OPT2024: 16th Annual Workshop on Optimization for Machine Learning

Batch size invariant Adam.

Xi Wang XWANG3 @CS.UMASS.EDU
University of Massachusetts Amherst
Laurence Aitchison LAURENCE.AITCHISON @BRISTOL.AC.UK
University of Bristol

Abstract

We propose a batch size invariant version of AdamW, which gives almost the same learning
trajectories irrespective of the minibatch size. Our batch size invariant AdamW splits the MINI-batch
into MICRO-batches. In the large-scale setting, MICRO-batches may be distributed among worker
nodes, but MICRO-batch gradients can also be evaluated in parallel on a single node (e.g. using
a vmap implementation from Jax or PyTorch). For the v term, standard AdamW first computes
the average over MICRO-batch gradients, then squares, while in the batch size invariant AdamW
proposed here, we first square the MICRO-batch gradients, then average. Previous work (e.g. Malladi
et al. 2022) used an alternative approach that involved a square-root scaling of the learning rate,
but this approach only works in the setting where the gradient variance dominates the square of the
expected gradient. In contrast, the approach proposed here gives batch size invariance without this
assumption. We confirm that in practice our scheme gives batch size invariance in a much larger
range of scenarios than the previous approach.

1. Introduction

Adam [10] and AdamW [13] are state-of-art optimizers, commonly used for LLM pretraining runs
[e.g. 22, 25]. Given the huge investments in these pretraining runs, it is critical to understand how
to tune the hyperparameters of AdamW'. However, as with most optimization algorithms, setting
the AdamW hyperparameters is difficult. As such, we may want to tune the hyperparameters in
smaller-scale settings and transfer those hyperparameters to a single, larger training run at the edge of
our compute budget. However, to do that effectively, we need our optimization to behave in the same
way for any MINI-batch size. This property, which we call batch size invariance, can be achieved
straightforwardly in SGD, by scaling the learning rate linearly with the batch size (i.e. n o< B)
[4,5, 11, 14, 16, 18-21, 24]. However, for modern adaptive optimizers such as AdamW [10, 13], it
is more difficult to achieve batch size invariance.

To understand the key barrier to obtaining truly batch size invariant AdamW, we need to look at
the AdamW update rule. Here, we ignore decay terms as they are not relevant for this explanation,

A ey

my
Wy = —N————.
K VU + €
The key term here is 9, which is a debiased, exponential moving average estimate of the raw
second moment of the gradient, E [(g’)2] (here, the expectation is over randomness in the choice of

1. We will use AdamW to denote both Adam and AdamW for the rest of the manuscript, as Adam can be obtained from
AdamW by setting the AdamW weight-decay hyperparameter to zero, A = 0. At the same time, any Adam weight
decay can be incorporated into the objective.

© X. Wang & L. Aitchison.

BATCH SIZE INVARIANT ADAM

no=107° no=107° no=10"* no=1073

8 3.5 E E
o g Batch size
2 2.5 i i invariant Adam
ﬁ ' n'=no X (B/Bmin)

1.5 T | T | t T | T |
A 3.51 E i
S \ \ Standard Adam
- - - -
g *° 0= o X (VB/Bin)

1.5 T 1 T 1 T T 1 T 1

0 25M 50M 0 25M 50M 0 25M 50M 0 25M 50M
#Tokens seen #Tokens seen #Tokens seen #Tokens seen
B=64 B=128 —— B=256 —— B=512

Figure 1: Batch size invariant AdamW (top) v.s. standard AdamW (bottom) on NanoGPT trained
on Shakespeare under various batch sizes (B) and base learning rates (7)9) with base batch size
Brin = 64. Batch size invariant AdamW uses actual learning rate 1’ oc B while standard AdamW
uses 17’ o< V/B [6, 8, 15]. Batch size invariant AdamW shows consistent test loss traces across batch
sizes until 9 = 10~ whereas standard AdamW shows discrepancy at the smallest 79 considered.

datapoints incorporated in the MINI-batch, and we use ¢’ for the MINI-batch gradient as we will use
g for the MICRO-batch gradient later in the manuscript). Of course, E [(¢')%] = E [¢/]? + Var[¢/],
i.e. the raw second moment is the sum of the mean-squared gradient, E [¢/]2, and the variance of
the gradient, Var [¢']. The key issue is that the variance of the MINI-batch gradient depends on
the MINI-batch size, Var [¢'] < 1/B [6, 8, 15]. There is therefore an inevitable MINI-batch size
dependence in 9, which appears as a change in the effective learning rate, 7/ (v/0; + €).

Recent work suggested correcting for these effects by tweaking the learning rate, n [6, 8, 15]. In
particular, they proposed a square-root scaling (i.e. n < v/ B). However, for this square-root scaling
to be valid, strong assumptions need to hold, namely that Var [¢'] “dominates” (i.e. is much bigger
than) E [¢/]2. Of course, this can hardly be guaranteed to hold. In fact, there are two settings where
this assumption might break down. First, close to initialization, where E [¢] will be large. Second, as
the batch size gets very large (e.g. in large LLM pretraining runs), we would expect Var [¢'] < 1/B
to become small.

