcoders: we use the standard PyTorch linear layer initialization for D, C (and the encoder
layers), and initialize W as the zero matrix.

0.5 0.6 0.7 0.8 0.9 1.0
Normalized expert rank (mean)

3.604

3.605

3.606

3.607

3.608

3.609

3.610

3.611

 M
ea

n
cr

os
s-

en
tro

py
 lo

ss

Rank ablation
 GPT2-small

MxD
MoE

0.5 0.6 0.7 0.8 0.9 1.0
Normalized expert rank (mean)

3.326

3.328

3.330

3.332

3.334

 M
ea

n
cr

os
s-

en
tro

py
 lo

ss

Rank ablation
 pythia-410m

MxD
MoE

Figure 11: Comparisons to µMoEs for various choices of (normalized) rank: high rank weights
best-preserve the models’ downstream cross-entropy loss.

We vary the µMoE layer rank R, training fully 3 sparse approximation layers for K = 32 active
experts, varying the total number of experts N to keep the parameter count the same–isolating the
impact of the choice of rank. As with the main experiments, we record the downstream model loss
when we splice in the trained layer to replace the MLP layers, shown in Figure 11.

As can be seen, the µMoE layers perform well when they are close to full-rank (i.e. when the
normalized rank R

O → 1). Crucially, however, performance drops off notably when the rank
is reduced. Whilst µMoEs still perform far better than neuron-level sparsity methods (i.e. the
corresponding CE loss results in Figure 3), we observe that full-rankness is necessary for the most
faithful layer approximations–which the proposed MxDs provide by design.

As a motivating example, for why SparseMoEs and SoftMoEs are not practical: SparseMoEs [36]
and SoftMoEs [72] require 2.16 trillion parameters for a single layer, for the same 86k experts we
use for Llama-3.2-3B. This is orders of magnitude more parameters than the entire base network
itself, making it prohibitively costly for SparseMoEs to scale to sufficiently high expert counts.

B.5.2 MxD empirical expert rank

Next, we show experimentally that the learned experts’ matrices Wn = D diag(cn) ∈ RH×O are
very nearly full-rank in practice, corroborating the properties of expert matrices shown theoretically
in Lemma 1. We compute the mean ‘normalized rank’, which we take for MxDs to be the empirical
matrix rank of the learned expert’s weights, over the maximum possible rank given the dimensions:

1

N

N∑
n=1

rank (Wn)

min{H,O}
. (23)

We show in Table 4 the normalized rank across all 4 base models: MxD’s learned experts exhibit no
rank deficiencies, providing further evidence of the large potential capacity of MxD layers despite
their sparsity constraints on the expert-level.

33

Table 4: Mean normalized expert matrix rank of Equation (23) across models for the first 2k experts
in K = 32 trained MxDs – the learned expert matrices are very close to full column rank.

GPT2-124M Pythia-410M Pythia-1.4B Llama-3.2-3B

0.99± 0.005 0.99± 0.007 0.99± 0.005 0.99± 0.002

B.6 Computational cost of sparse layers

We show here that there is minimal difference between the computational cost of sparse layer variants.
We first report theoretical layer FLOPs, and then report empirical benchmarks.

Parameter count & FLOPs We first tabulate in Table 5 the theoretical parameter counts and
inference-time FLOPs for MxDs vs Sparse MLPs. To be consistent with the popular PyTorch library
[104] we count one fused multiply-add as one FLOP, and count the Hadamard product between two
d-dimensional vectors as requiring d/2 FLOPs. Note that, For a chosen expert count N , we set the
width of Sparse MLPs (e.g. Transcoders) to H := N +H∗ to parameter-match the models.

Table 5: Here I,O denotes the input and output dimensions, H∗ the original model’s hidden width,
N the MxD expert count, and H the width of the sparse MLPs.

Parameter count FLOPs
Sparse MLP H (I +O) H (I +O)
MxD N (I +O) +H∗ (I +O) N (I +O) +H∗ (I +O) +O/2

Empirical benchmarks We next run benchmarks for a Sparse MLP layer vs MxD with a batch size
of 512, and dimensions: I = H∗ = O = 1024, and number of experts/features as N = 8192, H =
9216. The results are tabulated in Table 6, where we see performance (and cost) is similar for the two
layers.

