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ABSTRACT

We study the performance of BLOOM large language models of different sizes on
understanding 12 different languages from the Chomsky hierarchy using few-shot
prompts. We investigate whether an increase in the complexity of the languages
learned by the larger models be characterized using the Chomsky hierarchy. We
first show that prompting in BLOOM models enables reasoning with a good ac-
curacy on language tasks as diverse as stack manipulation, string reversal, occur-
rence comparison, odds first, and interlocked pairing, when the queries are over
short strings, that is, small bitwidth bit-vectors from the language. Second, we
discover that the two largest models have the highest accuracy on such tasks for
prompts with a fixed length but smaller models are able to achieve similar accura-
cies with longer prompts. Unlike classical automata or grammar based approaches
where algorithms for more complex languages in the Chomsky hierarchy can also
recognize simpler languages, we find that the performance of the BLOOM large
language models cannot be explained by the complexity of the languages in the
Chomsky hierarchy.

1 INTRODUCTION

Generalized pre-training of transformers and other models on large multidomain multilanguage
text corpora have demonstrated unparalleled performance on multiple different language processing
tasks for a few years now. More recently, it has been shown that the fine-tuning step of retraining
such models on thousands or tens of thousands of examples can be replaced merely by few-shot
demonstrations or prompting. The accuracy of such prompts for large language models is strongly
comparable to fine-tuning using additional data for many tasks (Brown et al., 2020b).

The Chomsky hierarchy (Martin, 2022; Chomsky, 1959) is a classical approach for formal clas-
sification of languages into different complexity classes: regular languages, deterministic/non-
deterministic context-free and context-sensitive languages. Formal models of increasing complexity
such as deterministic finite automata, deterministic pushdown automata, non-deterministic push-
down automata, and non-deterministic Turing machines with linear space can recognize each of
these languages - thereby, establishing a hierarchy of increasing complexity among these languages.
Automata and grammars suitable for languages in the higher echelons of the Chomsky hierarchy
can always be used to reason about languages lower in the Chomsky hierarchy.

We investigate if prompting in BLOOM large language models respects the Chomsky hierarchy, that
is, for a given model, does the accuracy decrease with increase in the complexity of the language?
We employ the BLOOM model (BigScience, 2022) as multiple trained model weights for BLOOM
are publicly available and the model may be deemed to be more open as it has been trained by
multiple partners on a public compute infrastructure. The central contributions in this paper are:

1. We evaluate the efficacy of prompting for a large language model BLOOM-176B in un-
derstanding languages from different classes of the Chomsky hierarchy. We observe that
prompting is capable of solving problems with a good accuracy from different echelons of
the Chomsky hierarchy, such as stack manipulation, string reversal and interlocked pairing.

2. We analyze the influence of the length of prompts on the accuracy of BLOOM models on
the different tasks from the Chomsky hierarchy. We find that an increase in the length of
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our prompts generally leads to an increase in model accuracy, and the length of the needed
prompt depends both on the model and the task.

3. We study the influence of the size of the BLOOM model on the accuracy of the different
tasks from the Chomsky hierarchy. Based on our analysis of 5 different BLOOM models
with sizes 0.56 billion, 1 billion, 3 billion, 7 billion and 176 billion parameters, we find
that the two largest models have the highest accuracy on our tasks with a fixed length of the
prompt but smaller models are able to achieve similar accuracies with longer prompts.

4. Unlike classical automata or other grammar-based approaches where algorithms for more
complex languages in the Chomsky hierarchy can also recognize simpler languages, we
find that the performance of the BLOOM large language models cannot be explained by
the complexity of the languages in the Chomsky hierarchy. BLOOM models perform better
on context-sensitive language tasks than simpler regular language tasks.

2 SUMMARY OF RESULTS
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Figure 1: Prediction accuracy vs. ran-
dom accuracy for languages from the
Chomsky hierarchy for the BLOOM-
176B model with input length 4.

