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Auto-ISP: An Efficient Real-Time Automatic Hyperparameter
Optimization Framework for ISP Hardware System

Abstract
Image Signal Processor (ISP) is widely used in intelligent edge de-
vices across various scenarios. The intricate and time-consuming
tuning process demands substantial expertise. Current AI-based
auto-tuning operates discretely offline, relying on predefined scenes
with human intervention, leading to inconvenient manipulation,
with potentially fatal impacts on downstream tasks in unforeseen
scenes. We propose a real-time automatic hyperparameter opti-
mization ISP hardware system to address real-world scenarios. Our
design features a tri-step framework and a hardware accelerator,
demonstrating superior performance in human and computer vision
tasks, even in real-time unforeseen scenes. Experiments showcase
its practicality, achieving 1080P@75FPS/240FPS in FPGA/ASIC, re-
spectively.

1 Introduction
The ever-expanding realm of applications on Intelligent Edge De-
vices (IEDs) significantly enhances people’s lives, enabling seamless
actions like sharing photos via smartphones, indulging in immer-
sive experiences with AR/VR glasses, navigating using autonomous
cars, and even utilizing drones for food delivery [18]. At the core
of this capability lies perception, executed through Image Signal
Processor (ISP) hardware, a crucial element that enables IEDs to
interact with the real world. The ISP hardware plays a vital role
in converting photoelectric signals collected by various camera
sensors into uniform standard RGB signals, a process essential for
downstream tasks [12]. This conversion is accomplished through
the integration of multiple modules, employing specific image pro-
cessing algorithms pipelined within the ISP.

However, integrated modules alone do not ensure the harmo-
nious operation of an ISP system. It’s crucial to establish the appro-
priate parameters for each module so that they operate optimally.
For instance, improper ISP parameters can result in visual distor-
tion or a decline in downstream task performance, even leading
to serious consequences, such as a self-driving car misinterpreting
a stop sign. This process of parameter adjustment is referred to
as ISP parameter tuning. Yet, this task is far from trivial. Firstly,
an ISP comprises numerous modules, each with multiple param-
eters, and each parameter has a broad range of available values.
Secondly, optimizing a single module is not sufficient; there’s a
need to harmonize each module simultaneously with the others.

Traditional tuning methods involve manual adjustments by spe-
cialized engineers known as “golden eyes.” Thismanual-tuning
approach is not only time-consuming and labor-intensive but is
also reliant on the experience and subjective judgment of the tun-
ing engineers. For instance, even the most experienced ISP tuning
teams may require three to six months to identify an appropriate
set of parameters for an ISP pipeline [15]. Worse, images and videos
processed by ISPs are increasingly employed for the deep neural
network (DNN) based downstream tasks, such as intelligent surveil-
lance and autonomous driving. Manual-tuning proves unsuitable

Figure 1: Our motivation example.
for such tasks since human experts do not possess the knowledge
of which parameters are optimal for the machine vision [6].

A recent advancement in ISP tuning involves a proxy-based
auto-tuning approach [15]. This method employs a DNN to em-
ulate the ISP function and identifies optimal parameters through
backpropagation. Remarkably, this technique can accomplish the
parameter adjustment within a few days and is adaptable to vari-
ous tasks. However, akin to manual-tuning, auto-tuning initiates
by conducting an offline search for a set of parameters tailored
to a specific scene. These parameters are then stored in the ISP
hardware’s memory. When the scene changes, the ISP necessitates
reconfiguration based on the pre-stored parameters in memory.

Our motivation. The dependence on offline search poses a
notable obstacle to the usability and scalability of auto-tuning. De-
spite the automated parameter search, its application still requires
manual intervention. As depicted on the left side of Figure 1, it is
essential to predefine a set of discrete scenes, such as portraits and
nightscapes. In practical applications, manual selection of these pre-
defined scenes becomes necessary for ISP reconfiguration. Further-
more, offline search typically learns from a limited set of predefined
discrete scenes. Due to the vast parameter search space (see Table 1),
it is difficult to efficiently approximate the learned parameters to
unknown scenarios, which not only leads to significant degradation
of ISP performance but also makes extensive continuous learning in
real-world scenarios difficult to achieve. These challenges prompted
us to investigate the automatic tuning of ISP parameters through
online search.