We take a different approach to batch size invariance in AdamW, by modifying the AdamW
updates themselves to eliminate the batch size dependence at source. In particular, we consider
setting in which a MINI-batch is split into a number of MICRO-batches. These MICRO-batches may
be evaluated in parallel on a single node, e.g. using a vmap implementation from Jax or PyTorch.
Alternatively, in the large-scale setting, the MICRO-batches may be distributed among worker nodes.
Standard AdamW computes the average gradient (across MICRO-batches), then squares. In contrast,
we consider an alternative scheme, which first squares the MICRO-batch gradients, then averages
across MICRO-batches. We prove that this alternative scheme is batch size invariant under much
weaker assumptions (Appendix. C). In particular, we do not need the gradient variance to dominate
the expectation. We just need sufficiently small updates (e.g. learning rates), which is required
by Malladi et al. [15] anyway, and is just the AdamW analogue of the critical batch size in SGD
[4, 14, 16, 18, 24].

BATCH SIZE INVARIANT ADAM

Symbol Description

K Number of MICRO-batches in a MINI-batch.

Wy Parameter values after consuming ¢ MICRO-batch.
gt (w) Gradient for the ¢th MICRO-batch evaluated at w.
n Learning rate.

(71,72) EMA parameters (related to 51 and (2, Eq. 2).

A Weight decay coefficient.

Algorithm 1 MICRO AdamW (i.e. standard AdamW applied to MICRO-batches)

while not converged do
my = (1 —y1)my_1 + '7191‘6(71%71)
vy = (1= 72) ve—1 + 7297 (we—1)
My = —24%——
T IB(m)?
Vs = Vg
tT 1B (r2)! R
(1= nNwir = nzt

g
I

Algorithm 2 Standard AdamW applied to MINI-batches.

while not converged do
my = (1 —~1)ms—p + 71%12251%%%(“%%) ‘
Ut = (1 - 'Yé) Vi—p + ’Yé(;Zkzlgtfk'+ﬂ(u’t7r:))2
m/
= TR
p=
T 1-Ba ()t R
wy = (1=’ Nwi_p — 1/ \/%ﬂ

Algorithm 3 Batch size invariant AdamW applied to MINI-batches (ours).

while not converged do
my = (1 =) my—p + 71%2§=19t—k+n(wt_ﬁ)
] K P
vt = (1 - ’)é) Vt—r + ’yéﬁzk::lgifk:jtﬁ(/wt*ﬂ)
By = M
= TR G
b= v
b TR (p))
my

wy = (1=’ Nwi—py — 1/ Toire

2. Methods

To set the context, we recall the concept of a MICRO-batch. A MICRO-batch is formed by taking
a MINI-batch of B datapoints, and splitting it equally into x MICRO-batches, each of size B/k.
Then we compute the gradients for each of the MICRO-batches. Finally, we do a parameter update,
by aggregating the MICRO-batch gradients. Of course, MICRO-batches are widely adopted in the
training of deep networks, e.g. MICRO-batching facilitates larger MINI-batch sizes under constrained
memory by enabling gradient accumulation and supports data parallelism through distributing MICRO-
batches across workers for parallel gradient computation. That said, we can also easily run multiple
MICRO-batches in parallel on a single node, e.g. using a vmap implementation from Jax or PyTorch.
Importantly, our focus diverges from these applications; we leverage MICRO-batching to explore how
optimization algorithms are influenced by MINI-batch size.

We began by writing down standard AdamW updates applied to individual MICRO-batches
(denoted t) (Alg. 1). Here, g:(w) is the gradient of the objective for the ¢tth MICRO-batch. Note that

BATCH SIZE INVARIANT ADAM

we have written AdamW here in a slightly unusual parameterization, using,
frim)=1-m Ba(v2) =1 -2)

as the scalings we derive later on are much more simply expressed in terms of y; and 75 than in terms
of 81 and B5. Note that we can recover Adam from AdamW by setting A = 0, and incorporating any
Adam weight decay into the objective.

Next, we wrote down the algorithm for standard AdamW updates applied to MINI-batches
(Alg. 2). Here, the MINI-batch gradient for a single step are formed by averaging across the MICRO-
batch gradients, for all MICRO-batch in the MINI-batch. Importantly, note that we use ¢ to index
MICRO-batch, not MINI-batch. That means that updates advance the state in “jumps” of x steps (e.g.
from wy_, to wy to wyy) because of course, each update operates on a MINI-batch and a MINI-batch
is formed of k MICRO-batches. This unusual convention has the key benefit that the time indices
in standard AdamW remains aligned with the time indices in MICRO AdamW (Alg. 1), which will
be important as we will be assessing equivalence between MICRO AdamW and standard AdamW
or batch size invariant AdamW. However, this notation does have the disadvantage that it modifies
slightly the form of the debiasing equations (see the powers of steps = ¢/« in the expressions for 77
and v in Alg. (2) and Alg. (3)).

Batch size dependence in standard AdamW. A standard AdamW update (Alg. 2) applies to a
MINI-batch formed by merging x MICRO-batches. However, the arguments given in the introduction
indicate that standard AdamW is not batch size invariant. By “batch size invariant”, we mean that,
in some sensible limit, we get the same learning trajectories if we fix the MICRO-batch size, but
vary the MINI-batch size by taking different numbers of microbatches, x. To see that standard
AdamW (Alg. 2) is not batch size invariant, we consider the ¢, terms in the various algorithms. For
MICRO AdamW (Alg. 1), U is an exponential moving average of the raw second moment of the
MICRO-batch gradients,

E [g7 (we—1)] = E[g]” + Var[g] . 3)

where E [¢] and Var [g] is the mean and variance of MICRO-batch gradients. In contrast, for standard
AdamW (Alg. 2), 9, is an exponential moving average of the raw second moment of the minibatch
gradients

E[(135 gt pin(wi—r))?] = E[g]* + L Var[g]. 4)

Critically, as we have more MICRO-batches, x, in the MINI-batch, we get a better estimate of the
gradient and hence the variance term falls. And as the effective learning rate, n/(v/0; + €) depends
on 7, we can see that the effective learning rate depends unavoidably on the batch size.