Our analysis uses three languages at each of the four lev-
els of the language hierarchy - Regular languages, Deter-
ministic Context Free (DCF), Non-deterministic Context
Free (NCF), and Context Sensitive (CS). We use the input
strings in the language of different lengths ranging from
4 to 8 bits, and use BLOOM models of 5 different sizes.
In Table 1, we present the accuracy of the BLOOM-146B
model for all the languages for different input lengths,
along with the accuracy of the random guess. Figure 1
shows how the improvement in the accuracy over ran-
dom guess for the input length of 4 bits. We observe
that the model is able to learn two context-sensitive lan-
guages very accurately. These models are trained using
natural language which is known to be mildly context-
sensitive (Shieber, 1985) which can explain its ability to
learn languages with context, but the complexity of the
languages learned by the larger models do not correspond
to the Chomsky hierarchy and the model has very poor
prediction accuracy on the much lower complexity reg-
ular languages. Even within the same level of Chomsky
hierarchy, the model shows a significant variance in its learning accuracy. In Section 5, we analyze
the accuracy across different model sizes, language complexity, input lengths, and prompt lengths.

Language Hierarchy Problem Random Accuracy Accuracy Accuracy
Accuracy (4 bits) (6 bits) (8 bits)

Regular Language
Parity Check 0.50 0.42 0.63 0.51
Even Pairs 0.50 0.54 0.61 0.71

Modular Arithmetic 0.33 0.35 0.37 0.24
Deterministic
Context-Free
Language

Reverse String 0.0625-0.004 0.29 0.11 0.10
Stack Manipulation 0.0625-0.004 0.43 0.38 0.33

Compare Occurrence 0.5 0.81 0.82 0.84
Non-deterministic
Context-Free
Language

Divide-by-2 0.25-0.125 0.34 0.25 0.27
Equal Repeats 0.33 0.24 0.24 0.26

Missing Palindrome 0.5 0.24 0.51 0.52

Context-Sensitive
Language

Binary Addition 0.0625-0.004 0.82 0.21 0.03
Odds First 0.0625-0.004 0.29 0.25 0.33

Interlocked Pairing 0.0625-0.004 0.76 0.56 0.19

Table 1: BLOOM-146B accuracy on different language tasks in the Chomsky hierarchy.
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3 RELATED WORK

Chomsky Hierarchy. With the goal of understanding the complexity of natural languages, the
field of computational linguistics has sought to understand the place of natural languages within
the hierarchy of formal languages. Since natural languages are considered to be “mildly” context-
sensitive (Shieber, 1985; Jäger & Rogers, 2012), and context-sensitive languages generalize regular
languages and context-free languages, it is plausible that large language models trained on natural
language corpora can reason about languages at multiple levels of the Chomsky hierarchy. We inves-
tigate this hypothesis in our paper, and shown that prompting in BLOOM models can reason about
language tasks with small bit-widths across multiple echelons in the Chomsky hierarchy. Formally,
Chomsky’s hierarchy is built on placing restrictions on the production rules � !  of a grammar.
The following three restrictions create three layers of languages in the hierarchy:

1. Context-Sensitive: Consider the production rule �!  , then there are �1, A,�2, and ! such that
the production can be written as �1A�2 ! �1!�2. Hence, in general, the substitution of A with
! depends on the context �1 and �2.

2. Context-Free: Consider the production rule �!  , then there are �1, A,�2, and ! such that the
production can be written as �1A�2 ! �1!�2, and A ! ! i.e. ! is obtained from the symbol
A without any knowledge of the context �1 and �2.

3. Regular: Consider the production rule � !  , then there are �1, A,�2,!, B and a such that the
production can be written as �1A�2 ! �1!�2, A ! !, and ! = a or ! = Ba. The last two
restrictions are additional and allow the string to grow either with a non-terminal and a terminal
or just a terminal symbol.

An extension of the Chomsky hierarchy is hypercomputation Siegelmann (2003; 2013), where
the connection between hypercomputation and real-valued neural networks has been investigated.
The connection between traditional neural networks and the Chomsky hierarchy has been stud-
ied (Delétang et al., 2022) with an emphasis on long short-term memory (LSTM), recurrent neural
networks (RNNs) aided with deterministic stacks, non-deterministic stacks, and tapes, as well as
relatively small transformers. Their goal was to train such neural networks enabled with appropri-
ate stacks or tapes on languages from the Chomsky hierarchy. On the other hand, our goal is to
understand if prompting in large language models respects the Chomsky hierarchy.