In this paper, we introduce the architecture design and hard-
ware implementation of a hyperparameter optimization framework
tailored for real-time and continuous optimization of ISP parame-
ters in real-world scenarios (refer to the right side of Figure 1). In
particular, in the architecture design, we propose a high-fidelity
proxy and a DNN-based ParaNet to improve the speed and accu-
racy of ISP parameter search. In the hardware implementation, we
propose a semi-parallel architecture and row-aware processing
techniques to align with the high throughput requirements of ISP
hardware.

Our Auto-ISP, for the first time, successfully achieves real-time
online parameter search and image processing. Our experimental
results show our approach currently stands as the fastest ISP auto-
matic parameter search, offering superior image quality compared
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Table 1: Parameters (w/ range) for each module in our ISP.
Module Parameter Module Parameter Module Parameter

DGAIN 𝑃1 ∈ [0, 100] GB 𝑃6 ∈ [200, 2000] DNS 𝑃4 ∈ [60, 160]
𝑃5 ∈ [20, 102]

DPC 𝑃2 ∈ [0, 2047] WB Fixed EE 𝑃7 ∈ [3, 6]
𝑃3 ∈ [0, 2047] DMC None 𝑃8 ∈ [0, 127]

Total parameter space: 3.2746 × 1018

to previous search techniques, particularly in cases involving un-
foreseen changes. Our main contributions can be summarized as
follows:

• We introduce a tri-step framework comprising a high fidelity
proxy emulating an ISP, a ParaNet directly mapping images
to parameters, and an online tuning module. This framework
achieves real-time online searching of ISP parameters with both
high accuracy and speed.

• We design an Auto-ISP hardware architecture seamlessly in-
tegrating a real-time automatic hyperparameter optimization
framework. Our innovation includes a semi-parallel architecture
and row-aware processing modules, aiming to reduce the re-
source gap between neural network acceleration and traditional
ISPs.

• We systematically assess our design, yielding results thatmarkedly
outperform the State of the Art (SOTA). Furthermore, our imple-
mentation attains 75FPS and 240FPS at 1080P on FPGA and ASIC
(28nm), respectively. This accomplishment serves as a robust
verification of the performance and usability of our design.

2 Background
2.1 ISP Pipeline
The ISP pipeline is designed to convert raw data, captured from a
camera sensor in the RGGB Bayer pattern, into a visually pleasing
sRGB pattern [3]. This intricate process involves the application
of various image processing algorithms, including Digital Gain,
denoising [4], demosaicing [16], among others. Each of these algo-
rithms is dedicated to handling a specific vision task in a carefully
orchestrated, pipelined manner. Below we briefly describe some
of the modules in the ISP pipeline that are important and used
in our paper. Digital Gain (DGain) amplifies the amplitude of
RAW data and limits the overflow. Defeated Pixel Correction
(DPC) corrects bright or dark pixels in RAW data. Denoise (DNS)
removes noise from RAW data to enhance clarity. White Balance
(WB) balances channel colors by adjusting the gains of the 3 colors
(RGB).Green Balance (GB) reduces differences in green pixels (Gr,
Gb) in different rows. Demosaic (DMC) generates RGB images
by interpolation of RAW data. Edge Enhancement (EE) sharpens
RGB images affected by DNS or lens blur.

As listed in Table 1, the ISP operates within an immensely vast
parameter space, where parameters are intricately interconnected.
The RGB image, being the combined outcome of RAW data and all
parameters, faces the challenge that optimizing the parameters of
a single module may not yield an optimal effect for the entire ISP.
2.2 Automatic Offline Parameter Searching
We categorize previous works on ISP hyperparameter optimization
into two distinct groups: non-proxy-based and proxy-based.

