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Abstract
Manual annotation of material microscopy images is time-consuming, costly, and
requires domain expertise. This annotation bottleneck limits model training and fair
benchmarking. Prior cycle-consistent generative adversarial network (CycleGAN)-
based data generation, despite being promising, often relied on computationally
expensive simulations and struggled to capture the diverse noise characteristics,
making it task-specific. In this study, we introduce an automated pipeline which
simplifies dataset generation and improves generality by combining parametric
simulations, diverse modality-specific noise injection, and CycleGAN-based texture
transfer while preserving the ground-truth masks. Case studies on rubber materials
with stripe-like noise in optical microscopy highlight its versatility. This pipeline
was evaluated on a public transmission electron microscopy (TEM) nanoparticle
dataset to obtain a quantitative comparison with manual annotations. Our results
show that the segmentation accuracy approached that of human-labeled data while
also reproducing characteristic imaging artifacts. This framework reduces dataset
cost, explicitly addresses noise diversity, and enables customized, reproducible,
and noise-aware benchmarks aligned with real experimental settings.

1 Introduction
Machine learning (ML), particularly deep learning (DL), promises substantial gains in materials
science [1, 2], yet data acquisition is costly and slow, often requiring expert operations on advanced
instruments [3, 4, 5, 6]. Unlike general computer-vision tasks with large-scale labeled datasets [7],
and in contrast to a few specialized tasks where large-scale datasets exist [8], materials datasets are
far smaller [9, 10, 11, 12, 13]. However, a core problem is the annotation bottleneck: Creating a
task-specific ground truth (e.g., phase boundaries or defect regions) requires advanced expertise that
varies across material classes such as polymers, ceramics, and metals. Consequently, training data
remain scarce and standardized benchmark datasets for fair, reproducible comparisons are lacking.
Compounding this, advanced imaging often contains noise from both instrumentation and sample
physics, including Gaussian noise and structured artifacts [14, 15, 16, 17, 18, 19, 20, 21]. While
targeted removal methods exist [20, 21, 22], the scarcity of clean/noisy pairs hinders supervised
training and fair benchmarking. Existing attempts to mitigate this gap using data generation with
cycle-consistent generative adversarial networks (CycleGAN) [23] have shown promise [24, 25, 26];
however, they often depend on computationally expensive high-accuracy simulations. Incorporating
diverse noise into such simulations remains difficult, making them task-specific. Extreme mismatch

∗masato.suzuki@y-yokohama.com
†Corresponding author: igayasu1219@cs.tsukuba.ac.jp

39th Conference on Neural Information Processing Systems (NeurIPS 2025) Workshop: AI4Mat Themed Track
– “Benchmarking in AI for Materials Design".



With noise 

(ours)

Step 1
Ground-Truth Masks via 

Parametric Shape Models

Step 2
Physical Noise Injection

Step 3
CycleGAN-based 

Texture Transfer

No noise

(ablation)

Clean synthetic image

Clean synthetic image

Injection noise

Noise synthetic image

✘ BAD

✓ GOOD

Gaussian Knife mark

Background 

haze
Grid-like 

artifacts

Skip

Figure 1: Overview of our proposed pipeline. Step 1 — Simulation: parametric shape models
generate clean structural images and binary ground-truth masks (circles, rods, Voronoi). Step 2 —
Physical noise injection: mimics acquisition to inject artifacts according to sample preparation and
imaging conditions, such as knife-mark stripes from cutting damage, and Gaussian noise arising from
electron microscopy observation. Step 3 — CycleGAN-based texture transfer: the style of unlabeled
real images is learned and transferred to the noisy simulations while preserving the original masks.
By injecting modality-specific noise beforehand, the simulated images become closer to the target
domain, making it easier for CycleGAN to adapt and produce more realistic textures – paired datasets
of CycleGAN-adapted images with accurate labels for supervised training.