BLOOM Large Language Model. Transformers and their variants have been trained with autore-
gression or masking on large multi-language text corpora without an emphasis on a specific end task.
Large language models such as BERT (Devlin et al., 2018), T5 (Raffel et al., 2020), GPT (Brown
et al., 2020a), OPT (Zhang et al., 2022), PALM (Chowdhery et al., 2022) and BLOOM (BigScience,
2022) yield results close to the state-of-the-art on popular benchmarks in several language tasks.
Subsequently, such generalized pre-trained transformers have achieved excellent performance on
multiple tasks using fine-tuning, i.e., training over thousands of examples from the specific task.
GPT-3, an autoregressive model, is a popular example of such a large language model that is
available for use online or via an API after approval from the developers. BLOOM is an open-
science open-access autoregressive multi-language model that is trained on the Jean Zay Public
Supercomputer provided by the French government and is readily available to the public Big-
Science (2022). Unsupervised language modeling Jelinek & Mercer (1980) estimates the distri-
bution of an input x from a set of examples (x1, x2, . . . , xm) each composed of a sequence of sym-
bols (s1, s2, . . . , sn) by factorizing the joint distribution as the product of conditional distributions:
p(x) =

Qn
i=1 p(sn | s1, s2, . . . , sn�1). The need to compute such estimates using the Transformer

framework Shoeybi et al. (2019) has led to the introduction of parallelism into both components
of the transformer layer, the self-attention layer and the 2-layer multi-layer perceptron that follows
it. A key insight has been to identify methods for parallelizing the General Matrix Multiply while
minimizing the need for synchronization. BLOOM uses a corpus of 46 natural languages and 13
programming languages that correspond to 1.6 TB of pre-processed text or 350 billion unique to-
kens for training. The 70-layer 14336-dimensional model is a modified Megatron-LM GPT2 with a
decoder-only architecture and employs ALiBI positional encodings with GeLU activation functions.
We employ prompting on 5 pre-trained BLOOM models with an increasing number of parameters
in our analysis. The simplest of these models has 560 million parameters while the most complex
model has 176 billion parameters. We also employ intermediate BLOOM models with 1 billion, 3
billion and 7 billion parameters in our investigations.
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4 PROMPTS FOR CHALLENGE LANGUAGE PROBLEMS

We prompt the BLOOM large language models (LLMs) on a benchmark of 12 languages (Dancette
& Cord, 2022) drawn from different classes of the Chomsky hierarchy. Further, we can vary the
length of the string from the language with which we prompt the model to increase the complexity
of the task. Without loss of generality, we use bitvectors as strings and the bit width of the bitvectors
provides another orthogonal dimension in which we scale a language task. This is in addition to
the complexity of the language in the Chomsky hierarchy. Hence, we explore the capabilities of the
BLOOM large language models across two different scaling dimensions. We describe the challenge
language problems and the design of the prompts for these problems in this section. In our experi-
ments, we also consider prompts of different lengths. We employ three different languages for each
of the different types of language classes in the Chomsky hierarchy.

4.1 REGULAR LANGUAGES

For the class of regular languages, we consider the following problems: (i) Parity Check, (ii) Even
Pairs, and (iii) Modular Addition. Parity recognizes if the input binary is of even parity, that is,
s 2 (0⇤10⇤10⇤)⇤. Even Pairs recognizes if the input binary has an even number of 01s and 10s,
that is, s 2 ((00+ 11)⇤(01+ 10)(00+ 11)⇤(01+ 10)(00+ 11)⇤)⇤. Modular Addition obtains the
sum ((m+ n) mod 3) given two numbers m and n.

Parity: We created the following prompt to perform parity check on bit strings, that is, count if the
number of 1s in the bit representation of an integer is odd or even. We use 20 examples in each
prompt to guide the large language model BLOOM.

Sum of digits of 11100010 is 4; its parity is even.
Sum of digits of 10011101 is

The LLM predicts the following output in response to this query:
Sum of digits of 10011101 is 5; its parity is odd.