Table 6: Here I,O denotes the input and output dimensions, H∗ the original model’s hidden width,
N the MxD expert count, and H the width of the sparse MLPs.

Peak memory usage (MiB) Latency (ms) Parameter count Reported FLOPs ([104])
Sparse MLP 386.50 1.394 18,874,368 18,874,368
MxD 389.50 1.457 18,874,368 18,874,880

B.7 Sparse probing

Sample-level probing Here, we follow the SAEBench [19] evaluation protocol. In this ‘sample-
level’ setting, each text string is labeled with a binary concept at a global level (e.g., the language of
the snippet, or its sentiment). This is in contrast to what we refer to as ‘token-level probing’, where
each token within the text samples is labeled individually (e.g., whether a word is a certain part of
speech). We perform experiments on a total of 24 sample-level sparse probing tasks with the same
‘maximum mean difference’ feature filtering applied in [19]. The details of the datasets used are
summarized in Table 7.

Token-level probing We also explore sparse probing for 10 features defined at the token-level. For
this, we follow [49], and include experiments training probes on the mean feature activations under
tokens spanning the surnames of the individuals. We note that this is a significantly harder task, and
makes even stronger assumptions about the features the dataset includes, but is nonetheless some
additional weak evidence about the relative feature-learning abilities of the sparse models. Through
various surnames, we probe for 6 occupations of individuals, whether or not individuals are alive,
and individuals’ labeled gender. We also experimented with probing for compound words as in [49],
but found no predictive features in our trained models. Details of the surname token-level probing
datasets (and the total training examples the tokenizers could parse) are included in Table 8.

34

Table 7: Details of sample-level sparse probing datasets used.
Dataset # Training examples # Test examples Classification task description Number of classes

fancyzhx/ag_news [48] 16,000 4,000 News article topic 4
codeparrot/github-code [105] 20,000 5,000 Programming language 5
amazon_reviews_mcauley_1and5_sentiment [106] 8,000 2,000 Positive/negative review sentiment 2
Helsinki-NLP/europarl [107] 20,000 5,000 European language 5
LabHC/bias_in_bios [108] 32,000 8,000 Profession from bio 8

Table 8: Details of token-level sparse probing datasets used.
Dataset # Training examples # Test examples Classification task description Number of classes

Occupation [49] 4784 1195 Occupation of individual 6
Is alive? [49] 4800 1199 Are they alive 2
Gender [49] 4800 1200 Labeled gender 2

Experimental setup For sample-level probing, we truncate the input strings to the first 128 tokens
for all datasets but for the Github dataset, where we take the last 128 tokens to avoid license headers
[19, 49]. For token-level probing, we instead take only the last 128 tokens, where the final token
contains the surname of the individual in question in the datasets of [49].

Binary probes are trained on 80% of the training data (randomly shuffled) with the sklearn library’s
LogisticRegression module with parameters:

• class_weight=‘balanced’
• penalty=‘l2’
• solver=‘newton-cholesky’
• max_iter=200

A random seed of 42 is used throughout the code to ensure reproducibility.

B.7.1 Sparse probing results

We show in Figure 12 results on 20 additional (sample-level) sparse probing tasks, where MxDs
remain competitive with the baselines. We also plot the expert activation (of the single expert with
the highest F1 test set score) for the positive/negative classes for all tasks split across Figures 13
and 14. One can observe a certain degree of separability between the two semantic clusters of data
given by the expert coefficient, thus confirming that individual experts are learning to specialize to
particular high-level features.

We also include results on 10 token-level probing tasks in Figure 15, with the corresponding activation
densities displayed in Figure 16. Whilst MxDs appear to perform slightly less well here on average,
they remain competitive as expected.

B.8 Ablations

We turn next to ablation studies to explore the value of the various model components below:

B.8.1 Choice of sparsity constraint

We first train a variety of MxDs on GPT2 models with the TopK activation function [23] and
instead train models with a ReLU followed by an explicit λ||.||1 sparsity penalty on the specialized
components in addition to the reconstruction loss [22]. We show the results in Figure 17, where,
similarly to [26], we find the TopK activation to dominate on the sparsity-accuracy frontier–we thus
use the TopK activation for all experiments.

