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Abstract
We investigate the problem of identifying the opti-
mal scoring rule within the principal-agent frame-
work for online information acquisition problem.
We focus on the principal’s perspective, seeking
to determine the desired scoring rule through in-
teractions with the agent. To address this chal-
lenge, we propose two algorithms: OIAFC and
OIAFB, tailored for fixed confidence and fixed
budget settings, respectively. Our theoretical anal-
ysis demonstrates that OIAFC can extract the de-
sired (ϵ, δ)-scoring rule with a efficient instance-
dependent sample complexity or an instance-
independent sample complexity. Our analysis
also shows that OIAFB matches the instance-
independent performance bound of OIAFC, while
both algorithms share the same complexity across
fixed confidence and fixed budget settings.

1. Introduction
The information acquisition problem, framed within the
framework of the principal-agent model (Laffont & Maskin,
1981), studies how a principal hires an agent to gather criti-
cal information for decision-making processes (Oesterheld
& Conitzer, 2020; Neyman et al., 2021). In this setup, the
principal relies on the effort and expertise of the agent to
provide high-quality information. Consider a strategic inter-
action between a manager (principal) and a domain expert
(agent). The manager is tasked with evaluating the suit-
ability of an advertising strategy for a given market. The
effectiveness of this strategy depends on an uncertain un-
derlying factor, which we refer to as the environment state
ω. This state could represent characteristics of the market,
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such as consumer preferences or competitive dynamics, that
influence the strategy’s potential. The manager first designs
a scoring rule S and announces it to the expert. The expert
investigates ω by selecting a research method (action k),
which incurs a cost ck. The expert chooses the research
method that maximizes its expected profit, i.e., the method
that maximizes S(σ̂, ω)− ck, where S(σ̂, ω) represents the
payment from the manager based on the accuracy of the
report. After performing the selected method, the expert ob-
serves the outcome o and produces a report σ̂. The manager
then uses σ̂ to make an investment decision d (e.g., imple-
menting the proposed strategy). The utility of the manager
u(ω, d) is determined based on the true state ω and d.

While most existing research (Neyman et al., 2021; Li et al.,
2022; Hartline et al., 2023) focuses on designing optimal
scoring rules in offline settings, relatively little attention has
been given to the online scenario, where the principal seeks
to achieve learning objectives through repeated interactions
with the agent. To the best of our knowledge, only two prior
studies have explored the online information acquisition
problem (Chen et al., 2023; Cacciamani et al., 2023). How-
ever, these studies primarily focus on regret minimization
from the principal’s perspective, aiming to reduce cumu-
lative regret from sub-optimal decisions. A less-explored
aspect is best scoring rule identification (BSRI), where the
principal’s goal is to identify an estimated optimal scor-
ing rule that maximizes expected profit through repeated
interactions.

Chen et al. (2023) presents instance-independent BSRI re-
sults for their algorithm in the fixed-confidence setting (see
Corollary 4.4 in Chen et al. (2023)). They show that their
algorithm can identify an (ϵ, δ)-optimal scoring rule using
Õ(C3

OK
6ϵ−3) samples, where K represents the number of

the agent’s actions, and CO denotes the total number of pos-
sible observations. However, this sample complexity is rela-
tively higher than that of standard best arm identification al-
gorithms for multi-armed bandit problems (Even-Dar et al.,
2002; Kalyanakrishnan et al., 2012), which typically require
only Õ(Kϵ−2) samples. Moreover, no instance-dependent
results are currently available for fixed-confidence BSRI,
where the sample complexity upper bound would depend on
the expected profit gap between the optimal and sub-optimal
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actions (research methods). Additionally, the fixed-budget
setting of BSRI also remains unexplored, leaving open ques-
tions about performance in scenarios with limited sample
availability.

Based on the above observation, we address the BSRI prob-
lem and build upon the setting and results presented in Chen
et al. (2023). We introduce two algorithms: OIAFC for the
fixed-confidence setting and OIAFB for the fixed-budget set-
ting. We introduce new trade-off parameters αk

t , along with
a breaking rule and parameter βt, as well as a decision rule.
These innovations ensure that we achieve a (ϵ, δ)-optimal
scoring rule while maintaining an instance-dependent sam-
ple complexity upper bound. To the best of our knowledge,
our results are the first instance-dependent results for the
online information acquisition problem. The contributions
are summarized as follows:

• OIAFC identifies the (ϵ, δ)-optimal scoring rule
with an instance-dependent sample complexity upper
bound of Õ

(
M
(∑

k ̸=k∗ ∆
−2
k

)
+ ϵ−2

)
in the fixed-

confidence setting, where ∆k represents the profit gap,
and M ≤ K ×CO. We also demonstrate that in a sim-
ple setting, OIAFC’s instance-dependent result aligns
with the known instance-dependent outcomes for the
fixed-confidence best-arm identification problem in
multi-armed bandits.

• OIAFC identifies the (ϵ, δ)-optimal scoring rule with
an instance-independent sample complexity upper
bound of Õ

(
MKϵ−2

)
in the fixed-confidence setting,

which improves the result proposed by Chen et al.
(2023). This result aligns with the known instance-
independent result for the fixed-confidence best arm
identification problem in the MAB.

• The OIAFB algorithm, consistent with the instance-
independent results of OIAFC, identifies an (ϵ, δ)-
optimal scoring rule, given a budget of T =
Õ(MKϵ−2).

2. Related Work
Best arm/policy identification. Best arm identification in
bandits (Mannor & Tsitsiklis, 2004; Even-Dar et al., 2006;
Bubeck et al., 2009; Gabillon et al., 2011; Kalyanakrishnan
et al., 2012; Gabillon et al., 2012; Jamieson et al., 2013;
Garivier & Kaufmann, 2016; Chen et al., 2016; Wang et al.,
2023; Azize et al., 2024) shares a similar goal with our prob-
lem: finding a near-optimal arm (scoring rule) with minimal
sample complexity. The smaller the sample complexity, the
better the algorithm’s performance. However, one of the key
differences between our setting and theirs is that we cannot
directly pull an arm (Chen et al., 2023; Cacciamani et al.,
2023); instead, we must use the scoring rule to incentivize

the agent to pull the desired arm. This complication requires
us to learn the response region of arm k (will be introduce
in the following sections).

Online learning in strategic environments. Our problem
falls under the topic of online learning in strategic environ-
ments. In this category, the online learner’s reward in each
round is influenced by their actions (such as the scoring
rule in our paper) as well as the strategic responses of other
players (such as the agent in our paper) in repeated games.
These repeated games are grounded in influential economic
models, including Stackelberg games (Sessa et al., 2020;
Balcan et al., 2015; Haghtalab et al., 2022), auction de-
sign (Amin et al., 2013; Feng et al., 2017; Golrezaei et al.,
2018; Guo et al., 2022), matching (Jagadeesan et al., 2021),
contract design (Ho et al., 2014; Cohen et al., 2022; Zhu
et al., 2022; Wu et al., 2024; Zuo, 2024a;b), Bayesian per-
suasion (Castiglioni et al., 2020; 2022; 2021; Bernasconi
et al., 2022; 2023; Gan et al., 2021; Zu et al., 2021; Wu
et al., 2022; Agrawal et al., 2024; Bacchiocchi et al., 2024),
principal-agent games (Alon et al., 2021; Han et al., 2024;
Ben-Porat et al., 2024; Ivanov et al., 2024; Scheid et al.,
2024; Chakraborty et al.). Chen et al. (2023) presented
the first study on online information acquisition, primarily
focusing on the regret minimization problem. They also
proposed a fixed-confidence result for best scoring rule iden-
tification, but their sample complexity upper bound is loose
and instance independent.

Best scoring rule. Our problem is also related to the topic
of offline optimal scoring rule design. Previous studies have
made different assumptions regarding the number of states
and action numbers. Some prior works ((Neyman et al.,
2021; Hartline et al., 2023)) assume there are only two
possible states. In contrast, our paper allows the number of
states to be any finite number ≥ 2. Similarly, some previous
studies ((Chen & Yu, 2021; Li et al., 2022; Papireddygari
& Waggoner, 2022)) assume the action number is K = 2.
In our work, we allow K to be any finite number ≥ 2.
Additionally, while all the papers mentioned above model
the state as exogenously given, our paper allows for the
prior of the state to potentially be influenced by the agent’s
actions (Chen et al., 2023).

3. Preliminaries
Notations. In this paper, we define log(·) as the natural
logarithm, log2(·) as the binary logarithm, R+ as the set
of all positive real numbers, N+ as the set of all positive
integers, ∆(Ω) as the probability simplex over Ω, and [t] =
{1, 2, ..., t}. Additionally, we use a = O(b) to indicate the
existence of a constant c′ such that c′b ≥ a, and use Õ to
suppress poly-logarithmic factors.
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3.1. Online information acquisition model

The setting we study was initially explored by Chen et al.
(2023), as outlined below.

Interaction protocol. The information acquisition model
involes three key components: a principal, an agent, and
a stochastic environment. The interaction between these
entities in each round t proceeds as follows:

1. The principal announces a scoring rule St : Ω ×
∆(Ω) → R+.

2. The agent selects an action, or “arm”, kt from the K-
armed set A based on the scoring rule St and incurrs a
cost ckt . Note that while kt is observed by the principal,
the cost ck is private to the agent.

3. The stochastic environment generates a state ωt ∈ Ω
unknown to both the agent and the principal and
sends an observation ot ∈ O to the agent based on
p(ωt, ot|kt).

4. The agent submits a reported belief σ̂t ∈ ∆(Ω) to
the principal about the hidden state. This belief helps
the principal in learning the stochastic environment.
The principal then makes a decision dt ∈ D based on
knowledge {St, kt, σ̂t}.

5. The stochastic environment reveals the hidden state ωt.
The principal compensates the agent according to the
scoring rule St(ωt, σ̂t) and gains utility u(ωt, dt).

More details are provided in Section B of the Appendix. We
assume the principal selects St from the scoring rule set S
where ∥S∥∞ ≤ BS for all S ∈ S, the norm of the utility
function u : Ω × D is bounded by ∥u∥∞ ≤ Bu, the arm
number, K ≥ 2, is a finite integer which is known to the
principal (Chen et al., 2023), and the observation set O is
also finite with CO observations.

Note that, in our setting, the principal can observe the action
(e.g., research method) selected by the agent (Chen et al.,
2023). The practicality of this assumption will be illustrated
through the following example.
Example 1. Suppose the agent’s action kt denotes a re-
search method or a type of investigation. The principal can
design processes to make the agent’s actions observable.
Below are practical examples:

• Online Surveys: The agent deploys a web-based ques-
tionnaire to gather information, where each distinct
type of web-based questionnaire represents a specific
action. The principal can mandate that the question-
naire be hosted on the principal’s company’s official
website or made easily accessible online, enabling the
principal to readily observe the process.

• Offline In-Person Surveys: The agent organizes a
group of investigators to conduct face-to-face surveys
on the street, where each distinct type of survey rep-
resents a specific action. The principal can require
that some of these investigators include trusted employ-
ees from the principal’s company, ensuring that the
principal can observe this category of surveys.