Even Pairs: We created prompts of the following form to detect an even number of 01 and 10 pairs
in binary strings. The response to such natural language queries require reasoning over the basic
facts. We use 3 examples in each prompt for 4 bits, and 20 examples for longer bit-widths.

The number of 01s in the string 10011001 is 2 and the number of 10s is 2, their sum is 4; hence, the
class is 1.
The number of 01s in the string 11010011 is

The LLM predicts the following output in response to this query:

The number of 01s in the string 11011001 is 2 and the number of 10s is 2, their sum is 4; hence, the
class is 1.

Modular Addition: We created the following prompt to perform modular addition on in-
tegers. We use 5 examples for addends with 4 bits, and 20 examples for long bit-widths.
The binary sum 1110 + 1001 in decimal is 14 + 923, and 23 % 3 = 2, which in binary is 10.
The binary sum 1000 + 1111 in decimal is

The LLM predicts the following output in response to this query:

The binary sum 1000 + 1111 in decimal is 12 + 1111, and 23 % 3 = 2, which in binary is 10.

4.2 DETERMINISTIC CONTEXT-FREE LANGUAGES

For the class of Deterministic Context Free Grammars, we employ the following problems: (i)
String Reversal, (ii) Stack Manipulation and (iii) More 1s than 0s. String Reversal computes the
reverse of a string. The string wwr is produced by the following production rules of a context-free
grammar: S ! aSa, S ! bSb, S ! aa, S ! bb. Stack Manipulation focuses on a stack with
0 and 1 entries and several push and pop operations; finally, we seek to identify the deterministic
state of the stack after these operations. More 1s than 0s compares the number of 1s and 0s in a
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string. A string with more number of 1s than 0s is given by the following context-free grammar:
S ! ✏|SS|1S0|0S1|1S|1.

String Reversal: We created the following prompt to reverse a string. We use 20 examples in our
prompts with 5 bits or more, and 5 examples for prompts with 4 bits.

Reverse of the binary string 11100010 is 01000111.
Reverse of the binary string 11000010 is

The LLM predicts the following output in response to this query:

Reverse of the binary string 11000010 is 01000011.

Stack Manipulation: We employ the following prompt to obtain the state of a stack after its manip-
ulation. We use 5 examples in the prompt for final stacks with less than 5 items, and 20 examples in
the prompt for deeper stacks.

Given the initial stack 10011101 and the operation sequence PUSH 1 POP POP POP PUSH 1 PUSH
1 POP POP the stack is 100111.
Given the initial stack 10110011 and the operation sequence PUSH 1 PUSH 1 POP POP POP POP
PUSH 1 PUSH 1 the stack is

The LLM predicts the following output in response to this query:

Given the initial stack 10110011 and the operation sequence PUSH 1 PUSH 1 POP POP POP POP
PUSH 1 PUSH 1 the stack is 10110011.

More 1s than 0s: We used the following prompt to determine if a string has more 1s than 0s. We
use 3 examples for prompts with inputs of 4 bits or less, and 20 examples with inputs of longer
bit-widths.

Number of 1s in 1101 is 3 and number of 0s in 1101 is 1; since 3>1, the class is 1.
Number of 1s in 1110 is

The LLM predicts the following output in response to this query:

Number of 1s in 1110 is 3 and number of 0s in 1110 is 2; since 3>2, the class is 1.

4.3 NON-DETERMINISTIC CONTEXT-FREE LANGUAGES

For the class of Non-deterministic Context Free Grammars, we employ the following problems:
(i) Divide by 2, (ii) Equal Repeats, and (iii) Missing Palindrome. Division by 2 produces a string
0dn/2e10bn/2c+m given an input string 0n�110m. Equal Repeats checks which fragment of a string
has been repeated. Given a string of the form 0l1m0n where l = m, m = n or l = n, equal repeats
identifies the string as class 0 if l = m; otherwise, it identifies as class 1 if m = n; otherwise,
identifies as class 2 if l = n. Given a ternary string s with exactly one ‘2’, Missing Palindrome
determines if the ‘2’ should be replaced by ‘1’ or ‘0’ to form a binary string that is a palindrome.