Batch size invariant AdamW. We therefore consider a batch size invariant version of AdamW
(Alg. 3) in which the red term is the average over squared MICRO-batch gradients (as opposed to
standard AdamW, where the red term is the square of average MICRO-batch gradients). Thus, in
batch size invariant AdamW (Alg. 3), just like in MICRO AdamW (Alg. 1), ¥ estimates the expected
raw second moment of the fixed-size MICRO-batch gradients,

B [L5r 107 kiw(wi—r)] = E[g)* + Var[g]. (5)

BATCH SIZE INVARIANT ADAM

This expectation thus does not depend on x, avoiding a key source of batch size dependence. Proof
for the batch size invariance property is provided in Appendix. C, where we prove that the trajectories
for batch size invariant AdamW applied to any MINI-batch size (formed by x MICRO-batches) are
equivalent to the trajectory from « steps of MICRO AdamW on the same underlying MICRO-batches
(Alg. 1).

3. Experiments

In this section, we empirically confirmed that batch size invariant AdamW with sufficiently small
learning rates indeed gave almost exactly equivalent optimization results under different batch sizes.
We additionally compared its optimization trajectories against standard AdamW under the square
root scaling rule, where we observed a higher level of inconsistency across different batch sizes.

Optimization setting We considered two optimization methods: Batch size invariant AdamW with
actual learning rate)’ scaled linearly with the batch size B:

1" = 10B/Bmin, ©)
and standard AdamW, with 1’ proportion to v/B:

1" = no\/B/Bmin- (7

where 1) is the base learning rate and By, is the smallest batch size used for a particular task. For
both methods, we set the running average parameters [8] as

7 =0.1x 55 75 = 0.001 x 52— (8)
For all tasks and both optimizers, we swiped 79 in range {107¢,107%, 1074, 1073} and used Buin
as the MICRO-batches for batch size invariant AdamW.

Results The results are presented in Fig. 1 (NanoGPT on Shakespeare), Fig. 2, 3, 4 (ResNet-18
with batchnorm, ResNet-18 with layernorm, and ViT on CIFAR-10). Full model descriptions are
presented in Appendix. B. All figures show the model’s performance metrics trace for different
learning rates and batch sizes averaged over three random trials. Broadly, we observed that under
our proposed batch size invariant AdamW, the trajectories under different batch sizes almost exactly
overlap for small learning rates (note that expect batch size invariance breaking down at some
point as the learning rate increases is expected). In contrast, the standard AdamW with square-root
scaling (Fig. 2 left) reveals more pronounced differences across batch sizes across all learning rates
considered, including 7o as small as 10~".

4. Limitation

It is worth pointing out that, batch size invariant AdamW still demonstrates discrepancies between
batch sizes after the learning rate exceeds some certain “critical learning rate”, and this critical
learning rate (e.g. 10~* for experiments in Fig. 2) is far smaller than the commonly used value and
results in slow convergence. We believe such discrepancy is inevitable in that the batch size invariant
guarantee, similar to [15], is based on the assumption that the learning rate is sufficiently small,
which is an unknown amount that may vary between models and tasks.

BATCH SIZE INVARIANT ADAM

References

[1] Ekin D Cubuk, Barret Zoph, Dandelion Mane, Vijay Vasudevan, and Quoc V Le. Autoaugment:
Learning augmentation policies from data. arXiv preprint arXiv:1805.09501, 2018.

[2] Mostafa Dehghani, Josip Djolonga, Basil Mustafa, Piotr Padlewski, Jonathan Heek, Justin
Gilmer, Andreas Peter Steiner, Mathilde Caron, Robert Geirhos, Ibrahim Alabdulmohsin, et al.
Scaling vision transformers to 22 billion parameters. In International Conference on Machine
Learning, pages 7480-7512. PMLR, 2023.

[3] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al.
An image is worth 16x16 words: Transformers for image recognition at scale. In International
Conference on Learning Representations, 2020.

[4] Noah Golmant, Nikita Vemuri, Zhewei Yao, Vladimir Feinberg, Amir Gholami, Kai Rothauge,
Michael W Mahoney, and Joseph Gonzalez. On the computational inefficiency of large batch
sizes for stochastic gradient descent. arXiv preprint arXiv:1811.12941, 2018.

[5] Priya Goyal, Piotr Dollér, Ross Girshick, Pieter Noordhuis, Lukasz Wesolowski, Aapo Kyrola,
Andrew Tulloch, Yangqing Jia, and Kaiming He. Accurate, large minibatch sgd: Training
imagenet in 1 hour. arXiv preprint arXiv:1706.02677, 2017.

[6] Diego Granziol, Stefan Zohren, and Stephen Roberts. Learning rates as a function of batch
size: A random matrix theory approach to neural network training. The Journal of Machine
Learning Research, 23(1):7795-7859, 2022.

[7] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 770-778, 2016.

[8] Jacob Hilton, Karl Cobbe, and John Schulman. Batch size-invariance for policy optimization.
Advances in Neural Information Processing Systems, 35:17086—17098, 2022.

[9] Andrej Karpathy. NanoGPT. https://github.com/karpathy/nanoGPT, 2022.