In the rest of the Section 2, we will forget the subscript t
and introduce the agent’s arm selection and belief report-
ing policies, along with the decision-making policy of the
principal

Information structure. The almighty agent is aware
of both {ck}Kk=1 and the observation generation process
p(ω, o|k). With this knowledge, the agent refines its belief
σ ∈ ∆(Ω) about the hidden state using the Bayes’s rule:
σ(ω) = p(ω|o, k) = p(ω, o|k)/p(o|k). Here, σ is a ran-
dom measure mapping observations from O to probabilities
in ∆(Ω), reflecting the uncertainty in o. Let Σ ⊂ ∆(Ω)
represent the support of σ, and define M as the cardinal-
ity of Σ. Due to the discrete nature of A and O, we have
M ≤ K×CO. We also introduce qk(σ) ∈ ∆(Σ) as the dis-
tribution of σ based on the agent’s choice of action k ∈ A.
Since σ encapsulates all the relevant information about o,
the observation o can be omitted, and {qk}Kk=1 along with
{ck}Kk=1 are referred to as the information structure.

Optimal scoring rule. The information acquisition
problem can be framed as a general Stackelberg game.
In this setting, let η : S × ∆(Ω) × A → D represent the
principal’s decision-making policy, while µ : S → A and
v : S×Σ×A → ∆(Ω) denote the agent’s arm selection and
belief reporting policies, respectively. For any given scoring
rule S ∈ S, the agent chooses an arm k = µ(S) and reports
σ̂ = v(S, σ, k) to maximize its expected profit, which is ex-
pressed as g(µ, v;S) := E

[
S (ω, v (S, σ, µ(S)))− cµ(S)

]
.

The expectation here accounts for the randomness in both ω
and σ according to the distribution qµ(S). The principal’s
objective is to design an optimal scoring rule S and estab-
lish a decision policy η that maximizes its own expected
profit, given that the agent will respond optimally with
its best strategies (µ∗, v∗), i.e., h (µ∗, v∗;S, η) :=
E
[
u (ω, η (S, v∗ (S, σ, µ∗(S)) , µ∗(S))) −

S (ω, v∗ (S, σ, µ∗(S)))
]

where the expectation con-
siders the randomness of ω and σ with respect to qµ∗(S).
The optimal leader strategies are referred to as strong
Stackelberg equilibria, which can be framed as solutions to
a bilevel optimization problem, as introduced by Conitzer
(2015); Chen et al. (2023), i.e.,

max
η,S∈S

h
(
µ∗, v∗;S, η

)
,

s.t.
(
µ∗, v∗

)
∈ argmax

µ,v
g
(
µ, v;S

)
.

(1)
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To simplify Eq (1), we will introduce the definition of proper
scoring rule (Savage, 1971). Under this rule, the agent is
incentivized to report truthfully (i.e., σ̂ = σ).

Definition 1 (Proper scoring rule (Savage, 1971)). A scoring
rule S ∈ S is considered proper if, for any given belief
σ ∈ ∆(Ω) and any reported belief σ̂ ∈ ∆(Ω), we have
Eω∼σ[S(ω, σ̂)] ≤ Eω∼σ[S(ω, σ)]. If this inequality is true
for any σ̂ ̸= σ, then S is said to be strictly proper.

Under a proper scoring rule, the concept of reporting a truth-
ful belief is, by definition, the most profitable for the agent.
According to the revelation principle (Myerson, 1979), any
equilibrium that involves dishonest belief reporting has an
equivalent equilibrium involving truthful belief reporting.
This implies that the principal’s optimal scoring rules can
be considered proper without loss of generality (Chen et al.,
2023), allowing us to limit the reporting scheme v to the
ones that are truthful.

Lemma 1 (Revelation principal (Myerson, 1979)). We let
S denote the set of the proper scoring rule with bounded
norm ∥S∥∞ ≤ BS , there exists a S∗ ∈ S that is an optimal
solution to Eq (1).

We define k∗ = k(S∗) as the optimal response of S∗. The
proof of Lemma 1 is shown in Section C.1 of Chen et al.
(2023). We here further simplify the notations. The optimal
decision policy for the principal η∗ can be simplified to
d∗(σ) = η∗(S, σ, k) since S and k add no information to the
hidden state given σ. Similarly, we define k∗(S) = µ∗(S),
u(σ) = Eω∼σ[u(ω, d

∗(σ))] and S(σ) = Eω∼σ[S(ω, σ)].
We can reformulate the optimization program in Eq (1) as
follows:

max
S∈S

Eσ∼qk∗(S)

[
u(σ)− S(σ)

]
s.t. k∗(S) ∈ argmax

k∈A
Eσ∼qk

[
S(σ)− ck

]
.

(2)

We denote the agent’s profit function as g(k, S) :=
Eσ∼qk [S(σ) − ck] and the principal’s profit function un-
der the agent’s optimal response k∗(S) as h(S) :=
Eσ∼qk∗(S)

[u(σ) − S(σ)]. In Section 4, we will convert
Eq (2) into linear programming that only includes learnable
parameters.

3.2. Learning objectives

In this paper, we consider both the fixed confidence setting
and the fixed budget setting.

Fixed confidence. In the fixed confidence setting, the al-
gorithm wants to obtain an estimated optimal scoring rule
Ŝ∗ that can satisfy the (ϵ, δ)-condition with a finite sample
complexity τ .

Definition 2 ((ϵ, δ)-condition). We define 0 < ϵ ≤ 2(BS +
Bu) as the reward gap parameter and 0 < δ ≤ 1 as the

probability parameter. The algorithm should find a esti-
mated optimal scoring rule Ŝ∗ ∈ S which satisfies

P
(
h(S∗)− h(Ŝ∗) ≤ ϵ

)
≥ 1− δ. (3)

A smaller sample complexity τ implies better algorithmic
performance.

Fixed budget. In the fixed budget setting, the learning al-
gorithm should utilize T interactions to derive an estimated
optimal scoring rule Ŝ∗ which satisfies

P
(
h(S∗)− h(Ŝ∗) ≤ ϵ

)
≥ 1− δ̃. (4)

A smaller error probability δ̃ implies better algorithmic per-
formance.

Remark 1. The best scoring rule identification problem is
significantly more challenging than the best arm identifica-
tion problems in standard multi-armed bandits Even-Dar
et al. (2002) and principal-agent bandits Scheid et al. (2024).
In the principal-agent bandit setting Scheid et al. (2024),
the principal’s objective is relatively straightforward: to
incentivize the agent to take a good action, as the agent’s
action directly determines the principal’s utility. In contrast,
our setting introduces an added layer of complexity due to
the presence of an underlying state that is unobservable to
the principal but directly impacts the agent’s utility. The
principal must rely on the agent’s report to derive the infor-
mation about the state. Consequently, maximizing utility in
our setting requires addressing two intertwined challenges:
it must incentivize the agent to (1) take the optimal action,
and (2) truthfully report its belief about the underlying state.

Consequently, while the payment rule in Scheid et al. (2024)
can be designed solely based on the agent’s action, the scor-
ing rule in our setting instead depends on the agent’s report.
This introduces another layer of difficulty: the scoring rule
must not only incentivize the agent to take the optimal action,
but also to truthfully report its belief. Hence, identifying the
optimal scoring rule in our setting demands a more nuanced
and sophisticated analysis.

4. Learning the Optimal Scoring Rule
In this section, we demonstrate how algorithms iteratively
learn the optimal scoring rule. In Section 4.1, we will sim-
plify the information acquisition problem into a bandit-like
problem, identifying the key parameters to be learned. In
Section 4.2, we will delve into the strategy of learning these
unknown parameters. In Section 4.3, we will use the learned
parameters to establish the linear program UCB-LPk,t and
use it to select the estimated best arm.
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4.1. Simplify the information acquisition problem

We first illustrate how to simplify the information acqui-
sition problem into a bandit-liked problem. Define Vk =
{S ∈ S | g(k, S) ≥ g(k′, S),∀k′ ∈ A} as the region in
which the agent takes action k as its best response. The
problem Eq (2) can be reformulated as

max
k∈A

h(S∗
k)

s.t. h(S∗
k) = sup

S∈Vk

Eσ∼qk [u(σ)− S(σ)].
(5)

where h(S∗
k) represents the principal’s maximum profit

when the agent’s optimal response is k, and S∗
k is the op-

timal solution to the inner problem in Eq (5). If the prin-
cipal is aware of Vk, qk and the pairwise cost difference
C(k, k′) = ck − ck′ , the inner problem of Eq (5) can be
solved by the following linear programming LPk

LPk : h(S∗
k) = max

S∈S
uk − vS(k)

s.t. vS(k)− vS(k
′) ≥ C(k, k′), ∀k ∈ A,

(6)

where vS(k) = ⟨S(·), qk(·)⟩Σ denotes the expected pay-
ment of scoring rule S if the agent takes arm k and uk =
⟨u(·), qk(·)⟩Σ denotes the expected utility if the agent takes
arm k. The information acquisition problem is simplified to
a bandit problem, where A is the K-armed set and h(S∗

k)
is the reward of the arm. However, the region Vk, the brief
distribution qk and pairwise cost difference C(k, k′) are
unknown to the principal. Therefore, the principal needs
to learn this information. Recall the definitions of Vk and
g(k, S): Vk = {S ∈ S| ⟨qk − qk′ , S⟩Σ ≥ C(k, k′),∀k′ ∈
A}. To identify Vk, we just need to estimate the belief distri-
bution qk with estimator q̂tk and the pairwise cost difference
C(k, k′) = ck − ck′ with estimator Ĉt(k, k′). Note that
estimator Ĉt can be updated using the following identity

C(k, k′) = vS(k)− vS(k
′), ∀S ∈ Vk ∩ Vk′ , (7)

where we can replace the qk in vS(k) with q̂tk. Furthermore,
we need to find a scoring rule S that belongs to Vk ∩ Vk′

to use Eq (7) effectively. To achieve this, we utilize a bi-
nary search approach on the convex combination of S1 and
S2, where k∗(S1) = k and k∗(S2) = k′. Besides, we aim
to inform the principal about the K arms and ensure they
can find a scoring rule S such that k∗(S) = k for binary
search. To achieve this, we introduce the action-informed
oracle. This oracle provides the principal with K scoring
rules S̃1, ..., S̃K such that k∗(S̃k) = k. This assumption is
also adopted by Chen et al. (2023) where they demonstrated
the practical implementation of the action-informed oracle
(see Example 3.4 and 3.5 in Chen et al. (2023)). Further-
more, they presented a hard instance in which no learning
algorithm can identify the scoring rule that triggers the best
arm without the action-informed oracle (Lemma 3.2 in Chen
et al. (2023)).

Assumption 1 (Action-informed oracle Chen et al. (2023)).
We suppose that there is an oracle that can provide the
learning algorithm with K-scoring rules {S̃k}Kk=1. If the
principal announces S̃k, the agent’s best response is arm k.
Moreover, for the agent’s profit g(k, S), we suppose there
exists a positive constant ε that g(k, S̃k) − g(k′, S̃k) > ε,
∀k′ ̸= k.

Intuitively, equipped with the action-informed oracle, the
principal holds the power to induce the agent to select its
preferred arm (i.e., announce the corresponding scoring
rule). In Section 4.2, we will show that we can utilize q̂t,
Ĉt, and their corresponding confidence radius to efficiently
estimate q and C.