B.8.2 Choice of MxD encoder

Secondly, we show in Figure 18 the benefits of MxDs’ flexibility in inheriting the original MLP
layer’s encoder form/activation function. All models here are trained from scratch for the same
number of tokens and with the same experimental setup as in Section 3.1, with K = 32. In the

35

de en es fr nl
European language

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 F
1

sc
or

e
europarl

gpt2
MxD
TC
Skip-TC
TopK-SAE

(a) Europarl dataset, on GPT2

de en es fr nl
European language

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 F
1

sc
or

e

europarl

pythia-410m
MxD
TC
Skip-TC
TopK-SAE

(b) Europarl dataset, on Pythia-410m

C HTML Java PHP Python
Programming language

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 F
1

sc
or

e

github-code

gpt2
MxD
TC
Skip-TC
TopK-SAE

(c) Github code dataset, on GPT2

C HTML Java PHP Python
Programming language

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 F
1

sc
or

e

github-code

pythia-410m
MxD
TC
Skip-TC
TopK-SAE

(d) Github code dataset, on Pythia-410m

Negative Positive
Amazon review sentiment

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 F
1

sc
or

e

amazon_reviews_mcauley_1and5_sentiment

gpt2
MxD
TC
Skip-TC
TopK-SAE

(e) Amazon review sentiment dataset, on GPT2

Negative Positive
Amazon review sentiment

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 F
1

sc
or

e

amazon_reviews_mcauley_1and5_sentiment

pythia-410m
MxD
TC
Skip-TC
TopK-SAE

(f) Amazon review sentiment dataset, on Pythia-410m

att
orn

ey
de

nti
st

jou
rna

list

ph
oto

gra
ph

er

ph
ysi

cia
n

pro
fes

sor

psy
cho

log
ist

tea
che

r

Profession

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 F
1

sc
or

e

bias_in_bios

gpt2
MxD
TC
Skip-TC
TopK-SAE

(g) Bias in Bios dataset, on GPT2

att
orn

ey
de

nti
st

jou
rna

list

ph
oto

gra
ph

er

ph
ysi

cia
n

pro
fes

sor

psy
cho

log
ist

tea
che

r

Profession

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 F
1

sc
or

e

bias_in_bios

pythia-410m
MxD
TC
Skip-TC
TopK-SAE

(h) Bias in Bios dataset, on Pythia-410m

Figure 12: Sample-level sparse probing results on individual experts/features; the best F1 score on a
held out set is presented.