[10] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[11] Alex Krizhevsky. One weird trick for parallelizing convolutional neural networks. arXiv
preprint arXiv:1404.5997, 2014.

[12] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
20009.

[13] Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

[14] Siyuan Ma, Raef Bassily, and Mikhail Belkin. The power of interpolation: Understanding the
effectiveness of sgd in modern over-parametrized learning. In International Conference on
Machine Learning, pages 3325-3334. PMLR, 2018.

https://github.com/karpathy/nanoGPT

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

BATCH SIZE INVARIANT ADAM

Sadhika Malladi, Kaifeng Lyu, Abhishek Panigrahi, and Sanjeev Arora. On the sdes and scaling
rules for adaptive gradient algorithms. Advances in Neural Information Processing Systems, 35:
7697-7711, 2022.

Sam McCandlish, Jared Kaplan, Dario Amodei, and OpenAl Dota Team. An empirical model
of large-batch training. arXiv preprint arXiv:1812.06162, 2018.

Fabian Schaipp, Ruben Ohana, Michael Eickenberg, Aaron Defazio, and Robert M Gower.
Momo: Momentum models for adaptive learning rates. arXiv preprint arXiv:2305.07583, 2023.

Christopher J Shallue, Jaechoon Lee, Joseph Antognini, Jascha Sohl-Dickstein, Roy Frostig, and
George E Dahl. Measuring the effects of data parallelism on neural network training. Journal
of Machine Learning Research, 20(112):1-49, 2019.

Samuel L Smith and Quoc V Le. A bayesian perspective on generalization and stochastic
gradient descent. arXiv preprint arXiv:1710.06451, 2017.

Samuel L Smith, Pieter-Jan Kindermans, Chris Ying, and Quoc V Le. Don’t decay the learning
rate, increase the batch size. arXiv preprint arXiv:1711.00489, 2017.

Mandt Stephan, Matthew D Hoffman, David M Blei, et al. Stochastic gradient descent as
approximate bayesian inference. Journal of Machine Learning Research, 18(134):1-35, 2017.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei,
Nikolay Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, et al. Llama 2: Open
foundation and fine-tuned chat models. arXiv preprint arXiv:2307.09288, 2023.

Mitchell Wortsman, Peter J Liu, Lechao Xiao, Katie Everett, Alex Alemi, Ben Adlam, John D
Co-Reyes, 1zzeddin Gur, Abhishek Kumar, Roman Novak, et al. Small-scale proxies for
large-scale transformer training instabilities. arXiv preprint arXiv:2309.14322, 2023.

Guodong Zhang, Lala Li, Zachary Nado, James Martens, Sushant Sachdeva, George Dahl,
Chris Shallue, and Roger B Grosse. Which algorithmic choices matter at which batch sizes?
insights from a noisy quadratic model. Advances in neural information processing systems, 32,
2019.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen,
Christopher Dewan, Mona Diab, Xian Li, Xi Victoria Lin, et al. Opt: Open pre-trained
transformer language models. arXiv preprint arXiv:2205.01068, 2022.

BATCH SIZE INVARIANT ADAM

Appendix A. Related work

The closest prior work is Granziol et al. [6], Malladi et al. [15] and Hilton et al. [8], as they propose
an alternative approach to obtaining batch size invariant AdamW by scaling the learning rate to try
to post-hoc correct for changes in the effective learning rate, 1/ (\/5 + €), caused by changes in 0.
In contrast, we propose to eliminate changes in the effective learning rate at source, by proposing
a modification to AdamW updates. There are three key differences between our approach and this
prior work. First, our approach gives a linear scaling of the learning rate, n oc B, while the prior
work proposes a square-root scaling, 77 o< /B (this is not a contradiction: both are correct in their
respective setups). Second, our theoretical approaches are radically different. In particular, Malladi
et al. [15] use stochastic differential equations. In particular, they take the choice of datapoints in
the MINI-batch to be random, and they consider the updates to be random variables. In contrast, in
our actual proof (Appendix F), we consider the choice of datapoints in the MINI-batches as fixed,
and thus the updates become deterministic. Instead, we ask: if we give the same set of datapoints
to two optimizers, in what settings are the resulting weight updates exactly equivalent? Third, our
approach gives batch size invariance under much weaker assumptions. In particular, we do not need
the gradient variance to dominate the expectation, we only need the updates to be sufficiently small
(which is required by Malladi et al. [15] anyway).

It turns out that this requirement for the updates to be sufficiently small is also encountered in
SGD, where it is understood as a critical batch size [14]. Notably, this work assumes takes n < B so
a critical batch size is intimately related to a critical learning rate. Shallue et al. [18] introduced the
term “perfect” scaling for the region in which training is batch size invariant and studied the effect
of e.g. architectures on the critical batch size. The dependence of the critical batch size on dataset
[4], gradient noise scale [16] and curvature Zhang et al. [24]. We observe a similar threshold for
batch size invariant AdamW (Fig. 3), though in our plots it is most straightforwardly interpreted as a
critical learning rate.

Appendix B. Full experiment settings and results

Task description We trained ResNet-18 [7], vision transformer [3, ViT] on CIFAR-10 [12] and
NanoGPT [9] on Shakespeare dataset. Note that, batchnorm inside ResNet-18 itself can introduce
batch size dependent effects (which arise because larger batches imply more accurate estimates of
the feature means and variances). Of course this does not affect our batch size invariant AdamW, as
those batchnorm means and variances are computed for the MICRO-batches. But it is important to
check that the batch size effects observed using Malladi et al. [15]’s square-root scaling are not just
an artifact of batchnorm. We therefore took the ResNet-18 (Fig. 2) and replaced batchnorm with
layernorm. We still found that our batch size invariant AdamW offered considerable improvements
in consistency across batch sizes (Fig. 3).