4.2. Learning belief distributions and pairwise cost
differences

Let N t
k =

∑t−1
s=1 1{ks = s} denote the total count of times

the agent selects arm k before round t. For all k ∈ A, we
define the empirical estimator of qk as

q̂tk(σ) =
1

N t
k

t−1∑
s=1

1{σs = σ, ks = k}, ∀σ ∈ Σ. (8)

We define the confidence radius for belief estimator q̂tk as

Fixed Confidence Itq(k) =

√
2 log(4K2M t2/δ)

N t
k

, (9)

Fixed Budget Itq(k) =
√

a

N t
k

, (10)

where the definition of parameter a will be provided in
Theorem 2. We define the estimated payment of scoring
rule S if the agent responds by taking arm k as v̂tS(k) =
⟨S(.), q̂tk(.)⟩Σ. Besides, we define the estimated utility if
the agent takes arm k as ût

k = ⟨u(.), q̂tk(.)⟩Σ.

The definition of the pairwise cost difference estimator
Ĉt(k, k′) and its confidence radius Itc(k, k

′) are shown in
Section C in the Appendix. By the following Lemma 2, we
show that qk and C(k, k′) can be successfully learned with
high probability.

Lemma 2. Define event E =
{
∥q̂tk − qk∥1 ≤ Itq(k), ∀t ∈

[τ ], ∀k ∈ A
}

. E will occur with probability at least
1 − δ when Itq(k) is defined in the fixed confidence style
Eq (9) and with probability at least 1 − TK2Me−

1
2a (if

0 < TK2Me−
1
2a ≤ 1) when defined in the fixed budget

style Eq (10). Furthermore, under the occurrence of event
E , we have:

|v̂tS(k)− vS(k)| ≤ BSI
t
q(k), ∀k ∈ A, S ∈ S,∣∣ût

k − uk

∣∣ ≤ BuI
t
q(k), ∀k ∈ A,

|C(k, k′)− Ĉt(k, k′)| ≤ Itc(k, k
′), ∀(k, k′).
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4.3. Solving for the optimal scoring rule via UCB-LPk,t

Rewriting the LPk (6) by replacing q and C with their esti-
mations q̂t, Ĉt, and incorporating their confidence radiuses,
we obtain

UCB-LPk,t : ĥt
k = max

S∈S
ût
k +BuI

t
q(k)− v

s.t. |v − v̂tS(k)| ≤ BSI
t
q(k)

v − v̂tS(k
′) ≥Ĉt(k, k′)−

(
Itc(k, k

′) +BSI
t
q(k

′)
)
, ∀k′ ̸= k.

In UCB-LPk,t, we employ ĥt
k to provide a high-probability

upper bound on the true value of h(S∗
k), as demonstrated in

Lemma 7 in the Appendix. Through the linear programming
described above, we can derive the estimated value ĥt

k and
scoring rule Ŝk,t for arm k in round t. In cases where
UCB-LPk,t is infeasible, we set ĥt

k = ût
k− v̂tk(S̃k)+(Bu+

BS)I
t
q(k) and Ŝk,t = S̃k.

5. Learning Algorithms
5.1. Online information acquisition fixed confidence

(OIAFC)

Before presenting the learning algorithm, we first define the
concepts of the reward gap and problem complexity.

Definition 3 (Reward gap and problem complexity). We
define the reward gap between the optimal arm and a
sub-optimal arm k as ∆k = h(S∗) − h(S∗

k). Further-
more, the instance-dependent problem complexity is de-
fined as H∆ = 4(BS + Bu)

2
(
ϵ−2 +

∑
k ̸=k∗ ∆

−2
k

)
and

instance-independent problem complexity as Hϵ = 4(BS +
Bu)

2K/ϵ2.

The reward gap ∆k represents the difference between the
maximum profit that the principal can obtain when the agent
pulls the optimal arm k∗ versus a sub-optimal arm k. In the
bandit literature, problem complexity is commonly defined
as H∆ = ϵ−2 +

∑
k ̸=k∗ ∆

−2
k and Hϵ = Kϵ−2. This defi-

nition arises from the assumption that the rewards of each
arm are bounded within [0, 1], leading to 0 ≤ ∆k ≤ 1 and
0 ≤ ϵ ≤ 1. In our context, we have 0 ≤ ∆k

2(BS+Bu)
≤ 1

and 0 ≤ ϵ
2(BS+Bu)

≤ 1. This consideration motivates our
selection of problem complexity in Definition 3.

We now introduce the OIAFC algorithm.

OIAFC. As outlined in lines 2-4 of Algorithm 1, OIAFC
begins with an initialization phase, where action-informed
oracles of different arms are presented to the agent, feed-
back is collected, and estimates are updated. The algo-
rithm then enters the exploration phase, where the princi-
pal’s task is to identify the currently estimated best arm,
denoted as k∗t = argmaxk∈A ĥt

k, with ĥt
k derived from

UCB-LPk,t. To incentivize the agent to select this arm,

the algorithm employs a conservative scoring rule St =
αt
k∗
t
S̃k∗

t
+
(
1− αt

k∗
t

)
Ŝk∗

t ,t
. After receiving the agent’s feed-

back, the algorithm checks if further exploration is needed.
If the agent chooses kt ̸= k∗t , it suggests that the estimate
of Vk∗

t
is not accurate, prompting a binary search (details

can be found in Algorithm 3 in the Appendix) to refine the
estimate. Conversely, if kt = k∗t , this suggests a satisfac-
tory estimate of Vk∗

t
, and the algorithm proceeds to check

the stopping condition. If 2(BS + Bu)I
t
q(k

∗
t ) ≤ βt holds,

the exploration halts, returning Ŝ∗ = St as the estimated
optimal scoring rule.

In the following sections, we will illustrate the insight be-
hind the design of Algorithm 1 and establish upper bounds
for normal exploration rounds

∑τ
t=1 1{kt = k∗t } and

forced exploration rounds
∑τ

t=1 1{kt ̸= k∗t } in Lemma
3 and Lemma 4, respectively. Finally, by utilizing Lemma 5,
we demonstrate that OIAFC successfully identifies the esti-
mated best arm that satisfies condition Eq (3). Combining
these results, we can prove that OIAFC outputs an estimated
best-scoring rule that satisfies Eq (3) with a near-optimal
sample complexity (shown in Theorem 1).

Sampling rule. In each round, the principal identifies
k∗t = argmaxk∈A ĥt

k as the current estimated best arm and
wants to induce the agent to pull the arm k∗t using the scoring
rule St. However, at times, Ĉt(k∗t , k)+ Itc(k

∗
t , k) and q̂tk∗

t
+

Itq(k
∗
t ) may not be precise enough to estimate C(k∗t , k) and

qk∗
t

due to limited observations of arm k∗t . Consequently,
the agent might not choose arm k∗t under scoring rule Ŝk∗

t ,t
.

This indicates directly setting St = Ŝk∗
t ,t

is not sufficient to
induce arm k∗t . Hence, we let the principal adopt a conserva-
tive scoring rule St = αt

kS̃k∗
t
+
(
1− αt

k

)
Ŝk∗

t ,t
. Intuitively,

since the scoring rule S̃k∗
t

ensures the agent will select arm
k∗t , incorporating it with Ŝk∗

t ,t
increases the likelihood that

the agent pulls arm k∗t compared to using Ŝk∗
t ,t

alone, as
the combined rule strengthens the agent’s preference for the
estimated best arm.

Remark 2. Therefore, if St contains more ingredients from
S̃k∗

t
(meaning α is relatively large), it’s more likely to

prompt the agent to select k∗t and requires fewer binary
searches. Consider the extreme case that αt

k = 1 for all t,
then the OIAFC will directly present the action-informed or-
acle of arm k and the agent must respond with kt = k. How-
ever, this might increase the simple regret h(S∗) − h(St),
leading the algorithm to employ more regular rounds (i.e.,
k∗t = kt) to estimate a suitable Ŝ∗ such that it can satisfy the
condition in Eq (3). Therefore, selecting suitable {αt

k}Kk=1

and βt to balance the trade-off between normal exploration
(i.e., τ1 =

∑τ
t=1 1{kt = k∗t }) and forced exploration (i.e.,

τ2 =
∑τ

t=1 1{kt ̸= k∗t }, note that rounds kt ̸= k∗t include
the rounds in the binary search) is one of the key challenges
addressed in this paper.
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Algorithm 1 Online Information Acquisition Fixed Confidence (OIAFC)

1: Inputs: Arm set A, action-informed oracle {S̃k}Kk=1

2: for t = 1 : K do
3: Principal announces St = S̃t and updates the data based on its observation ▷ Initialization
4: end for
5: while t < ∞ do
6: Calculate q̂tk, Ĉt(k, k′), Itq(k) in Eq (9), Itc(k, k

′) for all k ∈ A and pair (k, k′)
7: for k = 1 : K do
8: Solve UCB-LPk,t and derive ĥk

t and Ŝk,t

9: end for
10: Set k∗t = argmaxk∈A ĥt

k and St = αt
k∗
t
S̃k∗

t
+
(
1− αt

k∗
k

)
Ŝk∗

t ,t
▷ Sampling rule

11: Principal announces St and observes the responding arm of the agent kt
12: if kt ̸= k∗t then
13: Conduct binary search BS(St, S̃k∗

t
, k∗t , t) ▷ Forced exploration

14: else
15: if 2(BS +Bu)I

t
q(k

∗
t ) ≤ βt then

16: Output Ŝ∗ = St as the estimated best scoring rule and break ▷ Decision rule
17: end if
18: end if
19: Set t = t+ 1 and begin a new round
20: end while

Define Lt
k =

∑t
s=1 1{ks = k∗s , ks = k} as the number

that k appears in a normal exploration till round t. With the
following Lemma 3, we can derive a instance-dependent
upper bound of τ1.

Lemma 3. If we select αt
k = min

(√
M
Lt

k
, 1
)

, βt =

ϵ−2αt
k∗
t
(BS+Bu)

1−αt
k∗
t

when αt
k∗
t
< 1 and βt = 0 when αt

k∗
t
= 1,

under event E , we have τ1 = Õ
(
MH∆

)
.

The result described above is related to the definition of
αt
k, the stopping rule outlined in line 15 of Algorithm 1, as

well as the structure of the fixed confidence style confidence
radius in Eq (9).

Forced exploration. If the agent does not choose kt =
k∗t after the principal announces St, it indicates that our
estimate of Vk∗

t
(the second constraint of UCB-LPk∗

t ,t
) is

insufficient. To ensure the agent selects k∗t in future rounds,
further exploration is required to improve the estimate of
Vk∗

t
. Specifically, using the structure St = αt

k∗
t
S̃k∗

t
+
(
1−

αt
k∗
t

)
Ŝk∗

t ,t
, we update the boundary of Vk∗

t
between St and

S̃k∗
t
. This is done by performing a binary search along the

region connecting St and S̃k∗
t

to determine where the agent’s
preferred arm shifts from k∗t to another arm. This binary
search efficiently refines the estimate of Vk∗

t
in logarithmic

time. More details on the binary search algorithm can be
found in Algorithm 3 in the Appendix.

In the following Lemma 4, we provide an instance-
dependent upper bound of τ2.

Lemma 4. If we select αt
k and βt as Lemma 3, under event

E , we have τ2 = Õ
(
ε−2B2

SMH∆

)
.