36

3 2 1 0
Pre-activation value

0.0

0.5

1.0

De
ns

ity

World

2.5 0.0 2.5 5.0
Pre-activation value

0.0

0.5

1.0

Sports

4 2 0
Pre-activation value

0.0

0.5

Business

4 3 2 1
Pre-activation value

0.0

0.5

1.0

Tech

(a) AG news dataset, on GPT2

1.0 0.5
Pre-activation value

0

2

De
ns

ity

World

1.5 1.0 0.5
Pre-activation value

0

2

Sports

0.5 0.0
Pre-activation value

0

2

4

Business

0.50 0.25 0.00 0.25
Pre-activation value

0

2

4
Tech

(b) AG news dataset, on Pythia-410m

4 2 0
Pre-activation value

0.0

0.5

1.0

De
ns

ity

de

10 0 10
Pre-activation value

0.0

0.1

0.2
en

5 0
Pre-activation value

0.0

0.5

es

0 10 20
Pre-activation value

0.0

0.5

1.0

fr

2 0 2
Pre-activation value

0.0

0.5

De
ns

ity

nl

(c) Europarl dataset, on GPT2

1.0 0.5
Pre-activation value

0.0

2.5

5.0

De
ns

ity

de

1.5 1.0 0.5
Pre-activation value

0

2

4

en

1.0 0.5 0.0
Pre-activation value

0

2

4

es

0 1
Pre-activation value

0

2

fr

0.5 0.0 0.5 1.0
Pre-activation value

0

2

4

De
ns

ity

nl

(d) Europarl dataset, on Pythia-410m

1 0
Pre-activation value

0

1

De
ns

ity

C

2 0
Pre-activation value

0.0

0.5

1.0

HTML

4 3 2
Pre-activation value

0

1

Java

2 0
Pre-activation value

0.0

0.5

1.0

PHP

4 3 2 1
Pre-activation value

0

1

De
ns

ity

Python

(e) Github code dataset, on GPT2

0 1 2
Pre-activation value

0

2

4

De
ns

ity

C

0.5 0.0 0.5
Pre-activation value

0

2

4
HTML

1.0 0.5 0.0
Pre-activation value

0

2

Java

0 1
Pre-activation value

0

1

2

PHP

0 1 2
Pre-activation value

0

2

4

De
ns

ity

Python

(f) Github code dataset, on Pythia-410m

2 0
Pre-activation value

0

1

De
ns

ity

Negative

1 0 1
Pre-activation value

0

1

2
Positive

(g) Amazon review sentiment dataset, on GPT2

0.8 0.6 0.4
Pre-activation value

0.0

2.5

5.0

De
ns

ity

Negative

0.8 0.6 0.4 0.2
Pre-activation value

0.0

2.5

5.0

Positive

(h) Amazon review sentiment dataset, on Pythia-410m

Figure 13: [1/2] Sample-level sparse probing results on individual experts for MxDs; here we plot
the values of the expert pre-activation for positive/other classes (in the 1-vs-all setting).

37

4 3 2 1
Pre-activation value

0.0

0.5

1.0

1.5

De
ns

ity

attorney

0 5 10
Pre-activation value

0.0

0.5

1.0

1.5
dentist

2 0 2
Pre-activation value

0.0

0.5

1.0
journalist

1 0 1 2 3
Pre-activation value

0

1

2

photographer

4 3 2 1
Pre-activation value

0.0

0.5

1.0

De
ns

ity

physician

0 2
Pre-activation value

0

1

2
professor

0 2 4 6
Pre-activation value

0

1

2
psychologist

2 1
Pre-activation value

0.0

0.5

1.0

1.5
teacher

(a) Profession from biography, on GPT2

1.2 1.0 0.8 0.6 0.4 0.2
Pre-activation value

0

2

4

De
ns

ity

attorney

0.50 0.25 0.00 0.25 0.50
Pre-activation value

0

2

4

dentist

0.4 0.2 0.0 0.2 0.4
Pre-activation value

0

1

2

3

journalist

1.0 0.8 0.6 0.4 0.2
Pre-activation value

0

2

4

photographer

0.8 0.6 0.4 0.2 0.0
Pre-activation value

0

2

4

De
ns

ity

physician

1.00 0.75 0.50 0.25 0.00
Pre-activation value

0

2

4
professor

1.25 1.00 0.75 0.50 0.25
Pre-activation value

0

2

4

psychologist

1.25 1.00 0.75 0.50 0.25
Pre-activation value

0

2

4
teacher

(b) Profession from biography, on Pythia-410m

Figure 14: [2/2] Sample-level sparse probing results on individual experts for MxDs; here we plot
the values of the expert pre-activation for positive/other classes (in the 1-vs-all setting).

Singer Researcher Actor Athlete Politician Journalist
Occupation

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 F
1

sc
or

e

occupation

gpt2
MxD
TC
Skip-TC
TopK-SAE

(a) Occupation surname probing, on GPT2

Singer Researcher Actor Athlete Politician Journalist
Occupation

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 F
1

sc
or

e

occupation

pythia-410m
MxD
TC
Skip-TC
TopK-SAE

(b) Occupation surname probing, on Pythia-410m

Yes No
Is Alive?

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 F
1

sc
or

e

isalive

gpt2
MxD
TC
Skip-TC
TopK-SAE

(c) “Is alive?” surname
probing, on GPT2

Yes No
Is Alive?