For ResNet-18, we used standard cross-entropy loss with random cropping and flipping as data
augmentation. For ViT?, we used a patch size of 8 and we added QK-layernorm [2, 23] for more
stabilized training under larger learning rates. We additionally incorporated label smoothing loss
and automatic data augmentation [1] to match up the test performance with the numbers reported in
other literature, e.g. Schaipp et al. [17]. For NanoGPT, we followed the model configuration in code

2. Implementation based on https://github.com/kuangliu/pytorch-cifar/

https://github.com/kuangliu/pytorch-cifar/

BATCH SIZE INVARIANT ADAM

base 3, which used a decoder-only transformer with 6 attention layers, and 6 attention heads with an
embedding dimension of 384.

We used constant learning with a weight decay of A = 0.01 for ResNet and ViT experiments.
For NanoGPT, we used cosine decay learning rate decay to a 1/10 of the initial learning rate and a
weight decay of 0.1, following the original codebase’s setting.

Appendix C. Theorem statements

While we have clearly eliminated one source of batch size dependence, we have yet to prove that
Alg. (3) really is batch size invariant in any formal sense. We begin with a theorem that states that
with an appropriate choice of hyperparameters, ~ steps of MICRO AdamW on MICRO-batches of size
M gives equivalent optimizer-state-updates (i.e. updates for m;, v; and g;) to a single step of batch
size invariant AdamW with the same datapoints grouped into a single MINI-batch of size B = kM
(Theorem 1). This implies that with an appropriate choice of hyperparameters, batch size invariant
AdamW with different MINI-batch sizes gives equivalent optimizer-state-updates after consuming
the same set of data points (Theorem 2). For the proofs, see Appendices D-G.

To understand the formal statement of the theorem, we need to understand how to formally obtain
small 7, v, and 2. We do this by setting,

n = 0o (9a)
v =M (9b)
Y2 = 0%2. (9¢)

and taking § — 0. Of course, as 6 — 0, all state variables (w;, m; and v;) stop changing so the
updates from the two optimizers are trivially equivalent. To avoid this trivial equivalence, we actually
consider the equivalence of weight changes, divided by ¢ (see below).

Theorem 1 Consider two optimizers: MICRO AdamW (Alg. I; i.e. standard AdamW applied to
MICRO-batches) with hyperparameters 1, y1 and 2, and batch size invariant AdamW (Alg. 3) with
hyperparameters

n = kn, (10a)
Y = K1, (10b)
N g— (10c)

applied to MINI-batches composed of kK MICRO-batches. We start both optimizers at time t — K at the
same initial state, Wi_, My— and v,_,. We take wy to be the result of applying k steps of standard
AdamW to k MICRO-batches, and w} to be the result of applying a single step of batch size invariant
AdamW to a MINI-batch (consisting of the same k MICRO-batches merged together). Then,

!/
L My — My LMy — My,
lim ————— = lim —————— 11
51—% 1) 51—%) (1)
/
. U — Vg .U — Vg
lim ——— = lim ———— 11b
550) 550 0 (11b)
/
. W — We—g . Wy — Wr—g
lim ———— = lim ————— 11
51—13%) 51—13%) (1)

3. https://github.com/karpathy/nanoGPT/blob/master/config/train_shakespeare_char.
by

https://github.com/karpathy/nanoGPT/blob/master/config/train_shakespeare_char.py
https://github.com/karpathy/nanoGPT/blob/master/config/train_shakespeare_char.py

BATCH SIZE INVARIANT ADAM

Standard Adam Batchsize invariant Adam
n"=no X (VB/Bmin) n'=no X (B/Bmin)

Train Acc.

Train loss

Test Acc.

Test loss

L s e ST el

T T T T T T T T
0 100 200 300 400 0 100 200 300 400

Epoch Epoch
No B
w1077 e 1076 w1070 w1074 1000 === 2000 === 5000 === 10000

Figure 2: Comparing the behavior of our proposed batch size invariant AdamW (right column), with
n o B against standard AdamW (left column), with 1 oc v/B [6, 8, 15]. The model was a ResNet-18
trained on CIFAR-10 over 200 epochs, under batch sizes (opacity) ranging from B = 1000 to
B = 10000, with B, = 1000. Each color represents a different base learning rate 7y. Note that
batch size invariant AdamW (right) gives almost perfect batch size invariance (in that the lines are all
on top of each other) up until = 1075 x (B/Bmin). In contrast, with standard AdamW (left), you
get discrepancies even with the smallest learning rate, i.e. 79 = 107".

10

BATCH SIZE INVARIANT ADAM

Standard Adam Batchsize invariant Adam
n’'=no X (v B/Bmin) n'=no X (B/Bmin)

1.0 .
0.9 A
0.8

0.7

Train Acc.

0.6

0.5

10° 5

Train loss

107! 3

Test Acc.

Test loss

0 100 200 300 400 0 100 200 300 400

Epoch Epoch
No B
1077 s 1076 e 1077 e 1074 w1000 === 2000 === 5000 === 10000

Figure 3: As Fig. 2, but with layernorm rather than batchnorm. In particular, we compare the
behavior of our proposed batch size invariant AdamW, with oc B (right) against standard AdamW,
with VB (left), both with B,;, = 1000. Similar to the batchnorm results, the batch size
invariant AdamW lines (right) almost exactly line up, until n = 10~* x (B/Bmin). Whereas standard
AdamW (left) shows discrepancies between lines even under the smallest learning rate considered

(no =1077).