Remark 3. One of the key technical contributions of this pa-
per is the introduction of new trade-off parameters {αt

k}Kk=1

and breaking parameter βt, which are used to derive the
instance-dependent sample complexity upper bound. Chen
et al. (2023) set αt

k = min
(

K
t1/3

, 1
)

for all k ∈ A, which
limits them to a sub-optimal, instance-independent sample
complexity upper bound. In contrast, our parameters ensure
that Lτ

k = Õ
(
M2(BS +Bu)

2∆−2
k

)
for all k ̸= k∗ (see the

proof of Lemma 4 in the Appendix), allowing us to establish
an instance-dependent upper bound for τ1. Moreover, these
parameters link τ1 and τ2, demonstrating that the number
of binary searches can be bounded by Õ

(
τ1B

2
Sε

−2
)

(see
Section E.2 in the Appendix). Ultimately, this enables us to
derive an instance-dependent upper bound for τ = τ1 + τ2.

The subsequent Lemma 5 demonstrates that the returned
estimated best scoring rule Ŝ∗ can meet the (ϵ, δ)-condition
in Eq (3).
Lemma 5. If we select αt

k and βt as Lemma 3, the returned
estimated optimal scoring rule of OIAFC (i.e., Ŝ∗) can
satisfy the (ϵ, δ)-condition in Eq (3).

Together with Lemma 3-5, we can provide the instance-
dependent learning performance of the OIAFC.

Theorem 1. We set αt
k = min

(√
M
Lt

k
, 1
)

, βt =

ϵ−2αt
k∗
t
(BS+Bu)

1−αt
k∗
t

when αt
k∗
t
< 1 and βt = 0 when αt

k∗
t
= 1.

Under such circumstance, OIAFC can output an estimated

7
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best scoring rule which satisfies the (ϵ, δ)-condition in
Eq (3). The sample complexity of the algorithm can be
upper bounded by τ = Õ

(
ε−2B2

SMH∆

)
with probability

at least 1− δ.

Remark 4 (Theorem 1 provides a sample complexity up-
per bound that is near-optimal). The presence of the M
term in our sample complexity upper bound arises because
qk is a probability distribution supported on a finite set of
cardinality M . To bound qk, we rely on a concentration
inequality (Lemma 6 in the Appendix). Consider a sim-
ple setting where the belief set is {σi}2Ki=1 and the agent
returns belief σ2k−1 or σ2k to the principal only when it
pulls arm k ∈ A (this knowledge is known by the princi-
pal). Let qk represents the distribution of σ2k−1 and σ2k

based on the agent’s action k. By replacing the previous
belief estimator with q̂tk(σ) = 1

N t
k

∑t−1
s=1 1{σs = σ, ks =

k}, σ ∈ {σ2k−1, σ2k}, and defining the confidence radius

as Itq(k) =
√

2 log(16Kt2/δ)
N t

k
, we can upper bound the sam-

ple complexity by Õ
(
ε−2B2

SH∆

)
. This result aligns with

sample complexity upper bounds of common best arm identi-
fication algorithms in the MAB literature (i.e., Õ

(
H∆

)
), e.g.,

Even-Dar et al. (2006); Gabillon et al. (2012); Jamieson
et al. (2013).

Remark 5 (Origin of the 1/ϵ2 term in the sample complexity
bound). To find the near-optimal scoring rule, we must
identify both the best arm k∗ and the set of scoring rules that
can trigger the best arm Vk∗ . Intuitively, the dependency
on 1/∆2

i arises from identifying the best arm, whereas the
dependency on 1/ϵ2 emerges because, even after identifying
the best arm, additional samples are required to estimate the
set Vk∗ at an ϵ-accurate level. Only then can we determine
a scoring rule that meets the required accuracy.

Remark 6 (Advantages of our algorithm over existing ap-
proaches). We now provide intuition for why our algorithm
can achieve near-optimal instance-dependent sample com-
plexity, while Chen et al. (2023); Cacciamani et al. (2023)
fails to do so. The primary reason for the suboptimal sam-
ple complexity in Chen et al. (2023), aside from choosing
an inappropriate parameter, is the adoption of a subop-
timal termination criterion. Specifically, they employ the
breaking rule originally introduced by Jin et al. (2018),
which terminates the algorithm after Õ(ε−6K6C3

O) iter-
ations and selects the scoring rule identified in the final
round as the best estimate. This termination strategy is in-
herently inefficient because it intuitively demands a large
number of samples to ensure the accuracy of the identified
scoring rule. In contrast, our proposed breaking rule (line
15 in Algorithm 1) and corresponding decision rule (line
16 in Algorithm 1) enable a more efficient evaluation of
whether a scoring rule satisfies the necessary conditions.
Consequently, our approach achieves significantly improved
sample complexity.

For Cacciamani et al. (2023), we believe their explore-then-
commit (ETC) algorithm can achieve a sample complexity
bound of K/ϵ2 by appropriately calibrating the length of
the exploration phase with respect to ϵ. However, obtain-
ing an instance-dependent sample complexity bound from
ETC-based methods is challenging due to the necessity of
setting the exploration phase length in advance, without
prior knowledge of the actual instance-specific reward gaps
or problem complexity.

In summary, our algorithm achieves near-optimal instance-
dependent sample complexity due to: (1) the selection of
appropriate parameters, (2) the design of suitable breaking
and decision rules, and (3) the adoption of an effective
algorithm structure (UCB).

By selecting suitable αt
k and βt, we can also derive an

instance-independent sample complexity upper bound. This
is tailored to the circumstances that ∆k is relatively small
and ϵ is relatively large.

Corollary 1. We set αt
k = ϵ

4(BS+Bu)
for all k ∈ A and

t ∈ [τ ] and βt =
ϵ−2αt

k∗
t
(BS+Bu)

1−αt
k∗
t

. OIAFC can output an es-

timated best scoring rule which satisfies the (ϵ, δ)-condition
in Eq (3). The sample complexity of the algorithm can be
upper bounded by τ = Õ

(
ε−2B2

SMHϵ

)
with probability

at least 1− δ.

The proof of Corollary 1 follows a similar approach to the
proof of Theorem 1, i.e., we separately upper bound τ1 and
τ2, and demonstrate that the estimated best arm satisfies
Eq (3). In Chen et al. (2023), the authors show that their
algorithm can find the (ϵ, δ)-optimal scoring rule with at
most τ = Õ

(
8(BS + Bu)

3C3
OK

6ϵ−3ε−6
)

samples (see
their Corollary 4.4), which is significantly larger than our
sample complexity upper bound Õ

(
MHϵε

−2
)

(note that
M ≤ K × CO) in Corollary 1. Our results also align
with the efficient instance-independent bound in MAB, i.e.,
τ = Õ

(
Kϵ−2

)
(Even-Dar et al., 2002; Kalyanakrishnan

et al., 2012).

5.2. Online information acquisition fixed budget
(OIAFB)

OIAFB. The OIAFB algorithm shares the same sampling
rule and forced exploration strategy as OIAFC. However,
it diverges in its stopping and decision rules. OIAFB
stops once it exhausts the allocated budget T , returning
the estimated best scoring rule as Ŝ∗ = St∗ , where t∗ =
argmint∈T 2(BS + Bu)I

t
q(k

∗
t ) and T denotes the set of

all t satisfying kt = k∗t . Another difference is that OIAFB
utilizes confidence radius in Eq (10) to design UCB-LPk,t.
The pseudocode for OIAFB is provided in Algorithm 2 in
the Appendix, and its theoretical performance is detailed in
Theorem 2 below.
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Theorem 2. If we run OIAFB with αt
k = ϵ

4(BS+Bu)
for all

t ∈ [T ] and k ∈ A, and T satisfies

2 log
(
TK2M

)
<

T −K

144Hϵ max
(
B2

Sε
−2, 1

)
log2(T )

.

Choose parameter a such that

2 log(TK2M ) ≤ a <
T −K

144Hϵ max
(
B2

Sε
−2, 1

)
log2(T )

,

then OIAFB can output a (ϵ, δ̃)-estimated optimal scoring
rule with δ̃ ≤ TK2Me−

1
2a ≤ 1.

Theorem 2 can directly lead to the following corollary:

Corollary 2. If we set δ ∈ (0, 1],

T =288Hϵ max
(
B2

Sε
−2, 1

)
log2(Γ)

×
(
M + log

(ΓK
δ

))
+K,

where

Γ =
(
1152Hϵ max(B2

Sε
−2, 1)

(
M + (K/δ)1/2

)
+K

)2
,

αt
k = ϵ

4(BS+Bu)
for all t ∈ [T ] and k ∈ A, and

a = 2 log
(
TK2M/δ

)
. Then OIAFB can output a (ϵ, δ̃)-

estimated optimal scoring rule with δ̃ ≤ δ.

Corollary 2 demonstrates that, given a budget T =
Õ(ε−2B2

SMHϵ), the OIAFB algorithm can identify an esti-
mated best arm that satisfies the condition in Eq 3, aligning
with the results stated in Corollary 1. More generally, the
analysis presented in this paper suggests that the perfor-
mance of the OIAFC and OIAFB algorithms for scoring
rule identification is characterized by the same complexity
notion (instance-independent) across both fixed confidence
and fixed budget settings.

6. Conclusion
In this paper, we addressed the Best Scoring Rule Identifica-
tion problem, building on the framework and results from
Chen et al. (2023). We proposed two algorithms: OIAFC
for the fixed-confidence setting and OIAFB for the fixed-
budget setting. Our analysis shows that OIAFC can iden-
tify the (ϵ, δ)-estimated optimal scoring rule, achieving an
instance-dependent upper bound of Õ(ε−2B2

SMH∆) and
an instance-independent upper bound of Õ(ε−2B2

SMHϵ).
The OIAFB algorithm demonstrates similar efficiency in the
fixed-budget setting. A promising avenue for future work
would be to extend the Best Scoring Rule Identification
framework to more complex multi-agent environments, as
explored in Cacciamani et al. (2023).
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A. Notations
A Arm set
K Number of arms
t Time index
τ Terminated round in the fixed confidence setting
T Budget in the fixed budget setting
ωt State
σt True belief of the agent
σ̂t Reported belief of the agent
St Scoring rule
kt Agent’s action
k∗t Principal’s desired arm
h(S) Principal’s profit function under the scoring rule S
g(S, k) Agent’s profit function under the scoring rule S and arm k
Vk Set of the scoring rule that can trigger the agent to respond by taking arm k
k∗ Best response of S∗

S∗ Best scoring rule
Ŝ∗ Estimated best scoring rule
qk Belief distribution of arm k
ck Cost of arm k
C(k, k′) Cost difference of pair (k, k′)
q̂tk Estimator of qk
Ĉt(k, k′) Estimator of C(k, k′)
Itq(k) Confidence radius of q̂tk
Itc(k, k

′) Confidence radius of Ĉt(k, k′)
δ Probability parameter of the fixed-confidence setting
δ̃ Probability parameter of the fixed-budget setting
ϵ Utility gap (h(S∗)− h(Ŝ∗)) parameter of the fixed-confidence pure exploration problem
ε Utility gap parameter of the action-informed oracle
Ŝk,t Scoring rule solving by UCB-LPk,t

{S̃k}Kk=1 Action-informed oracle
ĥt
k Estimator of h(S∗

k)
βt Breaking threshold in round t
αt
k Trade-off parameter of arm k

vS(k) Expected payment of the scoring rule S if the agent responds by taking arm k
v̂tS(k) Estimated payment of the scoring rule S in round t if the agent responds by taking arm k
uk Expected utility of the principal under arm k
ût
k Estimated utility of the principal under arm k

N t
k Number of rounds that arm k is observed till round t

BS Upper bound of ∥S∥∞
Bu Upper bound of ∥u∥∞
H∆ Instance-dependent problem complexity
Hϵ Instance-independent problem complexity
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B. Details About The Iteration Processes and The Information Structure
To formulate the problem of optimally acquiring information within a principal-agent framework, we model the system as a
stochastic environment, a principal and an agent. In each round t, the environment will generate a hidden state ωt ∈ Ω,
which is depended on the agent action, and will influence the principal’s utility. However, this hidden state remains unknown
to both the principal and the agent until the end of the round.