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 F
1

sc
or

e

isalive

pythia-410m
MxD
TC
Skip-TC
TopK-SAE

(d) “Is alive?” surname
probing, on Pythia-410m

F M
Gender

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 F
1

sc
or

e

gender

gpt2
MxD
TC
Skip-TC
TopK-SAE

(e) Gender surname prob-
ing, on GPT2

F M
Gender

0.0

0.2

0.4

0.6

0.8

1.0

Te
st

 F
1

sc
or

e

gender

pythia-410m
MxD
TC
Skip-TC
TopK-SAE

(f) Gender surname prob-
ing, on Pythia-410m

Figure 15: Token-level sparse probing results on individual experts/features; the best F1 score on a
held out set is presented.

38

0 5
Pre-activation value

0.00

0.25

0.50

De
ns

ity

Singer

5 0 5
Pre-activation value

0.0

0.2

0.4
Researcher

0 5 10
Pre-activation value

0.00

0.25

0.50

Actor

5 0 5
Pre-activation value

0.0

0.2

0.4
Athlete

5 0 5
Pre-activation value

0.00

0.25

0.50

Politician

5.0 2.5 0.0
Pre-activation value

0.0

0.5

Journalist

(a) Occupation surname probing, on GPT2

1 0 1
Pre-activation value

0

1

2

De
ns

ity

Singer

2 0 2
Pre-activation value

0.0

0.5

1.0

Researcher

0.0 2.5
Pre-activation value

0.0

0.5

1.0
Actor

2 1 0
Pre-activation value

0

1

2
Athlete

0 2
Pre-activation value

0

1

2
Politician

1 0
Pre-activation value

0

1

2

Journalist

(b) Occupation surname probing, on Pythia-410m

0 10
Pre-activation value

0.0

0.2

De
ns

ity

Yes

5 0
Pre-activation value

0.00

0.25

0.50

No

(c) Alive/dead surname probing, on GPT2

1 0
Pre-activation value

0

1

2

De
ns

ity

Yes

1 0 1
Pre-activation value

0

1

2

No

(d) Alive/dead surname probing, on Pythia-410m

0 5
Pre-activation value

0.0

0.5

De
ns

ity

F

5 0
Pre-activation value

0.00

0.25

0.50

M

(e) Gender surname probing, on GPT2

0 2 4
Pre-activation value

0

2

4

De
ns

ity

F

2 0
Pre-activation value

0

1

2
M

(f) Gender surname probing, on Pythia-410m

Figure 16: Token-level sparse probing results on individual experts for MxDs; here we plot the values
of the expert pre-activation for positive/other classes (in the 1-vs-all setting).

39

24 25 26 27

 Mean 0

3.600

3.605

3.610

3.615

3.620

3.625

3.630

3.635

3.640

 M
ea

n
cr

os
s-

en
tro

py
 lo

ss

: 5.0e-5

: 7.0e-5

: 1.0e-4

: 1.5e-4

: 1.0e-4: 1.5e-4

: 2.5e-4

: 3.0e-4

: 4.0e-4

GPT-2 ablation: L1 penalty vs TopK activation

Transcoders (L1)
Transcoders (TopK)
Ours (L1)
Ours (TopK)
Original model

Figure 17: ReLU+TopK activation function [23] vs ReLU w/ L1 sparsity penalty [22]: both MxDs
and Transcoders better recover the cross entropy loss with the TopK activation.

=ReLU (MLP) =GELU (MLP)
MxD encoder activation

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

 N
or

m
al

ize
d

M
SE

Pythia-410M

=ReLU (MLP) =GELU (MLP)
MxD encoder activation

0.0000

0.0005

0.0010

0.0015

0.0020

0.0025
GPT2-124M

=ReLU (MLP) =GELU (MLP)
MxD encoder activation

0.00000

0.00005

0.00010

0.00015

0.00020

0.00025

0.00030 Pythia-1.4B

=ReLU (MLP) =GELU (MLP) =Swish (GLU)
MxD encoder architecture

0.00000

0.00005

0.00010

0.00015

0.00020
Llama-3.2-3B

Figure 18: Encoder architecture ablation: MSE loss when using ReLU activation vs the GELU
used by the base models; and MLPs vs GLUs for Llama (rightmost subfigure).

first 3 left-most subfigures, we see the Normalized MSE is as low as half when using GELU vs the
non-native ReLU activation.