Non-proxy-based. [13] proposes a search framework utilizing
evolutionary algorithms is introduced for joint optimization in-
volving ISP and object detection. [10] proposes a mixed 0𝑡ℎ-order

and 1𝑡ℎ-order optimizer to jointly optimize ISP modules and object
detection. [14] presents an end-to-end camera design approach
that concurrently optimizes compound optics with hardware and
software ISP. [6] proposes a black-box searching approach based
on CMA-ES strategy to reduce the parameter search space, and this
method can directly integrate hardware into the search framework
for parameter discovery.

Proxy-based. Proxy-based optimizations consist of two types:
black-box optimization and white-box optimization. The distinc-
tion depends on whether the algorithm is transparent to the tuner.
Black-box approach [15] employs a differentiable proxy function for
parameter optimization and obtains specialized parameters for dif-
ferent tasks. This work marks the first instance of an automatic pa-
rameter optimization method based on a black-box system. White-
box approach [17] introduces a reconfigurable ISP module search
method for low-light denoising and object detection within pipeline
optimization. The above works with offline search are itera-
tive and approach the optimal parameters slowly, rendering
them less responsive to unforeseen scenario changes in the
real world.
3 Our Approach
Our approach leverages DNNs to automatically estimate and select
an appropriate set of ISP hyperparameters in real-world scenes.
The idea is to design a tri-step framework: 1) Mimic the non-
differentiable ISP hardware; 2) Map the raw image to ISP hyperpa-
rameter; 3) Online tuning.
3.1 Tri-step Framework
Step 1–Mimic the non-differentiable ISP hardware. The dis-
crete nature of hyperparameters in ISP hardware poses a challenge
for optimization using DNNs, as it leads to a non-differentiable
black-box function. This black-box function, essentially one that
cannot be differentiated, presents a barrier to DNN optimization. To
address this, we make the hardware ISP differentiable by training a
DNN-based ISP proxy, following the approach outlined in [15].

As shown in 2(a), the paired training dataset is compiled from
the ISP hardware, with raw data and a configuration file serving as
input, and the corresponding output of the ISP hardware serving
as ground truth. For each raw image, a set of randomly generated
configuration files is created, each containing hyperparameters for
tuning. These configuration files are then fed into the ISP hardware,
with the output considered as the ground truth for training the
proxy. Our training process can be expressed as:

W𝑝 = argmin
W𝑝

(L2 (𝑓𝑝𝑟𝑜𝑥𝑦 (𝐼𝑅𝐴𝑊 , 𝑃,W𝑝 ), 𝑓𝐼𝑆𝑃 (𝐼𝑅𝐴𝑊 , 𝑃))), (1)

whereW𝑝 is the weights of the proxy, 𝑃 is the parameters of the
ISP, 𝐼𝑅𝐴𝑊 is the RAW data, 𝑓𝑝𝑟𝑜𝑥𝑦 is the DNN proxy, 𝑓𝐼𝑆𝑃 refers to
the ISP hardware, and L2 represents the L2 loss.

Step 2–Raw image to ISP hyperparameter mapping. The
raw image contains a wealth of detailed information, although it
may seem diluted. This low-level information can be effectively
utilized to generate high-level interpretations of the image. For
example, the mean value of a raw image can be used to determine
the ISO information or illumination information. The standard
variations present the complexity and the noise strength of this
image. Therefore, instead of backpropagating (see Figure 2(a)) the
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Figure 2: (a) The automatic hyperparameter optimization approach with U-Net-based proxy in TOG’19 [15]; (b) Our Tri-step
automatic hyperparameter optimization approach with high fidelity proxy.

loss function to optimize each hyperparameter under specific pre-
defined scenes, we employ a DNN-based network, termed ParaNet,
to directly learn the raw to hyperparameter mapping process. In this
way, the hyperparameter optimization process can be run online.

As illustrated in Figure 2(b), our design involves feeding the raw
data into ParaNet to generate hyperparameters. These parameters,
along with the raw data, are then processed through the frozen
proxy ISP to calculate the loss specific to tasks (HV or CV). Subse-
quently, this loss is employed to update ParaNet. This process can
be expressed as below with 𝑓𝑝𝑎𝑟𝑎 and W𝑟 representing ParaNet
and its weights, respectively.