in entropy or high-frequency content between the synthetic and real domains may cause CycleGAN
to embed hidden signals, making the generated images appear realistic but unstable [27, 28]. Injecting
modality-specific noise into synthetic data helps reduce this mismatch and improves stability. In
this study, we introduce an automated pipeline that complements existing methods, simplifies
the data generation process, and improves robustness under degraded conditions while enhancing
generality. We created annotation-free datasets via simulations, noise injection, and CycleGAN-based
texture transfer, and validated them on rubber and TEM nanoparticle data. Our pipeline transfers
experiment-like noise onto simulated structures (e.g., fillers and particles), thereby generating training
datasets for segmentation, detection, and regression on materials microscopy images. This framework
lowers the cost of dataset creation, increases generalizability, and enables customized, reproducible
benchmarks aligned with real experimental conditions, thereby fostering a closer integration of ML
and materials science.
2 Methods
Our framework generates structural images together with ground truth masks from parametric models
to replace manual annotation, further adapting them to obtain experimental realism. This study
aims to reproduce the noise statistics of experimental images by first performing noise injection on
simulated structural images to add acquisition-like artifacts such as random noise and illumination
inhomogeneity, and then applying CycleGAN-based domain transfer to emulate the contrast and noise
characteristics associated with instrument-induced electron microscopy noise (e.g., drift and detector
noise) and knife-mark artifacts introduced during sample sectioning [24], allowing combinations of
multiple noise sources to reproduce composite experimental noise. To better match the real data,
diverse types of noise are injected. An overview of this process is shown in Figure 1. First, we
generated clean images and masks by following specified parameters for shapes and size distributions.
By adjusting the modeling parameters, on-demand datasets tailored to specific materials and analysis
tasks can be generated. Importantly, this method supports deliberate abstraction, which is a standard
in materials practice. For example, a complex polygonal agglomerate may be represented as an
equivalent-area circle [29] and treated as the ground truth. This aligns the learning target with the
analyst’s intended abstraction. In materials research, complex real-world shapes are often modeled
as simplified, task-relevant representations for quantitative analysis [30, 31, 32]. To reproduce
experimental artifacts, we injected diverse types of physical noise into clean simulations while keeping
the masks unchanged. Depending on the imaging modality, these artifacts include knife-mark stripes
from sample preparation [17, 18] and Gaussian or Poisson noise from electron microscopy [15, 16].
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Explicitly encoding these noise processes brings the synthetic images closer to the real domain and
better captures the variability observed in practice. This allows the synthetic images to reflect the
injected noise and become closer to the experimental data; however, differences in texture remain.
Finally, to address this texture gap, we used CycleGAN, a style-transfer model that learns from
noisy synthetic and unlabeled real images. Although GANs (Generative Adversarial Networks)[33]
have been used to generate materials microscopy data [34, 35], they typically require paired training
data, whereas CycleGAN operates on unpaired data and produces realistic images aligned with
ground-truth masks, yielding ideal training pairs. The key point is that as long as the authentic
microscope images fed to CycleGAN are identical to those that will later be analyzed, the spatial
coverage of the images produced by CycleGAN exactly matches the region of data required for
the downstream task and is therefore sufficient in terms of both quantity and quality. Moreover,
because our pipeline is annotation-free, any future changes in sample type or imaging conditions
can be accommodated by simply adding new unlabeled images and retraining the CycleGAN. Our
approach starts with simple simulations and injects noise together with CycleGAN-based adaptation,
to produce images that resemble those in real experiments while preserving ground-truth masks.
This makes it possible to add annotations to originally unlabeled datasets and generate reproducible,
noise-aware benchmarks for the fair evaluation of machine learning methods in materials science.
3 Results and Discussions
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Figure 2: Case studies of training data generation. Top row: Nanoscale polymer networks observed
by electron microscopy. Ground-truth image created by random-walk simulation was converted
into realistic textures, providing paired datasets for model development. Bottom row: Micron-
scale particulate fillers with knife-mark noise observed using optical microscopy. Circular particle
masks were simulated and transformed into realistic noisy images, yielding datasets that reproduce
characteristic experimental artifacts.