The principal’s goal is to elicit the agent’s belief about this hidden state. To achieve this, the principal first offers a scoring
rule St that provides a payment based on the quality of the agent’s reported belief. This reward incentivizes the agent to
provide a more precise estimation of the hidden state. In response to this incentive, the agent incurs a cost ckt

to take an
action (arm) kt from its K-armed set A, gather an observation ot regarding the hidden state from the stochastic environment,
and subsequently generate a belief report σ̂t for the principal.

This belief report, in turn, aids the principal to make a decision dt. At the end of each round, the hidden state is revealed
to both agent and principal, enabling the principal to compute the corresponding utility. Based on this, the agent is payed
according to the scoring rule initially provided by the principal.

The following table displays the information structure of the online information acquisition problem.

Public Info Agent’s Info Principal’s Info Delayed Info

St, kt, σ̂t {ck}Kk=1, {qk}Kk=1, ot, σt u ωt

Table 1. This table outlines the different types of information in the model. Public Info represents information that is accessible to
both the principal and the agent at each round. Agent’s Info consists of information known only to the agent, while Principal’s
Info pertains to information exclusive to the principal. Lastly, Delayed Info refers to the hidden state ωt, which remains unknown
throughout the round but becomes revealed at the end of round t.

C. Learning The Pairwise Cost Differences
In this section, we introduce how to utilize estimator Ĉt(k, k′) to learn the pairwise cost difference C(k, k′). We define for
each pair (k, k′),

Ct
+(k, k

′) = min
s<t:ks=k

(
v̂tSs

(k)− v̂tSs
(k′)

)
+BS

(
Itq(k) + Itq(k

′)
)
,

Ct
−(k, k

′) = max
s<t:ks=k′

(
v̂tSs

(k)− v̂tSs
(k′)

)
−BS

(
Itq(k) + Itq(k

′)
)
.

We also define

θt(k, k′) =
Ct

+(k, k
′) + Ct

−(k, k
′)

2
, ϕt(k, k′) =

∣∣∣∣Ct
+(k, k

′)− Ct
−(k, k

′)

2

∣∣∣∣. (11)

Consider a graph G = (B,E), where the nodes in B represent the K arms, and the edges in E represent the pairwise cost
differences C(k, k′) = ck − ck′ . Additionally, introduce ϕt(k, k′) as the "length" assigned to the edge C(k, k′), indicating
the uncertainty when using θt(k, k′) to estimate the cost difference. To estimate C(k, k′) with minimal error, we aim to find
the shortest path between arms k and k′ on the graph G. This means we’re looking for the shortest path between the arms to
minimize the errors in estimating their cost difference. Based on this idea, we can estimate the pairwise cost difference by

lk,k′ = shortest path(G, k, k′),

Ĉt(k, k′) =
∑

(i,j)∈lk,k′

θt(i, j),

Itc(k, k
′) =

∑
(i,j)∈lk,k′

ϕt(i, j),

where lk,k′ denotes the shortest path between arm k and k′ in graph G, Itc(k, k
′) is the confidence radius of the pairwise cost

estimator Ĉt(k, k′). Besides, it is evident that Ĉt(k, k′) = −Ĉt(k, k′) due to lk,k′ = lk′,k and θt(k, k′) = −θt(k′, k).

14



Online Principal-Agent Information Acquisition

D. Omitted Algorithms
D.1. OIAFB

Algorithm 2 Online Information Acquisition-Fixed Budget (OIAFB)

1: Inputs: Arm set A, action-informed oracle {S̃k}Kk=1, and budget T
2: for t = 1 : K do
3: Principal announces St = S̃t and updates the data based on its observation ▷ Initialization
4: end for
5: while t ≤ T do
6: Calculate q̂tk, Ĉt(k, k′), Itq(k) in Eq (10), Itc(k, k

′) for all k ∈ A and pair (k, k′)
7: for k = 1 : K do
8: Solve UCB-LPk,t and derive ĥk

t and Ŝk,t

9: end for
10: Set k∗t = argmaxk∈A ĥt

k and St = αt
kS̃k∗

t
+ (1− αt

k)Ŝk∗
t ,t

▷ Sampling rule
11: Principal announces St and observes the responding arm of the agent kt
12: if kt = k∗t then
13: Conduct binary search BS(St, S̃k∗

t
, k∗t , t) ▷ Forced exploration

14: end if
15: Set t = t+ 1 and begin a new round
16: end while
17: Define set T as the set of all t that satisfies kt = k∗t
18: Set t∗ = argmint∈T 2(BS +Bu)I

t
q(k

∗
t )

19: Output Ŝ∗ = St∗ as the estimated best scoring rule ▷ Decision rule

D.2. Binary search

Algorithm 3 Binary Search BS(S0, S1, k
∗(S0), k

∗(S1), t, {Itq(k)}Kk=1)

1: Inputs: S0, S1, k∗(S0), k∗(S1), t, {Itq(k)}Kk=1

2: Initiate λmin = 0, λmax = 1, and ti = t
3: while λmax − λmin ≥ min(Itiq (k∗(S0)), I

ti
q (k∗(S1))) do

4: Start a new round t = t+ 1
5: Set λ = (λmin + λmax)/2 as the middle point
6: The principal announces St = (1− λ)S0 + λS1 and obtain the agent’s response kt
7: if kt = k∗(S1) then
8: Set λmax = λ
9: else

10: Set λmin = λ
11: end if
12: end while
13: Return: t

Binary search In binary search, the algorithm continues searching for the initial point of transition where the agent
switches from responding to arm k∗(S1) to another arm within the region (S0, S1). λmax and λmin define the interval
containing the switching point. After each round, the binary search assigns λ = (λmax + λmin)/2 to either λmin or
λmax, effectively halving the candidate interval. The binary search stops once the searching error λmax − λmin becomes
smaller than the minimum confidence radius between k∗(S1) and k∗(S2). It’s important to note that the depth of the binary
search, denoted as m, is less than log2

(
1

min(It
q(k

∗(S0)),It
q(k

∗(S1)))

)
(also less than log2(t) by the definition of the confidence

interval). Therefore, the binary search ensures sufficient accuracy within a logarithmic time.

New notations We hereby introduce new notations to describe more details of the binary search. We define a binary
search operation as BS(S0, S1, λ̃max, λ̃min, k0, k1, t0, t1), wherein S0 and S1 denote the input scoring rules. Notation
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(λ̃max, λ̃min) represents the (λmax,λmin) at the end of this binary search. Additionally, k0 and k1 are determined as
k∗
(
(1 − λ̃min)S0 + λ̃minS1

)
and k∗

(
(1 − λ̃max)S0 + λ̃maxS1

)
, respectively. Lastly, t0 and t1 signify the initiation and

culmination rounds of the binary search process. It’s important to note that while k1 represents the optimal response under
S1, k0 may not necessarily be the optimal response under S0.

E. Proof of Lemma 2
To prove Lemma 2, we need to employ the concentration result of Mardia et al. (2018).

Lemma 6 (Mardia et al. (2018), Lemma 1, Concentration for empirical distribution). Let X denote a probability distribution
that is supported in a finite set with a cardinality of at most M . Let X1, X2, . . . , Xn be i.i.d. random variables drawn from
X . The sample mean is denoted by X̄ = 1

n

∑n
s=1 Xs. For any sample size n ∈ N+ and 0 ≤ δ ≤ 1, the following holds:

P
(
∥X − X̄∥1 ≥

√
2 log(2M/δ)

n

)
≤ δ. (12)

Proof of Lemma 2. Recalling the event E :=
{
∥q̂sk − qk∥1 ≤ Isq (k), ∀s ∈ [t], ∀k ∈ A

}
, we define Ec as the complement

of E . By applying the union bound, we obtain:

P(Ec) ≤
K∑

k=1

t∑
s=1

P
(
∥q̂sk − qk∥1 > Isq (k)

)
. (13)

Based on Lemma 6 and the definition of the fixed-confidence confidence radius Isq (k) in Eq (9), it follows that P
(
∥q̂sk −

qk∥1 > Isq (k)
)
≤ δ/(4Ks2), ∀s ∈ [t], k ∈ A. Substituting this result into Eq (13), we obtain:

P(Ec) ≤
K∑

k=1

t∑
s=1

δ

4Ks2
≤ δ.

It implies P(E) ≥ 1− δ.

Employing Lemma 6 and following a procedure analogous to the previous one, it is straightforward to demonstrate that
P(E) ≥ 1− tK2Me−

1
2a if Isq (k) is defined in the fixed-budget style, as in Eq (10).

Consider the case when E occurs. Based on ∥S∥∞ ≤ BS and ∥u∥∞ ≤ Bu, it follows that

|v̂tS(k)− vS(k)| =
∣∣ 〈q̂tk − qk, S

〉
Σ

∣∣ ≤ BSI
t
q(k), ∀S ∈ S, k ∈ A,∣∣ût

k − uk

∣∣ = ∣∣ 〈q̂tk − qk, u
〉
Σ

∣∣ ≤ BuI
t
q(k), ∀k ∈ A.

(14)

Besides, based on the definition of Ct
+ and Ct

−, we have

Ct
+(k, k

′) ≥ min
s<t:ks=k

vSs
(k)− vSs

(k′) ≥ C(k, k′),

Ct
−(k, k

′) ≤ max
s<t:ks=k′

vSs
(k)− vSs

(k′) ≤ C(k, k′).
(15)
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Utilize Eq (15), we have∣∣∣Ĉt(k, k′)− C(k, k′)
∣∣∣ = ∣∣∣∣∣ ∑

(i,j)∈lk,k′

(
Ct

+(i, j) + Ct
−(i, j)

2
− C(i, j)

)∣∣∣∣∣
=

∣∣∣∣∣ ∑
(i,j)∈lk,k′

(
1

2

(
Ct

+(i, j)− C(i, j)
)
+

1

2

(
Ct

−(i, j)− C(i, j)
))∣∣∣∣∣

≤ 1

2

∣∣∣∣∣ ∑
(i,j)∈lk,k′

(
Ct

+(i, j)− C(i, j)
)∣∣∣∣∣+ 1

2

∣∣∣∣∣ ∑
(i,j)∈lk,k′

(
Ct

−(i, j)− C(i, j)
)∣∣∣∣∣

≤ 1

2

∑
(i,j)∈lk,k′

(
|Ct

+(i, j)− C(i, j)|+ |Ct
−(i, j)− C(i, j)|

)
=

1

2

∑
(i,j)∈lk,k′

|Ct
+(i, j)− Ct

−(i, j)| = Itc(k, k
′),

where the first and second inequalities follow from the triangle inequality, the third equality follows from Eq (15), and the
last equality follows from the definition of Itc(k, k

′). This completes the proof of Lemma 2.