W𝑟 = argmin
W𝑟

(L𝑡𝑎𝑠𝑘 (𝑓𝑝𝑟𝑜𝑥𝑦 (𝐼𝑅𝐴𝑊 , 𝑓𝑝𝑎𝑟𝑎 (𝐼𝑅𝐴𝑊 ,W𝑟 ),W𝑝 ))),

(2)
Step 3–Online Tuning. As shown in Figure 2(b) step 3, we

integrate ParaNet into the ISP hardware system, where raw data is
fed into both ParaNet and ISP. Simultaneously, ParaNet is connected
to ISP’s configuration interface to export optimized parameters
online. This process can be expressed as:

O𝑟𝑔𝑏 = 𝑓𝐼𝑆𝑃 (𝐼𝑅𝐴𝑊 , 𝑓𝑝𝑎𝑟𝑎 (𝐼𝑅𝐴𝑊 ,W𝑟 )), (3)

where O𝑟𝑔𝑏 is ISP’s output RGB image.
3.2 A High Fidelity Proxy
The effectiveness of the proposed framework greatly depends on the
accuracy of the proxy network in mimicking the ISP hardware. A
more accurate proxy greatly facilitates the parameter optimization
process. The proxy network in previous work was built based on the
U-Net [15], due to its low computational cost and fast inference [11].
However, since the modules in the ISP pipeline are all low-level
tasks, we find that the downsampling process in U-Net may discard
such low-level details, resulting in inaccurate proxy. Therefore, we
design the High Fidelity Proxy (HFP) using Residual-in-Residual
Dense block (RRDB) [19] since it has no downsampling operations.

HFP consists of 2 RRDBs (𝑓𝑅𝑅𝐷𝐵 ) with skip connections. Each
RRDB employs 6 RRDB units and 1 Conv2d unit. The raw data,
as the input of HFP, were divided into four channels based on
the color channels of the Bayer array in our design. In addition

to the raw data, we concatenate as many channels as there are
hyperparameters 𝑃 in the ISP, where each channel is simply the
value of the hyperparameter replicated over the spatial dimension.
Further, the parameters also concatenate with the intermediate
feature maps of each RRDB to strengthen parameter impacts. This
process can be expressed as follows:

O𝑓 1 = 𝑓𝑅𝑅𝐷𝐵 (𝑓𝐶 (𝑓𝑑𝑜𝑤𝑛 (𝐼𝑅𝐴𝑊 ), 𝑃))) + 𝑓𝐶 (𝑓𝑑𝑜𝑤𝑛 (𝐼𝑅𝐴𝑊 ), 𝑃), (4)

O𝑓 2 = 𝑓𝑅𝑅𝐷𝐵 (𝑓𝐶 (O𝑓 1, 𝑃))) + 𝑓𝐶 (O𝑓 1, 𝑃), (5)
O𝑅𝐺𝐵 = 𝑓𝐶 (𝑓𝑢𝑝 ((𝑓𝑢𝑝 (O𝑓 2)))). (6)

4 Auto-ISP Hardware System
4.1 Dual-Pipeline Hardware Architecture
Our hardware architecture consists of two parts: ParaNet and ISP.
DNN hardware incurs significant resource costs for low latency
and high performance. However, in Auto-ISP, due to the sensor’s
raster scanning [5], the sensor outputs one pixel per cycle instead
of a patch. The sampling speed of the sensor becomes the computa-
tional bottleneck for the entire system, rather than the ParaNet or
ISP. Therefore, we propose a hardware-friendly dual-pipeline archi-
tecture to reduce hardware resources while ensuring no additional
latency. The ParaNet pipeline and ISP pipeline execute in parallel
to achieve real-time processing, as shown in Figure 3.