3.1 Extending Versatility: to Multiscale, Multigeometry, and Multinoise Scenarios
To demonstrate the adaptability of the proposed framework to a wide range of material structures, we
conducted two case studies on rubber materials with different geometric configurations and observa-
tion scales. First, we created training data for the nanoscale polymer networks observed using electron
microscopy[36]. Specifically, we target high-angle annular dark-field scanning transmission electron
microscopy (HAADF-STEM) of vapor-phase OsO4-stained ultrathin rubber sections acquired at
200 kV and 60,000× with 1024×1024 pixels at 1.52 nm/pixel (field of view ≈ 1.56µm×1.56µm).
String-like structures were simulated using a random-walk model and then transformed into realistic
textures, yielding training datasets paired with ground-truth masks. Notably, the synthetic data also
reproduced the characteristic features of real HAADF-STEM images, such as faint appearances and
blurred structures caused by staining. In addition to conventional binary segmentation, there are
also enhancement tasks where filamentous or string-like structures are modeled with continuous
intensity values rather than binary 0/1 labels. Such formulations aim to emphasize the visibility
of networks under noisy conditions, instead of enforcing strict segmentation boundaries. Next,
we focused on micron-scale particulate fillers observed in optical microscopy[37], with particular
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Figure 3: Comparison of segmentation results on real microscopy images. Left: Ground truth, i.e.,
real captured images with manual annotations shown as yellow contour overlays. Center: Predictions
from a supervised model trained on manually annotated real data (yellow contour overlays). Right:
Predictions from our method trained solely on real-like synthetic data (yellow contour overlays).

attention paid to the stripe-like noise caused by knife marks. Circular particles were simulated and
texture transfer was applied to generate realistic noisy images. Importantly, the synthetic images
successfully reproduced the characteristic knife-mark noise. Combined, these results demonstrate the
versatility of the proposed approach.
3.2 Quantitative Evaluation: Comparison with Existing Benchmarks
To objectively evaluate the datasets generated by our framework, we adopted the publicly available
high-resolution TEM nanoparticle datasets introduced by Horwath et al. [38]. Using our method,
we created a large-scale synthetic dataset without manual annotation that mimicked the statistical
and visual characteristics of the Horwath dataset. We then compared the segmentation accuracy
(measured by the IoU and Dice coefficient) on unseen test images between two models: (i) Model
A, trained on the original Horwath manual labels, and (ii) Model B, trained on 2,000 automatically
generated image–mask pairs from our framework. We adhered to a strict image-level, group-aware
split (70/30), preventing specimen/session leakage. CycleGAN training, as well as U-Net training
and validation, were conducted within this 70% subset, and all metrics (IoU, Dice) are reported on the
held-out 30% that was never used for CycleGAN/U-Net training or model selection. In addition to
the quantitative evaluation, we qualitatively observed that the synthetic images faithfully reproduced
the characteristics of key imaging artifacts of the TEM nanoparticle micrographs. Specifically, our
“real-like” images captured both global background intensity inhomogeneities and edge-related bright
fringes, commonly referred to as edge contrast effects, which closely resemble those seen in real
TEM images. The IoU reached 0.884 with our method, which corresponds to about 95% of the IoU
obtained with human annotations (0.931).
4 Conclusion
To address the annotation bottleneck in materials science, we propose a simple pipeline that integrates
simulations, noise injection, and CycleGAN-based texture transfer to generate labeled datasets
without manual effort. Case studies on rubber materials and a TEM benchmark confirmed that
injecting realistic noise improves the fidelity of synthetic images. The versatility of the approach
was further demonstrated across different structures and modalities. This method is effective for
simple simulable structures but struggles with irregular geometries, requires domain-specific tuning,
and performance may degrade on unseen images. These results motivate broadening to additional
materials/modality pairs and challenging shape regimes in future releases. Nevertheless, by providing
a practical route for generating reliable datasets, our study contributes to the development of fair and
reproducible benchmarks, aligning with the goals of AI4Mat, to advance meaningful evaluation in
materials science.
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A Technical Appendices and Supplementary Material
A.1 Compute Resources
We report the hardware and operating system used for all experiments to support reproducibility.

• Operating System: Microsoft Windows 11 Pro
• Workstation Model: Dell Precision 3680
• CPU: Intel Core i9-14900K, 24 cores
• Memory: 64 GB RAM
• GPU: NVIDIA RTX 4500 Ada Generation, 24 GB VRAM
• Typical training time: Training a CycleGAN model for 20 epochs took approximately 30

min on the RTX 4500 GPU.