F. Proof of Lemma 3-5 and Theorem 1
F.1. Proof of Lemma 3

Proof of Lemma 3. We will break this proof into three steps. In the first step, we upper bound
∑

k ̸=k∗ Lτ
k. In the second

step, we upper bound Lτ
k∗ . Finally, in the third step, we upper bound τ1 =

∑K
k=1 Lτ

k.

First step: We want to prove

Lτ
k ≤

(
(2
√
2 + 8)(BS +Bu)

√
log(4K2Mτ2/δ)

)2
∆2

k

, ∀k ̸= k∗. (16)

Define arm k ̸= k∗ and let tk be the final round in which arm k is observed, with k = k∗tk = ktk . Then, based on Lemma 2
and Lemma 8, when αtk

k < 1, we can derive

1

1− αtk
k

(
h(S∗

k)− αtk
k h(S̃k)

)
+ 2(BS +Bu)I

tk
q (k) ≥ ĥk

tk
≥ ĥk∗

tk
≥ h(S∗), (17)

where the second inequality is owing to k = k∗tk and the definition of k∗tk . We can rewrite Eq (17) as

∆k ≤
αtk
k

1− αtk
k

(
h(S∗

k)− h(S̃k)
)
+ 2(BS +Bu)I

tk
q (k)

≤
2αtk

k

1− αtk
k

(BS +Bu) + 2(BS +Bu)I
tk
q (k).

(18)

When ∆k ≥ 2α
tk
k

1−α
tk
k

(BS +Bu), based on the definition of the fixed confidence style confidence radius, the above inequalities

can be converted to

Lτ
k = Ltk

k ≤ N tk
k ≤ 8(BS +Bu)

2 log(4K2M t2k/δ)(
∆k − 2α

tk
k

1−α
tk
k

(BS +Bu)
)2 ≤ 8(BS +Bu)

2 log(4K2Mτ2/δ)(
∆k − 2α

tk
k

1−α
tk
k

(BS +Bu)
)2 , (19)

where the first equality follows from the definition of tk, the first inequality holds because N t
k =

∑t−1
s=1 1{ks = k} ≥ Lt

k =∑t−1
s=1 1{k = k∗s = ks}, and the third inequality follows from tk ≤ τ .
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Suppose

Lτ
k >

(
(2
√
2 + 8)(BS +Bu)

√
log(4K2Mτ2/δ)

)2
∆2

k

. (20)

Note that under this assumption, we have ∆k >
2ατ

k

1−ατ
k
(BS + Bu) =

2α
tk
k

1−α
tk
k

(BS + Bu) and 1 > ατ
k = αtk

k . Substituting

Eq (20) into Eq (19), we obtain

Lτ
k ≤ 8(BS +Bu)

2 log(4K2Mτ2/δ)(
∆k − 2ατ

k

1−ατ
k
(BS +Bu)

)2
≤ 8(BS +Bu)

2 log(4K2Mτ2/δ)(
∆k − 4

√
M
Lτ

k
(BS +Bu)

)2
≤

(
2
√
2(BS +Bu)

√
log(4K2Mτ2/δ) + 4(BS +Bu)

√
M
)2

∆2
k

≤

(
(2
√
2 + 8)(BS +Bu)

√
log(4K2Mτ2/δ)

)2
∆2

k

,

(21)

where the second step follows from
√

Lτ
k

2 ≥
√
M . The above inequality contradicts Eq (20), which implies that Eq (16)

holds.

Second step: We want to prove

Lτ
k∗ ≤

(
(2
√
2 + 2)(BS +Bu)

√
log(4K2Mτ2/δ)

)2
ϵ2

+ 1. (22)

If k∗ is only triggered in the initialization phase, this result trivially holds. Besides, suppose tk∗ is the penultimate round that
arm k is observed in a round that k∗ = k∗tk∗ = ktk∗ . According the stopping rule (line 15 of Algorithm 1), we can derive

βtk∗ ≤ 2(Bu +BS)I
tk∗
q (k). (23)

If βtk∗ > 0, then we can substitute Eq (9) (the definition of the fixed confidence style confidence radius) into Eq (23) and
derive

Lτ
k∗ = Ltk∗

k∗ + 1 ≤ N tk∗
k∗ + 1 ≤8(BS +Bu)

2

β2
tk∗

log
(4K2M t2k∗

δ

)
+ 1

≤8(BS +Bu)
2

β2
tk∗

log
(4K2Mτ2

δ

)
+ 1,

(24)

where the first equality is owing to the definition of tk∗ and Lt
k∗ and the last inequality is owing to tk∗ ≤ τ .

Suppose

Lτ
k∗ >

(
(2
√
2 + 4)(BS +Bu)

√
log(4K2Mτ2/δ)

)2
ϵ2

+ 1, (25)
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note that this implies βtk∗ > 0. Recall the definition of the βt, Eq (24) can be further expressed as

Lτ
k∗ = Ltk∗

k∗ + 1 ≤ 8(BS +Bu)
2(

ϵ− 2αtk∗
k∗ (BS +Bu)

)2/(
1− αtk∗

k∗

)2 log
(4K2Mτ2

δ

)
+ 1

≤ 8(BS +Bu)
2(

ϵ− 2αtk∗
k∗ (BS +Bu)

)2 log
(4K2Mτ2

δ

)
+ 1

≤

(
2
√
2(BS +Bu)

√
log(4K2Mτ2/δ) + 2(BS +Bu)

√
M
)2

ϵ2
+ 1

≤

(
(2
√
2 + 4)(BS +Bu)

√
log(4K2Mτ2/δ)

)2
ϵ2

+ 1,

(26)

where the first inequality is owing to 0 < 1− αtk∗
k∗ < 1 and ϵ− 2αtk∗

k∗ (BS +Bu) > 0. Since Eq (26) contradicts Eq (25),
we can finally conclude that Eq (22) holds.

Third step: Combine Eq (16) and Eq (22), τ1 can be bounded by

τ1 =

K∑
k=1

Lτ
k

≤
(
96 + 48

√
2
)
H∆ log

(4K2Mτ2

δ

)
+ 1

≤
(
96 + 48

√
2
)
H∆

(
log
(4Kτ2

δ

)
+M

)
+ 1.

Note that the right-hand side of the above equation includes the τ term. In the following proof of Theorem 1, we will
eliminate this term to ensure that the upper bound does not depend on τ . This completes the proof of Lemma 3.

The proof of Lemma 3 relies on the following Lemma 7 and 8.

Lemma 7. Under the event E , we have

h(S∗
k) ≤ ĥk

t ≤
(
uk − vŜk,t

(k)
)
+ 2(BS +Bu)I

t
q(k), (27)

for all k ∈ A.

Proof of Lemma 7. Recall the definition of ĥk
t = ût

k +BuI
t
q(k)− v∗LP . Based on Lemma 2, we can derive that

vS∗
k
(k) ≥ vS∗

k
(k′) + C(k, k′)

≥ vS∗
k
(k′) + Ĉt(k, k′)− Itc(k, k

′)

≥ Ĉt(k, k′) + v̂tS∗
k
(k′)−

(
Itc(k, k

′) +BSI
t
q(k

′)
)
, ∀k′ ̸= k, t ∈ [τ ].

(28)

The first inequality follows from the definitions of Vk and S∗
k , while the second and third inequalities follow from Lemma 2.

According to Eq (28), S∗
k satisfies all the constraints in UCB-LPk,t. With the definition of UCB-LPk,t, we have

ût
k +BuI

t
q(k)− vS∗

k
(k) ≤ ût

k +BuI
t
q(k)− v∗LP = ĥk

t . (29)

Based on Lemma 2, it has

uk ≤ ût
k +BuI

t
q(k). (30)

Combining Eq (29) and Eq (30), we finally obtain ĥk
t > uk − vS∗

k
(k) = h(S∗

k), ∀k ∈ A.
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We will then prove the second inequality of Eq (27). There is

ĥk
t = ût

k +BuI
t
q(k)− v∗LP

≤
(
ût
k − v̂t

Ŝk,t
(k)
)
+ (BS +Bu)I

t
q(k)

≤
(
uk − vŜk,t

(k)
)
+ 2(BS +Bu)I

t
q(k),

(31)

where the first inequality follows from the first constraint of UCB-LPk,t, and the last inequality follows from Lemma 2.
This completes the proof of Lemma 7.

Lemma 8. Given event E , if k∗t = kt and αt
k∗
t
< 1 in round t, then we have

ĥ
k∗
t

t ≤ 1

1− αt
k∗
t

(
h(S∗

k∗
t
)− αt

k∗
t
h(S̃k∗

t
)
)
+ 2(BS +Bu)I

t
q(k

∗
t ). (32)

Proof of Lemma 8. Remember, k∗t = kt implies that St can successfully induce the agent to pull k∗t . According to the
definition of S∗

k , we have

h(S∗
k∗
t
) ≥ h(St)

= h
(
αt
k∗
t
S̃k∗

t
+ (1− αt

k∗
t
)Ŝk∗

t ,t

)
= αt

k∗
t
h(S̃k∗

t
) + (1− αt

k∗
t
)
(
uk∗

t
− vŜk∗

t ,t
(k∗t )

)
.

(33)

Eq (33) can be rewritten as

uk∗
t
− vŜk∗

t ,t
(k∗t ) ≤

1

1− αt
k∗
t

(
h(S∗

k∗
t
)− αt

k∗
t
h(S̃k∗

t
)
)
. (34)

Based on Lemma 7, we can finally get

ĥ
k∗
t

t ≤ uk∗
t
− vŜk∗

t ,t
+ 2(BS +Bu)I

t
q(k

∗
t )

≤ 1

1− αt
k∗
t

(
h(S∗

k∗
t
)− αt

k∗
t
h(S̃k∗

t
)
)
+ 2(BS +Bu)I

t
q(k

∗
t ).

(35)

Here we finish the proof of Lemma 8.

F.2. Proof of Lemma 4

For a binary search that concludes at round t, we define t0(t) as the initial round of the search, (k0(t), k1(t)) as the optimal
response at the end of the search, and (S0(t), S1(t)) as the input scoring rule for this binary search.

Proof of Lemma 4. We can first decompose τ2 as

τ2 =

τ∑
t=1

1{kt ̸= k∗t }

≤
τ∑

t=1

(
1
{

BS = 1,Γt0(t)

(
k0(t), k1(t)

)
≤ α

t0(t)
k0(t)

}
+ 1

{
BS = 1,Γt0(t)

(
k0(t), k1(t)

)
> α

t0(t)
k0(t)

})
.

Besides, based on Lemma 10 and Lemma 13, we know that under event E ,
∑τ

t=1 1
{

BS = 1,Γt0(t)

(
k0(t), k1(t)

)
≤
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α
t0(t)
k0(t)

}
= 0 and

∑τ
t=1 1

{
BS = 1,Γt0(t)

(
k0(t), k1(t)

)
> α

t0(t)
k0(t)

}
≤
∑K

k=1 N
∗
k log2(τ). Therefore, we have

τ2 ≤
( K∑

k=1

ατ
k
−2
)(

12ε−1BS

)2
2 log2(τ) log

(
4K2Mτ2

δ

)
≤
(
96 + 48

√
2
)(
12ε−1BS

)2
2H∆M

−1 log2(τ) log
2

(
4K2Mτ2

δ

)
≤
(
96 + 48

√
2
)(
12ε−1BS

)2
2H∆M

−1 log2(τ)

(
M + 2 log

(4Kτ2

δ

))2

.