We next ablate the impact of inheriting the same encoder as the Llama-3.2-3B base model. In the
rightmost subfigure of Figure 18, we train MxDs with ReLU-MLP, GELU-MLP, and Swish-GLU
encoders. As can be seen, using a GLU with a Swish activation model (matching the base model
architecture) yields a Normalized MSE almost an order of magnitude smaller than MLPs with
GELU/ReLU.

C Feature balance and shared experts

C.1 Expert/feature balance

Following the code of [27, 109], we log how often each unit of specialism/feature is used, over a
fixed window of ∼ 1M tokens. We show in Figure 19 the feature frequency at the end of training,
where we observe that MxDs see a similar healthy balance of experts to the frequency of usage of
features in the baselines.

Interestingly, we observe a small peak of experts that fire more frequently in MxDs (e.g., around -2
on the x-axis)–perhaps specializing in common patterns and primitives in natural language.

40

10 8 6 4 2 0
Log10 feature firing frequency

0

500

1000

1500

2000

2500

3000

Nu
m

be
r o

f f
ea

tu
re

s

Feature usage: GPT2-124M - MxD

10 8 6 4 2 0
Log10 feature firing frequency

0

1000

2000

3000

Nu
m

be
r o

f f
ea

tu
re

s

Feature usage: Pythia-410M - MxD

10 8 6 4 2 0
Log10 feature firing frequency

0

1000

2000

3000

4000

Nu
m

be
r o

f f
ea

tu
re

s

Feature usage: GPT2-124M - TC

10 8 6 4 2
Log10 feature firing frequency

0

1000

2000

3000

4000
Nu

m
be

r o
f f

ea
tu

re
s

Feature usage: Pythia-410M - TC

10 8 6 4 2
Log10 feature firing frequency

0

1000

2000

3000

4000

Nu
m

be
r o

f f
ea

tu
re

s

Feature usage: GPT2-124M - STC

10 8 6 4 2
Log10 feature firing frequency

0

1000

2000

3000

4000

5000

Nu
m

be
r o

f f
ea

tu
re

s

Feature usage: Pythia-410M - STC

Figure 19: log10 feature sparsity (following [27, 109]); MxDs’ experts are well-balanced, similar to
the baselines’ features.

41

C.2 Shared experts

We find that, by default, our MxD models naturally learn to use a shared expert, with the remaining
experts exhibiting strong specialization in a wide range of themes and linguistic patterns. The use of
a shared expert is becoming an increasingly popular design choice, including in the latest Llama 4
models [44]–we therefore allow this pattern to emerge naturally in our base models, further justified
through the evidence in [43] that shared experts can enhance specialization among the remaining
experts [43]. We highlight, however, that a simple trick of sampling K̂ ∼ Unif{K−K/a,K+K/a}
for the Top-K̂ activation at train-time (for e.g. a := 2) is sufficient to remove the dominating
shared-expert at minimal hit to reconstruction performance, if desired.

We train two sets of models with a base K = 32 on GPT2-small and pythia-410m, using a := 2.
We first show in Figure 20 the indices of the top-activating experts for the 2 model variants on a
template prompt, after training has finished. On the left-hand side of Figure 20, the models route
all tokens through the same shared expert at position 1. However, we see on the right-hand side
that training with the ‘random-K’ strategy breaks the dependence on a shared expert in position 1.
Furthermore, we include in Figure 21 the corresponding train-time MSE loss for the 4 models here as
ablations–observing that the random-K strategy also brings comparable performance. Based on these
experiments, we recommend this simple training strategy if one desires MxD models without shared
experts.

Expert diversity/collapse To what extent is the shared expert simply learning the base decoder
itself ? In an initial attempt to study this, we take the same MxD trained with K = 64 on GPT2, and
tabulate the Frobenius norm of differences between the original model’s decoder D∗, our learned
base decoder D, and the “shared expert” weight matrix Wshared = D diag(cshared) (with index
shared = 19772), all of which are matrices of shape (H × O). As can be seen in Table 9, their
difference is significant, showing that the shared expert does not simply learn the original decoder.