A.2 Hyperparameter Details
Common setup. We enable mixed precision (mixed_float16) and use TensorFlow Addons
InstanceNormalization in the generators and discriminators.

Table 1: Shared configuration across experiments.

Item Value

Image size 256× 256 (grayscale, single channel)
Augmentation (real images) random crop=256, rotations {0, 90, 180, 270},
Normalization for GAN map uint8 [0, 255] → [−1, 1]
Normalization for U-Net map to [−1, 1]

Table 2: CycleGAN (training; dataset-dependent).

Item Value

Training images (per domain) dataset-dependent (Sim: 1000 or 2000 generated; Real: augmented to match)
Epochs / Batch size dataset-dependent (e.g., rubber: 50)
Optimizer / LR Adam (β1=0.5); LinearDecay from 1− 2× 10−4

Loss (generator) Adv (MSE; LSGAN) + Cycle (L1) + Identity (L1)
+ FFT amplitude (L1) [+ Brightness (L1)], weights: dataset-dependent

gan_dim / n_blocks 32 / 6
Normalization / Aug. [−1, 1] norm; random jitter+crop+flip

Table 3: U-Net (training; dataset-dependent).

Item Value

Epochs / Batch size 20 / 32
Optimizer / LR Adam / 1× 10−4

Loss / Metric binary cross-entropy / accuracy
Output activation sigmoid
Input normalization map to [−1, 1]
Image size 256× 256 (grayscale, single channel)
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Table 4: Comparison of segmentation performance (IoU) under different training conditions (mean
and standard deviation across N = 196 test images; gold session).

Training condition IoU (mean) Std.

Otsu binarization 0.027 0.011
U-Net (Synthetic-only (no adaptation)) 0.880 0.013
U-Net (CycleGAN-adapted synthetic) 0.770 0.018
U-Net (Proposed pipeline) 0.884 0.011
U-Net (Human annotation baseline) 0.931 0.013

Table 5: Comparison of segmentation performance (Dice) under different training conditions (mean
and standard deviation across N = 196 test images; gold session).

Training condition Dice (mean) Std.

Otsu binarization 0.053 0.021
U-Net (Synthetic-only (no adaptation)) 0.936 0.007
U-Net (CycleGAN-adapted synthetic) 0.870 0.011
U-Net (Proposed pipeline) 0.938 0.006
U-Net (Human annotation baseline) 0.964 0.007

A.3 Evaluation for Table 4, 5 (mean & std)
We report IoU (and Dice) means and standard deviations computed across test images for each
training condition. Test images and masks are resized to 256 × 256. For U-Net[39], inputs are
per-image standardized; Otsu uses OpenCV’s global threshold. For each model, we predict on the
test set, compute per-image IoU/Dice, and aggregate mean and std. All values are the results reported
in Sec. 3.2 (gold session; N = 196 images).

Overview of evaluated methods. We evaluated the models based on U-Net[39]. U-Net is a
segmentation architecture originally proposed for biomedical image analysis and has since been
widely used across various segmentation tasks. In our setting, the model is trained on pairs of synthetic
images and ground-truth masks, and then directly applied to predict particle regions in experimental
images. To ensure a fair comparison, only the training dataset was varied across methods, while the
network architecture, hyperparameters, and training procedures were kept identical.
(i) Synthetic-only (no adaptation): the U-Net is trained on pairs of synthetic images and ground-truth
masks, then directly applied to predict particle regions in experimental images. (ii) CycleGAN-
adapted synthetic: synthetic clean images without noise are first transformed into experiment-like
style by a CycleGAN; the adapted images and corresponding masks are then used to train a U-Net,
which is subsequently evaluated on experimental inputs. (iii) Proposed pipeline: training data
are generated by our simulation– noise injection–CycleGAN pipeline, yielding paired images and
masks that reflect realistic imaging conditions; a U-Net trained on this dataset is used to segment
experimental images. (iv) Human annotation baseline: the U-Net is trained on manually annotated
experimental images and masks, and tested on experimental inputs.
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A.4 Rubber (Knife-mark Noise) Dataset: Acquisition & Preprocessing
Sample preparation. The base is an SBR compound (phr: SBR 100, HAF carbon black 61, ZnO
3, S 1.4, CBS 1.7, DPG 1.5). Sheets were vulcanized at 160 °C for 20 min and cut into 3 × 3 cm
specimens with a thickness of 2–3 mm. Knife-mark stripes produced during cutting are intentionally
retained in the real images.