11

BATCH SIZE INVARIANT ADAM

Standard Adam Batchsize invariant Adam
I7'=I70)< (V B/Bmax) nl=’70x(B/Bmax)
J
()
<<
C
‘©
=
wn
%))
o
C
‘©
=
9]
Q
<
@
@
@
o
i
@

T T T 1 T T T 1
0 100 200 300 400 0 100 200 300 400

Epoch Epoch
No B
s 1077 e 1070 e 1070 e 1074 w500 ==== 1000 === 2000 === 5000

Figure 4: As Fig. 2, but use ViT rather than ResNet-18. Again, we compare the behavior of our
proposed batch size invariant AdamW, with 1) oc B (right) against standard AdamW, with < v/B
(left). A Bpin of 500 is used. Standard AdamW shows aligned trajectories for the smallest and largest
base learning rate but shows discrepancy at all values of 79. This is expected, as obtaining batch
size invariance with standard AdamW under the square-root scaling requires the gradient variance
dominating the gradient mean, which may not hold when the parameters are near initialization, where
the gradient may have a large magnitude. Regardless, our proposed batchsize invariant AdamW
shows consistency across all learning rates considered at all stages in the optimization.

12

BATCH SIZE INVARIANT ADAM

i.e. the state updates for the merged and unmerged optimizers are equivalent for sufficiently small n,
Y1 and .

Theorem 2 Consider batch size invariant AdamW under two MINI-batch sizes B' = &'M and
B" = k"M, where M denotes the size of the MICRO-batch, with hyperparameters

n' = k'no, n" = k"o (12a)
v = &'y, v =" (12b)
Yo = K'v2, Vo = K"y2 (12¢)

Consider an integer number of MICRO-batches, K, which can be divided by both k' and r". We start
both optimizers at time t — K with state my_ i, vs_ o, wy_ . We take K/’ update steps with the
rst optimizer, which results in an optimizer state of m},v,, w;. We also take K /k" update steps with
P P ts Uty W D P
the second optimizer, which results in an optimizer state of mj, v}, w. Then,

"
my — MK

lim ———— =i 1
530 0 550) (132)
!
. Uy — UK . Uy —U-K
lim =1 13b
530 0 530 o (13b)
!
. Wy —W—K . Wy —Wi—K
lim —+——— =] 1
530 4] 550 0 (130)
i.e. the state updates are equivalent for sufficiently small n, v, and ~s.
Appendix D. Connecting limits in Theorem 1 with gradients
Notice that the quantities in Eq. (11) can be understood as derivatives,
dmy . myp—my_g dm) . mj—mi_,
— =lim —— = lim ————= 14
o as0 0 PR = R R (142)
dve . v — vy dv, . v —v_,
— = lim ———— — = lim ———= 14b
5 o500 s ss0 o0 (145)
dwe . wp— wp_g dw; . wp—w;_,
— =lim —— = lim ———*. 14
s as0 0 b as0 0 (14)
To obtain this result, we used the observation that for § = 0, the state does not change, so
we(d =0) = w—yg wi (6 =0) = wy_, (15a)
my(6 =0) = my_s my(6 = 0) = my_g, (15b)
’Ut((s = O) = Vt—k 1)1{/((5 = 0) = Vt—k- (150)

Thus, all we need to do is show equivalence of the gradient of the state (m;, v; and w;) wrt 6.

Appendix E. Warmup by proving a similar result for SGD

To prove the equivalance of the merged and unmerged optimizers, it is easiest to first consider SGD.
A single SGD step can be written,

gt = grad, (wy—1) (16a)
Wy = Sgd(wt—17 gt, 7]) (16b)

13

BATCH SIZE INVARIANT ADAM

where grad, is a function that computes the gradients for the ¢th microbatch, and sgd is a function
that applies a single SGD update,

grad,(w) = VL (wi—1), (17a)
sgd(w, g,m) = (1 = An)w — ng. (17b)

We have written the updates in this slightly unusual form to make it possible to carefully distinguish
partial and total derivatives, which turns out to be important in our setting to apply the chain rule
correctly. Specifically, the chain rule applied to g; and w; gives,

dg: _ Ogr dwiy

= 18
dn Oowg_1 dn (182)
dwp _ OQwy dwiy | Owidgs | Owy (18b)
dn Qw1 dn dgr dn on
The partial derivatives here are formally defined as,
gt ~ lim grad,(wi—1 + h) — grad, (we—1) (19)
owy_1 h—0 h
8?,Ut — lim Sgd(wt—l + h, gt 77) - Sgd(wtfla gt, 77) (19b)
810)571 h—0 h
% — lim Sgd(wtfla gt + h? 77) - Sgd(wtfla g, T’) (190)
th h—0 h
% — lim Sgd(wt—lv g¢, 7 + h) - Sgd(wt—17 gt 77) (19(1)
on h—0 h

i.e. the partial derivatives compute the change in the output of the function (either grad, or sgd) as
one of the arguments to those functions changes, while all the other arguments are held fixed. In
contrast, the total derivatives (d/dn) represent the total change through the whole “compute graph”,
i.e. the total change in w; and g if we start from a fixed w;_, and change 7.