Division by 2: We design the following prompt to divide a number by 2 using its unary represen-
tation. We use 5 examples for 7 bits or more, 3 examples for 5 bits or more, and 2 examples for 4
bits. Changes to the prompt design such as explicitly comparing the number of zeroes and ones, or
adding space between groups of zeros and ones do not lead to any substantial improvement despite
the enhanced complexity.

Given the input 0000010, the number of 0s is 5 and 1 respectively, unary division by two produces
3 zeros and 4 zeros, that is 00010000.
Given the input 0001000,

The LLM predicts the following output in response to this query:

Given the input 0001000, the number of 0s is 3 and 3 respectively, unary division by two produces
2 zeros and 5 zeros, that is 00100000.

Equal Repeats: We employ the following prompt to identify the class of a string based on the equal
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repeats in the string. We use 3 examples for repeating patterns with at most 4 bits and 5 examples
for higher bit-widths.

The string 00111000 has 2 zeroes, 3 ones, and finally 3 zeros; hence the class is 1.
The string 000111000

The LLM predicts the following output in response to this query:

The string 000111000 has first 2 zeroes, then 3 ones, and finally 2 zeros; hence the class is 0.

Missing Palindrome: We use the following prompts to identify the missing character that causes a
string to be a palindrome. We use 10 examples for prompts with 6 bits or more as using 20 examples
causes an out-of-memory on 8 NVIDIA A100, and 5 examples for prompts with fewer bit-widths.

Replacing 2 by 1 in 1111 1211 yields 1111 1111, replacing 2 by 0 in 1111 1211 yields 1111 1011 ;
since 1111 1111 is a palindrome, replace 2 by 1.
Replacing 2 by 1 in 1111 2111 yields

The LLM predicts the following output in response to this query:

Replacing 2 by 1 in 1111 2111 yields 1111 1111, replacing 2 by 0 in 1111 2111 yields 1111 0111 ;
since 1111 1111 is a palindrome, replace 2 by 1.

4.4 CONTEXT SENSITIVE LANGUAGES

For the class of Context Sensitive Grammars, we employ the following problems: (i) Binary Addi-
tion, (ii) Interlocked Pairing, and (iii) Odds First. Binary Addition computes the sum s1 + s2 as a
binary string given two binary strings s1 and s2. Interlocked Pairs creates the string 0n1(m+n)0m

given a string of the form 0n1m. Odd-First computes the strings composed of bits in odd and even
positions respectively s1s3s5 . . . and s2s4 . . . given a string s1s2s3 . . . sn.

Binary Addition: Since a prompt using straightforward binary addition produces low accuracies
even for small bit widths, we employ the following prompt to perform binary addition on two strings.
We use 20 examples for inputs with 5 or more bits, and 5 examples for inputs with 4 bits.

01001011 + 01101011 = 75 + 107 = 182 = 10110110.
01001000 + 01011011 =

The LLM predicts the following output in response to this query:
01001000 + 01011011 = 72 + 91 = 163 = 10100011.

Interlocked Pairs: We design the following prompt to create interlocked pairs 0n1m+n0m from
the input 0n1m. The use of the natural language mapping to integer addition enhances the accuracy
of the model. In our experiments, we used 5 examples in the prompts for interlocked pairs for 7 or
more bits, employed 3 examples for 5� 6 bits, and 2 examples for 4 bits.

Transform 000000 11 that is, 6 zeroes and 2 ones into 6 zeroes, 8 ones, 2 zeros, that is, 000000
11111111 00.
Transform 0000000 1 that is,

The LLM predicts the following output in response to this query:

Transform 0000000 1 that is, 7 zeroes and 1 ones into 7 zeroes, 8 ones, 1 zeros, that is, 0000000
11111111 0.

Odd-First: We use prompts of the following form to list the odd characters of a string before its even
characters. We employ 20 examples for more than 5 bits, 10 examples for 5 bits, and 5 examples for
4 bits.