Imaging (real images). Optical microscopy at 100× magnification; effective pixel size ≈
0.8µm/px. For learning/evaluation, images were converted to 8-bit grayscale and cropped to
256× 256 px.

Simulated data (training/evaluation). All simulated images are 256× 256 px. Filler agglomerates
are modeled as disks whose radii follow a power-law distribution. Based on the measured maximum
agglomerate radius of 19 px in real images, the simulation upper bound was set to 28.5 px (= 19×1.5)
to define the ground-truth masks. Knife-mark noise is synthesized by superimposing multiple straight
lines of width 1–3 px at random angles θ, with randomness in density, thickness, and slant.

A.5 Rubber (TEM/HAADF-STEM) Dataset: Acquisition & Preprocessing
Sample preparation. Cross-linked isoprene rubber (IR) was compounded with ZnO, sulfur (soluble
or insoluble), and various accelerators (CBS, MBTS, DPG, TMTD, HMTA) to prepare eight com-
positions with different cross-link densities (see Table 1 for formulations and properties). Samples
were vulcanized at 160 °C for 30 min, then cut from the vulcanizates, swollen in styrene, embedded,
trimmed, and sectioned into ultrathin slices with an ultramicrotome. Sections were vapor-stained
with OsO4.

Imaging (real EM data). High-angle annular dark-field scanning TEM (HAADF-STEM) was
performed at 200 kV and 60,000× magnification. Images used for analysis were recorded at 1024×
1024 px with an effective sampling of 1.52 nm/px (field of view ∼1.56µm × 1.56µm) 14 images.

A.6 Code Availability
All codes and data generation scripts have been released at: https://github.com/fanfanfuzzy/
Noise2CycleGAN-Benchmark
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NeurIPS Paper Checklist
The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.
Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .
• [NA] means either that the question is Not Applicable for that particular paper or the

relevant information is Not Available.
• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.
The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.
IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",
• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification:Justification: The main claims in the abstract and introduction are supported by
results (Sec. 2–4, Fig. 1–3, Table 1).
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification:Limitations such as irregular geometries and unseen imaging conditions are
discussed (Sec. 4).
Guidelines:
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• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [NA]
Justification:The paper contains no formal theoretical results or proofs.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: Methods, datasets, and evaluation metrics are described in detail (Sec. 2–3,
Table 1).
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
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• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: To ensure reproducibility, we will release part of the dataset generation code
before the final camera-ready version. TEM dataset are taken from publicly available
datasets.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.
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6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification:We specify datasets and splits, preprocessing/augmentation (e.g., 256×256,
per-image standardization), model/loss/optimizer and schedule (epochs, batch, LR), and
the evaluation protocol in Sec. 2–3; consolidated hyperparameter tables are provided in the
Appendix (CycleGAN/U-Net; dataset-dependent settings).

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report mean±std for IoU (and Dice) across N=196 test images (Sec. 3.2;
Table 4 5); no formal hypothesis tests are performed.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification Appendix (Compute Resources) specifies OS/CPU/RAM/GPU–VRAM and a
typical training time.

Guidelines:

• The answer NA means that the paper does not include experiments.
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• The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

• The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

• The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: The work uses public data and simulations without ethical risks.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Positive impacts on reducing annotation cost are discussed; potential misuse
risks are limited.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
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Justification: No high-risk pretrained models or datasets are released.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: Existing datasets such as Horwath et al. TEM are properly cited.
Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: No new datasets or code are released.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
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Answer: [NA]
Justification: No human subjects or crowdsourcing were involved.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: Human subjects research was not conducted.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: LLMs were not part of the core methodology, only for writing assistance.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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