To compute the total derivative for w;, we use the following partial derivatives,

0
el (20a)
Owg_1
0
e (20b)
gt
0
S = g~ Mwin. (200)
n
Substituting these partial derivatives into the total derivative,
dw; dw;_q dgy
— =(1- —n— — g — A\wy_1. 21
dn (U)dn Udn gt — Aw—1 (21)
Evaluating at n = 0,
dw dwy—
ol = e e, (22)

14

BATCH SIZE INVARIANT ADAM

we get a simple recursive expression.
Then, if we fix w;_, and consider computing w; through « steps of gradient descent, we get,

dwt

o = - Z (Gt—rtk + A0 rk-1) 23)

n=0 k=1

We can simplify this expression by noting that at = 0, the weights at all timesteps are equal,
wy_1 = W¢_9 = - -+ = Wi_k. This has important implications for the gradient terms. Specifically, g;
is the gradient for the tth datapoint/microbatch, evaluated using the model parameters at timestep
t — 1, i.e. w;—1. But if the weights do not change, the average of these gradients can be computed
based on the initial set of weights (i.e. based on w;_),

%22:1%—%/@ =0 = %22:1 gradt—k+n(wt—k+m—1) = 122:1 gradt—k+f<(wt—n) = 91/5‘

n=0 G
(24)

Here, g; is this average gradient for data across all steps, but evaluated using the initial weights,
wy—. Thus the gradient resulting from the x updates is,

dwt

% = —RA\Wy_x — /ig;. 25)

n=0

This is starting to resemble a single step of a merged optimizer which performs a single step using a
minibatch consisting of the x minibatches.

However, to be sure of the connection to a single step of a merged optimizer, we need to formally
define this optimizer.

g; = grady(wi—s) (26a)
wy = sgd(wi—g, g;, 1) (26b)

where grad; is a function that computes the gradients for the tth minibatch,

grady(w) = 35 grad, .y (w) (27)
Now, we compute the gradient of w} wrt 7, taking ’ = k1,

/
dw;

= —KA\Wi—p — KG}- (28)
dn =0 " t

This is exactly equal to the gradient wrt 1 of the multi-step gradient in Eq. (25), which establishes
our result.

Appendix F. Proof of Theorem 1

In Appendix D, we established that the limits in Theorem 1 can be understood as derivatives (Eq. 14).
However, computing gradients through multiple Adam updates is not trivial. To do so correctly,
we need to be careful to distinguish partial and total derivatives. To that end, we write MICRO Adam

15

BATCH SIZE INVARIANT ADAM

updates (Alg. 1) (i.e. standard Adam applied to microbatches) in an unusual form,

gt = grad,(we—1) (29a)
my = emaq (my—1, G¢,0) (29b)
v = emag(ve—1, g, 9) (29¢)
ug = norm_emay (Mg, vy) (29d)
wy = update(wy—1, ug, 0) (29¢)
where,
emaj(m,g,0) = (1 — dy1)m + dy19 (30a)
emay (v, g,0) = (1 — 092)v 4 67929> (30b)
update(w, u, d) = (1 — 6n\)w — o7u. (30c)
norm_emay(m, v) = A (30d)
(V) + €
where,
) oom m
my(m) = T e = (30e)
. v v
Og(v) = = - (30f)

=8 T (1-on)

We are interested in the three state variables, m,, vy and wy, that propagate across timesteps. Using
the chain rule, the gradients for these variables can be written,

dmt - 8mt dgt 3mt dmt_l 8mt

o T eIt 31
@ g ds T omi, do | 96 (31a)
d’Ut 8'01} dgt th d’Utfl 8vt
= —-— 31b
A g ds v do @ (G1b)
dwt th dwt_l 8U)t dut 8U)t
— = — + == 31
45 Ow, d6 ou ds | @ ()
We begin by considering the first state variable, m;. We substitute the partial derivatives,
LU (322)
gt
Ome 1 ss, (32b)
oms_1
omy _
95 =1(g9t — mi—1), (32¢)
into Eq. (31a),
dm d my—
== M+ (L= 09) T+ g —). (33)

16

BATCH SIZE INVARIANT ADAM

Now, we evaluate at 6 = 0,
dmt
do |s5—

which gives a simple, recursive result.
We follow almost exactly the same procedure for v;. We substitute the partial derivatives,

_dmyy
dé

+ Y1(g9¢ — mi—1), (34)
5=0

g”t 265201, (352)
gt

O _y g5, (35b)
Ovi—1

ov

a&t Y2(g? — vi_1). (35¢)

into Eq. (31b),

duy dgy dvy
= 20729t — 1— 0% — Up_1). 36
o V29175 +(2) dd Yo (g7 — vi—1) (36)
Now, we evaluate at 6 = 0,
dvy dvi—q _ /9
i — — v 37

which gives a simple, recursive result.
Finally, we follow a similar process for w;. We substitute the partial derivatives,

Owr _ 5 (38a)
6Ut
QW _ g (38b)
Oowi—1
O (g + A1) (38¢)
% n(ug W—1)- ¢
into Eq. (31¢),
dwy duy dwi—1
- -).
x5 =07 s + (1 = dnA) a5 N(ug + Awg—1) (39)
Now, we evaluate at § = 0,
dw; dwys_1q _
—_— = — AWi_1). 40
| & |, M(us + Adwe_1) (40)

which gives a simple, recursive result.
Now, we consider fixing m;—_, v;—x, and w;_, and performing « steps of the optimizer

dm
d—ét =N Z (Gt—rth — Mu—rtk—1) (41a)
6=0 k=1
dv a
cT(St =72 Z (97w — Vi=rth—1) (410)
6=0 k=1
dw =
d—(; =-7 Z (Ut + AW pik—1) - (410)
6=0 k=1