Given the string 11100010, odd followed by even characters are 1101 1000.
Given the string 11000010, odd followed by even characters are

The LLM predicts the following output in response to this query:

Given the string 11000010, odd followed by even characters are 1001 1000.
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5 RESULTS

We performed experiments on the BLOOM family of large language models on a server with 256
AMD cores, 2 TB of RAM and 8 Nvidia A100 80GB GPUs. Each language task was performed
100 times to compute the average accuracy of the task. Our analysis considers 4 dimensions: (i) the
complexity of the language from the Chomsky hierarchy, (ii) the size of the input string from the
language, (iii) the number of examples in the prompt, and (iv) the size of the model.

5.1 ACCURACY ON LANGUAGES IN THE CHOMSKY HIERARCHY
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Figure 2: BLOOM-176B model shows high accuracy gain (prediction accuracy of the model / ran-
dom guess probability) on the two deterministic context-free languages and context-sensitive lan-
guages. Note that the random guess probability is different for the different tasks and hence, the
relative accuracy gain is a better evaluation metric. This increase in accuracy becomes more pro-
nounced for these tasks as the input size increases. The model exhibits poor accuracy on the simpler
regular languages. Thus, the Chomsky hierarchy exhibited by the grammar-based methods does not
correspond to the languages learned by the large language model.

We evaluate the BLOOM-176B model on 3 language tasks each from increasingly complex classes
from the Chomsky hierarchy: (i) regular language, (ii) deterministic context free language, (iii) non-
deterministic context-free language, and (iv) context-sensitive language. The BLOOM-176B model
is not effective at learning regular languages. Fig. 2a shows that modular arithmetic and parity
detection do not perform better than random chance on 4 bits. BLOOM-176B perform slightly
better than random chance on the problem of detecting if the number of 01s and 10s is even. Natural
language is known to be mildly context-sensitive; so, our results indicate that BLOOM-176B trained
mostly on natural languages finds examples of the regular language class challenging.

Prompting in the BLOOM-176B model works well for deterministic context-free languages as com-
pared to random chance. Fig. 2b shows that prompting works well for the reversal of strings, stack
manipulation, and detecting if a string has more number of 1s than 0s. This is different from au-
tomata and grammar models, where algorithms for deterministic context-free languages work well
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for the contained subset of regular languages. Non-deterministic context-free languages perform
close to random chance on the problems of equal repeat detection and missing palindrome digit de-
termination. Prompting the model works better for Divide-by-2, as shown in Fig. 2c. Prompting the
BLOOM-176B works well for context-sensitive languages shown in Fig. 2d. As natural languages
are considered to be mildly context-sensitive, this suggests that BLOOM-176B trained on natural
languages performs well on context-sensitive languages. The BLOOM large language model shows
an interesting difference from traditional grammar and automata that generalize well from context-
sensitive languages to less complex languages in the Chomsky hierarchy. This establishes the in-
sufficiency of the existing language hierarchy to characterize the languages learned by increasingly
larger language models and suggests the need for developing a new complexity hierarchy.

5.2 INFLUENCE OF THE NUMBER OF EXAMPLES IN PROMPTS ON ACCURACY

The design of our prompts uses examples from the languages being investigated. A natural question
to investigate is the influence of the number of examples in the prompts on the accuracy of the
model. For this study, we use eight bitwidth examples from 3 languages across different layers of
the Chomsky hierarchy, on which the model has a good baseline accuracy, and the accuracy has a
potential room for improvement with more examples in the prompt. We analyze a small range 3-20
of number of examples on the large BLOOM-176B model as the use of larger number of examples
leads to out-of-memory errors. Our results are shown in Fig. 3a. We investigate the use of a larger
range 3-50 of examples on the relatively smaller BLOOM-7B model, which is still the largest of all
the remaining BLOOM models. For the case of the missing palindrome task, we limited the number
of examples as the system runs out of memory on a larger number of examples for BLOOM-176B,
and we are constrained by the number of valid palindrome examples for BLOOM-7B. Fig. 3b shows
the accuracy of the BLOOM-7B model as the length of the prompt is varied.
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(b) BLOOM-7B
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Figure 3: BLOOM-176B and BLOOM-7B accuracy with different number of examples in the
prompts for the three languages.