As discussed in the limitations section, we highlight that MxDs as formulated contain no explicit loss
terms to discourage expert collapse, or encourage expert balance or diversity. Whilst we find no need
for these in our experiments, they may prove useful (or even necessary) in other settings or future
work.

Table 9: Distance between learned shared expert, base decoder, and original decoder

∥Wshared −D∗∥F ∥D−D∗∥F
(|Wshared −D∗|):3,:3

(9 elements of the difference matrix)

208.08 221.6934

[
0.09 0.03 0.06
0.21 0.12 0.07
0.17 0.15 0.11

]

D Detailed experimental setup

We list in Table 10 the resources used for each experiment: the GPU and the indicative run-time for
a single model. The mlp_expansion_factor column refers to the expansion factor applied to the
input dimension to generate the MLP width in the sparse layers (i.e. H := I ·mlp_expansion_factor).

Table 10: Total training time and resources used to produce the k = 32 experiments (the required
compute being roughly the same across models trained with different k).
Model GPU used VRAM Training time d_in mlp_expansion_factor Asset link

GPT2-124m x1 GeForce RTX 3090 24GB 8h 34m 37s 768 32 https://huggingface.co/docs/transformers/en/model_doc/gpt2
Pythia-410m x1 GeForce RTX 3090 24GB 8h 35m 17s 1024 32 https://huggingface.co/EleutherAI/pythia-410m
Pythia-1.4B x1 A100 80GB 23h 25m 23s 2048 32 https://huggingface.co/EleutherAI/pythia-1.4b
Llama-3.2-3B x1 A100 80GB 2d 3m 50s 3072 32 https://huggingface.co/meta-llama/Llama-3.2-3B

42

https://huggingface.co/docs/transformers/en/model_doc/gpt2
https://huggingface.co/EleutherAI/pythia-410m
https://huggingface.co/EleutherAI/pythia-1.4b
https://huggingface.co/meta-llama/Llama-3.2-3B

1st highest
expert index

2nd highest
expert index

3rd highest
expert index

4th highest
expert index

 [526 18499 7257 8244]
 [16092 3344 17100 7388]
 [19829 10864 7720 5507]
 [20001 15277 1905 11387]

Token 1

Token 2

Token 3

Token 4

 [10160 10962 19772 9610]
 [19772 15461 2630 8228]
 [19772 18694 7385 3494]
 [19772 19466 10619 970]

Token 1

Token 2

Token 3

Token 4

1st highest
expert index

2nd highest
expert index

3rd highest
expert index

4th highest
expert index

Model trained with fixed K Model trained with random K

Prompt: "Who is the president of the USA?" GPT2-small

1st highest
expert index

2nd highest
expert index

3rd highest
expert index

4th highest
expert index

 [7412 13294 3097 19430]
 [13439 24209 13723 18099]
 [9587 3857 10715 6198]
 [2809 3378 25799 9435]

Token 1

Token 2

Token 3

Token 4

 [28104 1694 18149 2013]
 [28104 1163 5124 11890]
 [28104 5124 27687 3657]
 [28104 4126 12814 23628]

Token 1

Token 2

Token 3

Token 4

1st highest
expert index

2nd highest
expert index

3rd highest
expert index

4th highest
expert index

Prompt: "Who is the president of the USA?" Pythia-410m

Model trained with fixed K Model trained with random K

Figure 20: Top-activating experts for template prompt with and without using a randomized value of
K at train-time for TopK expert selection: randomization largely prevents a shared expert. Shown are
the leading 4 tokens and expert indices.

0 20K 40K 60K 80K 100K 120K
Training steps

0.005

0.010

0.015

0.020

0.025

0.030

0.035

No
rm

al
ize

d
M

SE

GPT2-small
TC
STC
MxD
MxD (random K)

0 20K 40K 60K 80K 100K 120K
Training steps

0.000

0.001

0.002

0.003

0.004

0.005

0.006

No
rm

al
ize

d
M

SE

Pythia-410m
TC
STC
MxD
MxD (random K)

Figure 21: MxD performance with random K sampling: Normalized MSE loss as a func-
tion of training steps using a fixed Top K := 32 expert selection and when sampling K̂ ∼
Unif

{
K − K

2 ,K + K
2

}
.