Here we finish the proof of Lemma 4.

The proof of Lemma 4 mainly relies on Lemma 10 and 13. To prove Lemma 10, we need to invoke the following Lemma 9.

Lemma 9. We assume that Γt(k0, k1) ≤ αt
k0

and k0 ̸= k1. Under the event E , the agent will not respond by pulling arm k1

according to the scoring rule St = αt
k0
S̃k0 + (1− αt

k0
)Ŝk0,t.

Proof of Lemma 9. Under the scoring rule St = αt
k0
S̃k0

+ (1− αt
k0
)Ŝk0,t and the event E , the expected profit for the agent

generated by responding with arm k1 satisfies

vαt
k0

S̃k0
+(1−αt

k0
)Ŝk0,t

(k1)− ck1 ≤ αt
k0
vS̃k0

(k1) + (1− αt
k0
)v̂t

Ŝk0,t
(k1)− ck1 + (1− αt

k0
)BSI

t
q(k1),

and the expected profit generated by arm k0 satisfies

vαt
k0

S̃k0
+(1−αt

k0
)Ŝk0,t

(k0)− ck0 ≥ αt
k0
vS̃k0

(k0) + (1− αt
k0
)v̂t

Ŝk0,t
(k0)− ck0 − (1− αt

k0
)BSI

t
q(k0).

By the action-informed oracle assumption, we already have

vS̃k0
(k0)− ck0 − vS̃k0

(k1) + ck1 ≥ ε.

Since Ŝk0,t is the solution to UCB-LPk0,t, following the last constraint of UCB-LPk0,t, we obtain

v̂t
Ŝk0,t

(k0)− v̂t
Ŝk0,t

(k1) ≥ Ĉt(k0, k1)− Itc(k0, k1)−BS(I
t
q(k0) + Itq(k1)). (36)

Combining the above inequalities, we obtain

vαt
k0

S̃k0
+(1−αt

k0
)Ŝk0,t

(k0)− ck0 − vαt
k0

S̃k0
+(1−αt

k0
)Ŝk0,t

(k0)− ck0

≥αt
k0

(
vS̃k0

(k0)− ck0 − vS̃k0
(k1) + ck1

)
+ (1− αt

k0
)
(
v̂t
Ŝk0,t

(k0)− v̂t
Ŝk0,t

(k1)− C(k0, k1)
)

− (1− αt
k0
)BS

(
Itq(k0) + Itq(k1)

)
≥αt

k0
ε+ (1− αt

k0
)
(
Ĉt(k0, k1)− C(k0, k1)− Itc(k0, k1)−BS

(
Itq(k0) + Itq(k1)

))
− (1− αt

k0
)BS

(
Itq(k0) + Itq(k1)

)
≥αt

k0
ε+ 2(1− αt

k0
)
(
− Itc(k0, k1)−BS

(
Itq(k0) + Itq(k1)

))
≥αt

k0
ε+ 2

(
− Itc(k0, k1)−BS

(
Itq(k0) + Itq(k1)

))
.

When αt
k0

≥ 2ε−1
(
Itc(k0, k1)+BS

(
Itq(k0)+ Itq(k1)

))
, it follows that vS̃k0

(k0)− ck0
−vS̃k0

(k1)+ ck1
≥ 0, which means

that the agent prefers to respond by taking arm k0 rather than arm k1. This completes the proof of Lemma 9.

Based on Lemma 9, we can directly prove Lemma 10.

Lemma 10. Under the event E , we have
∑τ

t=1 1
{

BS = 1, Γt0(t)

(
k0(t), k1(t)

)
≤ α

t0(t)
k0(t)

}
= 0.
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Proof of Lemma 10. When conducting a binary search, the scoring rule St falls within the segment
(
S0(t), S1(t)

)
(refer to

Algorithm 3). It’s worth noting that S0(t) = α
t0(t)
k0(t)

S̃k∗
t0(t)

+
(
1− α

t0(t)
k0(t)

)
Ŝk∗

t0(t)
,t0(t) and S1(t) = S̃k∗

t0(t)
. Therefore, the

scoring rule during the binary search can be represented as

St = α′S̃k∗
t0(t)

+ (1− α′)Ŝk∗
t0(t)

,t0(t), (37)

where α
t0(t)
k0(t)

≤ α′ ≤ 1. Hence, under assumption Γt0(t)

(
k0(t), k1(t)

)
≤ α

t0(t)
k0(t)

, the inequality Γt0(t)

(
k0(t), k1(t)

)
≤ α′

also holds. We now consider two different scenarios.

The first scenario arises during the binary search (from t0(t) + 1 to t1(t)), where the agent only responds by taking arm
k1(t) = k∗t0(t). This implies that k0(t) = kt0(t). However, the condition k0(t) ̸= k1(t), together with the assumption

Γt0(t)

(
k0(t), k1(t)

)
≤ α

t0(t)
k0(t)

and Lemma 9, implies that the agent cannot respond by taking k0(t) in the t0(t) round, which
contradicts the definition of this scenario.

The second scenario emerges during the binary search, where the agent responds by taking an arm not equal to k1(t) at least
once. However, given that k0(t) ̸= k1(t), the assumption Γt0(t)

(
k0(t), k1(t)

)
≤ α

t0(t)
k0(t)

≤ α′, and Lemma 9, the agent will
not respond by taking k0(t) during the binary search. This also contradicts the definition of the scenario.

The above discussion implies that in every binary search, Γt0(t)

(
k0(t), k1(t)

)
> α

t0(t)
k0(t)

. Therefore, under the event E , we

have
∑τ

t=1 1
{

BS = 1,Γt0(t)

(
k0(t), k1(t)

)
≤ α

t0(t)
k0(t)

}
= 0. Here we finish the proof of Lemma 13.

We now utilize Lemma 11, 12, and 13 to show that
∑τ

t=1 1
{

BS = 1,Γt0(t)

(
k0(t), k1(t)

)
> α

t0(t)
k0(t)

}
≤
∑K

k=1 N
∗
k log2(τ).

Lemma 11 and Lemma 12 demonstrate how binary search can decrease Itc and establish the stopping criteria for essential
binary search, respectively.

Lemma 11. For a binary search BS(S0, S1, λ̃min, λ̃max, k0, k1, t0, t1), we have

Itc(k0, k1) ≤ 2

√
2 log

(4K2Mτ2

δ

)
BS

(
1√
N t1

k0

+
1√
N t1

k1

)
.

Proof of Lemma 11. The proof of Lemma 11 directly follows the proof of Proposition F.9 in Chen et al. (2023).

Lemma 12. For a binary search BS(S0, S1, λ̃min, λ̃max, k0, k1, t0, t1), if event E happens and

min{N t1
k0
,N t1

k1
} ≥

(
12BS(α

τ
k0
ε)−1

)2
2 log

(
4K2Mτ2

δ

)
= N∗

k0
, (38)

then we have αt
k0

≥ Γt(k0, k1) for t1 < t ≤ τ , and no more essential binary search ending with the same (k0, k1) is
possible.

Proof of Lemma 12. For any t1 < t ≤ τ , we have

αt
k0

≥ ατ
k0

=
(
12ε−1BS

)√2 log
(
4K2Mτ2/δ

)
N∗

k0

≥
(
2ε−1BS

)√
2 log

(
4K2Mτ2

δ

)
6

min{N t1
k0
,N t1

k1
}

≥
(
2ε−1BS

)√
2 log

(4K2Mτ2

δ

)(
2

1√
N t1

k0

+ 2
1√
N t1

k1

+
1√
N t

k0

+
1√
N t

k1

)

≥ 2ε−1
(
Itc(k0, k1) +BS

(
Itq(k0) + Itq(k1)

))
= Γt(k0, k1),
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where the first inequality is owing to αt
k is is a parameter that is monotonically non-increasing over time, the first equality is

due to the definition of N∗
k0

, the first inequality is due to Eq (38), the second inequality is due to N t
k ≥ N t1

k , ∀k ∈ A, and
the third inequality is owing to Lemma 11. Therefore, we conclude that after round t1, αt

k0
is larger than Γt(k0, k1) and no

more essential binary search will ending with (k0, k1). Here we finish the proof of Lemma 12.

Lemma 13. A binary search BS(S0, S1, λ̃min, λ̃max, k0, k1, t0, t1) is an essential binary search if and only if Γt0(k0, k1) >

αt0
k0

. The total number of essential binary searches in τ rounds can be bounded by
∑K

k=1 N
∗
km ≤

∑K
k=1 N

∗
k log2(τ) =∑K

k=1

(
12BS

(
ατ
kε
)−1
)2

2 log2(τ) log
(

4K2Mτ2

δ

)
.

Proof of Lemma 13. The result directly follows the proof of Lemma F.4 in Chen et al. (2023) and Lemma 12.

F.3. Proof of Lemma 5

Proof of Lemma 5. We have

2(Bu +BS)I
τ
q (k

∗
τ ) ≥ ĥk∗

τ − ĥ
k∗
τ

τ + 2(Bu +BS)I
τ
q (k

∗
τ )

≥ ĥk∗

τ − uk∗
τ
+ vŜk∗

τ ,τ
(k∗τ )− 2(Bu +BS)I

τ
q (k

∗
τ ) + 2(Bu +BS)I

τ
q (k

∗
τ )

≥ h(S∗)− uk∗
τ
+ vŜk∗

τ ,τ
(k∗τ ),

(39)

where the first inequality follows from the definition of k∗t , and the second and third inequalities follow from Lemma
7. According to the definition of the termination round τ , ατ

k∗
τ

must be less than 1; otherwise, βτ = 0 cannot exceed
2(BS +Bu)I

τ
q (k

∗
τ ), since the latter term is strictly positive. We have

h(S∗)− uk∗
τ
+ vŜk∗

τ ,τ
(k∗τ ) ≤ βτ =

ϵ− 2ατ
k∗
τ
(BS +Bu)

1− ατ
k∗
τ

.

Moreover, since Ŝ∗ = Sτ = ατ
k∗
τ
S̃k∗

τ
+ (1− ατ

k∗
τ
)Ŝk∗

τ ,τ
and the best response to Ŝ∗ is k∗τ , we have

h(S∗)− h(Ŝ∗) = h(S∗)− uk∗
τ
+ vατ

k∗
τ
S̃k∗

τ
+(1−ατ

k∗
τ
)Ŝk∗

τ ,τ
(k∗τ )

= ατ
k∗
τ

(
h(S∗)− h(S̃k∗

τ
)
)
+ (1− ατ

k∗
τ
)
(
h(S∗)− uk∗

τ
+ vŜk∗

τ ,τ
(k∗τ )

)
≤ 2ατ

k∗
τ
(BS +Bu) + (1− ατ

k∗
τ
)
(
h(S∗)− uk∗

τ
+ vŜk∗

τ ,τ
(k∗τ )

)
≤ 2ατ

k∗
τ
(BS +Bu) + (1− ατ

k∗
τ
)βτ

= ϵ,

(40)

where the last equality is owing to the definition of βτ .