17

BATCH SIZE INVARIANT ADAM

Remember that as § — 0 all the state variables do not change, and are equal to their initial values,

Mt—g = Mp—g4+1 = - = M—1 = MYy (42a)
= Vt—1 = VUt (42b)

Wt—p = Wt—pg+1 = *°° = Wt—1 = Wt. (42¢)

Vt—x = UVt—g+1 =

Using these constant values, along with Eq. (24),

dmt

— = —KNMy—r + 19 pe1 Gt—rthk (43a)
dé |s_g

dv o

— = —KY2Vt—x + ’_72Zk=19t27n+k (43b)
do |s5_

dw "

—= = (TR sk + RAWE). 430)
do |s5—

Finally, we consider the u;_ . terms, which requires us to consider the debiasing steps. Debiasing
actually stops doing anything for fixed ¢, in the limit as § — 0, (i.e. 7:(m) = m). To avoid this
trivial equivalence, we therefore consider a limit in which ¢ increases as § falls,

t=1/6, (44)

where t is fixed. That makes sense, because ¢ decreases, all the updates become smaller, so we may
want to perform more iterations. We are going to use the standard limit,

lim (14 2)"* = e, (45)

T—r00

In particular, considering the (1 — #16)? term in Eq. (30e), taking t = /8, 6 = 1/x, and identifying
a=—ryand b =1,

lim(1—516)" = lim (1 - 2)% =77, (46)
lim (1 - Y20)t = lim (1 Lylr — g2t (47)

(where the second equation is exactly the same thing, but for v). In this limit, the debiasing steps can
be written,

lim mg(m) = e m, (48)
%iir(l) e (v) = e P2ly. (49)

Substituting the result of these debiasing steps into Eq. (43),

dm
M N Gtk (502)
dv _ _
L = v+ Rk (50b)
dd {59
d - -t
ki)) AT VAR (50¢)

18

BATCH SIZE INVARIANT ADAM

Overall, these updates resembles a single step of the merged, batch size invariant Adam.
But to be sure, we write batch size invariant Adam updates in Alg. (3) as,

gt = grady(w—y) (S1a)
sy = gradsqy (w;—y) (51b)
my = emay (M¢—r, g, 0) (5lo)
v) = emah(vi_x, 8}, 0) (51d)
u; = norm_update] /H(mé, v}) (51e)
w; = update’ (w]_q, u}, 6) (51f)
where,
grady(wi—r) = %2221 grad; 4, (We—x), (52a)
gradsay(we—x) = £ 35y gradi g (we—r), (52b)
ema) (m, g,8) = (1 — dxy1)m + dky1g (52c¢)
emab(v,8,0) = (1 — 6k%2) v + 6KYas (52d)
update’ (w, u, §) = (1 — SkfA\)w — dkiju. (52e)
iy, (m)
norm_update Jr(m,v) = At# (52f)
o /K(U) +e
where,
A1 m
— S 52
1 v
= 52h
vt/n(v) 1— (1 _"Yé)t/ﬁ ()
Now, the gradient of the state variables for the merged, batch size invariant Adam updates is,
dm;, _ _
ddt = KY1Mt—k + ’lezzlgt—k—&-ﬁ (53a)
6=0
dv} _ _
5| = vkt 2 R0 ke (53b)
6=0
dw)
=+). (53¢)
6=0

Comparing these expressions to Eq. (41), we are almost done. It only remains to consider xuy, again
in a limit in which ¢ increases as 0 decreases, t = t/d. Again, we consider the (1 — 'yi)t/ ¥ term,
using the standard limit, lim,_, (1 + %)bf"’ =e% take 6 = 1 /x, and identify a = —% and b = ¢,

t _

i _ AN OR) 5 — kA I 0R) — _ EM T — ot
lim(1 —) lim (1 — #716) Jim (1= =) n" = e (54)
Thus, the debiasing steps can be written,
lim 1t} (m) = e, (552)
lim 7, (v) = e T2ty (55b)

19

BATCH SIZE INVARIANT ADAM

Which gives final gradients,

dm% _ — K
5 = —KVMi—k + V1D p—1 Gt—rtk (56a)
§=0
dv;
dTSt = —KVVi—r + V2D a1tk (565)
§=0
dw e
§=0 Utfﬂe_’mt +e€

These gradients are exactly the same as the gradients for the multi-step updates (Eq. 41), which
proves our result.

Appendix G. Proof of Theorem 2
By Theorem 1,

. Wy —Wi—K . Wy — W—K .
| ¢ | 1 7
55% 1) 513%] 1) (51~>0) (572)
oMy —My—K oMy —NMy—K .My —y—K
1 ¢ =1 =1 57b
51—13(1)) 51—% 1) 51—13(1)) (57b)

"

. U — UK UVt — Vt—K Vy —UVt—K

| ¢ =1 =1 57

51—%) 5—%) 5—0 1) (57¢)

where my, vy, wy is the result of applying K steps of Micro-Adam, with hyperparameters 7, 1, ¥2.

20

	Introduction
	Methods
	Experiments
	Limitation
	Related work
	Full experiment settings and results
	Theorem statements
	Connecting limits in Theorem 1 with gradients
	Warmup by proving a similar result for SGD
	Proof of Theorem 1
	Proof of Theorem 2