43

D.1 Feature steering details

For the steering experiments, we use two LLM judges to grade generations on two axes. The full
template prompt we feed to gemini-2.0-flash and llama-4-scout-17b-16e-instruct is as
follows (note that line breaks and emphases are included here only to aid visualization):

Prompt given to LLM judges

You are an expert evaluator of synthetic text.
TASK: Rate a collection of {num_samples} samples along two independent axes.
AXIS 1 – CONCEPT COHERENCE:
0.00 no shared concepts/themes/style.
0.25 faint overlap.
0.50 some overlap or similar structure.
0.75 mostly the same concepts or structure; a few partial drifts.
1.00 all snippets clearly share the same concepts, themes, style, or structure.
AXIS 2 – GRAMMATICAL FLUENCY:
0.00 incomprehensible.
0.25 dense errors; meaning often obscured.
0.50 frequent errors; meaning still mostly recoverable.
0.75 minor errors that rarely hinder comprehension.
1.00 completely grammatical and natural.
(Do not penalise fluency if a snippet starts or ends abruptly.).
SCORING: Choose any real value in [0, 1] for each axis.
OUTPUT FORMAT: Respond with exactly two numbers formatted ‘0.00, 0.00’ in the order
[coherence, fluency] and no other text or symbols.
TEXT TO EVALUATE: {samples}

E Additional qualitative results

We show in Figures 22 and 23 tokens activating the first 9 experts as they appear numerically. We
sample 6 bins of expert coefficient value to show both tokens that highly activate the experts and
those that do so only mildly. As can be seen, both high- and low-level specializations emerge in both
GPT and Pythia models.

Whilst we observe specializations to a range of concepts (such as punctuation, MMO games, words
in specific contexts), we do not notice any systemic differences between the types of expert special-
izations that emerge between the two models in MxD layers.

44

Figure 22: Tokens activating the first 9 numerical experts on MxDs with K = 32 trained on
Pythia-410m; we sample 6 bands of activations to show both tokens that highly activate experts and
those that activate them only mildly. Magnitude of activation is denoted by the orange highlight.
Moderate specialism emerges, e.g., to MMO games, abbreviations, and words in specific contexts.

45

Figure 23: Tokens activating the first 9 numerical experts on MxDs with K = 32 trained on
GPT2-124m; we sample 6 bands of activations to show both tokens that highly activate experts and
those that activate them only mildly. Magnitude of activation is denoted by the orange highlight.
Moderate specialism emerges, e.g., to punctuation, names, and months.

46

	Introduction
	Methodology
	Preliminaries
	Mixture of Decoders
	MxDs are rank-preserving
	Factorized forward pass
	Extending MxDs to GLUs

	Experiments
	Sparse approximations of MLPs in LLMs
	Results: sparsity vs faithfulness
	Faithfulness in output space

	Feature evaluations
	Sparse probing with individual features/experts
	Feature steering

	Related work
	Conclusion
	Appendix
	 Appendix
	Proofs and additional technical results
	Proof of rank equality
	Proof of MxD forward pass equivalence
	Intuition for weight parameterization through the lens of tensor methods
	MxD weight tensors through the Khatri-Rao product
	Tensorized MxD forward pass

	GLU encoders are a mixture of rank-1 linear experts
	Hadamard-factorized tensors generalize MoVs
	TopK activation function

	Additional quantitative results and ablations
	Faithfulness in output space
	Additional reconstruction metrics
	Results on additional layers
	Initial results on Gemma2-27B
	Expert rank
	Comparisons to low-rank MoEs
	MxD empirical expert rank

	Computational cost of sparse layers
	Sparse probing
	Sparse probing results

	Ablations
	Choice of sparsity constraint
	Choice of MxD encoder

	Feature balance and shared experts
	Expert/feature balance
	Shared experts

	Detailed experimental setup
	Feature steering details

	Additional qualitative results