ParaNet hardware design. Basiclly, a convolution module con-
tains input channels (𝑐𝑖𝑛) × output channels (𝑐𝑜𝑢𝑡 ) convolution
kernels. The high-parallel computing units result in significant
resource utilization. Since the input of ParaNet is downsampled
RAW data, reading adjacent 2 pixels every 8 cycles, we can take ad-
vantage of the downsampling interval to serialize the convolution
computation for output channels. We proposed a semi-parallel
architecture, a method that parallelizes input channels while serial-
izing the computation for output channels, to reduce the 3x3 Conv
kernel by a factor of 𝑐𝑜𝑢𝑡 . In the ParaNet architecture, all layers,
including Conv layers and fully connected layers, are implemented
in semi-parallel manner. Due to the sensor readout scheme, the
serialized output design can save large hardware resources without
impacting the system latency.

3
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Figure 3: Auto-ISP: real-time ISP hardware architecture with online automatic hyperparameter optimization.

ISP pipeline. The output of the ParaNet will first be denor-
malized by the Para_Gen module and temporarily stored in the
configuration register. The ISP hardware, as shown in Figure 3 3○,
then reads this register to configure each image processing module
in ISP pipeline. Note that ParaNet and ISP pipelines are processed
in parallel with the optimized hyperparameters generated from the
previous frame and used in the current frame.

Uniqueness. Unlike general patch-based neural network archi-
tectures, we leverage the sensor’s sampling bottleneck to reduce
a significant number of Conv kernels and fully connected layers’
multiplier units without additional latency. We employ parallel
computation in dual pipelines while ensuring that the computa-
tional latency of ParaNet and the register configuration delay do
not exceed the processing latency of ISP, enabling frame-by-frame
searching.
4.2 Row-Aware Processing Modules
In raster scanning, odd (contains R and Gr color pixels) and even
rows (contains Gb and B) are alternately output from the sensor.
Since odd and even rows respectively contain half of the input
channels, general Conv kernels need to wait for the data from even
rows to satisfy the patch size in full channels. Due to the odd-even
row difference of raster scanning, we propose two types of row-
aware processing modules for the first two Conv layers, that is the
first Conv layer is implemented as a Row-Cross Conv module, and
the second layer is the Partial Sum (PS) Conv module. The following
will demonstrate how this design can further minimize hardware
resources

Row-Cross Convmodule.Odd and even rows contain different
color pixels, resulting in a time difference in reading different color
pixels. As shown in Figure 3 1○, we time-multiplex the 3x3 Conv
kernel based on the time difference in reading odd and even rows to
reduce the number of kernels by half in the Row-Cross Convmodule.
When reading odd rows, our Row-Cross Convmodule calculates the
PS of R and Gr channel convolutions, and when reading even rows,
we accumulate the convolution result for Gb and B channels with
PS. Building upon the semi-parallel architecture, the Row-Cross
Conv module reduces the number of convolution kernels from 4 to
2 without introducing additional delay.

PS Conv module. Unlike the last 4 Conv modules, the memory
usage of the 1st and 2nd Conv modules is huge due to the large size
of RAW_P. Besides that, the max pooling is not applied in the first
two Conv layers, aggravating memory capacity usage. As shown in
Figure 3 2○, by alternately accumulating and overwriting, PS Conv
with a stride of 2 reduces the linebuffers (PS_N) in PS Memory from
2 rows to 1 row. We also split the 3×3 Conv kernel into multiple
batches of 1x3 PS Conv to reduce the computation units in Conv
kernel.

Uniquesness. Based on the semi-parallel architecture, which
takes advantage of downsampling delays, we further exploit the
inherent difference in color between odd and even rows in sensor
raster scanning. We introduce the Row-Cross Conv module and PS
Conv module to reduce the number of Conv kernels and memory
without introducing additional delay.
5 Evaluation
5.1 Experimental Setup
We conduct a comprehensive comparison of our design with both
manual- and AI- tuning. For the manual tuning baselines, we choose
default ISP parameters and those tuned by five ISP experts over four-
hour. As the AI-tuned baseline, we select the SOTA TOG’19 [15].