Note that E happens with probability at least 1 − δ (as shown in Lemma 2), we can conclude that Ŝ∗ can satisfy the
(ϵ, δ)-condition (3). Here we finish the proof of Lemma 5.

F.4. Proof of Theorem 1

Proof of Theorem 1. Lemma 5 directly shows that the estimated optimal scoring rule Ŝ∗ satisfies condition (3). Here, we
present the upper bound of the sample complexity. Recalling that τ = τ1 + τ2, and combining Lemma 3 and Lemma 4, we
obtain

τ ≤

(
(96 + 48

√
2)H∆

(
M + log

(4Kτ2

δ

))
+ 1

)(
1 +

(
12ε−1BS

)2
2 log2(τ)M

−1

(
M + log

(4Kτ2

δ

)))
. (41)
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We define c =
(
97 + 48

√
2
)
2, Eq (41) can be rewritten as

τ ≤c
(
1 + 12ε−1BS

)2
H∆ log2(τ)M

−1

(
M + log

(4Kτ2

δ

))2

=c
(
1 + 12ε−1BS

)2
H∆ log2(τ)

(
M + 2 log

(4Kτ2

δ

)
+

1

M
log2

(4Kτ2

δ

))
.

(42)

Define a parameter Λ, such that

Λ ≤ τ =c
(
1 + 12ε−1BS

)2
H∆ log2(Λ)M

−1

(
M + log

(
4KΛ2

δ

))2

≤c
(
1 + 12ε−1BS

)2
H∆ log2(Λ)M

−1

(
M + log

((4KΛ

δ

)2))2

≤128c
(
1 + 12ε−1BS

)2
H∆ log2

(
(Λ)1/2

)(
M + log

((4KΛ

δ

)1/4))2

≤128c
(
1 + 12ε−1BS

)2
H∆

(
Λ1/4M2 + 2M

(4KΛ

δ

)3/8
+
(4KΛ

δ

)1/2)

≤

(
128c

(
1 + 12ε−1BS

)2
H∆

(
M2 + 2M

(4K
δ

)3/8
+
(4K

δ

)1/2))2

=Γ,

(43)

where the third inequality is owing to
√
x ≥ log2(x) ≥ log(x) for all x > 0. Substituting Eq (43) into Eq (41), we can

finally derive

τ ≤c
(
1 + 12ε−1BS

)2
H∆ log2(Γ)

(
M + 2 log

(
4KΓ2

δ

)
+

1

M
log2

(
4KΓ2

δ

))
=Õ
(
B2

Sε
−2MH∆

)
.

(44)

Note that the right-hand side of the above upper bound does not contain τ . Here we finish the proof of Theorem 1.
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G. Proof of Corollary 1
Following a similar approach as in the previous section, we split this analysis into three parts. First, we will establish an upper
bound for τ1 =

∑τ
t=1 1{kt = k∗t }. Then, in the second part, we will derive an upper bound for τ2 =

∑τ
t=1 1{kt ̸= k∗t }.

Finally, by summing the upper bounds of τ1 and τ2, and applying some basic algebraic manipulations, we obtain the upper
bound for τ . We will also demonstrate that, with the parameters specified in Corollary 1, the estimated best arm satisfies
condition (3).

Upper bound τ1 Under event E , we want to prove

Lτ
k ≤ 16(BS +Bu)

2

ϵ2
log

(
4K2Mτ2

δ

)
+K, ∀k ∈ A. (45)

Suppose arm k ∈ A is only triggered during the initialization phase; in this case, the result holds trivially. Furthermore, let
tk represent the penultimate round in which arm k is observed, such that k∗ = k∗tk = ktk . Based on the stopping rule (line
15 of Algorithm 1), we can derive that

βtk ≤ 2(Bu +BS)I
tk
q (k). (46)

Note that based on the setting in Corollary 1, it has 0 < βt for all t. We can substitute Eq (9) (the definition of the fixed
confidence style confidence radius) into Eq (46) and derive

Lτ
k = Ltk

k + 1 ≤ N tk
k + 1 ≤4(BS +Bu)

2

β2
tk

log

(
4K2M t2k

δ

)
+ 1

≤4(BS +Bu)
2

β2
tk

log

(
4K2Mτ2

δ

)
+ 1

≤16(BS +Bu)
2

ϵ2
log

(
4K2Mτ2

δ

)
+ 1,

(47)

where the first equality is owing to the definition of tk and Lt
k, the third inequality is owing to tk ≤ τ and the last inequality

is owing to βtk ≥ ϵ
2 . With the last term in Eq (47), we can derive Eq (45), and

τ1 =

K∑
k=1

Lτ
k ≤16(BS +Bu)

2K

ϵ2
log

(
4K2Mτ2

δ

)
+K

=4Hϵ log
(4K2Mτ2

δ

)
+K

≤4Hϵ

(
M + log

(4Kτ2

δ

))
+K.

(48)

Upper bound τ2 Based on the discussion in the previous section, if E happens, we have

τ2 ≤
K∑

k=1

N∗
km

=

K∑
k=1

(
12BS

(
ατ
kε
)−1
)2

2 log2(τ) log

(
4K2Mτ2

δ

)
=1152HϵB

2
Sε

−2 log2(τ)

(
M + log

(4Kτ2

δ

))
.

(49)

Upper bound τ and demonstrate Ŝ∗ satisfies Eq (3) Note that the event E occurs with probability at least 1− δ. By
combining Eq (45) and Eq (49) and following the steps outlined in the previous section, we conclude that the following
holds with probability at least 1− δ:

τ = Õ
(
B2

Sε
−2MHϵ

)
. (50)
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Furthermore, following the same reasoning as in the proof of Lemma 5, we can show that Ŝ∗ satisfies Eq (3). This concludes
the proof of Corollary 1
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H. Proof of Theorem 2
Proof sketch of Theorem 2 In Lemma 14, we demonstrate that OIAFB will output an estimated best scoring rule if and
only if 0 < a < T

144HϵB2
Sε−2 log2(T )

. Furthermore, we show that, within the event E , if the simple regret h(S∗) − h(Ŝ∗)

exceeds ϵ, then T ≤ 4aHϵ+K. It follows that selecting 0 < a < min
(

T−K
4Hϵ

, T
144HϵB2

Sε−2 log2(T )

)
leads to T > 4Hϵa+K,

which contradicts our previous findings. Consequently, within the event E , OIAFB will yield an estimated scoring rule
with a simple regret no larger than ϵ. Additionally, Lemma 2 indicates that the event E occurs with a probability of at least
1− TK2Me−

1
2a when adopting the confidence radius defined in Eq (10).

Lemma 14. Suppose 0 < a < T
144HϵB2

Sε−2 log2(T )
. Under event E , if h(S∗)− h(Ŝ∗) > ϵ, then we have T ≤ 4Hϵa+K.

Proof of Lemma 14. Note that OIAFB will return an estimated best scoring rule if and only if
∑T

t=1 1{kt = k∗t } is greater
than 1 (see Algorithm 2 for details). When we select Itq as defined in Eq (10),

∑T
t=1 1{kt ̸= k∗t } can be bounded by

144HϵB
2
Sε

−2a log2(T ) (similarly to Lemma 4 and using m ≤ log2(T ) in the fixed-budget literature). Thus, to ensure that
OIAFB outputs an estimated best arm, a must satisfies 0 < a < T

144HϵB2
Sε−2 log2(T )

.

We want to show LT
k ≤ 4Hϵa+1, for all k ∈ A. If arm k is only triggered in the initial phase, this inequality trivially holds.

Otherwise, define tk as the penultimate round that arm k is triggered by the agent and kt = k∗t . It has

2(BS +Bu)I
tk
q (k) ≥ 2(BS +Bu)I

t∗

q (k̂∗) ≥ h(S∗)− uk̂∗ + vŜ∗(k̂
∗) ≥ ϵ− 2α(BS +Bu)

1− αt
k

= βt, (51)

where k̂∗ is the best response of Ŝ∗. The first inequality of Eq (51) is owing to the definition of k̂∗ and t̂∗, the second
inequality is based on Eq (39), and the third inequality is owing to

h(S∗)− uk̂∗ + vŜ∗(k̂
∗) =

h(S∗)− h(Ŝ∗)− αt
k

(
h(S∗)− h(S̃kτ

)
)

1− αt
k

≥ h(S∗)− h(Ŝ∗)− 2αt
k(BS +Bu)

1− αt
k

≥ ϵ− 2αt
k(BS +Bu)

1− αt
k

,

(52)

where the first equality is based on the second equality of Eq (40). Based on Eq (51), the definition of fixed budget style
Itq(k) and the definition of tk, it is easy to derive

LT
k = Ltk

k + 1 ≤ N tk
k + 1 ≤ 4(BS +Bu)

2a

β2
t

+ 1, ∀k ∈ A. (53)

This implies

T1 =

K∑
k=1

LT
k ≤ 4K(BS +Bu)

2a

β2
t

+K. (54)

According to the setting that αt
k = ϵ

4(BS+Bu)
, we have βt ≥ ϵ

2 . This means

T ≤ 4Hϵa+K. (55)

Here we finish the proof of Lemma 14.

Proof of Theorem 2. If we set 2 log
(
TK2M

)
≤ a < min

(
T−K
4Hϵ

, T
144HϵB2

Sε−2 log2(T )

)
, it indicates that 4Hϵa +K < T ,

which contradicts the previous result. Therefore, under event E , if 2 log
(
TK2M

)
≤ a < T−K

144Hϵ max
(
B2

Sε−2,1
)
log2(T )

≤

min
(

T−K
4Hϵ

, T
144HϵB2

Sε−2 log2(T )

)
, then h(S∗)− h(Ŝ∗) ≤ ϵ. According to Lemma 2, E will happen with probability at least

1− TK2Me−
1
2a if we set Itq as Eq (10). This implies δ̃ ≤ TK2Me−

1
2a ≤ 1. This completes the proof of Theorem 2.
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I. Proof of Corollay 2
Due to a = 2 log

(
TK2M/δ

)
should be smaller than T−K

144Hϵ max
(
B2

Sε−2,1
)
log2(T )

, T should satisfies

T > 288Hϵ max
(
B2

Sε
−2, 1

)
log2(T )

(
M + log

(TK
δ

))
+K. (56)

We define Γ =

(
1152Hϵ max

(
B2

Sε
−2, 1

)(
M + (K/δ)1/2

)
+K

)2

, then

Γ =

(
1152Hϵ max

(
B2

Sε
−2, 1

)(
M + (K/δ)1/2

)
+K

)2

≥1152Hϵ max
(
B2

Sε
−2, 1

)(
Γ1/4M + (ΓK/δ)1/2

)
+K

≥1152Hϵ max
(
B2

Sε
−2, 1

)
log2

(
Γ1/2

)(
M + log

((
ΓK/δ

)1/2))
+K

>288max
(
B2

Sε
−2, 1

)
log2(Γ)

(
M + log

(
ΓK/δ

))
+K,

(57)

where the first inequality is owing to log(x) ≤ log2(x) ≤
√
x for all x > 1. If

T = 288Hϵ max
(
B2

Sε
−2, 1

)
log2(Γ)

(
M + log

(
ΓK/δ

))
+K, (58)

then, we have Γ > T , and Eq (56) trivially holds. Finally, by substituting a = 2 log
(
TK2M/δ

)
into δ̃ ≤ TK2Me−

1
2a, we

obtain δ̃ ≤ δ.
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