We evaluate the accuracy of the model-prompt pairs by observing 100 independent and identically
distributed samples drawn from a uniform random distribution. We conclude that an increase in the
number of examples generally enhances the accuracy of the model-prompt pair.

5.3 INFLUENCE OF MODEL SIZE ON ACCURACY

In our experiments, we also evaluate the change in accuracy over eight bitwidth examples drawn
from different languages as the size of the BLOOM model increases. We employ prompting on 5
pre-trained BLOOM models. The smallest model has 560 million parameters, and the largest model
has 176 billion parameters. The other three intermediate BLOOM models have 1 billion, 3 billion
and 7 billion parameters. We use the same three languages from the different layers of the Chomsky
hierarchy as used in Section 5.2 for this study. We consider two kinds of prompts for this study -
the first fixes the number of examples from the language in the prompt to 10, and the second uses
adaptive prompt sizes. The results from this study are illustrated in Figure 4. The accuracy of the
model generally improves with an increase in the model size for fixed prompt sizes.
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(a) 10 examples
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(b) Adaptive Number of Examples

Figure 4: Accuracy of tasks using BLOOM models of different sizes - 560 million, 1 billion, 3
billion, 7 billion and, 176 billion parameters.

Fixed Prompt Length. In this case, we fix the prompt length to be 10. We observe that the pre-
diction accuracy of the models generally increases with the number of parameters. This increase
is not uniform across all languages. For the deterministic context-free language, More 1s than 0s,
the improvement is significant. For the simpler regular language, Even Pairs, which is lower in the
Chomsky hierarchy, even using the largest model does not yield a significant improvement.

Adaptive Prompt Length. We analyze the performance of the BLOOM models using adaptive
prompt sizes. For each model, we adapt the number of examples to ensure that the 8 A100 GPU
system is capable of generating a single response within 5 minutes without running out of memory.
For the BLOOM-175B model, we use 20 examples except for the palindrome case (15 examples)
due to memory issues. For the BLOOM-7B and other smaller models, we use 50 examples except
for the palindrome case (25 examples) due to the number of available valid examples. Our adaptive
prompting technique has better accuracy than the fixed-length prompt for smaller BLOOM models.

6 CONCLUSIONS AND FUTURE WORK

There is a rich historical body of work in artificial intelligence connecting formal grammars to nat-
ural languages (Pullum & Gazdar, 1982; Tomita, 1985; Savitch, 1987; Kudlek et al., 2003). Natural
languages have been considered as “mildly” context-sensitive and have been parsed by variants of
context-free grammars (Tomita, 1984; Briscoe & Carroll, 1993). In this paper, we have explored this
connection between natural languages and formal grammars. We evaluate the efficacy of prompting
for large language BLOOM models in understanding languages from different classes of the Chom-
sky hierarchy Chomsky (1959) and observe that prompting is capable of solving problems with a
good accuracy from different echelons of the Chomsky hierarchy, such as stack manipulation, string
reversal and interlocked pairing. Unlike classical automata or other grammar-based approaches
where algorithms for more complex languages in the Chomsky hierarchy can also recognize simpler
languages, we find that the performance of the BLOOM large language models cannot be explained
by the complexity of the languages in the Chomsky hierarchy. For example, BLOOM models per-
form better on context-sensitive language tasks than simpler regular language tasks. We also observe
that increasing the size of the model or increasing the length of the prompts by including more ex-
amples from the language improves the prediction accuracy. We find that the two largest models
have the highest accuracy on our tasks with a fixed length of the prompt, but smaller models are able
to achieve similar accuracies with longer prompts.

Ethics Statement: Our approach brings to light a potential concern with BLOOM and possibly
other large language models. The use of machine learning models in high-assurance applications
necessitates a sound understanding of their generalization capability. While the larger language
models exhibit good empirical prediction accuracy on many language tasks, our results show that
the languages learned by these models do not conform to the traditional Chomsky hierarchy. Thus,
there is a pressing need to develop a new hierarchy of concepts learned by the language models that
can enable more accurate formal characterization of their learning capability.
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