Datasets and downstream tasks.We create a dataset of 30K
sets of RAW-Parameter-RGB pairs for evaluating parameter tuning,
using the open-source xkISP-Lite [7]. All raw images are sourced
from the Sony IMX485 sensor, and configuration files with hyperpa-
rameters for tuning are randomly generated. We also evaluate our
design using several downstream tasks. For training and testing in
the human vision task, we utilize the Pixelshift200 [8] and Kodak
datasets. The RAW data in Kodak dataset is generated following
the approach outlined in [1]. For the CV task (i.e., object detection
for nighttime autonomous car), we use the OnePlus dataset [17].
The object detection model utilized is YOLO-v3 [9]. For evaluat-
ing the robustness of our design in unforeseen scenes, we use SID
dataset [2] for nighttime HVS tasks.

Training and metric. Our training takes place on the NVIDIA-
A6000. The proxy network undergoes training for 2M iterations
using 𝐿2 loss and a learning rate of 10−5. ParaNet undergoes 20K
training iterations with a learning rate of 10−4, also utilizing 𝐿2

4
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Figure 4: The visual comparison for human vision.

Figure 5: The visual comparison for object detection.

Table 2: The objective and perceptual quality of HVS.
Work LPIPS↓ PSNR↑ SSIM↑ NIQE↓ Time↓
Default 0.3588 13.1071 0.6779 9.3315 -
Experts 0.3520 14.0436 0.6925 5.9799 4h

TOG’19 [15] 0.3253 16.2256 0.7837 7.0710 1.561s
Ours (U-Net proxy) 0.3217 16.0153 0.7675 6.3353 3.255msOurs (Our HFP) 0.3005 17.6885 0.8154 5.8983

loss. We use PSNR and SSIM for an objective evaluation, LPIPS and
NIQE for a subjective evaluation, and mAP for the detection task.
5.2 Performance
Human vision tasks. As listed in Table 2, our Tri-step framework
with HFP achieves the highest scores on both objective and subjec-
tive metrics, notably yielding a significantly higher PSNR (1.4629dB)
compared to the SOTA. A comparison between the U-Net proxy and
HFP in our design demonstrates the effectiveness of the proposed
HFP, showing a 1.6732dB improvement in PSNR. It also reveals
that the proposed framework positively impacts subjective scores,
such as LPIPS and NIQE, while the proxy architecture improve-
ment contributes more to objective metrics like PSNR and SSIM.
Moreover, our inference time of only 3.255ms, significantly outper-
forms the SOTA (1.561s). Visual results in Figure 4 illustrate that
images processed by the ISP using our approach closely resemble
the Groundtruth in terms of both brightness and detail.

Object detection tasks. Table 3 presents compelling results
that underscore the effectiveness of our framework. Our approach
achieves an mAP of 0.5001, significantly surpassing the SOTA’s
0.3718. In Figure 5, it is evident that our approach excels in detect-
ing more objects. A counterintuitive observation arises in nighttime
driving–brighter does not necessarily equate to better, emphasizing
that human visual experiences may not directly translate to ma-
chine vision tasks. Additionally, the inference time of the SOTA is
contingent on the downstream task (i.e., 11.682s with lightweight

Table 3: The mean average precision of object detection.
Work Person↑ Car↑ Bus↑ mAP↑ Time↓
Default 0.3630 0.6247 0.3255 0.4377 -
Experts 0.2995 0.5791 0.2260 0.3682 4h

TOG’19 [15] 0.3338 0.5758 0.2058 0.3718 11.682s
Ours (U-Net proxy) 0.3003 0.5921 0.2834 0.3919 3.255msOurs (Our HFP) 0.3972 0.7092 0.3938 0.5001

Table 4: The objective and perceptual quality of robustness.
Work LPIPS↓ PSNR↑ SSIM↑ NIQE↓
Default 0.7253 14.1785 0.3071 12.4161
Experts 0.4102 20.2171 0.8005 6.7606

TOG’19 [15] 0.4870 18.5020 0.7131 7.7295
Ours 0.3851 22.7684 0.8130 6.2629

YOLO-v3). In contrast, our approach’s inference time remains un-
affected by the downstream task, consistently achieving a swift
3.255ms. The high efficiency demonstrated, independent of down-
stream tasks, further underscores the strengths of our design.

Robustness.To evaluate the robustness of our framework against
real-world changes, we conduct tests on unforeseen scenarios.
Given that human experts and the SOTA do not support online
search, we simplify the difficulty by selecting a subset of 10 param-
eters to ensure fairness in our evaluation. As depicted in Figure 6,
images processed by ISP using our approach maintain clarity in
nighttime scenes, while the SOTA and human experts struggle to
adapt to the transition from daytime to nighttime, resulting in less
clear images. In the comparison of objective and perceptual quality
in unforeseen scenes, it is evident that our method consistently
delivers superior quality compared to the SOTA and experts.
5.3 Implementation and Complexity
Here we present our hardware implementation and evaluate its
complexity.

Implementation. We implement the entire real-time hardware
design using Verilog and HLS for ParaNet and xkISP-Lite, respec-
tively, on both FPGA (xc7z035fbg676) and ASIC (GF 28nm). Figure 7
illustrates our system implementation on an FPGA. We adopt Sony
imx485 camera sensor. The ParaNet is with 10-bit quantization,
and the ISP uses a 12-bit data width. Under 10-bit quantization,
our approach has only a loss of 0.18dB in PSNR in human vision
and a loss of 0.04 in mAP in object detection, yet it still maintains

Table 5: Hardware Implementation under 1080P
Tech Module LUTs/FFs/BRAMs/DSPs(Area) Clock(Hz) FR

FPGA
ParaNet 37692 / 78936 / 36.5 / 365

156.25M 75FPSxkISP-Lite 17212 / 14832 / 25.5 / 127
Total 54904 / 93768 / 62 / 492

ASIC
ParaNet 0.7446𝑚𝑚2

500M 240FPSxkISP-Lite 0.5514𝑚𝑚2

Total 1.2960𝑚𝑚2
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Figure 6: The visual comparison for robustness test.

Figure 7: The implementation of Auto-ISP on FPGA.

Table 6: The complexity of the neural network.
Network Our ParaNet U-Net Proxy Our Proxy

Parameter(M) 0.0093 4.3707 2.8399
Operations (GFLOPs) 0.0157 21.1975 98.8356

Table 7: The ablation study of ParaNet designing in FPGA.
Semi-Parallel Row-Cross PS Conv LUTs/FFs/BRAMs/DSPs↓

×2 ✓ ✓ 46935 / 90834 / 36.5 / 721
×1 ✓ 38384 / 79570 / 32.5 / 383
×1 ✓ 38877 / 80588 / 37 / 413
×1 ✓ ✓ 37692 / 78936 / 36.5 / 365

optimal performance. We present the results of our implementation
in Table 5. In our FPGA and ASIC implementation, we achieve
frame-by-frame search and imaging at 1080P at 75FPS and 240FPS,
respectively.

Complexity. As indicated in Table 6, our hardware-friendly
ParaNet design use only 0.0093M parameters, effectively reducing
the memory requirement. Furthermore, our proxy features fewer
parameters (∼2.84M) and enhanced floating-point computational
capabilities (∼98.84GFLOPs) compared to a U-Net-based proxy.

Table 7 further validate the reduction of ParaNet hardware re-
sources for our approach. The semi-parallel architecture serially
computes the ×1 output channel/node. When computing with ×2
outputs, ParaNet has more Conv kernels, with a significant increase
in DSPs. Row-Cross Conv and PS Conv also reduce logic resources,
especially for DSPs.
6 Conclusion
We introduce a tri-step framework for solving real-time online ISP
hyperparameter optimization tasks, greatly simplifying the complex
tuning process and eliminating the need for manual intervention.
We integrate the framework and ISP hardware into Auto-ISP and
propose a semi-parallel architecture and row-aware processing
to improve compatibility with conventional ISPs. We validate our
design on FPGAs and ASICs, and results show that our approach
achieves the highest accuracy in both HV and CV tasks and can be
applied in real-time even in unpredictable scenarios.
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